
  

Practical Use Case Guide 

 

Author:  Modeliosoft Consulting Team 
Version:  1.0 
Copyright:  Modeliosoft 
 

 

 

 

Modeliosoft 

21 avenue Victor Hugo 

75016 Paris 

 

www.modeliosoft.com 

 

Modelio           
Practical Guides 



Practical Use Case Guide 

 

 
Copyright Modeliosoft 2009 
21 avenue Victor Hugo, 75016 Paris 
 

Page 2 

Introduction to Practical Guides 
This set of Practical Guides is the result of hands-on experience gained by Modeliosoft 

consultants. Each guide is designed to facilitate model construction and to help you get the most 

out of the Modelio tool in a given context. The practical guides are deliberately short, since the 

aim is to provide essential practical information in just a few pages. The Modeliosoft consulting 

team is at your service to help with enterprise architecture definition, business process and 

software architecture modeling, SOA, and to provide any other assistance you may need in your 

IT projects. 

Modeliosoft is pleased to provide a consulting/tool package. Find out more at 

www.modeliosoft.com. 

At www.modeliosoft.com, you can download the Modelio Free Edition tool, a user-friendly and 

unlimited tool for UML modeling and business modeling (Enterprise Architecture, BPM, SOA 

logical architecture and software architecture), completely free of charge. 

At www.modeliosoft.com, you can also evaluate and purchase Modelio Enterprise Edition, and 

discover the full functional richness of this tool: teamwork support, goal analysis, dictionary 

definition, requirements analysis, code generation, documentation generation throughout the 

entire project lifecycle, and so on. 

The Practical Guides currently available are as follows: 

 Practical Use Case Guide 

 Practical Business Process Guide 

 Enterprise Architecture: Practical Guide to Logical Architecture 

 Practical Company Organization Modeling Guide 

Other practical guides will be available soon. Please check our website for details.

http://www.modeliosoft.com/
http://www.modeliosoft.com/
http://www.modeliosoft.com/


Practical Use Case Guide 

 

 
Copyright Modeliosoft 2009 
21 avenue Victor Hugo, 75016 Paris 
 

Page 3 

What are use cases? 
A UML use case model describes and formalizes relationships between the software system to be 

developed and the outside world.  

Use case models describe an external point of view (black box) and never deal with the internal 

structure of the software. The aim is to specify the boundaries of the system and the different 

interactions implemented in the realization of business requirements. 

Use case models are made up of two main types of UML element – Actors and Use Cases (see 

figure below). The container that appears in the diagram (in rectangular form) represents the 

system. Use cases are presented inside the system and actors outside it. 

 

Example of a use case with one actor and three use cases 

Often used during the initial phases of the development process, use case models are a basic tool 

used to formalize functional requirements. They are particularly helpful during dialog with users. 



Practical Use Case Guide 

 

 
Copyright Modeliosoft 2009 
21 avenue Victor Hugo, 75016 Paris 
 

Page 4 

Actors 
An actor is an entity outside the system that needs to directly interact with it. An actor can 

represent a human user or any material or software device. 

Examples: User, Client, Invoicing Software Application, Production Machine. 

 

An actor represents a role played in the context of the system. A physical user can play several 

different roles successively depending on how the system is used. 

For example, a systems administrator is in charge of installing the latest version of a training 

course in a classroom. He will first play his usual role (Administrator Actor) during the actual 

installation of the new version on the training machines, before connecting as a student (Student 

Actor) in order to check that the new version is working properly. In this case, there is only one 

concrete external entity, the systems administrator. However, there are two distinct actors – the 

administrator and the student. 

In a use case model, the aim is to identify all the actors that interact with the system, both the 

main actors (those which justify the construction of the system) and the secondary actors 

necessary to the smooth running of the system (administrators, repair staff, and so on). 

In use case diagram representation, main actors are represented on the left of the system and 

secondary actors on the right of the system. 

 

The Client and Technician actors 



Practical Use Case Guide 

 

 
Copyright Modeliosoft 2009 
21 avenue Victor Hugo, 75016 Paris 
 

Page 5 

In the example above, the technician responsible for regularly replenishing the stock of 

banknotes (secondary actor) is absolutely essential and has an important impact on the design of 

the ATM. 

Validation rule 

 Every actor must be linked to at least one use case. 



Practical Use Case Guide 

 

 
Copyright Modeliosoft 2009 
21 avenue Victor Hugo, 75016 Paris 
 

Page 6 

Use cases 
A use case represents an interaction between actors and the system, with the aim of meeting a 

fundamental requirement. It is described by a set of scenarios that specify the dialog between 

the system and the actors. 

A use case must render a real and complete service that provides the actor with an added value. 

This is its essential characteristic. Conversely, functions such as "Enter PIN code" or "Choose 

amount" are probably not use cases. 

A use case is an atomic element, which must meet the following criteria: 

 Unicity of time. A scenario must play out in a relatively short timespan. Conversely, an 

interaction cannot last several months. 

 Unicity of place. A scenario must take place in only one place (it cannot begin in the office 

and finish at home, for example). 

 Unicity of actor (one beneficiary actor). The service is rendered for a single actor (main 

actor), which is often the source that triggers the use case. Other actors who interact with 

the use case are secondary actors. They take part in the scenarios but are not the 

beneficiaries of the service. 

 Non-interruptible. A scenario cannot be interrupted and then continued later (in normal 

usage). The scenario stops once the service has been rendered. Typically, an actor will not 

"take a vacation" while a scenario is playing out. 

The above criteria emphasize the atomic nature of use cases.  They are not formal criteria, but 

they do help in understanding, constructing and validating use cases. They also enable use cases 

to be distinguished from other types of element, such as business processes, operations or 

functions. 

Tip: The following quick test is often used to check the essential criterion (must render a 

real and complete service). Imagine that the actor stops just after the end of the 

scenario. If the result is ridiculous, then there is probably an identification error. For 

example, if we consider the "log on" scenario, which consists of entering your login 

and password, if the user leaves the room to do something else, this would not make 

much sense. The "log on" use case would not be retained. 

 

Validation rules 

 Every use case must be linked to at least one actor(*). 

 Every use case must contain at least one scenario. 

(*) Except for "false use cases" (see "Relationships between use cases"). 



Practical Use Case Guide 

 

 
Copyright Modeliosoft 2009 
21 avenue Victor Hugo, 75016 Paris 
 

Page 7 

Scenarios 
A use case's scenarios make up a sequence that describes the dialog between the system and one 

or several actors. 

Scenarios are most often expressed textually. However, there are no rules in the UML standard 

regarding this point. For example, activity diagrams, sequence diagrams or any other means can 

also be used to express scenarios. 

For a use case, there must be at least one main (or nominal) scenario, which represents the use 

case's most meaningful interaction (sequence where "everything goes smoothly"). Other 

scenarios can be added to describe other possible interactions. 

Example: 

1) The CLIENT inserts his bank card 
2) The system asks the CLIENT to enter his PIN code [E1] 
3) The CLIENT enters his PIN code [E2] 
4) The system checks the CLIENT's PIN code 
5) The system asks the CLIENT to enter the sum to withdraw 
6) The CLIENT enters the sum 
7) The system returns the bank card. The CLIENT takes his bank card 
8) The system delivers banknotes corresponding to the sum to withdraw 
9) The CLIENT takes his banknotes 

 

Errors, exceptions and special cases can be added to scenarios in the form of links associated with 

a particular sequence. 

Examples: 

E1: If the client does not enter his PIN code within 10 seconds, the system 

returns the bank card and stops the scenario. 

E2: If the client enters an incorrect PIN code, the system requests the 

correct code once again. If the PIN code entered is still incorrect after 

three attempts, the system stops the scenario and retains the bank card. 



Practical Use Case Guide 

 

 
Copyright Modeliosoft 2009 
21 avenue Victor Hugo, 75016 Paris 
 

Page 8 

 

 

Scenario represented by a note associated with the use case 

In practice, most use cases are described by a scenario (nominal with links for errors and 

exceptions). 

The notion of scenario does not exist in UML. We recommend that you create an interaction to 

the use case to represent the scenario. 

Sequence diagrams (linked to the interaction) can be used to model the scenario. In practice, 

most scenarios are simply described textually through "description" notes in Modelio. 

 

Defining a scenario in Modelio 



Practical Use Case Guide 

 

 
Copyright Modeliosoft 2009 
21 avenue Victor Hugo, 75016 Paris 
 

Page 9 

Scenarios must not include GUI (Graphical User Interface) directions or technical elements: 

Recommended Forbidden 

The operator requests the list of files. The 

system returns the list of open files. 

The operator clicks on the "List" button. The 

system displays the list in green in the "files" 

window. 

The system records the member's profile. The system writes the profile of the member in 

the Oracle 8.1 database using an SQL INSERT 

statement. 

 



Practical Use Case Guide 

 

 
Copyright Modeliosoft 2009 
21 avenue Victor Hugo, 75016 Paris 
 

Page 10 

Detailed use case file 
As well as scenarios, every use case is described by a detailed file containing a set of 

characteristics: 

 Expected service 

 Pre-condition 

 Post-condition 

 Non-functional constraints 

 Applicable business rules 

 Running frequency 

 

This list is not exhaustive and can be adapted and enriched in accordance with the realities of the 

project or the terms usually employed (see A. Cockburn. Writing Effective Use Cases. Addison-

Wesley Longman Publishing Co). 

These elements can be entered through notes associated with use cases (see figure below) or in 

an external document. 

 

Characteristics of a use case defined using notes 

 

The structure and characteristics taken into account in use case files are not part of the UML 

standard. We recommend that you clearly define a framework content that will be used for a 

group of projects within the company, in order to ensure consistent formulation. 



Practical Use Case Guide 

 

 
Copyright Modeliosoft 2009 
21 avenue Victor Hugo, 75016 Paris 
 

Page 11 

By default, Modelio provides the following note types for use cases: 

 Description 

 Pre-Conditions 

 Post-Conditions 

 Exceptions 

 Functional Constraints 

 Non-Functional Constraints 

Expected service 
For every use case, a description of the service expected by the actor who is the beneficiary of 

the service. 

Example: 

 The client's objective is to withdraw a chosen sum in cash (notes in euros) from his current 

account. 

Pre and post-conditions 
Pre-conditions describe the conditions that must be respected before a scenario can be triggered. 

Example: 

 The withdrawal cannot be carried out if the ATM does not have a minimum number of 

banknotes available. 

 The withdrawal cannot be carried out if banknote stock replenishment is underway. 

 

Post-conditions describe the conditions checked after a scenario has stopped (except in the case 

of errors or exceptional processing). 

Example: 

 After the withdrawal, the ATM is available for all other operations 

 

Other pre and post conditions can be defined for each scenario, in order to define specific 

conditions that must be met. 



Practical Use Case Guide 

 

 
Copyright Modeliosoft 2009 
21 avenue Victor Hugo, 75016 Paris 
 

Page 12 

Non-functional constraints 
Non-functional constraints specify a set of additional requirements. These requirements are 

linked to performance, availability, size, runtime, and so on. 

Examples: 

 The total duration of a withdrawal operation must not exceed 1 minute. 

 The unavailability rate must not exceed 1 hour per month. 

Elaborating a use case model 
Use case models are elaborated in close collaboration with IT services (business and user 

aspects). Different business resources, dictionaries or requirement lists can be used (if they exist) 

without being considered as unique sources of knowledge. The Modelio Scope Manager module 

is used to define and model requirements and to trace them to the rest of the model, notably use 

cases. For every functional requirement, it must be determined whether it corresponds to a use 

case (see the previously provided rules). 

If you have a business process model (see the process modeling user guide), all identified 

activities that are supported by the system are candidates to become use cases. 

The necessary dialog takes place using whatever means is best adapted to the situation, with the 

accent on direct communication (meetings, workshops, sketches, and so on). 

 



Practical Use Case Guide 

 

 
Copyright Modeliosoft 2009 
21 avenue Victor Hugo, 75016 Paris 
 

Page 13 

Use cases can also be used as a support without imposing UML formalism, if participants are 

reticent. For example, textual scenarios can be exchanged as is, without the UML use case 

diagrams. 

On the whole, this elaboration will be carried out progressively using a breadth-first schema 

rather than a depth-first schema. This means we can avoid breaking work down according to an 

element-driven order (first the actors, then the use cases and finally the scenarios). Actors, use 

cases and scenarios are closely linked and are constructed alongside one another. 

Depending on the volume (number of use cases), it is better to break work down according to the 

priority assigned to each use case (first the client-oriented use cases, linked to the main actors), 

all the while continuing to communicate with IT services. The aim is to gradually converge on a 

consistent, valid model that is consistent with the business vision. 

 

General approach for elaborating use cases 

During the elaboration of initial models, we recommend against using relationships between use 

cases (incude, extend or inheritance).  Scenarios should be used instead. 



Practical Use Case Guide 

 

 
Copyright Modeliosoft 2009 
21 avenue Victor Hugo, 75016 Paris 
 

Page 14 

Identifying and naming actors 
It is not always simple, and can sometimes be downright difficult, to correctly identify and name 

actors.  

Actors represent the roles that an external entity can play at a given time. An entity can play 

several different roles according to the circumstances.  

The distinction between the notion of role and the notions of position or function within a 

company can be confusing. In practice, you don't necessarily wait for actors to be definitively 

named before constructing the model with use cases. For example, temporary names can be 

used (using occupied posts, for example). These will be replaced later by more adapted 

terminology. 

All the participating actors cannot necessarily be immediately identified. Use case scenarios are 

used to control and possibly add missing actors. For example, in the use case scenario "Withdraw 

sum": 

1) The CLIENT inserts his bank card 

2) The system asks the CLIENT to enter his PIN code 

3) The CLIENT enters his PIN code 

4) The system checks the CLIENT's PIN code 

5) The system asks the CLIENT to enter the sum to withdraw 

 

Step 4 implies that it is the system that checks the client's PIN code. However, after discussion 

with IT services, it turns out this is wrong. In reality, the system asks the bank card to check the 

PIN code (the bank card itself contains its checking software). If you consider that the bank card is 

not part of the system (the ATM), then a new actor must be added. 

 

The scenario is reformulated as follows: 

1) The CLIENT inserts his bank card 

2) The system asks the CLIENT to enter his PIN code 

3) The CLIENT enters his PIN code 

4) The system checks the CLIENT's PIN code 

4.1) The system asks the BANK CARD to check the PIN code 

5) The system asks the CLIENT to enter the sum to withdraw 



Practical Use Case Guide 

 

 
Copyright Modeliosoft 2009 
21 avenue Victor Hugo, 75016 Paris 
 

Page 15 

Relationships between use cases 
The UML standard defines a set of relationships between use cases:  

 Inclusion relationships (« include »)  

 Extension relationships (« extend ») 

 Inheritance links 

 

Relationships between use cases: UC2 inherits from UC1, UC2 includes UC3, UC4 extends UC2 

Although they are an integral part of the standard, the use of these relationships is not clear and 

can lead to difficulties. We strongly recommend that you limit their use (see the 

Recommendations and Limitations chapter). 



Practical Use Case Guide 

 

 
Copyright Modeliosoft 2009 
21 avenue Victor Hugo, 75016 Paris 
 

Page 16 

Inclusion relationships 
Inclusion can be used where several use cases contain identical strings of sequences. A new use 

case that declares and factorizes this common part can then be referenced by other use cases. 

 

"include" relationship between use cases 

In the example above, the scenarios of the two use cases "Consult document" and "Annotate 

document" start with the same sequences: 

1) The Agent requests the list of available documents 

2) The Agent selects a document in the list 

3) The Agent views the contents of the document 

x) … 

y) … 

 

In order to avoid repetition, the "Choose document" use case declares the first three sequences 

in its scenario, and then the scenarios of the other two use cases are modified to reference this. 

1) include: Choose document 

x) … 

y) … 

 

Note: The UML standard does not indicate a language or technique for referencing a use 

case in a scenario. 



Practical Use Case Guide 

 

 
Copyright Modeliosoft 2009 
21 avenue Victor Hugo, 75016 Paris 
 

Page 17 

Extension relationships 
Extensions relationships introduce a particular path into a scenario, often associated with an 

exceptional condition (threshold effect, special case…) called an exception point. 

A use case contains this exceptional sequence and extends the initial use case. 

 

"extend" relationship between use cases 

In the example above, if a critical document is concerned, an extension point (PEA) is inserted 

into the scenario of the "Consult document" use case. 

1) include: Choose document 

(PEA) If critical document 

2)  

x) … 

y) … 

 

The corresponding sequence is defined in the scenario of the "Control access" use case.  

(PEA) 

1) The system requests the password from the Agent 

2) The Agent enters the password 

3) The system checks the password 

 

Note: The UML standard does not indicate a language or technique for inserting or defining 

an extension point. 

 

In practice, extensions between use cases are to be avoided (see Recommendations and 

Limitations chapter). 



Practical Use Case Guide 

 

 
Copyright Modeliosoft 2009 
21 avenue Victor Hugo, 75016 Paris 
 

Page 18 

Inheritance relationships 
Inheritance between use cases is represented in the same way as inheritance between classes. 

Inheritance can be used to define "sub-use cases". 

In practice, inheritance between use cases should be avoided (see Recommendations and 

Limitations chapter). 

For grouping use cases (by functional category, for example), the Package is used (see Structured 

Use Cases chapter). 



Practical Use Case Guide 

 

 
Copyright Modeliosoft 2009 
21 avenue Victor Hugo, 75016 Paris 
 

Page 19 

Recommendations and limitations 
Avoid the use of extension relationships and inheritance links. Their semantics are not sufficiently 

rigourous, and the absence of a standard language tends to increase the risk of confusion. 

Extensions can be represented in most cases simply through links in scenarios. 

“I strongly suggest that you ignore them (extend and inheritance). I’ve seen too many situations in 

which teams can get terribly hung up on when to use different use case relationships, and such 

energy is wasted.” UML Distilled third edition, Martin Fowler, Addison-Wesley. 

Inclusion relationships can be used where there is real factorization. However, this type of use 

must remain occasional and must bring added value. 

Furthermore, the use of these relationships tends to clutter diagrams with the introduction of 

"false use cases", which do not respect the properties previously presented. 

For example, in the frequently encountered case of authentication (login password) that is 

systematic every time the software is used, the following schema is avoided. In this case, it is 

better to indicate access security elements at the beginning of the document. 

 

Schema to be avoided 

The "Login" use case is not a real use case (there is no complete service provided to the user). 



Practical Use Case Guide 

 

 
Copyright Modeliosoft 2009 
21 avenue Victor Hugo, 75016 Paris 
 

Page 20 

Structuring use cases 
A structure adapted to the volume of the problem to be handled should be chosen.  

At the root, two container packages are defined for actors and use cases. 

 

Use cases are then grouped into functional packages, according to how many there are. 

Documenting use cases 
Modelio provides a document template ("UseCases") dedicated to use cases. To implement it, 

follow the instructions below: 

 Document use case diagrams ("description" notes on diagrams) 

 Document use cases ("description" and "pre-condition" notes on use cases, and so on) 

 Document actors ("description" notes) 

 Create interactions for scenarios inside use cases 

 Document les scenarios ("description" notes) or possibly model them using sequence 

diagrams 

 

Then simply generate documentation from a package including the use case model and obtain a 

document that is consistent with the approach. 

 


