
LispWorks®

Release Notes and
Installation Guide
Version 6.0

Copyright and Trademarks
LispWorks Release Notes and Installation Guide

Version 6.0

December 2009

Copyright © 2009 by LispWorks Ltd.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of LispWorks Ltd.

The information in this publication is provided for information only, is subject to change without notice, and should not be construed as a
commitment by LispWorks Ltd. LispWorks Ltd assumes no responsibility or liability for any errors or inaccuracies that may appear in this
publication. The software described in this book is furnished under license and may only be used or copied in accordance with the terms of
that license.

LispWorks and KnowledgeWorks are registered trademarks of LispWorks Ltd.

Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the registered trade-
marks or trademarks of their respective holders.

The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986, 1987, 1988 Xerox
Corporation.

The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom:
Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts.
Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, pro-
vided that this copyright and permission notice appear in all copies and supporting documentation, and that the name of M.I.T. not be used
in advertising or publicity pertaining to distribution of the software without specific, written prior permission. M.I.T. makes no representa-
tion about the suitability of this software for any purpose. It is provided “as is” without express or implied warranty. M.I.T. disclaims all war-
ranties with regard to this software, including all implied warranties of merchantability and fitness. In no event shall M.I.T. be liable for any
special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of con-
tract, negligence or other tortious action, arising out of or in connection with the use or performance of this software.

LispWorks contains part of ICU software obtained from http://source.icu-project.org and which bears the following copyright and permis-
sion notice:
ICU License - ICU 1.8.1 and later
COPYRIGHT AND PERMISSION NOTICE
Copyright © 1995-2006 International Business Machines Corporation and others. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Soft-
ware"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, provided that the above copyright
notice(s) and this permission notice appear in all copies of the Software and that both the above copyright notice(s) and this permission
notice appear in supporting documentation.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIM-
ITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF
THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE
FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the sale, use or
other dealings in this Software without prior written authorization of the copyright holder. All trademarks and registered trademarks men-
tioned herein are the property of their respective owners.

US Government Restricted Rights
The LispWorks Software is a commercial computer software program developed at private expense and is provided with restricted rights.
The LispWorks Software may not be used, reproduced, or disclosed by the Government except as set forth in the accompanying End User
License Agreement and as provided in DFARS 227.7202-1(a), 227.7202-3(a) (1995), FAR 12.212(a)(1995), FAR 52.227-19, and/or FAR 52.227-14
Alt III, as applicable. Rights reserved under the copyright laws of the United States.

Address

LispWorks Ltd
St. John’s Innovation Centre
Cowley Road
Cambridge
CB4 0WS
England

Telephone

From North America: 877 759 8839
(toll-free)

From elsewhere: +44 1223 421860

Fax
From North America: 617 812 8283
From elsewhere: +44 870 2206189

www.lispworks.com

http://www.lispworks.com

Contents
1 Introduction 1

LispWorks Editions 1
LispWorks for UNIX 2
Further details 3
About this Guide 3

2 Installation on Mac OS X 5

Choosing the Graphical User Interface 5
Documentation 6
Software and hardware requirements 6
Installing LispWorks for Macintosh 7
Starting LispWorks for Macintosh 12
Upgrading to LispWorks Enterprise Edition 14

3 Installation on Windows 17

Documentation 17
Installing LispWorks for Windows 18
Upgrading to LispWorks Enterprise Edition 20

4 Installation on Linux 21

Software and hardware requirements 21
License agreement 23
Software on the CD-ROM 24
Installing LispWorks for Linux 24
LispWorks looks for a license key 30
Running LispWorks 30
Configuring the image 31
Printable LispWorks documentation 31
Uninstalling LispWorks for Linux 32
Upgrading to LispWorks Enterprise Edition 32

5 Installation on x86/x64 Solaris 33

Software and hardware requirements 33
Software on the CD-ROM 35
Installing LispWorks for x86/x64 Solaris 35
LispWorks looks for a license key 37
Running LispWorks 38
Configuring the image 39
Printable LispWorks documentation 39
Uninstalling LispWorks for x86/x64 Solaris 39
Upgrading to LispWorks Enterprise Edition 39

6 Installation on FreeBSD 41

Software and hardware requirements 41
License agreement 43
Software on the CD-ROM 43
Installing LispWorks for FreeBSD 44
LispWorks looks for a license key 46
Running LispWorks 46
Configuring the image 47
Printable LispWorks documentation 47
Uninstalling LispWorks for FreeBSD 47
Upgrading to LispWorks Enterprise Edition 48

7 Installation on UNIX 49

Introduction 49
Extracting software from the CD-ROM 49
Moving the LispWorks image and library 51
Obtaining and Installing your license keys 52
Configuring the LispWorks image 53
Using the Documentation 55
Using Layered Products on HP PA or Sun Sparc (32-bit) 55

8 Configuration on Mac OS X 57

Introduction 57
License keys 58
Configuring your LispWorks installation 58
Saving and testing the configured image 60
Initializing LispWorks 63
Loading CLIM 2.0 64
The Common SQL interface 64
Common Prolog and KnowledgeWorks 66

9 Configuration on Windows 67

Introduction 67
License keys 68
Configuring your LispWorks installation 68
Saving and testing the configured image 69
Initializing LispWorks 72
Loading CLIM 2.0 72
The Common SQL interface 73
Common Prolog and KnowledgeWorks 74

10 Configuration on Linux, x86/x64 Solaris, and FreeBSD
75

Introduction 75
License keys 76
Configuring your LispWorks installation 76
Saving and testing the configured image 78

Initializing LispWorks 80
Loading CLIM 2.0 80
The Common SQL interface 81
Common Prolog and KnowledgeWorks 82
Documentation on x86/x86 Solaris and FreeBSD 82

11 Configuration on UNIX 83

Disk requirements 83
Software Requirements 83
The CD-ROM 84
Installing LispWorks 85
Components of the LispWorks distribution 90
Printing copies of the LispWorks documentation 91
Configuring your LispWorks installation 92
LispWorks initialization arguments 95

12 Troubleshooting, Patches and Reporting Bugs 97

Troubleshooting 97
Troubleshooting on Mac OS X 99
Troubleshooting on Linux 100
Troubleshooting on x86/x64 Solaris 102
Troubleshooting on FreeBSD 102
Troubleshooting on UNIX 102
Troubleshooting on X11/Motif 103
Updating with patches 106
Reporting bugs 108
Transferring LispWorks to a different machine 114

13 Release Notes 115

Platform support 115
Symmetric Multiprocessing 116
GTK+ window system 119
New CAPI features 120
Other CAPI changes 127
More new features 129

IDE changes 132
Editor changes 138
Foreign Language interface changes 143
COM/Automation changes 146
Objective-C changes 146
Common SQL changes 146
Application delivery changes 147
CLOS/MOP changes 148
CLIM changes 149
Other changes 149
Documentation changes 152
Known Problems 153
Binary Incompatibilty 156

Index 157

1

1 Introduction
1.1 LispWorks Editions
LispWorks is available in three product editions on the Mac OS X, Windows,
Linux, x86/x64 Solaris and FreeBSD platforms.

The main differences between the editions are outlined below. Further
information about the LispWorks Editions can be found at
www.lispworks.com/products

Note: on SPARC Solaris and HP-UX LispWorks is licensed differently to other
platforms, as detailed in “LispWorks for UNIX” on page 2.

1.1.1 Personal Edition

LispWorks Personal Edition allows you to explore a fully enabled Common
Lisp programming environment and to develop small- to medium-scale
programs for personal and academic use. It includes:

• Native graphical IDE

• Full Common Lisp compiler

• COM/Automation API on Microsoft Windows

LispWorks Personal Edition has several limitations designed to prevent
commercial exploitation of this free product. These are:
1

http://www.lispworks.com/products

1 Introduction

2

• A heap size limit

• A time limit of 5 hours for each session.

• The functions save-image, deliver, and load-all-patches are not
available.

• Initialization files are not available.

• Professional and Enterprise Edition module loading is not included.

LispWorks Personal Edition has no license fee. Download it from

www.lispworks.com/downloads.

1.1.2 Professional Edition

LispWorks 6.0 Professional Edition includes:

• Fully supported commercial product

• Delivery of commercial end-user applications and libraries

• CLIM 2.0 on X11/Motif and Windows

• 30-day free “Getting Started” technical support

1.1.3 Enterprise Edition

LispWorks 6.0 Enterprise Edition provides further support for the software
needs of the modern enterprise, including:

• All the features of the Professional Edition

• Database access through the Common SQL interface

• Portable distributed computing through CORBA

• Expert systems programming through KnowledgeWorks and
embedded Prolog compiler

1.2 LispWorks for UNIX
On SPARC Solaris and HP-UX the Edition model described above does not
apply.

http://www.lispworks.com/downloads

1.3 Further details
LispWorks 6.0 for UNIX is available with a basic developer license, and the
add-on products CLIM, KnowledgeWorks, LispWorks ORB and Application
Delivery are each separately available.

1.3 Further details
For further information about LispWorks products visit

www.lispworks.com

To purchase LispWorks please follow the instructions at:

www.lispworks.com/buy

1.4 About this Guide
This document is an installation guide and release notes for LispWorks 6.0 on
Mac OS X, Windows, Linux, x86/x64 Solaris, FreeBSD, SPARC Solaris and
HP-UX platforms. It also explains how to configure LispWorks to best suit
your local conditions and needs.

This guide provides instructions for installing and loading the modules
included with each Edition or add-on product.

1.4.1 Installation and Configuration

Chapters 2-7 explain in brief and sufficient terms how to complete a Lisp-
Works installation on Mac OS X, Windows, Linux, x86/x64 Solaris, FreeBSD,
or UNIX (meaning HP-UX or SPARC/Solaris). Choose the chapter for your
platform: Chapter 2, “Installation on Mac OS X”, Chapter 3, “Installation on
Windows”, Chapter 4, “Installation on Linux”, Chapter 5, “Installation on
x86/x64 Solaris”, Chapter 6, “Installation on FreeBSD” or Chapter 7, “Installa-
tion on UNIX”.

Chapters 8-11 explain in detail everything necessary to configure, run, and test
LispWorks 6.0. Choose the chapter for your platform: Chapter 8, “Configura-
tion on Mac OS X”, Chapter 9, “Configuration on Windows”, Chapter 10,
“Configuration on Linux, x86/x64 Solaris, and FreeBSD” or Chapter 11, “Con-
figuration on UNIX”. This also includes sections on initializing LispWorks
and loading some of the modules. You should have no difficulty configuring,
 3

http://www.lispworks.com/buy
http://www.lispworks.com

1 Introduction

4

running, and testing LispWorks using these instructions if you have a basic
familiarity with your operating system and Common Lisp.

1.4.2 Troubleshooting

Chapter 12, “Troubleshooting, Patches and Reporting Bugs”, discusses other
issues that may arise when installing and configuring LispWorks. It includes a
section that provides answers to problems you may have encountered,
sections on the LispWorks patching system (used to allow bug fixes and pri-
vate patch changes between releases of LispWorks), and details of how to
report any bugs you encounter.

1.4.3 Release Notes

Chapter 13, “Release Notes”, highlights what is new in this release and special
issues for the user’s consideration.

2

2 Installation on Mac OS X
This chapter is an installation guide for LispWorks 6.0 for Macintosh. Chapter
8 discusses post-installation and configuration in detail, but this chapter
presents the instructions necessary to get LispWorks up and running on your
system.

2.1 Choosing the Graphical User Interface
LispWorks for Macintosh supports three different graphical interfaces. Most
users choose the native Mac OS X GUI, but you can use X11 GUI option
instead, which supports both GTK+ and Motif. (Motif is deprecated, though.)

Different executables and supporting files are supplied for the two GUI
options. You need to decide at installation time which of these you will use, or
you can install support for both. If you install just one GUI option and later
decide to install the other, you can simply run the installer again.

LispWorks for Macintosh Personal Edition supports only the native Mac OS X
GUI.
5

2 Installation on Mac OS X

6

2.2 Documentation
The LispWorks documentation set is included in two electronic formats:
HTML and PDF. You can chose whether to install it as described in Section 2.4,
“Installing LispWorks for Macintosh”.

The HTML format can be used from within the LispWorks IDE via the Help
menu. You will need to have a suitable web browser installed. You can also
reach the HTML documentation via the alias LispWorks 6.0/HTML Documen-
tation.htm. If you choose not to install the documentation, you will not be
able to access the HTML Documentation from the LispWorks Help menu.

The PDF format is suitable for printing. Each manual in the documentation set
is presented in a separate PDF file in the LispWorks library under
manual/offline/pdf. The simplest way to locate these PDF files is the alias
LispWorks 6.0/PDF Documentation. To view and print these files, you will
need a PDF viewer such as Preview (standard on Mac OS X) or Adobe®
Reader® (which can be downloaded from the Adobe website at
www.adobe.com).

2.3 Software and hardware requirements
LispWorks 6.0 is a universal binary, which supports Macintosh computers
containing either PowerPC or Intel CPUs.

http://www.adobe.com

2.4 Installing LispWorks for Macintosh
An overview of system requirements is provided in the table Table 2.1. The
sections that follow discuss any relevant details.

2.4 Installing LispWorks for Macintosh

2.4.1 Main installation and patches

LispWorks Professional and Enterprise Editions are supplied as an installer
containing version 6.0. There may be a downloadable patch bundle which
upgrades LispWorks to version 6.0.x. You need to complete the main
installation before adding patches. The installer for 32-bit LispWorks contains
both Professional and Enterprise Editions.

LispWorks Personal Edition is supplied as an installer containing version 6.0.

Table 2.1 System requirements on Mac OS X

Product Hardware Requirements Software Requirements

LispWorks (32-bit)
for Macintosh

Intel or G3/G4/G5 processor.

240MB of disk space
including documentation.

Mac OS X version 10.3.x,
10.4.x, 10.5.x or 10.6.x

GTK+ 2.4 or higher if you
want to run the GTK+ GUI.

Open Motif 2.3 and Imlib if
you want to run the depre-
cated Motif GUI.

LispWorks (64-bit)
for Macintosh

Intel or G5 processor.

285MB of disk space
including documentation

Mac OS X version 10.5.x or
10.6.x.

GTK+ 2.4 or higher if you
want to run the GTK+ GUI.

Open Motif 2.3 and Imlib if
you want to run the depre-
cated Motif GUI.
 7

2 Installation on Mac OS X

8

2.4.2 Information for Beta testers

Users of LispWorks 6.0 Beta should completely uninstall it (including any
patches added to the beta installation) before installing LispWorks 6.0. You
can run the Beta installer and select the Uninstall option (and then remove any
patches) or simply drag the LispWorks 6.0 folder to the trash.

2.4.3 Information for users of previous versions

You can install LispWorks 6.0 in the same location as LispWorks 5.1 or previ-
ous versions. If you always choose the default install location, a new Lisp-
Works 6.0 folder will be created alongside the other versions.

Similarly LispWorks Personal Edition 6.0 can be installed in the same location
as previous versions.

2.4.4 Use an adminstrator account

To install LispWorks in the default installation location under /Applications
you must log on as an administrator.

However, a non-administrator may install LispWorks elsewhere.

2.4.5 Launch the LispWorks installer

If you have downloaded LispWorks, you may need to mount the disk image
containing the installer. This is called LispWorks-6.0.dmg or
LispWorks64bit-6.0.dmg — simply double-click on the .dmg file to mount it.

If you have received LispWorks on a CD-ROM, insert the disk in a drive and
double-click on the disk icon to mount it.

To install LispWorks (32-bit) for Macintosh, open the macos folder and double-
click on the LispWorks_Installer application to launch it.

To install LispWorks (64-bit) for Macintosh, open the macos64 folder and dou-
ble-click on the LispWorks64bit_Installer application to launch it.

Note: the names of the installer and downloadable file will vary slightly for
the Personal Edition.

2.4 Installing LispWorks for Macintosh
2.4.6 The Read Me

The Read Me presented next by the installer is a plain text version of this
LispWorks Release Notes and Installation Guide.

2.4.7 The License Agreement

Check the license agreement, then click Continue. You will be asked if you
agree to the license terms. Click the Accept button only if you accept the terms
of the license. If you click Disagree, then the installer will not proceed.

2.4.8 Select Destination

All the files installed with LispWorks are placed in the LispWorks folder,
which is named LispWorks 6.0, LispWorks 6.0 (64-bit) or LispWorks Per-
sonal 6.0 depending on which edition you are installing. By default, the
LispWorks folder is placed in the main Applications folder but you can
choose an alternative location during installation by clicking the Select
Folder... button.

Click Continue after selecting a folder.

Note: The Applications folder may display in the Finder with a name
localized for your language version of Mac OS X.

2.4.9 Choose your installation type

Choose the native Mac OS X GUI and/or the X11 GUI option.

Different executables and supporting files are supplied for the two GUI
options. If you install just one of these and later decide to install the other, you
can simply run the installer again.

2.4.9.1 The native Mac OS X GUI

If you simply want to install LispWorks for the native Mac OS X GUI, and the
documentation, choose Easy Install.
 9

2 Installation on Mac OS X

10
2.4.9.2 The X11 GTK+ and Motif GUIs

If you want to use LispWorks with either of the alternative X11 GUIs, choose
Custom Install and select the option "LispWorks with X11 IDE".

The default X11 GUI is GTK+. Motif is also available, but is deprecated. You
can select Motif at runtime.

Note: to run LispWorks with an X11 GUI, you will need both of these
installed:

• An X server such as Apple’s X11.app, available at www.apple.com, and

• one of GTK+ 2.4 (or higher) or Open Motif 2.3.

If you use Open Motif, you will also need Imlib (but not Imlib2). Imlib version
1.9.13 or later is recommended.

None of these are required at the time you install LispWorks, however.

The X11 GUIs are not available for the Personal Edition.

2.4.9.3 The Documentation

If you use Easy Install the documentation will be installed.

If you do not wish to install the documentation, use Custom Install and
uncheck the "LispWorks Documentation" option.

2.4.10 Installing and entering license data

Now click Install.

Enter your serial number and license key when the installer asks for these
details.

Your license key will be supplied to you in email from Lisp Support.

If you have problems with your LispWorks license key, send it to lisp-
keys@lispworks.com, describing what happens after you enter it, preferably
with a screenshot.

Note: the LispWorks Personal Edition installer does not ask you to enter
license data.

http://www.apple.com

2.4 Installing LispWorks for Macintosh
2.4.11 Add LispWorks to the Dock

If you are installing the native Mac OS X LispWorks GUI, the installer asks if
you wish to add LispWorks to the Mac OS X Dock. Click OK if you anticipate
launching LispWorks frequently, or choose not to add LispWorks to the Dock
by clicking Cancel.

Note: LispWorks may not be visible in the Dock until you restart the computer
or log out and then log back in.

2.4.12 Finishing up

You should now see a message confirming that installation of LispWorks was
successful. Click the Quit button.

Note: LispWorks needs to be able find its library at runtime and therefore the
LispWorks installation should not be moved around piecemeal. If you must
move it, move the entire LispWorks installation folder. If you simply want to
run LispWorks from somewhere more convenient, then consider adding an
alias.

2.4.13 Installing Patches

After completing the main installation of the Professional or Enterprise Edi-
tion, ensure you install the latest patches which are available for download at
www.lispworks.com/downloads/patch-selection.html. Patch installation
instructions are in the README file accompanying the patch download.

2.4.14 Obtaining X11 GTK+

LispWorks does not provide GTK+ libraries, so you need to install third-party
libraries, such as

• the gtk+2 package from the Fink Project at www.finkproject.org, or

• the gtk2 package from MacPorts at www.macports.org

Note: you need the x11 gtk2 libraries, not GTK-OSX (Quartz).
 11

http://www.lispworks.com/downloads/patch-selection.html#lwm
http://www.macports.org
http://www.finkproject.org

2 Installation on Mac OS X

12
2.4.15 Obtaining Open Motif and Imlib

LispWorks 6.0 for Macintosh on X11/Motif requires Open Motif 2.3 and Imlib.

The Open Motif library for 32-bit LispWorks is
/usr/local/lib/libXm.4.dylib.

Lisp Support can supply suitable Motif and Imlib libraries if you need them.

Note: The Motif GUI is deprecated. A GTK+ GUI is available.

2.5 Starting LispWorks for Macintosh

2.5.1 Start the native Mac OS X LispWorks GUI

Assuming you have installed this option, you can now start LispWorks with
the native Mac OS X GUI by double-clicking on the LispWorks icon in the
LispWorks folder.

Note: The LispWorks folder is described in “Select Destination” on page 9.

If you added LispWorks to the Dock during installation, you can also start
LispWorks from the Dock. If you did not add LispWorks to the Dock during
installation, you can add it simply by dragging the LispWorks icon from the
Finder to the Dock.

If you want to create a LispWorks image which does not start the GUI
automatically, you should use a configuration script that calls

(save-image ... :environment nil)

and pass it to the supplied lispworks-6-0-0-macos-universal image.

See Section 8.3, “Configuring your LispWorks installation” for more
information about configuring your LispWorks image for your own needs.

Note: for the Personal Edition, the folder name and icon name are LispWorks
Personal, the image is lispworks-personal-6-0-0-macos-universal, and
save-image is not available.

2.5 Starting LispWorks for Macintosh
2.5.2 Start the GTK+ LispWorks GUI

Assuming you have installed the "LispWorks with X11 IDE" option, and that
you have X11 running and GTK+ installed, you can now start LispWorks with
the GTK+ GUI.

Note that the supplied image does not start its GUI automatically by default.
There are three alternate ways to make the GUI start:

• Call the function env:start-environment

Follow this session in the X11 terminal (xterm by default):
xterm% cd "/Applications/LispWorks 6.0"
xterm% ./lispworks-6-0-0-macos-universal-gtk
LispWorks(R): The Common Lisp Programming Environment
Copyright (C) 1987-2009 LispWorks Ltd. All rights reserved.
Version 6.0.0
Saved by LispWorks as lispworks-6-0-0-x86-darwin-gtk, at 04 Sep
2009 22:09
User dubya on octane
; Loading text file /Applications/LispWorks 6.0/Library/lib/6-0-
0-0/config/siteinit.lisp
; Loading text file /Applications/LispWorks 6.0/Library/lib/6-0-
0-0/private-patches/load.lisp
; Loading text file /u/ldisk/dubya/.lispworks

CL-USER 1 > (env:start-environment)

The LispWorks GTK+ IDE should appear.

You may put the call to env:start-environment at the end of your
initialization file, if desired.

• Pass the -env command line argument

The -env command line argument causes the function
env:start-environment to be called.

Follow this session in the X11 terminal:

xterm% cd "/Applications/LispWorks 6.0"
xterm% ./lispworks-6-0-0-macos-universal-gtk -env

The LispWorks GTK+ IDE should appear.

• Create an image which starts the GUI automatically
 13

2 Installation on Mac OS X

14
If you want to create a LispWorks image which starts the GUI
automatically, you should make a save-image script that calls
(save-image ... :environment t)

and run the supplied lispworks-6-0-0-macos-universal-gtk image
with -build followed by the script filename on its command line.

Note: This will create a non-universal binary, containing only the archi-
tecture on which you call save-image.

See Section 8.3, “Configuring your LispWorks installation” for more
information about configuring your LispWorks image for your own
needs.

2.5.3 Start the Motif LispWorks GUI

Assuming you have installed the "LispWorks with X11 IDE" option, and that
you have X11 running and Motif installed, you can use LispWorks with the
Motif GUI.

You first must load the Motif GUI into the supplied lispworks-6-0-0-macos-
universal-gtk image, by

(require "capi-motif")

This loads the necessary module and makes Motif the default library for
CAPI.

Then you can start the LispWorks IDE by calling env:start-environment as
shown in “Start the GTK+ LispWorks GUI” on page 13. You might want to
save an image with the "capi-motif" module pre-loaded: do this with a save-
image script containing

(require "capi-motif")

2.6 Upgrading to LispWorks Enterprise Edition
You can upgrade from Professional Edition to LispWorks (32-bit) Enterprise
by doing Help > Register... and entering your Enterprise license key.

To upgrade to 64-bit LispWorks, contact

lisp-sales@lispworks.com

mailto:lisp-sales@lispworks.com

2.6 Upgrading to LispWorks Enterprise Edition
 15

2 Installation on Mac OS X

16

3

3 Installation on Windows
This chapter is an installation guide for LispWorks 6.0 for Windows and Lisp-
Works 6.0 (64-bit) for Windows. Chapter 9 discusses post-installation and con-
figuration in detail, but this chapter presents the instructions necessary to get
LispWorks up and running on your system.

3.1 Documentation
The LispWorks documentation set is available in two electronic forms: HTML
and PDF. You can choose whether to install either of these.

If you install the HTML documentation, then it can be used from within the
the LispWorks IDE via the Help menu. It is also available from the Windows
Start menu under Start > All Programs > LispWorks 6.0 > HTML Documentation.

The PDF format is suitable for printing. Each manual in the documentation set
is presented in a separate PDF file, available from the Start menu under Start >
All Programs > LispWorks 6.0 > PDF Documentation. To view and print these
files, you will need a PDF viewer such as Adobe® Reader®. If you do not
already have this, it can be downloaded from the Adobe website.
17

3 Installation on Windows

18
3.2 Installing LispWorks for Windows

3.2.1 Main installation and patches

LispWorks Professional and Enterprise Editions are supplied as an installer
containing version 6.0. There may be a downloadable patch bundle which
upgrades LispWorks to version 6.0.x. You need to complete the main installa-
tion before adding patches. The installer for 32-bit LispWorks contains both
Professional and Enterprise Editions.

LispWorks Personal Edition is supplied as an installer containing version 6.0.

3.2.2 Visual Studio runtime components and Windows Installer

On systems where this is not present, installing LispWorks will automatically
install a copy of the Microsoft.VC80.CRT component, which contains the
Microsoft Visual Studio runtime DLLs needed by LispWorks.

It will also automatically install Windows Installer 3.1 when needed.

3.2.3 Installing over previous versions

You can install LispWorks 6.0 in the same location as LispWorks 5.1, Lisp-
Works 5.0 or LispWorks 4.4.5. This is the default installation location.

You can also install LispWorks 6.0 without uninstalling older versions such as
Xanalys LispWorks 4.4 or Xanalys LispWorks 4.3 provided that the chosen
installation directory is different.

The LispWorks Personal Edition installation behaves in the same way.

3.2.4 Information for Beta testers

Users of LispWorks 6.0 Beta should completely uninstall it before installing
LispWorks 6.0. Remember to remove any patches added since the Beta release.

3.2.5 To install LispWorks

To install LispWorks (32-bit) for Windows run
x86-win32\LispWorks_Installer.exe.

3.2 Installing LispWorks for Windows
To install LispWorks (64-bit) for Windows run
x64-windows\LispWorks64bit_Installer.exe.

Follow the instructions on screen and read the remainder of this section.

3.2.5.1 Entering the License Data

Enter your serial number and license key when the installer asks for these
details in the Customer Information screen.

Your license key will be supplied to you in email from Lisp Support.

If you have problems with your LispWorks license key, send it to lisp-
keys@lispworks.com, describing what happens after you enter it.

3.2.5.2 Installation location

By default LispWorks installs in All Users space in
C:\Program Files\LispWorks\

To install LispWorks in a non-default location (for example, to ensure it is
accesible only by the licensed user on a multi-user system such as a login
server (remote desktop)), select Custom setup in the Setup Type screen. Then
click Change... in the Custom Setup screen and choose the desired location in
the Change Current Destination Folder dialog. Do not simply move the
LispWorks folder later, as this will break the installation.

3.2.5.3 Installing the Documentation

By default all the documentation is installed.

If you do not want to install the HTML Documentation, select Custom setup in
the Setup Type screen and select This feature will not be available in the HTML
Documentation feature in the Custom Setup screen.

You can also choose not to install the PDF Documentation, in a similar way.

You can add the HTML Documentation and the PDF Documentation later, by
re-running the installer. The documentation is also available at www.lisp-
works.com/documentation.
 19

http://www.lispworks.com/documentation
http://www.lispworks.com/documentation

3 Installation on Windows

20
3.2.5.4 Installing Patches

After completing the main installation of the Professional or Enterprise
Edition, ensure you install the latest patches which are available for download
at www.lispworks.com/downloads/patch-selection.html.

Patch installation instructions are in the README file accompanying the
patch download.

3.2.5.5 Starting LispWorks

When the installation is complete, you can start LispWorks by choosing Start >
All Programs > LispWorks 6.0 > LispWorks.

Note: After installation you must not move or copy the LispWorks folder,
since the system records the installation location. Moreover LispWorks needs
to be able find its library at runtime and therefore the LispWorks installation
should not be moved around piecemeal. If you simply want to run LispWorks
from somewhere more convenient, then consider adding a shortcut.

3.3 Upgrading to LispWorks Enterprise Edition
You can upgrade from Professional Edition to LispWorks (32-bit) Enterprise
by doing Help > Register... and entering your Enterprise license key.

To upgrade to 64-bit LispWorks, contact

lisp-sales@lispworks.com

http://www.lispworks.com/downloads/patch-selection.html#lww
mailto:lisp-sales@lispworks.com

4

4 Installation on Linux
This chapter is an installation guide for LispWorks 6.0 for Linux and Lisp-
Works 6.0 (64-bit) for Linux. Chapter 10, discusses post-installation and con-
figuration in detail, but this chapter presents the instructions necessary to get
LispWorks up and running on your system.

4.1 Software and hardware requirements
An overview of system requirements is provided in Table 4.1. The sections
that follow discuss any relevant details.

Hardware
Requirements

Software Requirements

155MB of disk space for
Enterprise Edition (32-bit)
plus documentation

Any distribution with glibc
2.6.9 or later.

Table 4.1 System requirements on Linux
21

4 Installation on Linux

22
4.1.1 GUI libraries

LispWorks 6.0 for Linux requires that the X11 release 6 (or higher) is installed.
It also requires that either GTK+ or Open Motif with Imlib are installed.

The remainder of this section contains the details for each of these distinct
GUI options.

4.1.1.1 GTK+

In order for the LispWorks IDE to run “out of the box”, GTK+ must be
installed on the target machine.

GTK+ version 2.4 or higher is required.

4.1.1.2 Motif

Open Motif version 2.2 or higher is required to run LispWorks with the Motif
GUI.

Download and install Open Motif 2.2.x from your Linux distribution or from
www.motifzone.net. Your systems administrator may be able to help if you do
not know how to do this.

175MB of disk space for
Enterprise Edition (64-bit)
plus documentation

GTK+ 2.4 or higher to run
the GTK+ GUI.

Open Motif 2.2.x and Imlib
to run the deprecated Motif
GUI

Any modern machine is
likely to have sufficient
RAM to run LispWorks as
distributed.

Netscape, Mozilla, FireFox
or Opera Web browser for
viewing on-line
documentation

Hardware
Requirements

Software Requirements

Table 4.1 System requirements on Linux

http://www.motifzone.net/

4.2 License agreement
You will also need Imlib (not Imlib2). Install this from your Linux distribution.
Imlib version 1.9.13 or later is recommended.

Note: You should be able to run the LispWorks 6.0 Motif GUI and LispWorks
5.x simultaneously with Open Motif installed.

4.1.2 Disk requirements

To install without documentation and optional modules, 32-bit LispWorks
requires about 45MB and 64-bit LispWorks requires about 60MB. Installing the
documentation adds about 110MB and the optional modules about 15MB. A
full installation of the 64-bit Enterprise Edition with all documentation and
optional modules requires about 185MB.

The documentation includes printable PDF format manuals. You may delete
any of these that you do not need. They are available at www.lisp-
works.com/documentation in any case, and the same manuals are also avail-
able there in PostScript format.

4.2 License agreement
Before installing, you must read and agree to the license terms. To do this,
mount the CD-ROM on your CD-ROM drive and cd to the directory contain-
ing the product you wish to install.

For LispWorks (32-bit) for Linux the directory is x86-linux.

For LispWorks (64-bit) for Linux the directory is amd64-linux.

Now run the one of following scripts.

Note: You must run this script as the same user that later performs the instal-
lation. In particular, if you are going to install LispWorks from the RPM file,
you must run the license script while logged on as root.

• For the Professional and Enterprise Editions, run

sh lwl-license.sh

• For the Personal Edition, run:

sh lwlper-license.sh
 23

http://www.lispworks.com/documentation
http://www.lispworks.com/documentation

4 Installation on Linux

24
Enter “yes” if you agree to the license terms.

4.3 Software on the CD-ROM
LispWorks 6.0 for Linux is supplied as a download or on a CD-ROM. There
are two different formats: RedHat Package Management (RPM) files and tar
files. RPM is a utility like tar, except it can actually install products after
unpacking them. See Section 4.4.3 for more information. Both formats are in
the x86-linux and amd64-linux directories on our ftp server or on your CD-
ROM.

4.3.1 Professional and Enterprise Edition distributions

The CD-ROM contains all of the relevant modules. The separately installable
modules installed with LispWorks are: CLIM 2.0, KnowledgeWorks, Lisp-
Works ORB, and Common SQL. Section 1.1 provides Edition details.

The RPM package name for the Professional/Enterprise Edition is lispworks.

For the Professional Edition the separately installable packages are:

lispworks-clim

and for the Enterprise Edition the separately installable packages are:

lispworks-clim
lispworks-kw
lispworks-corba
lispworks-sql

The installation instructions provide the names of the individual distribution
files.

The package name for the Personal Edition is lispworks-personal.

4.4 Installing LispWorks for Linux

4.4.1 Main installation and patches

LispWorks Professional and Enterprise Editions are supplied as an installer
containing version 6.0. There may be a downloadable patch bundle which
upgrades LispWorks to version 6.0.x. You need to complete the main installa-

4.4 Installing LispWorks for Linux
tion before adding patches. The installer for 32-bit LispWorks contains both
Professional and Enterprise Editions.

LispWorks Personal Edition is supplied as an installer containing version 6.0.

4.4.2 Information for Beta testers

Users of LispWorks 6.0 Beta should completely uninstall it (including any
patches added to the beta installation) before installing LispWorks 6.0.

See “Uninstalling LispWorks for Linux” on page 32 for instructions.

4.4.3 Installation from the binary RPM file

We recommend that you use RPM 4.3 or later (however see below for prob-
lems with --prefix argument with some versions of RPM). The distribution
files are also provided in tar format in case you do not have a suitable version
of RPM or are using another distribution of Linux.

If you already have LispWorks 6.0 Beta installed, please uninstall it before
installing this product. See Section 4.9, “Uninstalling LispWorks for Linux”.

Some versions of RPM may cause problems (eg. RPM 3.0). If you get the fol-
lowing message when using the --prefix argument:

rpm: only one of --prefix or --relocate may be used

try upgrading to RPM 3.0.2 or greater.

Installation of LispWorks for Linux from the RPM file must be done while you
are logged on as root.

4.4.3.1 Installation directories

By default 32-bit LispWorks is installed in /usr/lib/LispWorks and a sym-
bolic link to the executable is placed in /usr/bin/lispworks-6-0-0-x86-
linux. Similarly, 64-bit LispWorks is installed in /usr/lib64/LispWorks and a
symbolic link to the executable is placed in /usr/bin/lispworks-6-0-0-
amd64-linux. However, the RPM is relocatable, and the --prefix option can
be used to allow the installation of LispWorks in a non-default directory. The
default prefix is /usr.
 25

4 Installation on Linux

26
Note: RPM version 4.2 has a bug which can hinder secondary installations
(CLIM, Common SQL, LispWorks ORB or KnowledgeWorks) in a user-
specified directory. See “RPM_INSTALL_PREFIX not set” on page 100 for a
workaround.

Note: the Personal Edition installs by default in
/usr/lib/LispWorksPersonal. Do not attempt to to install different editions
in the same location, since some filenames coincide and uninstallation may
break.

4.4.3.2 Selecting the correct RPM files

The main RPM file in the LispWorks distribution is named using the following
pattern

lispworks-6.0-n.arch.rpm

The integer n denotes a build number and will be same in all files in your dis-
tribution. The string arch will be either i386 for 32-bit LispWorks or x86_64 for
64-bit LispWorks. The text below assumes 32-bit LispWorks.

Note: For the Personal Edition, use lispworks-personal-6.0-*.i386.rpm
wherever lispworks-6.0-*.i386.rpm is mentioned in this document. See
Section 1.1.1, “Personal Edition” for more information specific to the Personal
Edition.

4.4.3.3 Installing or upgrading LispWorks for Linux

To install or upgrade LispWorks from the RPM file, perform the following
steps as root:

1. Locate the RPM installation file lispworks-6.0-n.i386.rpm.

2. Install or upgrade LispWorks in the standard RPM way, for example:

rpm --install lispworks-6.0-n.i386.rpm

This command installs LispWorks in /usr/lib/LispWorks. A command
line of the form

rpm --install --prefix <directory> lispworks-6.0-n.i386.rpm

installs LispWorks in <directory>.

4.4 Installing LispWorks for Linux
The directory name must be an absolute pathname. Relative pathnames and
pathnames including shell-expanded characters such as . and ~ do not work.

Note: LispWorks needs to be able find its library at runtime and therefore the
LispWorks installation should not be moved around piecemeal. If you simply
want to run LispWorks from somewhere more convenient, then consider add-
ing a symbolic link.

See Section 4.6 for instructions on entering your license details.

4.4.3.4 Installing CLIM 2.0

The following module is packaged as a separate RPM file for installation after
the main lispworks package. It is available in all LispWorks Editions except
the Personal Edition.

Install this module if required by substituting the above filename into the
same commands you used to install the LispWorks package (Section 4.4.3.3).

If you used a --prefix argument when installing LispWorks, then use the
same prefix for this module.

4.4.3.5 Installing loadable Enterprise Edition modules

The following modules are packaged as separate RPM files for installation
after the main lispworks package.

File Distribution Layered Product

lispworks-clim-6.0-n.i386.rpm CLIM 2.0

Table 4.2 File distributions for layered products in all Editions other than
Personal

File Distribution Layered Product

lispworks-clim-6.0-n.i386.rpm CLIM 2.0

Table 4.3 File distributions for layered products in the Enterprise Edition
 27

4 Installation on Linux

28
Install these modules as described in Section 4.4.3.4.

4.4.3.6 Documentation and saving space

Documentation in HTML and PDF format is provided with all editions. Post-
Script format is available to download. To obtain copies of the printable man-
uals, see Section 4.8, “Printable LispWorks documentation”.

Documentation is installed by default in the lib/6-0-0-0/manual sub-direc-
tory of the LispWorks installation directory.

Using RPM, you can save space by choosing not to install the documentation.
For example, use the following command (all on one line):

rpm --install --excludedocs --prefix <directory>
lispworks-6.0-n.i386.rpm

To install the documentation at a later stage, you need to use the
--replacepkgs option:

rpm --install --prefix <directory> --replacepkgs
lispworks-6.0-n.i386.rpm

4.4.3.7 Installing Patches

After completing the main RPM installation of the Professional or Enterprise
Edition and any modules, ensure you install the latest patches from the RPM
file available for download at www.lispworks.com/downloads/patch-selec-
tion.html. Patch installation instructions are in the README file accompany-
ing the patch download.

lispworks-kw-6.0-n.i386.rpm KnowledgeWorks

lispworks-corba-6.0-n.i386.rpm LispWorks ORB

lispworks-sql-6.0-n.i386.rpm Common SQL

File Distribution Layered Product

Table 4.3 File distributions for layered products in the Enterprise Edition

http://www.lispworks.com/downloads/patch-selection.html#lwl
http://www.lispworks.com/downloads/patch-selection.html#lwl

4.4 Installing LispWorks for Linux
4.4.4 Installation from the tar files

The LispWorks distribution is also provided as tar files compressed using
gzip for use if you do not have an appropriate version of RPM to unpack the
RPM binary file. The gzipped files for 32-bit LispWorks are as follows:

Table 4.4 Files for 32-bit Professional and Enterprise Editions

Note: The gzipped files for LispWorks Personal Edition and LispWorks (64-
bit) Enterprise Edition have similar names.

To install from these files:

1. Follow the instructions under Section 4.2, “License agreement”.

2. Use cd to change directory to the location of the tar files before running
the installation script.

3. Run the installation script lwl-install.sh (or lwlper-install.sh for
the Personal Edition).

This script takes --prefix and --excludedocs arguments like rpm to control
the installation directory and amount of documentation installed.

For example, to install the 32-bit Professional Edition in /usr/lisp-
works, without documentation, from a CD-ROM mounted on
/mnt/cdrom1 you would use:

cd /mnt/cdrom1/x86-linux
sh lwl-install.sh --excludedocs --prefix /usr/lispworks

Note: the default location under /usr/local is appropriate for this
unmanaged (non-RPM) installation.

See Section 4.6 for how to enter your license details.

lw60-x86-linux.tar.gz 32-bit LispWorks image, modules
and examples

lwdoc60-x86-linux.tar.gz Documentation in HTML and PDF
formats
 29

4 Installation on Linux

30
4.4.4.1 Installing Patches

After completing the main tar installation of the Professional or Enterprise
Edition, ensure you install the latest patches from the tar archive available for
download at www.lispworks.com/downloads/patch-selection.html. Patch
installation instructions are in the README file accompanying the patch
download.

4.5 LispWorks looks for a license key
If you installed the Professional or Enterprise Edition of LispWorks, the image
looks for a valid license key. If you try to run these LispWorks Editions with-
out a valid key, a message prints reporting that no valid key was found.

For instructions on entering your license key, see Section 4.6.1, “Entering the
license data” below.

For more information about license keys, see Section 10.2, “License keys”.

4.6 Running LispWorks
The LispWorks executable is located in /usr/lib/LispWorks or
/usr/lib64/LispWorks directory of the installation (assuming the default pre-
fix of /usr) and should not be moved without being resaved because it needs
to be able to locate the corresponding library directory on startup. There is
also a symbolic link from the /usr/bin directory.

The LispWorks executable is named as shown here:.

When you run LispWorks, the splashscreen should appear, followed by the
LispWorks Podium and a Listener. See “Troubleshooting” on page 97 for
details if this does not happen.

lispworks-personal-6-0-0-x86-linux Personal Edition

lispworks-6-0-0-x86-linux 32-bit Professional or Enterprise
Edition

lispworks-6-0-0-amd64-linux 64-bit Enterprise Edition

http://www.lispworks.com/downloads/patch-selection.html#lwl

4.7 Configuring the image
4.6.1 Entering the license data

When you run the LispWorks Professional/Enterprise Edition for the first
time, you will need to enter your license details. This should be done as fol-
lows (all on one line):

lispworks-6-0-0-x86-linux --lwlicenseserial SERIALNUMBER
--lwlicensekey LICENSEKEY

where SERIALNUMBER and LICENSEKEY are the strings supplied with Lisp-
Works. A message

LispWorks license installed successfully.

should be printed and thereafter you can run LispWorks without those
command line arguments.

Your license key will be supplied to you in email from Lisp Support.

If you have problems with your LispWorks license key, send it to lisp-
keys@lispworks.com, describing what happens after you enter it.

4.7 Configuring the image
If you installed the Professional or Enterprise Edition of LispWorks, you can
now configure your LispWorks image to suit your needs and load the Profes-
sional or Enterprise Edition modules as necessary. For instructions, see
Chapter 10, “Configuration on Linux, x86/x64 Solaris, and FreeBSD”.

4.8 Printable LispWorks documentation
In a default Professional/Enterprise installation, the lib/6-0-0-0/man-
ual/offline directory contains PDF format versions of the manuals.

In the Personal Edition, these files are omitted to reduce installer download
time, but may be freely downloaded if required from
www.lispworks.com/documentation.

PostScript format versions of the manuals are also available for download.
 31

http://www.lispworks.com/documentation

4 Installation on Linux

32
4.9 Uninstalling LispWorks for Linux
A RPM installation of LispWorks can be uninstalled in the usual way, for
example by executing:

rpm --erase lispworks-6.0

If patches have been added via RPM, then you will first need to uninstall that
package, which will be named lispworks-patches6.0. The same applies to
additional RPM packages such as lispworks-corba.

If patches have been added from a tar archive, you will need to remove them
by hand.

If you installed LispWorks from the tar archives, simply do

rm -rf /usr/local/lib/LispWorks

4.10 Upgrading to LispWorks Enterprise Edition
You can upgrade from Professional Edition to LispWorks (32-bit) Enterprise
by doing Help > Register... and entering your Enterprise license key.

To upgrade to 64-bit LispWorks, contact

lisp-sales@lispworks.com

mailto:lisp-sales@lispworks.com

5

5 Installation on x86/x64
Solaris
This chapter is an installation guide for LispWorks 6.0 for x86/x64 Solaris.
Chapter 10, discusses post-installation and configuration in detail, but this
chapter presents the instructions necessary to get LispWorks up and running
on your system.

5.1 Software and hardware requirements
An overview of system requirements is provided in Table 5.1. The sections
that follow discuss any relevant details.

Hardware
Requirements

Software Requirements

For 32-bit LispWorks,
130MB of disk space

Solaris 10 (release 5/08 or
later) or OpenSolaris
(release 2009.06 or later)

Table 5.1 System requirements on x86/x64 Solaris
33

5 Installation on x86/x64 Solaris

34
5.1.1 GUI libraries

LispWorks 6.0 for x86/x64 Solaris requires that the X11 release 6 (or higher) is
installed. It also requires that either GTK+ or Motif with Imlib are installed.

The remainder of this section contains the details for each of these distinct
GUI options.

5.1.1.1 GTK+

In order for the LispWorks IDE to run “out of the box”, GTK+ must be
installed on the target machine.

GTK+ version 2.4 or higher is required.

5.1.1.2 Motif

Motif 2.1 or higher is required to run LispWorks with the Motif GUI.

The Motif libraries are installed as part of the SUNWmfrun package. It is usu-
ally preinstalled on Solaris 10 and is available for download from Sun for
OpenSolaris.

You will also need Imlib (not Imlib2). Imlib version 1.9.13 or later is recom-
mended. Contact Lisp Support if you need this.

For 64-bit LispWorks,
140MB of disk space

GTK+ 2.4 or higher to run
the GTK+ GUI.

Motif 2.1 and Imlib to run
the deprecated Motif GUI

Any modern machine is
likely to have sufficient
RAM to run LispWorks as
distributed.

Netscape, Mozilla, FireFox
or Opera Web browser for
viewing on-line
documentation

Hardware
Requirements

Software Requirements

Table 5.1 System requirements on x86/x64 Solaris

5.2 Software on the CD-ROM
5.1.2 Disk requirements

32-bit LispWorks requires about 130MB to install.

64-bit LispWorks requires about 140MB to install.

The installation includes about 70MB of documentation.

The documentation includes printable PDF format manuals. You may delete
any of these that you do not need. They are available at www.lisp-
works.com/documentation in any case, and the same manuals are also avail-
able there in PostScript format.

5.2 Software on the CD-ROM
LispWorks 6.0 for x86/x64 Solaris is supplied as a standard package file to
download or on your CD-ROM. There are two variants, so be sure to choose
the one for which you have purchased a license:

32-bit LispWorks is in the x86-solaris directory.

64-bit LispWorks is in the amd64-solaris directory.

5.2.1 Professional and Enterprise Edition distributions

All of the LispWorks modules are contained in a single package file. Your
license key will control which modules can be used.

5.2.2 Personal Edition distribution

You can install the LispWorks Personal Edition by downloading it from the
LispWorks Web site at www.lispworks.com/downloads.

The package for the Personal Edition is LispWorksPersonal60-32bit.

5.3 Installing LispWorks for x86/x64 Solaris

5.3.1 Main installation and patches

LispWorks Professional and Enterprise Editions are supplied as a standard
software package file containing version 6.0. There may be a downloadable
 35

http://www.lispworks.com/documentation
http://www.lispworks.com/documentation
http://www.lispworks.com/downloads

5 Installation on x86/x64 Solaris

36
patch bundle which upgrades LispWorks to version 6.0.x. You need to com-
plete the main installation before adding patches. The installer for 32-bit Lisp-
Works contains both Professional and Enterprise Editions.

LispWorks Personal Edition is supplied as an installer containing version 6.0.

5.3.2 Information for Beta testers

Users of LispWorks 6.0 Beta should completely uninstall it (including any
patches added to the beta installation) before installing LispWorks 6.0.

See “Uninstalling LispWorks for x86/x64 Solaris” on page 39 for instructions.

5.3.3 Installation directories

32-bit LispWorks is installed by default in /opt/LispWorks/lib/LispWorks
and a symbolic link to the executable is placed in
/opt/LispWorks/bin/lispworks-6-0-0-x86-solaris.

64-bit LispWorks is installed by default in
/opt/LispWorks/lib/amd64/LispWorks and a symbolic link to the executable
is placed in /opt/LispWorks/bin/lispworks-6-0-0-amd64-solaris.

LispWorks Personal Edition is installed by default in /opt/Lisp-
Works/lib/LispWorksPersonal and a symbolic link to the executable is
placed in /opt/LispWorks/bin/lispworks-personal-6-0-0-x86-solaris.

Note: LispWorks needs to be able find its library at runtime and therefore the
LispWorks installation should not be moved around piecemeal. If you simply
want to run LispWorks from somewhere more convenient, then consider add-
ing a symbolic link.

5.3.4 Selecting the correct software package file

The LispWorks (32-bit) Professional/Enterprise software package file is called
LispWorks60-32bit and can be found in the x86-solaris directory of the Lisp-
Works 6.0 CD-ROM. The package name is LispWorks60-32bit.

The LispWorks (64-bit) Enterprise software package file is called LispWorks60-
64bit and can be found in the amd64-solaris directory of the LispWorks 6.0
CD-ROM. The package name is LispWorks60-64bit.

5.4 LispWorks looks for a license key
The Personal Edition software package file is called LispWorksPersonal60-
32bit. The package name is LispWorksPersonal60-32bit.

Note: the software may be supplied in a compressed format with a .gz exten-
sion. Uncompress it using gunzip.

5.3.5 Installing the package file

To install LispWorks, perform the following steps as root:

1. Locate the software package file.

2. Install or upgrade LispWorks in the standard way, for example:

pkgadd -d LispWorks60-32bit all

for 32-bit LispWorks, or

pkgadd -d LispWorks60-64bit all

for 64-bit LispWorks.

3. The license terms are presented. Enter “yes” if you agree to them.

See Section 5.5 for instructions on entering your license serial number and key.

5.3.6 Installing Patches

After completing the main installation of the Professional or Enterprise Edi-
tion, ensure you install the latest patches from the package file available for
download at www.lispworks.com/downloads/patch-selection.html. Patch
installation instructions are in the README file accompanying the patch
download.

5.4 LispWorks looks for a license key
If you installed the Professional or Enterprise Edition of LispWorks, the image
looks for a valid license key. If you try to run these LispWorks Editions with-
out a valid key, a message prints reporting that no valid key was found.

For instructions on entering your license key, see Section 5.5.1, “Entering the
license data” below.

For more information about license keys, see Section 10.2, “License keys”.
 37

http://www.lispworks.com/downloads/patch-selection.html#lws

5 Installation on x86/x64 Solaris

38
5.5 Running LispWorks
The LispWorks executable is located as shown here:

This executable should not be moved without being resaved because it needs
to be able to locate the corresponding library directory on startup.

The LispWorks executable is named as shown here:.

There is also a symbolic link from the /opt/LispWorks/bin directory.

When you run LispWorks, the splashscreen should appear, followed by the
LispWorks Podium and a Listener. See “Troubleshooting” on page 97 for
details if this does not happen.

5.5.1 Entering the license data

When you run the LispWorks Professional/Enterprise Edition for the first
time, you will need to enter your license details. This should be done as fol-
lows (all on one line):

lispworks-6-0-0-x86-solaris --lwlicenseserial SERIALNUMBER
--lwlicensekey LICENSEKEY

where SERIALNUMBER and LICENSEKEY are the strings supplied with Lisp-
Works. A message

LispWorks license installed successfully.

/opt/LispWorks/lib/LispWorksPersonal Personal Edition

/opt/LispWorks/lib/LispWorks Professional or Enterprise
Edition

/opt/LispWorks/lib/amd64/LispWorks 64-bit Enterprise Edition

lispworks-personal-6-0-0-x86-solaris Personal Edition

lispworks-6-0-0-x86-solaris Professional or Enterprise
Edition

lispworks-6-0-0-amd64-solaris 64-bit Enterprise Edition

5.6 Configuring the image
should be printed and thereafter you can run LispWorks without those
command line arguments.

Your license key will be supplied to you in email from Lisp Support.

If you have problems with your LispWorks license key, send it to lisp-
keys@lispworks.com, describing what happens after you enter it.

5.6 Configuring the image
If you installed the Professional or Enterprise Edition of LispWorks, you can
now configure your LispWorks image to suit your needs and load the Profes-
sional or Enterprise Edition modules as necessary. For instructions, see
Chapter 10, “Configuration on Linux, x86/x64 Solaris, and FreeBSD”.

5.7 Printable LispWorks documentation
In a default Professional/Enterprise installation, the lib/6-0-0-0/man-
ual/offline directory contains PDF format versions of the manuals.

PostScript format versions of the manuals are also available for download.

5.8 Uninstalling LispWorks for x86/x64 Solaris
A software package containing LispWorks can be uninstalled in the usual way
by executing:

pkgrm -n LispWorks60-32bit

or

pkgrm -n LispWorks60-64bit

5.9 Upgrading to LispWorks Enterprise Edition
You can upgrade from Professional Edition to LispWorks (32-bit) Enterprise
by doing Help > Register... and entering your Enterprise license key.

To upgrade to 64-bit LispWorks, contact

lisp-sales@lispworks.com
 39

mailto:lisp-sales@lispworks.com

5 Installation on x86/x64 Solaris

40

6

6 Installation on FreeBSD
This chapter is an installation guide for LispWorks 6.0 for FreeBSD.
Chapter 10, discusses post-installation and configuration in detail, but this
chapter presents the instructions necessary to get LispWorks up and running
on your system.

6.1 Software and hardware requirements
An overview of system requirements is provided in Table 6.1. The sections
that follow discuss any relevant details.

Hardware
Requirements

Software Requirements

160MB of disk space for
Enterprise Edition plus
documentation

FreeBSD 7.x, or later with
compat7x
(if you want to run on
FreeBSD 6.x, then please
contact Lisp Support)

Table 6.1 System requirements on FreeBSD
41

6 Installation on FreeBSD

42
6.1.1 GUI libraries

LispWorks 6.0 for FreeBSD requires that the X11 release 6 (or higher) is
installed.

LispWorks 6.0 also requires that either GTK+ or Open Motif with Imlib are
installed.

The remainder of this section contains the details for each of these distinct
GUI options.

6.1.1.1 GTK+

In order for the LispWorks IDE to run “out of the box”, GTK+ must be
installed on the target machine.

GTK+ version 2.4 or higher is required.

6.1.1.2 Motif

Open Motif version 2.2 or higher is required to run LispWorks with the Motif
GUI.

Install Open Motif 2.2.x from the FreeBSD distribution or ports tree. Your sys-
tems administrator may be able to help if you do not know how to do this.

Any modern machine is
likely to have sufficient
RAM to run LispWorks as
distributed.

GTK+ 2.4 or higher to run
the GTK+ GUI.

Open Motif 2.2.x and Imlib
to run the deprecated Motif
GUI

Netscape, Mozilla, FireFox
or Opera Web browser for
viewing on-line
documentation

Hardware
Requirements

Software Requirements

Table 6.1 System requirements on FreeBSD

6.2 License agreement
You will also need Imlib (not Imlib2). Install this from the FreeBSD distribu-
tion or ports tree. Imlib version 1.9.13 or later is recommended.

6.1.2 Disk requirements

LispWorks requires about 160MB to install, which includes 110MB of docu-
mentation.

The documentation includes printable PDF format manuals. You may delete
any of these that you do not need. They are available at www.lisp-
works.com/documentation in any case, and the same manuals are also avail-
able there in PostScript format.

6.2 License agreement
Before installing, you must read and agree to the license terms. To do this,
mount the CD-ROM on your CD-ROM drive and locate the LispWorks for
FreeBSD files in the x86-freebsd directory. Run the one of following scripts.

You must run this script as the same user that later performs the installation.

• For the Professional and Enterprise Editions, run

sh lwf-license.sh

• For the Personal Edition, run:

sh lwfper-license.sh

Enter “yes” if you agree to the license terms.

6.3 Software on the CD-ROM
LispWorks 6.0 for FreeBSD is supplied as a standard package file in the x86-
freebsd directory on your CD-ROM.

6.3.1 Professional and Enterprise Edition distributions

All of the LispWorks modules are contained in a single package file. Your
license key will control which modules can be used.
 43

http://www.lispworks.com/documentation
http://www.lispworks.com/documentation

6 Installation on FreeBSD

44
6.4 Installing LispWorks for FreeBSD

6.4.1 Main installation and patches

LispWorks Professional and Enterprise Editions are supplied as a standard
software package file containing version 6.0. There may be a downloadable
patch bundle which upgrades LispWorks to version 6.0.x. You need to com-
plete the main installation before adding patches. The installer for 32-bit Lisp-
Works contains both Professional and Enterprise Editions.

6.4.2 Information for Beta testers

Users of LispWorks 6.0 Beta should completely uninstall it (including any
patches added to the beta installation) before installing LispWorks 6.0.

See “Uninstalling LispWorks for FreeBSD” on page 47 for instructions.

6.4.3 Installation directories

By default LispWorks is installed in /usr/local/lib/LispWorks and a sym-
bolic link to the executable is placed in /usr/local/bin/lispworks-6-0-0-
x86-freebsd. However, the software package is relocatable, and the -p option
can be used to allow the installation of LispWorks in a user-specified directory.
The default prefix is /usr/local.

Note: the Personal Edition by default installs in
/usr/local/lib/LispWorksPersonal. Do not attempt to to install different
editions in the same location, since some filenames coincide and uninstalla-
tion may break.

6.4.4 Selecting the correct software package file

The LispWorks Professional/Enterprise software package file is called

lispworks-6.0.tgz

and can be found in the x86-freebsd directory of the LispWorks 5.1 CD-ROM.

The Personal Edition software package file is called

lispworks-personal-6.0.tgz

6.4 Installing LispWorks for FreeBSD
6.4.5 Installing LispWorks for FreeBSD

To install LispWorks, perform the following steps as root:

1. Locate the software package file.

2. Install or upgrade LispWorks in the standard way, for example:

pkg_add lispworks-6.0.tgz

This command installs LispWorks in /usr/local/lib/LispWorks. A
command line of the form

pkg_add -p <directory> lispworks-6.0.tgz

installs LispWorks in <directory>.

The directory name must be an absolute pathname. Relative pathnames and
pathnames including shell-expanded characters such as . and ~ do not work.

Note: LispWorks needs to be able find its library at runtime and therefore the
LispWorks installation should not be moved around piecemeal. If you simply
want to run LispWorks from somewhere more convenient, then consider add-
ing a symbolic link.

See Section 6.6 for instructions on entering your license details.

6.4.6 Installation by non-root users

Non-root users should use the above installation procedure, but must specify
the -p option to set a prefix a directory that is writable and also the -R option
to prevent the package manager from attempting to update the package data-
base.

Thus, a typical installation command for a non-root user is:

pkg_add -p installation-directory -R lispworks-6.0.tgz

All directory names must be absolute pathnames. Relative pathnames and
pathnames including shell-expanded characters such as . and ~ do not work.

6.4.7 Installing Patches

After completing the main installation of the Professional or Enterprise Edi-
tion, ensure you install the latest patches from the package file available for
 45

6 Installation on FreeBSD

46
download at www.lispworks.com/downloads/patch-selection.html. Patch
installation instructions are in the README file accompanying the patch
download.

6.5 LispWorks looks for a license key
If you installed the Professional or Enterprise Edition of LispWorks, the image
looks for a valid license key. If you try to run these LispWorks Editions with-
out a valid key, a message prints reporting that no valid key was found.

For instructions on entering your license key, see Section 6.6.1, “Entering the
license data” below.

For more information about license keys, see Section 10.2, “License keys”.

6.6 Running LispWorks
The LispWorks executable is located in /usr/local/lib/LispWorks directory
of the installation (assuming the default prefix of /usr/local) and should not
be moved without being resaved because it needs to be able to locate the cor-
responding library directory on startup. There is also a symbolic link from the
/usr/local/bin directory.

The LispWorks executable is named as shown here:.

When you run LispWorks, the splashscreen should appear, followed by the
LispWorks Podium and a Listener. See “Troubleshooting” on page 97 for
details if this does not happen.

6.6.1 Entering the license data

When you run the LispWorks Professional/Enterprise Edition for the first
time, you will need to enter your license details. This should be done as fol-
lows (all on one line):

lispworks-personal-6-0-0-x86-freebsd Personal Edition

lispworks-6-0-0-x86-freebsd Professional or Enterprise
Edition

http://www.lispworks.com/downloads/patch-selection.html#lwf

6.7 Configuring the image
lispworks-6-0-0-x86-freebsd --lwlicenseserial SERIALNUMBER
--lwlicensekey LICENSEKEY

where SERIALNUMBER and LICENSEKEY are the strings supplied with Lisp-
Works. A message

LispWorks license installed successfully.

should be printed and thereafter you can run LispWorks without those
command line arguments.

Your license key will be supplied to you in email from Lisp Support.

If you have problems with your LispWorks license key, send it to lisp-
keys@lispworks.com, describing what happens after you enter it.

6.7 Configuring the image
If you installed the Professional or Enterprise Edition of LispWorks, you can
now configure your LispWorks image to suit your needs and load the Profes-
sional or Enterprise Edition modules as necessary. For instructions, see
Chapter 10, “Configuration on Linux, x86/x64 Solaris, and FreeBSD”.

6.8 Printable LispWorks documentation
In a default Professional/Enterprise installation, the lib/6-0-0-0/man-
ual/offline directory contains PDF format versions of the manuals.

PostScript format versions of the manuals are also available for download.

6.9 Uninstalling LispWorks for FreeBSD
A software package containing LispWorks can be uninstalled in the usual
way, for example by executing:

pkg_delete lispworks-6.0

If patches have been installed, then you will first need to uninstall that pack-
age, which will be named lispworks-patches6.0.
 47

6 Installation on FreeBSD

48
6.10 Upgrading to LispWorks Enterprise Edition
You can upgrade from Professional Edition to LispWorks (32-bit) Enterprise
by doing Help > Register... and entering your Enterprise license key.

To upgrade to 64-bit LispWorks, contact

lisp-sales@lispworks.com

mailto:lisp-sales@lispworks.com

7

7 Installation on UNIX
7.1 Introduction
This chapter is a brief installation guide for UNIX LispWorks 6.0. Chapter 11
discusses installation and configuration in detail, but this chapter presents the
minmum instructions necessary to get LispWorks up and running on your
system. If you have difficulties installing LispWorks from these instructions,
refer to the main guide, starting at Chapter 11, “Configuration on UNIX”.

7.2 Extracting software from the CD-ROM
UNIX LispWorks 6.0 is supplied on a CD-ROM with the associated products
CLIM 2.0, KnowledgeWorks, and LispWorks ORB. You will need root access
while installing these products.
49

7 Installation on UNIX

50
7.2.1 Finding out which CD-ROM files you need

The following table shows the platforms upon which LispWorks is supported:

For HP PA (HP-UX 11x) you need the files named lw60-hp-pa.tar and
lwdoc60-unix.tar.

For Sun Sparc (32-bit) you need the files named lw60-sparc.tar and
lwdoc60-unix.tar.

For Sun Sparc (64-bit) you need the files named lw60-sparc64.tar and
lwdoc60-sparc64.tar.

In each case the first archive contains the LispWorks image, libraries and
examples and the layered products KnowledgeWorks, LispWorks ORB and
CLIM. The second archive contains the documentation for Common Lisp,
LispWorks and the layered products.

7.2.2 Unpacking the CD-ROM files

To unpack the CD-ROM files:

1. Mount the CD-ROM in your drive.

2. Search the subdirectories of the mount point to find the tar files.

3. Change directory to your installation directory (we recommend
/usr/lib/lispworks/, which you may need to create) and decide which
tar files you need.

4. Use the following command to unpack each tar file:

Platform Hardware code OS code

HP PA (HP-UX 11x) hp-pa hp-pa11

Sun Sparc (32-bit, Solaris 2.8 &
later)

sparc sparc-solaris

Sun Sparc (64-bit, Solaris 2.8 &
later)

sparc64 sparc64-solaris

Table 7.1 Platforms and associated codes

7.3 Moving the LispWorks image and library
% tar -xof filename

The LispWorks image file can be found at top level in the installation
directory, named according to the operating system, platform, and LispWorks
version number, as follows:

lispworks-<version number>-<OS code>

Thus, an image named lispworks-6-0-0-hp-pa11 would be a LispWorks 6.0
image for use on an HP PA machine running HP-UX 11.

7.3 Moving the LispWorks image and library
The LispWorks image must be able to find its library. The default library
location is contained in the Lisp variable *lispworks-directory*, but if that
does not locate the library, LispWorks also can locate its library by a fallback
mechanism which detects a numbered subdirectory lib/6-0-0-0 alongside
the image.

There are three distinct ways to arrange your LispWorks files. Choose 1, 2 or 3,
of which 1 and 2 are the simplest options:

1. Put the LispWorks distribution in /usr/lib/lispworks. You will then
have the LispWorks image at top-level in the /usr/lib/lispworks direc-
tory, and subdirectories /usr/lib/lispworks/lib/6-0-0-0.

You can move the LispWorks image wherever you prefer, because the
value of *lispworks-directory* in the supplied image is the pathname
#P"/usr/lib/lispworks/".

2. Keep the LispWorks installation intact, as unpacked from the archive
supplied. You can move it, but only move the entire installation as a
whole. Then LispWorks will find its library by the fallback mechanism
mentioned above. In this case again you do not need to change *lisp-
works-directory*.

Note: this only works if you do not move the image away from the top-
level of the installation directory.

3. Put the library elsewhere than /usr/lib/lispworks/ (call it
/path/to/lwlibrary/) and move the LispWorks image file away from
the top-level of the installation directory.
 51

7 Installation on UNIX

52
In this case you need to take action to allow LispWorks to find its library.
You should either make a symbolic link /usr/lib/lispworks/lib, or
configure the LispWorks image with:
(setf *lispworks-directory* #P"/path/to/lwlibrary/")

See Section 7.5 below for more information about configuring
LispWorks. You will need to install your license key first.

7.4 Obtaining and Installing your license keys

7.4.1 Keyfiles and the license server for HP PA and Sun Sparc (32-bit)

This section applies to platforms hp-pa11 and sparc-solaris only.

LispWorks requires a license key in order to run. To make a key available to
LispWorks, you must use either the keyfile system, or the License Server.

Most users use a keyfile. The License Server is more suitable for large sites
with many LispWorks users.

7.4.1.1 If you are using the keyfile system

You will need a valid key, placed in a keyfile, for LispWorks to run. Note that
keys and licenses issued for use with LispWorks version 4.x do not work for
LispWorks 6.0.

To get a key for your copy of LispWorks, contact Lisp Support. You need to
supply the machine ID. You can find this out by starting the LispWorks image
up—the ID will be printed in the keyfile error message produced.

Send this information by e-mail to the following address:

lisp-keys@lispworks.com

Other queries should be sent to

lisp-support@lispworks.com

although please be sure to check Section 12.9, “Reporting bugs” for instruc-
tions before sending us a bug report. If you do not have e-mail access, you can
contact Lisp Support by telephone or ordinary postal mail. Contact details are
in Section 12.9.8, “Send the bug report”.

mailto:lisp-keys@lispworks.com
mailto:lisp-support@lispworks.com

7.5 Configuring the LispWorks image
Once you have your key, put it in a file in one of the following locations:

• keyfile.hostname in the current working directory, where hostname is
the name of the host machine on which LispWorks is to run

• keyfile in the current working directory

• lib/6-0-0-0/config/keyfile.hostname, where hostname is the name of
the host machine on which LispWorks is to run. The lib directory is
expected by default to be located at /usr/lib/lispworks/lib (see Sec-
tion 7.3 above)

• lib/6-0-0-0/config/keyfile, where the lib directory is as above.

If there is more than one key in the keyfile, make sure each one is on a separate
line in the file and that there is no leading space before it.

For more details, see “How to obtain keys” on page 89.

7.4.1.2 If you are using the License Server

You will need to obtain permission codes from Lisp Support before you can
get LispWorks up and running. Consult the LispWorks Guide to the License
Server.

7.5 Configuring the LispWorks image
Now you can configure the LispWorks image to your taste. In the distribution
directory config there are two files that have been preloaded into the Lisp-
Works image:

• config/configure.lisp

• config/a-dot-lispworks.lisp

Take a look at the settings in configure.lisp to see if there is anything you
want to change. In particular, you must change the value of
lispworks-directory if you have chosen a location for the library which is
different to that in the supplied image and moved the image away from the
top-level of the installation directory.

If you already have a .lispworks personal initialization file in your home
directory, examine the supplied example a-dot-lispworks.lisp file for new
settings which you may wish to add. Otherwise, make a copy of
 53

7 Installation on UNIX

54
a-dot-lispworks.lisp in your home directory, naming it .lispworks. This
file is loaded into LispWorks when you start it up, allowing you to make per-
sonal customizations to LispWorks not in the image your fellow users see.

7.5.1 Saving a configured image

Make a copy of config/configure.lisp called
/tmp/my-configuration.lisp. When you have made any desired changes in
my-configuration.lisp you can save a new LispWorks image, creating a
local version.

1. Create a configuration and saving script /tmp/config.lisp, containing:

(load-all-patches)
(load "/tmp/my-configuration.lisp")
(save-image "/usr/local/bin/lispworks")

2. Change directory to the top-level of the LispWorks installation directory,
for example:

% cd /usr/lib/lispworks

3. Start the supplied image using the configuration script as the build file.
For example:

% lispworks-6-0-0-sparc-solaris -build /tmp/config.lisp

If the image will not run at this stage, it is probably not finding a valid key. See
“Obtaining and Installing your license keys” on page 52

The siteinit.lisp is also suppressed because this will be loaded automati-
cally when you start the configured image. Saving the image takes some time.

You can now use the new image by starting it just as you did the supplied
image. Saving a new image over the old one is not recommended. Use a
unique name.

7.6 Using the Documentation
7.5.2 Testing the newly saved image

The following steps provide a basic test of your installation.

1. Change directory to /tmp.

2. Verify that your DISPLAY environment variable is correctly set and that
your machine has permission to connect to the display.

3. Start up the new image.

4. Test the load-on-demand system:
CL-USER 1 > (inspect 1)

The inspector is a load-on-demand feature, so if the installation is correct
you will see messages reporting that the inspector is being loaded.

5. Test the X interface:
CL-USER 2 > (env:start-environment :display <display>)

where <display> is the name of the machine running the X server, for
example "cantor:0".

7.6 Using the Documentation
Documentation in HTML and PDF formats is provided in a separate archive
on the CD-ROM. If you want to access the documentation, you should unpack
the appropriate archive named “Finding out which CD-ROM files you need”
on page 50.

HTML documentation is installed in the lib/6-0-0-0/manual/online sub-
directory of the LispWorks library, and can be accessed via the Help menu in
the LispWorks IDE.

The PDF format manuals are installed in the lib/6-0-0-0/man-
ual/offline/pdf subdirectory of the LispWorks library.

7.7 Using Layered Products on HP PA or Sun Sparc (32-bit)
To use each of Delivery, LispWorks ORB, CLIM 2.0 and KnowledgeWorks you
must obtain the required key and put in your keyfile. See “Keyfiles and the
license server for HP PA and Sun Sparc (32-bit)” on page 52.
 55

7 Installation on UNIX

56
Then you need to load the layered product module. This is done by (require
"delivery") or (require "corba") or (require "clim") or (require "kw").
You could consider configuring an image with the module pre-loaded, by
using a config.lisp file similar to that in “Saving a configured image” on
page 54.

Note: There is no additional licensing requirement for Common SQL on these
platforms.

8

8 Configuration on Mac OS X
8.1 Introduction
This chapter explains how to get your LispWorks Professional or Enterprise
Edition up and running, having already installed the files from the CD-ROM
into an appropriate folder. If you have not done this, refer to Chapter 2,
“Installation on Mac OS X”.

It is more useful to have an image customized to suit your particular
environment and work needs. You can do this—setting useful pathnames,
loading libraries, and so on—and then save the image to create another that
will be configured as you require whenever you start it up.

This chapter covers the following topics:

• “License keys”

• “Configuring your LispWorks installation”

• “Saving and testing the configured image”

• “Initializing LispWorks”

• “Loading CLIM 2.0”

• “Loading Common SQL”

• “Common Prolog and KnowledgeWorks”
57

8 Configuration on Mac OS X

58
8.2 License keys
LispWorks is protected against unauthorized copying and use by a simple key
mechanism. LispWorks will not start up until it finds a file containing a valid
key.

The image looks for a valid license key in the following places, in order:

• in the current working directory (folder)

• in the directory containing the LispWorks executable

• in the Library/lib/6-0-0-0/config subdirectory of the LispWorks
installation directory

When the file lwlicense is found, it must contain a valid key for the current
machine. If you try to run LispWorks without a valid key, a message will be
printed to the console reporting that no valid key was found.

8.3 Configuring your LispWorks installation
Once you have successfully installed and run LispWorks, you can configure it
to suit your local conditions and needs, producing an image that is set up the
way you want it to be every time you start it up.

8.3.1 Levels of configuration

There are two levels of configuration:

• configuring and resaving the image, thereby creating a new image that
is exactly as you want it at startup

• configuring certain aspects of LispWorks as it starts up.

These two levels are available for good reason: while some configuration
details may be of use to all LispWorks users on your machine (for instance,
having a particular library built into the image where before it was only load-
on-demand) others may be a matter of personal preference (for instance how
many editor windows are allowed on-screen, or the colors of tool windows).

In the first case, you use edited copies of files in the config folder to achieve
your aims.

8.3 Configuring your LispWorks installation
In the second case, you make entries in your initialization file. This is a file
read every time LispWorks starts up, and it can contain any valid Common
Lisp code. (Most of the configurable settings in LispWorks can be controlled
from Common Lisp.) By default the file is called .lispworks and is in your
home directory. Your initialization file can be changed via
LispWorks > Preferences... from the LispWorks IDE.

8.3.2 Configuring images for the different GUIs

If you have installed both the LispWorks images, for native Mac OS X and for
GTK+, you will want to configure two images.

If necessary your Lisp configuration and initialization files can run code for
one image or the other by conditionalization on the feature :cocoa. The native
Mac OS X LispWorks image has :cocoa on *features* while the GTK+ Lisp-
Works image does not, and has :gtk.

8.3.3 Configuration files available

There are four sample configuration files in LispWorks library containing set-
tings you can change in order to configure images:

• config/configure.lisp

• config/siteinit.lisp

• private-patches/load.lisp

• config/a-dot-lispworks.lisp

config/configure.lisp is preloaded into the image before it is shipped. It
contains settings governing fundamental issues like where to find the Lisp-
Works runtime folder structure, and so on. You can override these settings in
your saved image or in your initialization file. You should read through
configure.lisp .

config/siteinit.lisp contains any forms that are appropriate to the whole
site but which are to be loaded afresh each time the image is started. The sam-
ple siteinit.lisp file distributed with LispWorks contains only the form:

(load-all-patches)
 59

8 Configuration on Mac OS X

60
On startup, the image loads siteinit.lisp and your initialization file, in that
order. The command line options -siteinit and -init can be used to specify
loading of different files or to suppress them altogether. See the example in
Section 8.4, below, and Section 8.5, “Initializing LispWorks” for further details.

private-patches/load.lisp is loaded by load-all-patches, and should
contain forms to load any private (named) patches that Lisp Support might
send you.

config/a-dot-lispworks.lisp is a sample personal initialization file. You
might like to copy this into a file ~/.lispworks in your home directory and
edit it to create your own initialization file.

Both configure.lisp and a-dot-lispworks.lisp are preloaded into the
image before it is shipped, so if you are happy with the settings in these files,
you need not change them. See the example in Section 8.4, below, and
Section 8.5, “Initializing LispWorks” for further details.

8.4 Saving and testing the configured image
It is not usually necessary to save an image merely to preload patches and
your configuration, because these load very quickly on modern machines.

However, if you want to save an image to reduce startup time for a complex
configuration (such as large application code) or to save a non-windowing
image, then proceed as described in this section.

8.4.1 Create a configuration file

Make a copy of config/configure.lisp called
/tmp/my-configuration.lisp. When you have made the desired changes in
my-configuration.lisp you can save a new LispWorks image as described in
“Create and use a save-image script” on page 60.

8.4.2 Create and use a save-image script

1. Create a configuration and saving script /tmp/save-config.lisp con-
taining:

8.4 Saving and testing the configured image
(in-package "CL-USER")
(load-all-patches)
(load "/tmp/my-configuration.lisp")
#+:cocoa
(save-image-with-bundle "/Applications/My LispWorks/LW")
#-:cocoa
(save-image "my-lispworks-gtk")

Note: This will create a non-universal binary, containing only the archi-
tecture on which you call save-image.

2. Change directory to the directory containing the LispWorks image to
configure. For the native Mac OS X/Cocoa LispWorks image:

% cd "/Applications/LispWorks 6.0/LispWorks.app/Contents/MacOS"

or for the X11/GTK+ LispWorks image:

% cd "/Applications/LispWorks 6.0"

3. Start the supplied image passing the configuration script the build file.
For example enter one of the following commands (on one line of input):

% ./lispworks-6-0-0-macos-universal -build /tmp/save-config.lisp

or

% ./lispworks-6-0-0-macos-universal-gtk -build
/tmp/save-config.lisp

If the image will not run at this stage, it is probably not finding a valid
key.

Saving the image takes some time.

You can now use the new My LispWorks/LW.app application bundle or the
my-lispworks-gtk image by starting it just as you did the supplied Lisp-
Works. The supplied LispWorks is not required after the configuration process
has been successfully completed.

Do not try to save a new image over an image that is currently running.
Instead, save an image under a unique name, and then, if necessary, replace
the new image with the old one after the call to save-image has returned.
 61

8 Configuration on Mac OS X

62
8.4.3 What to do if no image is saved

If no new image is saved, then there is some error while loading the build
script. To see the error message, run the command with output redirected to a
file, for example:

% ./lispworks-6-0-0-macos-universal -build /tmp/save-config.lisp
> /tmp/output.txt

Look in the file /tmp/output.txt.

8.4.4 Testing the newly saved image

You should now test the new LispWorks image. To test a configured Lisp-
Works, do the following:

1. If you are using an X11/GTK+ image, change directory to /tmp.

2. When using X11, verify that your DISPLAY environment variable is cor-
rectly set and that your machine has permission to connect to the dis-
play.

3. Start up the new image, by entering the path of the X11/GTK+ execut-
able or by double-clicking on the LispWorks icon in the Mac OS X
Finder.

The window-based environment should now initialize—during initial-
ization a window displaying a copyright notice will appear on the
screen.

You may wish to work through some of the examples in the LispWorks
User Guide and Reference Manual, to further check that the configured
image has been successfully built.

4. Test the load-on-demand system. In the Listener, type:

CL-USER 1 > (inspect 1)

Before information about the fixnum 1 is printed, the system should load
the inspector from the load-on-demand Library directory.

8.5 Initializing LispWorks
8.4.5 Saving a non-windowing image

For some purposes such as scripting it is convenient to have a LispWorks
image that does not start the graphical programming environment.

To save an image which does not automatically start the GUI, use a script as
described in “Create and use a save-image script” on page 60 but pass the
:environment argument to save-image. For example:

(save-image "my-tty-lispworks" :environment nil)

8.5 Initializing LispWorks
When LispWorks starts up, it looks for an initialization file to load. The name
of the file is held in *init-file-name*, and is ~/.lispworks by default. The
’~’ denotes your home directory, indicated as Home in the Finder. The
initialization file may contain any valid Lisp code.

You can load a different initialization file using the option -init in the com-
mand line, for example:

% "/Applications/LispWorks 6.0/LispWorks.app/Contents/MacOS/lispw
orks-6-0-0-macos-universal" -init my-lisp-init

(where % denotes the Unix shell prompt) would make LispWorks load my-
lisp-init.lisp as the initialization file instead of that named by *init-
file-name*.

The loading of the siteinit file (located by default at config/siteinit.lisp) is
similarly controlled by the -siteinit command line argument or
site-init-file-name.

You can start an image without loading any personal or site initialization file
by passing a hyphen to the -init and -siteinit arguments instead of a file-
name:

% "/Applications/LispWorks 6.0/LispWorks.app/Contents/MacOS/lispw
orks-6-0-0-macos-universal" -init - -siteinit -

This starts the LispWorks image without loading any initialization file. It is
often useful to start the image in this way when trying to repeat a suspected
bug. You should always start the image without the default initialization files
if you are intending to resave it.
 63

8 Configuration on Mac OS X

64
In all cases, if the filename is present, and is not a hyphen, LispWorks tries to
load it as a normal file by calling load. If the load fails, LispWorks prints an
error report.

8.6 Loading CLIM 2.0
CLIM 2.0 is supported on the X11/Motif GUI.

Load CLIM 2.0 into the "LispWorks for X11 IDE" image with

(require "clim")

and the CLIM demos with

(require "clim-demo")

A configuration file to save an image with CLIM 2.0 preloaded would look
something like this:

(load-all-patches)
(require "clim")
(save-image "/path/to/clim-lispworks")

To run the demo software, enter the following in a listener:

(require "clim-demo")
(clim-demo:start-demo)

Note: CLIM is not supported by the LispWorks native Mac OS X image and
cannot be loaded into it.

Note: CLIM is not supported under GTK+.

Note: Do not attempt to load CLIM via the clim loader files in the clim distri-
bution. This will cause CLIM patches to not be loaded. Use (require
"clim").

8.7 The Common SQL interface
The Common SQL interface requires ODBC or one of the supported database
types listed in section "Supported Databases" of the LispWorks User Guide and
Reference Manual.

8.7 The Common SQL interface
8.7.1 Loading Common SQL

To load Common SQL enter, for example:

(require "odbc")

or

(require "oracle")

Initialize the database type at runtime, for example:

(sql:initialize-database-type :database-type :odbc)

or

(sql:initialize-database-type :database-type :oracle)

See the LispWorks User Guide and Reference Manual for further information.

8.7.2 Supported databases

Common SQL on Mac OS X has been tested with DBMS Postgres 7.2.1,
MySQL 5.0.18, Oracle Instant Client 10.2.0.4, ODBC driver PSQLODBC devel-
opment code, and IODBC as supplied with Mac OS X.

8.7.3 Special considerations when using Common SQL

8.7.3.1 Location of .odbc.ini

The current release of Mac OS X comes with an ODBC driver manager from
IODBC, including a GUI interface. IODBC attempts to put the file .odbc.ini
file in a non-standard location. This causes problems at least with the
PSQLODBC driver for PostgreSQL, because PSQLODBC expects to find
.odbc.ini in either the users’s home directory or the current directory. There
may be similar problems with other drivers. Therefore the file .odbc.ini
should be placed in its standard place ~/.odbc.ini. The IODBC driver man-
ager looks there too, so it will work.
 65

8 Configuration on Mac OS X

66
8.7.3.2 Errors using PSQLODBC

The PSQLODBC driver, when it does not find any of the Servername,
Database or Username in .odbc.ini, returns the wrong error code. This tells
the calling function that the user cancelled the login dialog.

Therefore, if Common SQL reports that the user cancelled when trying to con-
nect, you need to check that you have got Servername, Database and User-
name, with the correct case, in the section for the datasource in the .odbc.ini
file.

Note: Username may alternatively be given in the connect string.

8.7.3.3 PSQLODBC version

Common SQL was tested with the development version of psqlodbc (that is
downloaded from CVS, with the version changed to 3. Contact Lisp Support if
you need help using Common SQL with PSQLODBC.

8.7.3.4 Locating the Oracle, MySQL or PostgreSQL client libraries

For database-type :oracle, :mysql and :postgresql, if the client library is not
installed in a standard place, its directory must be added to the environment
variable DYLD_LIBRARY_PATH (see the OS manual entry for dyld).

8.8 Common Prolog and KnowledgeWorks
Common Prolog is bundled with KnowledgeWorks rather than with Lisp-
Works. KnowledgeWorks is loaded by using:

(require "kw")

See the KnowledgeWorks and Prolog User Guide for further instructions.

9

9 Configuration on Windows
9.1 Introduction
This chapter explains how to get your LispWorks Professional or Enterprise
Edition up and running, having already installed the files from the CD-ROM
into an appropriate directory. If you have not done this, refer to Chapter 3,
“Installation on Windows”.

It is more useful to have an image customized to suit your particular
environment and work needs. You can do this—setting useful pathnames,
loading libraries, and so on—and then save the image to create another that
will be configured as you require whenever you start it up.

This chapter covers the following topics:

• “License keys”

• “Configuring your LispWorks installation”

• “Saving and testing the configured image”

• “Initializing LispWorks”

• “Loading CLIM 2.0”

• “The Common SQL interface”

• “Common Prolog and KnowledgeWorks”
67

9 Configuration on Windows

68
9.2 License keys
LispWorks is protected against unauthorized copying and use by a simple key
protection mechanism. LispWorks will not start up until it finds a valid key.

The image looks for a valid license key in the Windows registry.

If you try to run LispWorks without a valid key, it will prompt for a serial
number and key.

9.3 Configuring your LispWorks installation
Once you have successfully installed and run LispWorks, you can configure it
to suit your local conditions and needs, producing an image that is set up the
way you want it to be every time you start it up.

9.3.1 Levels of configuration

There are two levels of configuration: configuring and resaving the image,
thereby creating a new image that is exactly as you want it at startup, and con-
figuring certain aspects of LispWorks as it starts up.

These two levels are available for good reason: while some configuration
details may be of use to all LispWorks users on your site (for instance, having
a particular library built in to the image where before it was only load-on-
demand) others may be a matter of personal preference (for instance how
many editor windows are allowed on-screen, or the colors of tool windows).

In the first case, you use edited copies of files in the config folder to achieve
your aims.

In the second case, you make entries in your initialization file. This is a file
read every time LispWorks starts up, and it can contain any valid Common
Lisp code. (Most of the configurable settings in LispWorks can be controlled
from Common Lisp.) Your initialization file can be changed via Tools >
Preferences... in the LispWorks IDE.

9.3.2 Configuration files available

There are four sample configuration files in LispWorks library containing set-
tings you can change in order to configure images:

9.4 Saving and testing the configured image
• config/configure.lisp

• config/siteinit.lisp

• private-patches/load.lisp

• config/a-dot-lispworks.lisp

config/configure.lisp is preloaded into the image before it is shipped. It
contains settings governing fundamental issues like where to find the Lisp-
Works runtime folder structure, and so on. You can override these settings in
your saved image or in your initialization file. You should read through
configure.lisp .

config/siteinit.lisp contains any forms that are appropriate to the whole
site but which are to be loaded afresh each time the image is started. The sam-
ple siteinit.lisp file distributed with LispWorks contains only the form:

(load-all-patches)

On startup, the image loads siteinit.lisp and your initialization file, in that
order. The command line options -siteinit and -init can be used to specify
loading of different files or to suppress them altogether. See the example in
Section 9.4, below, and Section 9.5, “Initializing LispWorks” for further details.

private-patches/load.lisp is loaded by load-all-patches, and should
contain forms to load any private (named) patches that Lisp Support might
send you.

config/a-dot-lispworks.lisp is a sample personal initialization file. You
might like to copy this somewhere convenient and edit it to create your own
initialization file.

Both configure.lisp and a-dot-lispworks.lisp are preloaded into the
image before it is shipped, so if you are happy with the settings in these files,
you need not change them. See the example in Section 9.4, below, and
Section 9.5, “Initializing LispWorks” for further details.

9.4 Saving and testing the configured image
It is not usually necessary to save an image merely to preload patches and
your configuration, because these load very quickly on modern machines.
 69

9 Configuration on Windows

70
However, if you want to save an image to reduce startup time for a complex
configuration (such as large application code) or to save a non-windowing
image, then proceed as described in this section.

9.4.1 Create a configuration file

Make a copy of config\configure.lisp called C:\temp\my-configura-
tion.lisp. When you have made any desired changes in my-configura-
tion.lisp you can save a new LispWorks image, as described in “Create and
use a save-image script” on page 70.

9.4.2 Create and use a save-image script

1. Create a configuration and saving script C:\temp\save-config.lisp,
containing:

(load-all-patches)
(load "C:/temp/my-configuration.lisp")
(save-image "my-lispworks")

2. Change directory to the LispWorks installation directory, for example:

C:

cd C:\Program Files\LispWorks

3. Start the supplied image using the configuration script as the build file.
For example:

C:\Program Files\LispWorks>lispworks-6-0-0-x86-win32.exe -build
C:\temp\save-config.lisp

If the image will not run at this stage, it is probably not finding a valid key.

Saving the image takes some time.

You can now use the new my-lispworks.exe image from the Windows
Explorer, or you may choose to add a shortcut. The supplied image is not
required after the configuration process has been successfully completed.

Do not try to save a new image over an image that is currently running.
Instead, save an image under a unique name, and then, if necessary, replace
the new image with the old one after the call to save-image has returned.

9.4 Saving and testing the configured image
9.4.3 What to do if no image is saved

If the LispWorks splash screen appears briefly but no image is saved, then
there is some error while loading the build script. To see the error message,
run the command with output redirected to a file, for example:

C:\Program Files\LispWorks>lispworks-6-0-0-x86-win32.exe -build
C:\temp\save-config.lisp > c:\tmp\output.txt

Look in the file c:\temp\output.txt.

9.4.4 Testing the newly saved image

You should now test the new LispWorks image. To test a configured version of
LispWorks, do the following:

1. Start up the new image.

The window-based environment should now initialize—during initial-
ization a window displaying a copyright notice will appear on the
screen.

You may wish to work through some of the examples in the LispWorks
User Guide and Reference Manual, to further check that the configured
image has been successfully built.

2. Test the load-on-demand system. In the Listener, type:

CL-USER 1 > (inspect 1)

Before information about the fixnum 1 is printed, the system should load
the inspector from the load-on-demand directory.

9.4.5 Saving a non-windowing image

For some purposes such as scripting it is convenient to have a LispWorks
image that does not start the graphical programming environment.

To save an image which does not automatically start the GUI, use a script as
described in “Create and use a save-image script” on page 70 but pass the
:environment argument to save-image. For example:

(save-image "my-tty-lispworks" :environment nil)
 71

9 Configuration on Windows

72
9.5 Initializing LispWorks
When LispWorks starts up, it looks for an initialization file to load. The name
of the file is held in *init-file-name*, and is ~/.lispworks by default. You
can use parse-namestring to see the expansion of this path. The file may con-
tain any valid Lisp code.

You can load a different initialization file using the option -init in the com-
mand line, for example (all on one line):

C:\Program Files\LispWorks>lispworks-6-0-0-x86-win32.exe -init
my-lisp-init

would make LispWorks load my-lisp-init.lisp as the initialization file
instead of that named by *init-file-name*.

The loading of the siteinit file (located by default at config\siteinit.lisp) is
similarly controlled by the -siteinit command line argument or
site-init-file-name.

You can start an image without loading any personal or site initialization file
by passing a hyphen to the -init and -siteinit arguments instead of a file-
name:

C:\Program Files\LispWorks>lispworks-6-0-0-x86-win32.exe -init -
-siteinit -

This starts the LispWorks image without loading any initialization file. It is
often useful to start the image in this way when trying to repeat a suspected
bug. You should always start the image without the default initialization files
if you are intending to resave it.

In all cases, if the filename is present, and is not a hyphen, LispWorks tries to
load it as a normal file by calling load. If the load fails, LispWorks prints an
error report.

9.6 Loading CLIM 2.0
Load CLIM 2.0 into LispWorks 6.0 with

(require "clim")

and the CLIM demos with

9.7 The Common SQL interface
(require "clim-demo")

rather than the clim loader files in the clim distribution (which were the entry
points in LispWorks 3).

A configuration file to save an image with CLIM 2.0 preloaded would look
something like this:

(load-all-patches)
(require "clim")
(save-image "C:\\path\\to\\clim-lispworks")

9.6.1 Running the CLIM demos

To run the demo software, enter the following in a listener:

(require "clim-demo")
(clim-demo:start-demo)

This displays a menu listing all the demos. Choose the demo you wish to see.
More information about the demos is in section "The CLIM demos" of the
Common Lisp Interface Manager 2.0 User’s Guide

9.7 The Common SQL interface
The Common SQL interface requires ODBC or one of the supported database
types listed in section "Supported databases" of the LispWorks User Guide and
Reference Manual.

9.7.1 Loading the Common SQL interface

To load the Common SQL interface to use ODBC enter:

(require "odbc")

and at runtime call:

(sql:initialize-database-type :database-type :odbc)

and then you can connect to any installed ODBC datasource.

To load the Common SQL interface to use MySQL, enter:

(require "mysql")
 73

9 Configuration on Windows

74
and at runtime call:

(sql:initialize-database-type :database-type :mysql)

See the LispWorks User Guide and Reference Manual for further information.

9.8 Common Prolog and KnowledgeWorks
Common Prolog is bundled with KnowledgeWorks rather than with Lisp-
Works. KnowledgeWorks is loaded by using:

(require "kw")

See the KnowledgeWorks and Prolog User Guide for further instructions.

10

10 Configuration on Linux,
x86/x64 Solaris, and FreeBSD
10.1 Introduction
This chapter explains how to get your LispWorks Professional or Enterprise
Edition up and running on Linux, x86/X64 Solaris, or FreeBSD, having
already installed the files from the CD-ROM into an appropriate directory. If
you have not done this, refer to Chapter 4, Installation on Linux, Chapter 5,
Installation on x86/x64 Solaris or Chapter 6, Installation on FreeBSD.

It is more useful to have an image customized to suit your particular
environment and work needs. You can do this—setting useful pathnames,
loading libraries, and so on—and then save the image to create another that
will be configured as you require whenever you start it up.

This chapter covers the following topics:

• “License keys”

• “Configuring your LispWorks installation”

• “Saving and testing the configured image”

• “Initializing LispWorks”

• “Loading CLIM 2.0”

• “The Common SQL interface”
75

10 Configuration on Linux, x86/x64 Solaris, and FreeBSD

76
• “Common Prolog and KnowledgeWorks”

10.2 License keys
LispWorks is protected against unauthorized copying and use by a simple key
protection mechanism. LispWorks will not start up until it finds a file contain-
ing a valid key.

The image looks for a valid license key in the following places, in order:

• in the current working directory

• in the directory containing the LispWorks executable

• in the lib/6-0-0-0/config subdirectory of the LispWorks installation
directory

When the file lwlicense is found, it must contain a valid key for the current
machine. If you try to run LispWorks without a valid key, a message will be
printed reporting that no valid key was found.

10.3 Configuring your LispWorks installation
Once you have successfully installed and run LispWorks, you can configure it
to suit your local conditions and needs, producing an image that is set up the
way you want it to be every time you start it up.

10.3.1 Levels of configuration

There are two levels of configuration: configuring and resaving the image,
thereby creating a new image that is exactly as you want it at startup, and con-
figuring certain aspects of LispWorks as it starts up.

These two levels are available for good reason: while some configuration
details may be of use to all LispWorks users on your site (for instance, having
a particular library built in to the image where before it was only load-on-
demand) others may be a matter of personal preference (for instance how
many editor windows are allowed on-screen, or the colors of tool windows).

In the first case, you use edited copies of files in the config directory to
achieve your aims.

10.3 Configuring your LispWorks installation
In the second case, you make entries in your initialization file. This is a file
read every time LispWorks starts up, and it can contain any valid Common
Lisp code. (Most of the configurable settings in LispWorks can be controlled
from Common Lisp.) By default the file is called .lispworks and is in your
home directory. Your initialization file can be changed via Tools > Prefer-
ences... in the LispWorks IDE.

10.3.2 Configuration files available

There are four sample configuration files in LispWorks library containing set-
tings you can change in order to configure images:

• config/configure.lisp

• config/siteinit.lisp

• private-patches/load.lisp

• config/a-dot-lispworks.lisp

config/configure.lisp is preloaded into the image before it is shipped. It
contains settings governing fundamental issues like where to find the Lisp-
Works runtime folder structure, and so on. You can override these settings in
your saved image or in your initialization file. You should read through con-
figure.lisp .

config/siteinit.lisp contains any forms that are appropriate to the whole
site but which are to be loaded afresh each time the image is started. The sam-
ple siteinit.lisp file distributed with LispWorks contains only the form:

(load-all-patches)

On startup, the image loads siteinit.lisp and your initialization file, in that
order. The command line options -siteinit and -init can be used to specify
loading of different files or to suppress them altogether. See the example in
Section 10.4, below, and Section 10.5, “Initializing LispWorks” for further
details.

private-patches/load.lisp is loaded by load-all-patches, and should
contain forms to load any private (named) patches that Lisp Support might
send you.
 77

10 Configuration on Linux, x86/x64 Solaris, and FreeBSD

78
config/a-dot-lispworks.lisp is a sample personal initialization file. You
might like to copy this into a file ~/.lispworks in your home directory and
edit it to create your own initialization file.

Both configure.lisp and a-dot-lispworks.lisp are preloaded into the
image before it is shipped, so if you are happy with the settings in these files,
you need not change them. See the example in Section 10.4, below, and
Section 10.5, “Initializing LispWorks” for further details.

10.4 Saving and testing the configured image
It is not usually necessary to save an image merely to preload patches and
your configuration, because these load very quickly on modern machines.

However, if you want to save an image to reduce startup time for a complex
configuration (such as large application code) or to save a non-windowing
image, then proceed as described in this section.

10.4.1 Create a configuration file

Make a copy of config/configure.lisp called /tmp/my-configura-
tion.lisp. When you have made any desired changes in my-configura-
tion.lisp you can save a new LispWorks image, as described in “Create and
use a save-image script” on page 78.

10.4.2 Create and use a save-image script

1. Create a configuration and saving script /tmp/save-config.lisp, con-
taining:

(load-all-patches)
(load "/tmp/my-configuration.lisp")
(save-image "my-lispworks")

2. Change directory to the LispWorks installation directory, for example:

% cd /usr/local/lib/LispWorks

3. Start the supplied image using the configuration script as the build file.
For example:

% lispworks-6-0-0-x86-linux -build /tmp/save-config.lisp

10.4 Saving and testing the configured image
If the image will not run at this stage, it is probably not finding a valid key.

Saving the image takes some time.

You can now use the new my-lispworks image by starting it just as you did
the supplied image. The supplied image is not required after the configuration
process has been successfully completed.

Do not try to save a new image over an image that is currently running.
Instead, save an image under a unique name, and then, if necessary, replace
the new image with the old one after the call to save-image has returned.

10.4.3 Testing the newly saved image

You should now test the new LispWorks image. To test a configured version of
LispWorks, do the following:

1. Change directory to /tmp.

2. Verify that your DISPLAY environment variable is correctly set and that
your machine has permission to connect to the display.

3. Start up the new image.

The window-based environment should now initialize—during initial-
ization a window displaying a copyright notice will appear on the
screen.

You may wish to work through some of the examples in the LispWorks
User Guide and Reference Manual, to further check that the configured
image has been successfully built.

4. Test the load-on-demand system. In the Listener, type:

CL-USER 1 > (inspect 1)

Before information about the fixnum 1 is printed, the system should load
the inspector from the load-on-demand directory.

10.4.4 Saving a non-windowing image

For some purposes such as scripting it is convenient to have a LispWorks
image that does not start the graphical programming environment.
 79

10 Configuration on Linux, x86/x64 Solaris, and FreeBSD

80
To save an image which does not automatically start the GUI, use a script as
described in “Create and use a save-image script” on page 78 but pass the
:environment argument to save-image. For example:

(save-image "my-tty-lispworks" :environment nil)

10.5 Initializing LispWorks
When LispWorks starts up, it looks for an initialization file to load. The name
of the file is held in *init-file-name*, and is ~/.lispworks by default. ~
denotes your home directory. The file may contain any valid Lisp code.

You can load a different initialization file using the option -init in the com-
mand line, for example:

% lispworks-6-0-0-x86-linux -init my-lisp-init

would make LispWorks load my-lisp-init.lisp as the initialization file
instead of that named by *init-file-name*.

The loading of the siteinit file (located by default at config/siteinit.lisp) is
similarly controlled by the -siteinit command line argument or
site-init-file-name.

You can start an image without loading any personal or site initialization file
by passing a hyphen to the -init and -siteinit arguments instead of a file-
name:

% lispworks-6-0-0-x86-linux -init - -siteinit -

This starts the LispWorks image without loading any initialization file. It is
often useful to start the image in this way when trying to repeat a suspected
bug. You should always start the image without the default initialization files
if you are intending to resave it.

In all cases, if the filename is present, and is not a hyphen, LispWorks tries to
load it as a normal file by calling load. If the load fails, LispWorks prints an
error report.

10.6 Loading CLIM 2.0
Load CLIM 2.0 into LispWorks 6.0 with

10.7 The Common SQL interface
(require "clim")

and the CLIM demos with

(require "clim-demo")

rather than the clim loader files in the clim distribution (which were the entry
points in LispWorks 3).

A configuration file to save an image with CLIM 2.0 preloaded would look
something like this:

(load-all-patches)
(require "clim")
(save-image "/path/to/clim-lispworks")

10.6.1 Running the CLIM demos

To run the demo software, enter the following in a listener:

(require "clim-demo")
(clim-demo:start-demo)

This displays a menu listing all the demos. Choose the demo you wish to see.
More information about the demos is in section "The CLIM demos" of the
Common Lisp Interface Manager 2.0 User’s Guide

10.7 The Common SQL interface
The Common SQL interface requires ODBC or one of the supported database
types listed in section "Supported databases" of the LispWorks User Guide and
Reference Manual.

10.7.1 Loading the Common SQL interface

To load the Common SQL interface to use ODBC enter:

(require "odbc")

and at runtime call:

(sql:initialize-database-type :database-type :odbc)

and then you can connect to any installed ODBC datasource.
 81

10 Configuration on Linux, x86/x64 Solaris, and FreeBSD

82
To load the Common SQL interface to use MySQL, enter:

(require "mysql")

and at runtime call:

(sql:initialize-database-type :database-type :mysql)

See the LispWorks User Guide and Reference Manual for further information.

10.8 Common Prolog and KnowledgeWorks
Common Prolog is bundled with KnowledgeWorks rather than with Lisp-
Works. KnowledgeWorks is loaded by using:

(require "kw")

See the KnowledgeWorks and Prolog User Guide for further instructions.

10.9 Documentation on x86/x86 Solaris and FreeBSD
Except where explicitly mentioned, information stated as specific to Lisp-
Works for Linux also applies to LispWorks for x86/x64 Solaris and LispWorks
for FreeBSD.

11

11 Configuration on UNIX
11.1 Disk requirements
The LispWorks software requires up to 53MB of diskspace, depending on the
platform.

Installing the documentation adds up to 66MB to this. You can delete some of
these files if you wish, for example you might not need the PDF manuals in
lib/6-0-0-0/manual/offline/pdf (28Mb). You can download these PDF for-
mat manuals from www.lispworks.com/documentation at any time, and the
same manuals are also available there in PostScript format. However, note
that the Help menu commands will not work if you corrupt the lib/6-0-0-0/
manual/online directory of the LispWorks library.

11.2 Software Requirements
The LispWorks 6.0 for UNIX GUI requires X11 release 5 or above, Motif
version 2 and Imlib.

Imlib version 1.9.13 or later is recommended. Lisp Support can supply a suit-
able Imlib library.
83

http://www.lispworks.com/documentation

11 Configuration on UNIX

84
11.3 The CD-ROM
This section explains the organization of the LispWorks 6.0 CD-ROM which
contains the LispWorks products you have bought, and how to mount it.

11.3.1 The LispWorks 6.0 CD-ROM

The CD-ROM contains images for LispWorks 6.0 and associated products on
your platform or platforms.

11.3.1.1 CD-ROM format

The files on the CD-ROM were created with the UNIX tar command.

11.3.2 Unpacking LispWorks products

There are two basic steps in unpacking a LispWorks product from the CD-
ROM:

1. Mount the CD-ROM so that it can be accessed as part of your UNIX file-
system. This is described in “Mounting the CD-ROM” on page 84.

2. Extract the product files from the tar file containing them. This is
described in “Installing LispWorks” on page 85.

11.3.3 Mounting the CD-ROM

Before you can access the files on the CD-ROM, it has to be mounted onto
your UNIX filesystem. You may need root access on your machine to do this.

On some platforms, the CD-ROM will be mounted automatically when you
place it in the drive. On most, however, you will have to run a mounting pro-
gram to mount it. You may also have to create a directory on your machine to
serve as the mount point. (The mount point is the point in your filesystem at
which the CD-ROM directory structure will be found.)

When you have mounted the CD-ROM and can see the tar files on your
UNIX filesystem, you are ready to unpack them. Once you are finished with
the tar files on the CD-ROM, you can remove it from your drive, but only
after you have performed an “unmount” operation.

11.4 Installing LispWorks
When unmounting it is necessary that no process has the CD-ROM mount
point as the current directory, and again, root access is necessary. Pushing the
eject button on the drive may not do anything until the volume has been
unmounted.

The basic syntax of the mounting and unmounting operations on each sup-
ported platform is given in each of the platform-specific sections below.

11.3.3.1 HP UX (HP Precision Architecture)

To mount:

mount -F cdfs -o cdcase /dev/dsk/c0t4d0 /mount-point

where mount-point is the directory over which you wish to mount the CD-
ROM. The device designation /dev/dsk/c0t4d0 may vary.

To unmount:

umount /dev/dsk/c0t4d0

Again, use the appropriate device designation for your hardware.

11.3.3.2 Solaris (Sun Sparc)

To mount: Solaris provides an automounting daemon. Place the CD-ROM in
the drive and it will be automatically mounted to:

/cdrom/lw_60/

To unmount:

umount /cdrom/lw_60/

11.4 Installing LispWorks
This section explains how to install LispWorks, having already mounted the
CD-ROM. If you have not done this, refer to Section 11.3, “The CD-ROM”. It
also describes how you obtain keys to run LispWorks 6.0.
 85

11 Configuration on UNIX

86
11.4.1 Unpacking the TAR files

Once the CD-ROM is mounted, you can begin to unpack the tar files for the
products you have purchased. You will need root access to do this.

There are subsections below explaining the process for each supported plat-
form.

11.4.1.1 Considerations to be made before extracting product files

When you extract files made with the tar command, they are written into the
current directory, and if there are any directories packed up in the tar file, they
will be written to the current directory too. For this reason it is best to cd to the
correct directory before extracting anything.

Consider who is going to use LispWorks before you decide where to put the
extracted files. Once installed and configured, the executable Lisp image
should be somewhere in the UNIX file system likely to be on its users’ search
path. A suitable place might be /usr/local/bin/lispworks.

The run time directory structure (basically, everything except the image file)
should be somewhere publicly readable: /usr/lib/lispworks, by default. If
there is not enough room in any of the normal publicly accessible locations,
you could put a symbolic link there pointing to an installation directory in a
partition with more disk space.

11.4.1.2 Keeping your old LispWorks installation

You can install LispWorks 6.0 in the same directory as previous versions of
LispWorks such as LispWorks 5.1. This is because all the 6.0 files are stored in
a subdirectory called lib/6-0-0-0.

You must recompile all your code with the LispWorks 6.0 compiler.

Binaries produced by compile-file in previous versions of LispWorks such
as LispWorks 5.1 do not load into a LispWorks 6.0 image.

11.4.1.3 How to extract the product files from the tar container files

To extract the product files from the tar container files, the basic form of the
call to tar is:

11.4 Installing LispWorks
tar -xof /mount-point/filename

The flag x means extract files from tar-formatted data, and f specifies that the
source of the data will be a file.

mount-point is the point in the UNIX filesystem at which the CD-ROM is
mounted, while filename is the name of the tar file containing the product
files.

For example, to extract the files for LispWorks (32-bit) on SPARC Solaris, with
the CD-ROM mounted at /cdrom/lw_60/, you would type

tar -xof /cdrom/lw_60/lw60-sparc.tar

11.4.1.4 HP UX (HP Precision Architecture)

The files you need to unpack for LispWorks on HP UX are lw60-hp-pa.tar
and lwdoc60-unix.tar.

The LispWorks image is

./lispworks-6-0-0-hp-pa11

11.4.1.5 SPARC Solaris (LispWorks 32-bit)

The files you need to unpack for LispWorks (32-bit) on Solaris are lw60-
sparc.tar and lwdoc60-unix.tar.

The LispWorks image is

./lispworks-6-0-0-sparc-solaris

11.4.1.6 SPARC Solaris (LispWorks 64-bit)

The files you need to unpack for LispWorks (64-bit) on Solaris are lw60-
sparc64.tar and lwdoc60-sparc64.tar.

The LispWorks image is

./lispworks-6-0-0-sparc64-solaris

11.4.2 Keyfiles and how to obtain them

This section applies only to HP PA and Sun Sparc (32-bit).
 87

11 Configuration on UNIX

88
LispWorks is protected against unauthorized copying and use by a simple key
protection mechanism. LispWorks will not start up until it finds a file contain-
ing a valid key.

11.4.2.1 Where LispWorks looks for keyfiles

The image looks for a valid keyfile in the following places, in order:

• keyfile.hostname in the current working directory, where hostname is the
name of the host.

• keyfile in the current working directory, where hostname is the name of
the host.

• config/keyfile.hostname, where hostname is the name of the host on
which the image is to execute. The config directory is expected by
default to be located at /usr/lib/lispworks/lib/6-0-0-0/config (see
“If you are using the keyfile system” on page 52.

• config/keyfile, where the config directory is as above.

The directory config is an indirect subdirectory of the directory specified by
the LispWorks variable *lispworks-directory*. Note that until you have
configured and saved your image, as described later in this section, this vari-
able is set to /usr/lib/lispworks. When starting the generic image, you must
therefore ensure that the keyfile is either in your current directory or in /usr/
lib/lispworks/lib/6-0-0-0/config.

If you try to run LispWorks without a valid key, a message will be printed
reporting that no valid key was found.

11.4.2.2 The contents of a keyfile

Keyfiles contain one or more keys. A key is a sequence of 28 ASCII upper case
letters and digits between 2 and 9, inclusive.

Each key should be placed on a separate line in the file. There should be no
leading white space on a line before the start of a key. Characters after the key
but on the same line as it are ignored, so may be used for comments. Indeed it
is helpful to comment each line with the name of the product that key enables.

Key files for more than one host can exist in the same keyfile.

11.4 Installing LispWorks
A single key allows you to use a particular major version of LispWorks (in this
case 5), on one host machine, until the expiry date of one license, where rele-
vant. To run LispWorks on a different machine you will need another key.

Delivery, KnowledgeWorks, LispWorks ORB and CLIM 2.0 each need their
own keys.

11.4.2.3 How to obtain keys

To obtain your keys, contact Lisp Support.

You can get your key by phone, fax or email. Every key is unique: in order to
generate keys, we need to know the unique ID of the machine on which you
intend to run LispWorks.

To find out your machine’s ID, try to start up the LispWorks image. LispWorks
spots that there is no valid key available, and prints a message saying so,
along with the ID you need to let us know. In any case, Lisp Support will be
able to provide assistance in determining the identifier of a specific machine.
We will also retain a copy of the key supplied.

Send email containing the message printed to lisp-keys@lispworks.com. Or
contact Lisp Support as described in “Reporting bugs” on page 108.

Once you have the key, write it into a file in one of the places listed in Section
11.4.2.1, and start up the LispWorks image.

11.4.3 The License Server

This section applies only to HP PA and Sun Sparc (32-bit). There is no license
server for LispWorks (64-bit) for Solaris.

If you prefer, you can run LispWorks using the License Server instead of the
keyfile system. This system will control license allocation across your LAN,
and you may find it more convenient.

See the LispWorks Guide to the License Server for full details.

As with the keyfile system, you will need to contact Lisp Support to obtain the
necessary permissions.
 89

mailto:lisp-keys@lispworks.com

11 Configuration on UNIX

90
11.5 Components of the LispWorks distribution
For the purposes of installation the LispWorks system can be thought of as
two discrete components: the basic executable Lisp image and the directories
holding files consulted at runtime.

11.5.1 The LispWorks image

The supplied LispWorks image is named according to the operating system
and platform for which it is built, and the LispWorks version number. The for-
mat is:

lispworks-<version number>-<OS code>

Thus, an image named lispworks-6-0-0-sparc-solaris is the LispWorks 6.0
image for use on Sun Sparc (32-bit) Solaris machines.

There may be several images on the CD-ROM, one for each of the architec-
tures LispWorks can run on.

As noted in Section 11.4.1.1 on page 86, once installed, the basic executable
Lisp image can be placed somewhere in the UNIX file system likely to be on
its users’ search path. A suitable place might be /usr/local/bin/lispworks.

11.5.2 The LispWorks library

The runtime directory structure (basically, everything except the image file)
should be somewhere publicly readable: /usr/lib/lispworks, by default. If
there is not enough room in any of the normal publicly accessible locations,
you could put a symbolic link there pointing to the installation directory in a
partition with more disk space. The installation directory must contain a sub-
directory called lib/6-0-0-0/.

Among the directories on this subdirectory are the following:

• config — various files that can be adjusted in order to customize the
image (see Section 11.7 on page 92).

• app-defaults — X/Motif resources for LispWorks and the Lisp Moni-
tor.

• postscript — printer descriptions for the CAPI printing interface.

11.6 Printing copies of the LispWorks documentation
• etc — the executable for the Lisp Monitor.

• load-on-demand — Lisp library code that is loaded into a running
LispWorks system as and when required.

• patches — numbered patches to LispWorks and layered products.

• private-patches — the location to place private (named) patches that
Lisp support may send to you.

• examples — directories containing various code examples, including
most of the code printed in the user documentation.

• translations — the place for logical pathname translations settings

• src — source code supplied with LispWorks

The following directory also resides here, but comes from the documentation
archive:

• manual — has two subdirectories: online and offline. The directory
online contains the online documentation. The directory offline/pdf
contains the complete LispWorks manual set in PDF format.

By default, all these directories are assumed to reside beneath /usr/lib/
lispworks/lib/6-0-0-0/, although you may place the lib directory some-
where else.

For products which support the License Server, there is also a subdirectory of
the installation directory called hqn_ls.

11.6 Printing copies of the LispWorks documentation
LispWorks documentation is not supplied in printed form. If you own a Lisp-
Works license, you may print extra copies of the manuals found in the Lisp-
Works distribution, provided that each copy includes the complete copyright
notice.

The offline/pdf directory contains each manual in PDF format.
 91

11 Configuration on UNIX

92
11.7 Configuring your LispWorks installation
Once you have successfully installed and run LispWorks, you can configure it
to suit your local conditions and needs, producing an image that is set up the
way you want it to be every time you start it up.

There are two levels of configuration: configuring and resaving the image,
thereby creating a new image that is exactly as you want it at startup, and con-
figuring certain aspects of LispWorks as it starts up.

These two levels are available for good reason: while some configuration
details may be of use to all LispWorks users on your site (for instance, having
a particular library built in to the image where before it was only load-on-
demand) others may be a matter of personal preference (for instance how
many editor windows are allowed on-screen, or the colors of tool windows).

In the first case, you alter the global LispWorks image and global settings files
in the config directory to achieve your aims.

In the second case, you make entries in a file in your home directory called
.lispworks. This is a file read every time LispWorks starts up, and it can con-
tain any valid Common Lisp code. (Most of the configurable settings in
LispWorks can be controlled from Common Lisp.)

11.7.1 Multiple-platform installations

You can install copies of LispWorks for more than one platform in the same
directory hierarchy. All platform-specific files are supplied with platform-spe-
cific names.

11.7.2 Configuration files available

There are four files in the LispWorks library containing settings you can
change in order to configure images:

• config/configure.lisp

• config/siteinit.lisp

• private-patches/load.lisp

• config/a-dot-lispworks.lisp

11.7 Configuring your LispWorks installation
config/configure.lisp contains settings governing fundamental issues like
where to find the LispWorks runtime directory structure, and so on. You
should read through configure.lisp and check that you are happy with all
the settings therein. The most common change required is to
lispworks-directory, which points to the root of the installation hierarchy.

config/siteinit.lisp contains any forms that are appropriate to the whole
site but which are to be loaded afresh each time the image is started. The sam-
ple siteinit file distributed with LispWorks contains only the form:

(load-all-patches)

private-patches/load.lisp is loaded by load-all-patches, and should
contain forms to load any private (named) patches that Lisp Support might
send you.

config/a-dot-lispworks.lisp is a sample .lispworks file. You might like to
copy this into your home directory and use it as a basis for your own .lisp-
works file.

Both configure.lisp and a-dot-lispworks.lisp are preloaded into the
image before it is shipped, so if you are happy with the settings in these files,
you need not change them.

On startup, the image loads siteinit.lisp and your .lispworks file, in that
order. The command line options -siteinit and -init can be used to specify
loading of different files or to suppress them altogether. See the example in
Section 11.7.3 below, and see also Section 11.8, “LispWorks initialization argu-
ments” for further details.

11.7.3 Saving and testing the configured image

It is not usually necessary to save an image merely to preload patches and
your configuration, because these load very quickly on modern machines.

However, if you want to save an image to reduce startup time for a complex
configuration (such as large application code) or to save a windowing image,
then proceed as described in this section.
 93

11 Configuration on UNIX

94
11.7.4 Create a configuration file

Make a copy of config/configure.lisp called /tmp/my-configura-
tion.lisp. When you have made any desired changes in my-configura-
tion.lisp you can save a new LispWorks image, as described in “Create and
use a save-image script” on page 94.

11.7.5 Create and use a save-image script

1. Change directory to the installation directory, for example:

unix% cd /usr/lib/lispworks

2. Start the supplied image, without loading any initialization files. For
example:

unix% lispworks-6-0-0-sparc-solaris -init - -siteinit -

If the image will not run at this stage, it is probably not finding a valid
key. See “Keyfiles and how to obtain them” on page 87.

3. Wait for the prompt. Load your local configuration file:

CL-USER 1 > (load "/tmp/my-configuration.lisp")

Now load all current patches:

CL-USER 2 > (load-all-patches)

4. Save the new version of the image. For example:

CL-USER 3 > (save-image "/usr/local/bin/lispworks")

Saving the image takes some time.

You can now use the new image by starting it just as you did the generic
image. The generic image will not be required after the installation process
has been completed successfully.

Do not try to save a new image over an image that is currently running.
Instead, save an image under a unique name, and then, if necessary, replace
the new image with the old one after the call to save-image has returned.

11.8 LispWorks initialization arguments
11.7.5.1 Testing the newly saved image

You should now test the new LispWorks image. To test a configured version of
LispWorks, do the following:

1. Change directory out of the installation directory.

2. Run the new image.

3. Test the load-on-demand system. Type:

CL-USER 1 > (inspect 1)

Before information about the fixnum 1 is printed, the system should load
the inspector from the load-on-demand directory.

4. Next, test the ability of the system to interface to a local X server. If nec-
essary, start an X server either on the local machine or on a machine net-
worked to it. Type:

CL-USER 2 > (env:start-environment :display "serverhostname")

Where serverhostname is the name of the machine running the X server. The
window-based environment should now initialize—during initialization an X
window displaying a copyright notice will appear on the screen.

You can work through some of the examples in the LispWorks User Guide and
Reference Manual to check further that the configured image has successfully
built.

11.8 LispWorks initialization arguments
When LispWorks starts up, it looks for an initialization file to load. The name
of the file is held in *init-file-name*, and is "~/.lispworks" by default. The
file may contain any valid Lisp code.

You can load a different initialization file using the option -init in the com-
mand line, for example:

unix% lispworks -init my-lisp-init

would make LispWorks load my-lisp-init.lisp as the initialization file instead
of that named by *init-file-name*.
 95

11 Configuration on UNIX

96
Alternatively, an initialization file may be specified by setting the UNIX envi-
ronment variable LW_INIT. If set, the specified file will be used instead of that
named by *init-file-name*.

The loading of the siteinit file (located by default at config/siteinit.lisp)
may similarly be controlled either by the -siteinit command line argument,
or the LW_SITE_INIT variable and *site-init-file-name*.

You can start an image without loading any personal or site initialization file
by passing a hyphen to the -init and -siteinit arguments instead of a file-
name:

unix% lispworks -init - -siteinit -

This starts the LispWorks image without loading any initialization file. It is
often useful to start the image in this way when trying to repeat a suspected
bug. You should always start the image without initialization if you are
intending to resave it.

In all cases, if the filename is non-nil, and is not a hyphen, LispWorks tries to
load it as a normal file by calling load. If the load fails, LispWorks prints an
error report.

12

12 Troubleshooting, Patches and
Reporting Bugs
This chapter discusses other issues that arise when installing and configuring
LispWorks. It provides solutions for possible problems you may encounter,
and it discusses the patch mechanism and the procedure for reporting bugs.

12.1 Troubleshooting
This section describes some of the most common problems that can occur on
any platform during installation or configuration.

12.1.1 License key errors in the Professional and Enterprise Editions

LispWorks looks for a valid license key when it is started up. If a problem
occurs at this point, LispWorks exits.

These are the possible problems:

• LispWorks cannot find or read the key.

• The key is incorrect.

• Your license has expired, making the key no longer valid.

On Linux, x86/x64 Solaris and FreeBSD, this is also a possible cause of the
problem:
97

12 Troubleshooting, Patches and Reporting Bugs

98
• The machine name has changed since LispWorks was installed.

On Mac OS X, Linux, x86/x64 Solaris and FreeBSD, the key is expected to be
stored in a keyfile, and an appropriate error message is printed at the terminal
for each case. If this message does not help you to resolve the problem, report
it to Lisp Support and include the terminal output.

On Windows, the key is expected to be stored in the Windows registry. If you
cannot resolve the problem, export your HKEY_LOCAL_MACHINE\SOFT-
WARE\LispWorks registry tree and include this with your report to Lisp Sup-
port.

12.1.2 Failure of the load-on-demand system

Module files are in the modules directory lib/6-0-0-0/load-on-demand
under *lispworks-directory*.

If loading files on demand fails to work correctly, check that the modules
directory is present. If it is not, perhaps your LispWorks installation is cor-
rupted.

Do not remove any files from the modules directory unless you are really cer-
tain they will never be required.

The supplied image contains a trigger which causes *lispworks-directory*
to be set on startup and hence you should not need to change its value.
Subsequently saved images do not have this trigger.

12.1.3 Memory requirements

To run the full LispWorks system, with its GUI, you will need around 30MB of
swap space for the image and whatever else is necessary to accommodate
your application.

When running a large image, you may occasionally see

<**> Failed to enlarge memory

printed to the standard output.

The message means that the LispWorks image attempted to expand one of the
GC generations, but there was not enough swap space to accommodate the

12.2 Troubleshooting on Mac OS X
resulting growth in image size. When this happens, the garbage collector is
invoked, and it will usually manage to free the required space.

Check the size of the image, both by cl:room and by OS facilities (such ps or
top on *nix, Task Manager on Windows) to see if all the sizes are as expected.
If there are large discrepencies, check them.

Occasionally, however, continued demand for additional memory will end up
exhausting resources. You will then see the message above repeatedly, and
there will be little or no other activity apparent in the image. At this point you
should restart the image, or increase swap space. In cases where external
libraries are mapped above LispWorks and inhibit its growth, you may be able
to relocate LispWorks, as described under "Startup relocation" in the Lisp-
Works User Guide and Reference Manual.

12.2 Troubleshooting on Mac OS X
This section describes some of the most common problems that can occur dur-
ing installation or configuration of LispWorks for Macintosh.

If you’re using the LispWorks image with the X11/Motif GUI, see also
Section 12.7, “Troubleshooting on X11/Motif” below for issues specific to
X11/Motif.

12.2.1 Default installation requires administrator on Mac OS X

To install LispWorks in the default installation location under /Applications
you must log on as an administrator. So it is usually best to run
LispWorks_Installer as an administrator - the account you created when set-
ting up your Macintosh is an administrator, for instance.

However, a non-administrator may install LispWorks elsewhere.

12.2.2 Text displayed incorrectly in the editor on Mac OS X

The LispWorks editor currently relies on integral font sizes. Some Mac OS X
fonts have non-integral size and will be displayed incorrectly in the Editor
and Listener tools and other uses of capi:editor-pane.
 99

12 Troubleshooting, Patches and Reporting Bugs

100
The solution is to use a font with integral size. The following are known to
work: Monaco 10, Monaco 15, Monaco 20.

Select the font for Editor and Listener tools by LispWorks > Preferences... >
Environment > Styles > Editor Font.

12.3 Troubleshooting on Linux
This section describes some of the most common problems that can occur dur-
ing installation or configuration of LispWorks for Linux.

See also “Troubleshooting on X11/Motif” on page 103 below for issues spe-
cific to X11/Motif.

12.3.1 Processes hanging

Some versions of Linux have a broken pthreads library. To workaround this
set the environment variable LD_ASSUME_KERNEL=2.4.19 before running
LispWorks.

LD_ASSUME_KERNEL allows using older versions of pthreads, some of
which do not work.

LispWorks 6.0 supports kernel versions 2.4.20 and later.

12.3.2 RPM_INSTALL_PREFIX not set

On Linux, during installation of CLIM, Common SQL, LispWorks ORB or
KnowledgeWorks from a secondary rpm file you may see a message similar to
this:

rpm --install tmp/lispworks-clim-6.0-1.i386.rpm
Environment variable RPM_INSTALL_PREFIX not set, setting it to
/usr
LispWorks installation not found in /usr.
error: %pre(lispworks-clim-6.0-1) scriptlet failed, exit status 1
error: install: %pre scriptlet failed (2), skipping lispworks-
clim-6.0-1
#

This is only a problem when LispWorks itself was installed in a non-default
location (that is, using the --prefix RPM option). You would then want to

12.3 Troubleshooting on Linux
supply that same --prefix value when installing the secondary rpm. A bug
in RPM means that a required environment variable RPM_INSTALL_PREFIX is
not set automically to the supplied value. We have seen this bug in RPM ver-
sion 4.2, as distributed with RedHat 8 and 9.

The workaround is to set this environment variable explicitly before installing
the secondary rpm. For example, if LispWorks was installed like this:

rpm --install --prefix /usr/lisp lispworks-6.0-1.i386.rpm

then you would add CLIM like this (in C shell):

setenv RPM_INSTALL_PREFIX /usr/lisp
rpm --install --prefix /usr/lisp lispworks-clim-6.0-1.i386.rpm

12.3.3 Using multiple versions of Motif on Linux

The version of Open Motif required by LispWorks 6.0 with the Motif GUI may
not be compatible with other applications (including LispWorks 4.2). It is
however compatible with LispWorks 5.1, LispWorks 5.0, LispWorks 4.4 and
4.3, so you for example you should be able to run LispWorks 6.0, LispWorks
5.1 and LispWorks 4.4 simultaneously with either Open Motif installed.

Whilst it is not supported for LispWorks 5.1, you can still use LessTif for
LispWorks 5.0 and earlier - see the Installation Guide for that version for
details.

You may wish to maintain multiple versions of the Motif/LessTif libraries in
order to run various applications simultaneously. However, because the
filenames of the libraries can conflict, this can only be done by installing
libraries in non-standard locations.

When a library has been installed in a non-standard location, you can set the
environment variable LD_LIBRARY_PATH to allow an application to find that
library. Specifically, if <motiflibdir> denotes the directory containing the Motif
2.2 file libXm.so then set LD_LIBRARY_PATH to include <motiflibdir>.

Note: to find out which version of libXm your LispWorks 6.0 image is actually
using, look in the bug form. See “Generate a bug report template” on page 109
for instructions on generating the bug form.
 101

12 Troubleshooting, Patches and Reporting Bugs

102
12.4 Troubleshooting on x86/x64 Solaris
This section describes some of the most common problems that can occur dur-
ing installation or configuration of LispWorks for x86/x64 Solaris.

See also “Problems with CAPI on GTK+” on page 153 and “Troubleshooting
on X11/Motif” on page 103.

12.4.1 GTK+ version

GTK+ version 2.4 or higher is required to run the LispWorks image as distrib-
uted.

12.5 Troubleshooting on FreeBSD
This section describes some of the most common problems that can occur dur-
ing installation or configuration of LispWorks for FreeBSD.

See also “Troubleshooting on X11/Motif” on page 103 below for issues spe-
cific to X11/Motif.

12.5.1 Poor latency when using multiple threads

When running on FreeBSD 6.0, you may get better latency when running with
threads by setting the environment variable LIBPTHREAD_SYSTEM_SCOPE to 1
before starting LispWorks.

12.6 Troubleshooting on UNIX
This section describes some of the most common problems that can occur dur-
ing installation or configuration of LispWorks for UNIX (not including Linux,
x86/x64 Solaris or FreeBSD).

See also “Troubleshooting on X11/Motif” on page 103 for issues specific to
X11/Motif.

12.6.1 Problems with CD-ROM file system

Some operating systems provide tools which can mount a CD-ROM incor-
rectly. If your LispWorks CD-ROM appears to contain files named like this:

12.7 Troubleshooting on X11/Motif
lwdoc60-unix.tar;1

then check the mount command used (“Mounting the CD-ROM” on page 84).

12.6.2 License key errors

LispWorks looks for a keyfile containing a valid license key when it is started
up. If a problem occurs at this point, LispWorks exits, after first printing a
keyfile error message.

There are three possible problems:

• LispWorks cannot find or read the key file.

• The key in the keyfile is incorrect.

• Your license has expired, making the key no longer valid.

An appropriate error message will appear for each case.

An unconfigured image must either be installed in the default location
(library hierarchy under /usr/lib/lispworks/lib/6-0-0-0) or be executed
in the same directory as the keyfile. If the image has been configured, check
that the keyfile is in the right place and that the value of
lispworks-directory is correct.

If the key is incorrect, check it against the one Lisp Support supplied. It should
consist only of numerals and upper case letters (A–Z). If the key has expired,
contact Lisp Support—you may be allowed to extend the key.

12.7 Troubleshooting on X11/Motif
This section describes some of the most common problems that can occur
using the LispWorks X11/Motif GUI, which is available on Linux, FreeBSD,
Mac OS X and UNIX.

12.7.1 Problems with the X server

Running under X11/Motif, LispWorks may print a message saying that it is
unable to connect to the X server. Check that the server is running, and that
the machine the image is running on is authorized to connect to it. (See the
manual entry for command xhost(1).)
 103

12 Troubleshooting, Patches and Reporting Bugs

104
On Mac OS X, if you attempt to start the LispWorks X11/Motif GUI in Termi-
nal.app, an error message Failed to open display NIL is printed. Instead,
run LispWorks in X11.app.

12.7.2 Problems with fonts on Motif

LispWorks may print a message saying that it is unable to open a font and is
using a default instead. The environment will still run but it may not always
use the right font.

LispWorks comes configured with the fonts most commonly found with the
target machine type. However the fonts supplied vary between implementa-
tions and installations. The fonts available on a particular server can be deter-
mined by using the xlsfonts(1) command. Fonts are chosen based on the
X11 resources. See “X11/Motif resources” on page 105 for more information.

It may be necessary to change the fonts used by LispWorks.

12.7.3 Problems with colors

Running under X11, on starting up the environment, or any tool within it,
LispWorks may print a message saying that a particular color could not be
allocated.

This problem can occur if your X color map is full. If this is the case,
LispWorks cannot allocate all the colors that are specified in the X11 resources.

This may happen if you have many different colors on your screen, for
instance when displaying a picture in the root window of your display.

Colors are chosen based on the X11 resources. See “X11/Motif resources” on
page 105 for more information.

To remove the problem, you can then change the resources (for example, by
editing the file mentioned in “X11/Motif resources” on page 105) to reduce
the number of colors LispWorks allocates.

12.7.4 Motif mnemonics and Alt

Motif hardwires its mnemonic processing to use mod1, so we disable
mnemonics if that is Lisp's Meta modifier to allow the Emacs-style editor to

12.7 Troubleshooting on X11/Motif
work. (The accelerator code uses the same keyboard mapping check as the
mnemonics so Alt accelerators would also get disabled if you had them.)

12.7.5 Non-standard X11/Motif key bindings

On X11/Motif, if you want Emacs-style keys Ctrl-n, Ctrl-p in LispWorks
list panels such as the Editor’s buffers view, add the following to the X11
resources (see Section 12.7.6):

!
! Enable Ctrl-n, Ctrl-p in list panels
Lispworks*XmList.translations: #override\n\

Ctrl<Key>p : ListPrevItem()\n\
Ctrl<Key>n : ListNextItem()

!

12.7.6 X11/Motif resources

When using X11/Motif, LispWorks reads X11 resources in the normal way,
using the application class Lispworks. The file app-defaults/Lispworks is
used to supply fallback resources. You can copy parts of this file to ~/Lisp-
works or some other configuration-specific location if you wish to change
these defaults, and similarly for app-defaults/GcMonitor.

12.7.7 Motif installation on Mac OS X

When attempting to starting the LispWorks X11/Motif GUI when the required
version of Motif is not installed, LispWorks prints the error message:

Error: Could not register handle for external module X-
UTILITIES::CAPIX11:
dyld: /Applications/LispWorks 6.0/lispworks-6-0-0-macos-
universal-motif can’t open library:
/usr/local/lib/libXm.4.dylib (No such file or directory, errno
= 2)
.

Ensure you install Motif as described in Section 2.4.9.2, “The X11 GTK+ and
Motif GUIs”. Restart X11.app and LispWorks after installation of Motif.
 105

12 Troubleshooting, Patches and Reporting Bugs

106
12.8 Updating with patches
We sometimes issue patches to the Professional and Enterprise Editions of
LispWorks and LispWorks for UNIX by email or ftp.

12.8.1 Extracting simple patches

Save the email attachment to your disk.

See Section 12.8.3.2, “Private patches” below about location of your private
patches.

12.8.2 If you cannot receive electronic mail

If your site has neither electronic mail nor ftp access, and you want to receive
patches, you should contact Lisp Support to discuss a suitable medium for
their transmission.

12.8.3 Different types of patch

There are two types of patch sent out by Lisp Support, and they have to be
dealt with in different ways.

12.8.3.1 Public patches

Public patches are general patches made available to all LispWorks customers.
These are typically released in bundles of multiple different patch files; each
file has a number as its name. For example,

12.8 Updating with patches
patches/system/0001/0001.nfasl (for PowerPC Mac OS X)
patches\system\0001\0001.ofasl (for x86 Windows)
patches/system/0001/0001.ufasl (for x86 Linux)
patches/system/0001/0001.sfasl (for x86 Solaris)
patches/system/0001/0001.ffasl (for x86 FreeBSD)
patches/system/0001/0001.64nfasl (for PowerPC64 Mac OS X)
patches/system\0001\0001.64ofasl (for x64 Windows)
patches/system/0001/0001.64ufasl (for amd64 Linux)
patches/system/0001/0001.64sfasl (for x64 Solaris)
patches/system/0001/0001.pfasl (for HP-PA)
patches/system/0001/0001.wfasl (for SPARC)
patches/system/0001/0001.64wfasl (for SPARC 64 bit)

On receipt of a new patch bundle your system manager should update each
local installation according to the installation instructions supplied with the
patch bundle. This will add files to the patches subdirectory and increment
the version number displayed by LispWorks.

You should consider saving a new image with the latest patches pre-loaded, as
described in Section 8.4, “Saving and testing the configured image” (Mac OS
X), Section 9.4, “Saving and testing the configured image” (Windows) or
Section 10.4, “Saving and testing the configured image” (Linux, x86/x64
Solaris or FreeBSD), or Section 11.7.3, “Saving and testing the configured
image” (other UNIX).

12.8.3.2 Private patches

LispWorks patches are generally released in cumulative bundles. Occasionally
Lisp Support may send you individual patch binaries named for example
my-patch to address a problem or implement a new feature in advance of bun-
dled ('public') patch releases. Such patches have real names, rather than num-
bers, and must be loaded once they have been saved to disk. You will need to
ensure that LispWorks will load your private patches on startup, after public
patches have been loaded.

There is a default location for private patches, and patch loading instructions
sent to you will assume this location. Therefore, on receipt of a private patch
my-patch.ufasl, the simplest approach is to place it here. For example, on
Mac OS X:

<install>/LispWorks 6.0/Library/lib/6-0-0-0/private-
patches/my-patch.nfasl
 107

12 Troubleshooting, Patches and Reporting Bugs

108
On Windows:

<install>\lib\6-0-0-0\private-patches\my-patch.ofasl

On Linux:

<install>/lib/6-0-0-0/private-patches/my-patch.ufasl

On UNIX:

<install>/lib/6-0-0-0/private-patches/my-patch.pfasl (for HP-PA)
<install>/lib/6-0-0-0/private-patches/my-patch.wfasl (for SPARC)

You will receive a Lisp form needed to load such a patch, such as

 (LOAD-ONE-PRIVATE-PATCH "my-patch" :SYSTEM)

This form should be added to the flet form in the file:

private-patches/load.lisp

like the example there. load-all-patches loads this file, and hence all the
private patches listed therein.

You may choose to save a reconfigured image with the new patch loaded - for
details see the instructions in Section 8.4, “Saving and testing the configured
image” (Mac OS X), Section 9.4, “Saving and testing the configured image”
(Windows), Section 10.4, “Saving and testing the configured image” (Linux,
x86/x64 Solaris or FreeBSD), or Section 11.7.3, “Saving and testing the config-
ured image” (other UNIX). You can alternatively choose to load the patch file
on startup. The option you choose will depend on how many people at your
site will need access to the new patch, and how many will need access to an
image without the patch loaded.

12.9 Reporting bugs
If you discover a bug, in either the software or the documentation, you can
submit a bug report by any of the following routes.

• email

• fax

• paper mail (post)

• telephone

12.9 Reporting bugs
The addresses are listed in Section 12.9.8. Please note that we much prefer
email.

12.9.1 Check for existing fixes

Before reporting a bug, please ensure that you have the latest patches installed
and loaded. Visit www.lispworks.com/downloads/patch-selection.html for
the latest patch release.

If the bug persists, check the Lisp Knowledgebase at
www.lispworks.com/support/ for information about the problem - we may
already have fixed it or found workarounds.

If you need informal advice or tips, try joining the LispWorks users’ mailing
list. Details are at www.lispworks.com/support/lisp-hug.html.

12.9.2 Performance Issues

If the problem is poor performance, you should use room, extended-time and
profile to check what actually happens. See the LispWorks User Guide and Ref-
erence Manual for details of these diagnostic functions and macros.

If this does not help you to resolve the problem, submit a report to Lisp Sup-
port (see next section) and attach the output of the diagnostics.

12.9.3 Generate a bug report template

Whatever method you want to use to contact us, choose Help > Report Bug
from any tool, or use the command Meta+X Report Bug, or at a Lisp prompt,
use :bug-form, for example:

:bug-form "foo is broken" :filename "bug-report-about-foo.txt"

All three methods produce a report template you can fill in. In the GUI envi-
ronment we prefer you use the Report Bug command - do this from within the
debugger if an error has been signalled.

The bug report template captures details of the Operating System and Lisp
you are running, as well as a stack backtrace if your Lisp is in the debugger.
There may be delays if you do not provide this essential information.
 109

http://www.lispworks.com/downloads/patch-selection.html
http://www.lispworks.com/support/
http://www.lispworks.com/support/lisp-hug.html

12 Troubleshooting, Patches and Reporting Bugs

110
If the issue you are reporting does not signal an error, or for some other reason
you are not able to supply a backtrace, we still want to see the bug report
template generated from the relevant LispWorks image.

12.9.4 Add details to your bug report

Under 'Urgency' tell us how urgent the issue is for you. We classify reports as
follows:

ASAP A bug or missing feature that is stopping progress.
Probably needs a private patch, possibly under a sup-
port contract, unless a workaround can be found.

Current Release Either a fix in the next patch bundle or as a private
patch, possibly under a support contract.

Next Release A fix would be nice in the next minor release.

Future Release An item for our wishlist.

None Probably not a bug or feature request.

Tell us if the bug is repeatable. Add instructions on how to reproduce it to the
'Description' field of the bug report form.

Include any other information you think might be relevant. This might be
your code which triggers the bug. In this case, please send us a self-contained
piece of code which demonstrates the problem (this is much more useful than
code fragments).

Include the output of the Lisp image. In general it is not useful to edit the out-
put, so please send it as-is. Where output files are very large (> 2MB) and
repetitive, the first and last 200 lines might be adequate.

If the problem depends on a source or resource file, please include that file
with the bug report.

If the bug report falls into one of the categories below, please also include the
results of a backtrace after carrying out the extra steps requested:

• If the problem seems to be compiler-related, set
compiler-break-on-error to t, and try again.

12.9 Reporting bugs
• If the problem seems to be related to error or conditions or related
functionality, trace error and conditions::coerce-to-condition, and
try again.

• If the problem is in the LispWorks IDE, and you are receiving too many
notifiers, set dbg::*full-windowing-debugging* to nil and try again.
This will cause the console version of debugger to be used instead.

• If the problem occurs when compiling or loading a large system, call
(toggle-source-debugging nil) and try again.

• If you ever receive any unexpected terminal output starting with the
characters <**>, please send all of the output—however much there is
of it.

Note: terminal output is that written to *terminal-io*. Normally this is
not visible when running the Mac OS X native GUI or the Windows GUI,
though it is displayed in a Terminal.app or MS-DOS window if neces-
sary.

12.9.5 Reporting crashes

Very occasionally, there are circumstances where it is not possible to generate
a bug report form from the running Lisp which has the bug. For example, a
delivered image may lack the debugger, or the bug may cause lisp to crash
completely. In such circumstances:

1. It is still useful for us to see a bug report form from your lisp image so
that we can see your system details. Generate the form before your code
is loaded or a broken call is made, and attach it to your report.

2. Create a file init.lisp which loads your code that leads to the crash.

3. Run LispWorks with init.lisp as the initialization file and with output
redirected to a file. For example, on Mac OS X:

% "/Applications/LispWorks 6.0/LispWorks.app/Contents/MacOS/lispw
orks-6-0-0-macos-universal" -init init.lisp > lw.out

where % denotes a Unix shell prompt.

On Windows:
 111

12 Troubleshooting, Patches and Reporting Bugs

112
C:\> "Program Files\LispWorks\lispworks-6-0-0-x86-
win32.exe" -init init.lisp > lw.out

where C:\> denotes the prompt in a MS-DOS command window.

On Linux:

% /usr/bin/lispworks-6-0-0-x86-linux -init init.lisp > lw.out

where % denotes a Unix shell prompt.

On UNIX (SPARC in this example):

% /usr/lib/lispworks/lib/6-0-0-0/config/lispworks-6-0-0-sparc-
solaris -init init.lisp > lw.out

4. Attach the lw.out file to your report. In general it is not useful to edit the
output of your Lisp image, so please send it as-is. Where output files are
very large (> 2MB) and repetitive, the first and last 200 lines might be
adequate.

12.9.6 Log Files

If your application writes a log file, add this to your report. If your application
does not write a log file, consider adding it, since a log is always useful. The
log should record what the program is doing, and include the output of
(room) periodically, say every five minutes.

You can make the application write a bug form to a log file automatically by
making your error handlers call dbg:log-bug-form.

12.9.7 Reporting bugs in delivered images

Some delivered executables lack the debugger. It is still useful for us to see a
bug report template from your Lisp image that was used to build the deliv-
ered executable. If possible, load your code and call (require "delivery")
then generate the template.

For bugs in delivered LispWorks images, the best approach is to start with a
very simple call to deliver, at level 0 and with the minimum of delivery key-
words (:interface :capi and :multiprocessing t at most). Then deliver at
increasingly severe levels. Add delivery keywords to address specific prob-
lems you find (see the LispWorks Delivery User Guide.for details. However,

12.9 Reporting bugs
please note that you are not expected to need to add more than 6 or so deliv-
ery keywords: do contact us if you are adding more than this.)

12.9.8 Send the bug report

Email is usually the best way. Send your report to

lisp-support@lispworks.com

When we receive a bug report, we will send an automated acknowledgment,
and the bug will be entered into the LispWorks bug management system. The
automated reply has a subject line containing for example

(Lisp Support Call #12345)

Please be sure to include that cookie in the subject line of all subsequent mes-
sages concerning your report, to allow Lisp Support to track it.

If you cannot use email, please either:

• Fax to +44 870 2206189

• Post to Lisp Support, LispWorks Ltd, St John's Innovation Centre, Cow-
ley Road, Cambridge, CB4 0WS, England

• Telephone: +44 1223 421860

Note: It is very important that you include a stack backtrace in your bug report
wherever applicable. See “Generate a bug report template” on page 109 for
details. You can always get a backtrace from within the debugger by entering
:bb at the debugger prompt

12.9.9 Sending large files

Note: Please check with Lisp Support in advance if you are intending to send
very large (> 2MB) files via email.

12.9.10 Information for Personal Edition users

We appreciate feedback from users of LispWorks Personal Edition, and often
we are able to provide advice or workarounds if you run into problems. How-
ever please bear in mind that this free product is unsupported. For informal
 113

12 Troubleshooting, Patches and Reporting Bugs

114
advice and tips, try joining the LispWorks users mailing list. Details are at
www.lispworks.com/support/lisp-hug.html.

12.10 Transferring LispWorks to a different machine
This section lists the steps necessary to transfer your LispWorks Professional
or Enterprise Edition license to another machine.

1. Install LispWorks on your new machine.

2. Add latest patch bundle.

3. If you received private patches (named patch files, in the lib/6-0-0-
0/private-patches directory) for this version of LispWorks, move them
and your private-patches/load.lisp file to the corresponding location
in the new installation.

4. Test the new installation by running LispWorks and check the patch ban-
ner in the output of Help > Report Bug. It should be identical to the origi-
nal installation, If it is not, check that the public patches have been
installed, and that you private patches have been moved to the new pri-
vate-patches folder, along with the load.lisp file.

Please note that the LispWorks EULA restricts multiple installations so you
need to remove the original installation. Instructions for uninstalling Lisp-
Works are in the per-platform chapters of this manual.

Some operating systems provide ways to copy software to another machine. A
copied LispWorks installation will not run. Please contact Lisp Support if you
want to install your license to a copied installation of LispWorks.

http://www.lispworks.com/support/lisp-hug.html

13

13 Release Notes
13.1 Platform support

13.1.1 x86/x64 Solaris

LispWorks (32-bit) for x86/x64 Solaris and LispWorks (64-bit) for x86/x64
Solaris are now available.

13.1.2 Running on 64-bit machines

As far as we know each of the 32-bit LispWorks implementations runs cor-
rectly in the 32-bit subsystem of the corresponding 64-bit platform.

13.1.3 Older platforms

LispWorks 6.0 does not support Windows Millennium Edition, Windows
2000, FreeBSD 5 or RedHat 9.

LispWorks 6.0 for Macintosh supports MacOS X 10.3, 10.4 and 10.5 on Pow-
erPC, and on MacOS X 10.4, 10.5 and 10.6 on Intel.
115

13 Release Notes

116
13.2 Symmetric Multiprocessing
LispWorks now supports SMP on Microsoft Windows, Mac OS X, Linux,
FreeBSD and x86/x64 Solaris platforms.

Some new functionality is implemented only on these platforms. Where func-
tionality differs from other platforms, the documentation refers to "SMP Lisp-
Works" or "Non-SMP LispWorks", as appropriate.

13.2.1 Old interrupt blocking APIs removed

The macros mp:without-interrupts and mp:without-preemption, which
were available in LispWorks 5.1 and earlier, are no longer supported. The
semantics of these macros allowed them to be used for several different pur-
poses, which now require specific solutions.

Code which must be run to completion without being interrupted should use
the new interrupt-blocking functionality. See “New ways to block interrupts”
on page 116.

Code which needs to be atomic should be converted to use locks (see the
"Multiprocessing" chapter of the LispWorks User Guide and Reference Manual) or
the new low level atomic operations (see “Atomic operations” on page 116).

13.2.2 New ways to block interrupts

Where a set of operations must be completed without being interrupted by
mp:process-interrupt, keyboard breaks and so on, you should use the new
interrupt-blocking functionality. See "Blocking interrupts" in the LispWorks
User Guide and Reference Manual for details.

13.2.3 Atomic operations

New operations are provided to perform atomic operations on some Common
Lisp places. See "Low level atomic operations" in the LispWorks User Guide and
Reference Manual for details.

13.2 Symmetric Multiprocessing
13.2.4 New features of locks

mp:make-lock now offers control over whether a lock can be locked recur-
sively. Non-recursive locks can be useful for debugging code where a lock is
not expected to be claimed recursively.

mp:make-lock also allows you to create "sharing" locks which support sharing
and exclusive locking.

See mp:make-lock in the LispWorks User Guide and Reference Manual for details.

There are new APIs for querying locks: mp:lock-recursive-p, mp:lock-
owned-by-current-process-p, mp:lock-locked-p and mp:lock-recur-
sively-locked-p.

Additionally mp:lock-owner now checks for an exclusive lock in the case of a
sharing lock.

The performance of locks has been improved.

13.2.5 Efficient ways to synchronize between threads

In LispWorks 5.1 and previous versions, the main way to synchronize
between threads is to use mp:process-wait or mp:process-wait-with-time-
out to supply a predicate to the scheduler. The predicate runs periodically in
the background to identify threads that are no longer blocked.

These functions are still available, but there are some alternatives that can be
more efficient in many cases by removing the need for the scheduler. The
alternatives are:

• Mailboxes (FIFO queues)

• Condition Variables (used with a lock)

• Barriers (counting arrivals at a certain point in the code)

• Counting Semaphores (limiting the number of users of a shared
resource)

The new synchronization objects are described in "Synchronization between
threads" in the LispWorks User Guide and Reference Manual. There are also new
"local" variants of mp:process-wait which reduce the overhead on the sched-
uler. See "Process Waiting" in the LispWorks User Guide and Reference Manual.
 117

13 Release Notes

118
The new function mp:current-process-pause is like cl:sleep, except that it
allows another process to wake up the current process.

The new function mp:process-join provides a way to wait until a process
dies which returns without any delay after the process dies.

Lastly, there are new synchronization functions which can ensure the order of
store and load operations across multiple threads. See "Ensuring order of
memory between operations in different threads" in the LispWorks User Guide
and Reference Manual.

13.2.6 Access to specials

In SMP LispWorks, access to non-constant special variables is a little slower
than in previous releases. You can speed up such access by declarations of the
special symbol, normally by using cl:proclaim or cl:declaim with one of the
new declarations hcl:special-global, hcl:special-dynamic and hcl:spe-
cial-fast-access. See "Optimizing your code" in the LispWorks User Guide
and Reference Manual.

13.2.7 Processing and handling events

mp:process-all-events processes the events in the mailbox (the event queue)
of the current process.

If you use your own classes to represent events in the mailbox of a process,
you can add specific handling via mp:general-handle-event.

13.2.8 Automatic creation of a mailbox

mp:process-run-function now allows you to specify that it creates a mailbox
and associates it with the process. You do not need to explicitly call
mp:make-mailbox and (setf mp:process-mailbox) as in previous versions of
LispWorks.

13.2.9 Sending and interpreting events

mp:process-send now sends any Lisp object as the event. It is the responsibil-
ity of the receiving process to read and interpret this event object.

13.3 GTK+ window system
Also, mp:process-send now ensures there is a mailbox in the receiving pro-
cess.

13.2.10 mp:mailbox-read distinguishes a read value from a timeout

mp:mailbox-read now returns a second value which is true when a value was
actually read, but nil if mp:mailbox-read timed out instead.

13.2.11 mp:process-plist deprecated

mp:process-plist is deprecated, because it does not work well in SMP Lisp-
Works. Processes now have general properties and private properties; use one
of these instead. See "Process properties" in the LispWorks User Guide and Refer-
ence Manual for details.

13.2.12 mp:process-event-queue deprecated

mp:process-event-queue is deprecated, because it does not check its argu-
ments. Instead, use mp:process-mailbox which accesses the mailbox (event
queue) of a process safely.

13.3 GTK+ window system
LispWorks now uses GTK+ as the default window system for CAPI and the
LispWorks IDE on Linux, FreeBSD and x86/x64 Solaris. GTK+ is also sup-
ported on Mac OS X as an alternative to Cocoa. LispWorks requires GTK+ ver-
sion 2.4 or higher.

Note: LispWorks on SPARC Solaris and HP-UX does not support GTK+.

A few known problems are documented on “Problems with CAPI on GTK+”
on page 153.

13.3.1 Using Motif instead of GTK+

Use of Motif with LispWorks on Linux, FreeBSD, x86/x64 Solaris and Mac OS
X is deprecated, but it is available by

(require "capi-motif")
 119

13 Release Notes

120
To use LispWorks 6.0 with Motif you also need Imlib installed, as described
earlier in this manual.

13.4 New CAPI features
See the LispWorks CAPI Reference Manual for more details of these.

13.4.1 Break gesture available in CAPI Cocoa applications

On Cocoa the gesture Command+Ctrl+, (comma) is now the break gesture.

When the break gesture is used, LispWorks attempts to break the current
operation in a useful way, allowing the user to regain control even if the GUI
is busy. This is useful if the "spinning beach ball" cursor appears for some time
and the application appears to be hanging.

13.4.2 Setting the break gestures

On GTK+ and Motif the new function
capi:set-interactive-break-gestures sets the gestures that can be used to
break by typing at an interface.

13.4.3 Lisp mode parenthesis coloring

The function capi:set-editor-parenthesis-colors sets the colors that are
used for the new parenthesis coloring in a capi:editor-pane in Lisp mode.

13.4.4 Toolbar API for capi:interface

There is a new CAPI facility for making a toolbar, which is typically displayed
at the top of the window. On Cocoa, this makes a standard foldable toolbar.
The user can use a customization dialog (via the context menu) to choose
which items appear on the toolbar. See the toolbar-items, toolbar-states and
default-toolbar-states initargs for capi:interface and the functions
capi:interface-toolbar-state, capi:interface-default-toolbar-
states, capi:interface-update-toolbar and capi:interface-customize-
toolbar.

13.4 New CAPI features
13.4.5 Lightweight positioning of panes

The new class capi:static-layout allows you to position panes inside it
without the overhead of capi:pinboard-layout (which is more expensive
because it is an output pane).

Existing code that uses capi:pinboard-layout still works.

13.4.6 Grid cells spanning multiple columns or rows

capi:grid-layout now supports cells spanning multiple columns or rows.
See the new keywords :right-extend and :bottom-extend and the example
in examples/capi/layouts/extend.lisp.

13.4.7 Separators in rows and columns

capi:row-layout and capi:column-layout now support separators. These
are like dividers (supported in earlier versions) but are not movable by the
user. To add a separator, include :separator in the description of the layout.

13.4.8 Ratio specification for dividers and separators

If you specify ratios for a capi:row-layout or capi:column-layout which has
:divider in its description, the ratio for the divider should be nil, since the
divider is always displayed at its minimum size in the relevant dimension.

This requirement also applies to the new :separator.

In LispWorks 5.1 and previous versions, a numerical value of the ratio for the
divider is accepted.

13.4.9 Lists with a filter

capi:list-panel now supports adding a filter above the list. When the user
has entered something in the filter only matching items are displayed, and
capi:collection-items returns only the displayed items, and capi:choice-
selection indexes into the displayed items.

There are new accessors for the unfiltered items.
 121

13 Release Notes

122
Various new initargs to capi:list-panel allow control over the filter appear-
ance and behavior of the filter.

13.4.10 Lists which do not take input focus

The functions capi:prompt-with-list-non-focus and dispalys a list in a
non-focus window, which does not take the input focus and hence does not
see keyboard input in general. It responds to mouse gestures. Other APIs
allow you to specify particular keyboard gestures that are seen, control a filter
on the list, close the non-focus window and so on.

This mechanism is used in the LispWorks IDE in various commands which
offer completion of input.

capi:text-input-pane-in-place-complete uses this mechanism to provide
in-place completion in a text input pane.

13.4.11 Finding the child pane with input focus

The new function capi:pane-descendant-child-with-focus returns the
child pane of a specified parent pane or layout that currently has the input
focus, if there is one.

13.4.12 Automatic scrolling to show the focus pane

The new scroll-if-not-visible-p attribute of a capi:simple-pane and subclasses
controls scrolling behavior of the parent when the pane is given the input
focus. You can specify that it scrolls to make the pane fully visible (where
possible) always, never or only when the input focus was set by a non-mouse
gesture. For more details see the accessor capi:scroll-if-not-visible-p.

13.4.13 Programmatic scrolling of lists etc implemented on Cocoa

The functions capi:scroll and capi:get-scroll-position can now be used
on Cocoa to programmatically scroll capi:list-panel and other panes which
have scroll bars.

This functionality is not implemented in LispWorks 5.1 for Macintosh and ear-
lier versions.

13.4 New CAPI features
13.4.14 Edit/select operations for the active pane

A new interface allows you to invoke edit and selection operations on the
active pane (the pane with input focus) within an interface. For example
capi:active-pane-copy finds the active pane and tells it to do a copy
operation, which is implemented by the generic function
capi:pane-interface-copy-object. You can supply methods for your own
pane and interface classes.

Copy, cut, paste, select, deselect and undo operations and associated predi-
cates can be invoked in the same way.

13.4.15 Buffered output to improve drawing on Windows and Motif

If redrawing of your capi:pinboard-layout or capi:output-pane flickers on
Microsoft Windows or Motif, perhaps because there are many pinboard
objects or the redisplay is complex in some other way, you can use the new ini-
targ :draw-with-buffer. This makes a pixmap to buffer the output before
drawing it to the screen.

The capi:output-pane initarg :draw-with-buffer supersedes the capi:pin-
board-layout initarg :draw-pinboard-objects (which was not documented
but was used in some CAPI examples distributed with LispWorks 5.1 and ear-
lier versions). Use :draw-with-buffer instead.

:draw-with-buffer has no effect on Cocoa and GTK+ because these libraries
always buffer the output.

13.4.16 Detecting key presses and releases

CAPI now supports a portable way to detect key press and release gestures,
by using :key in the input-model. This is different from using :character or
:gesture-spec, because it captures the key and modifiers pressed or released,
not the character that they would generate. It should only be used where you
require low level access to the keyboard input. See the description of input-
model in capi:output-pane for the details.
 123

13 Release Notes

124
13.4.17 Modifiers in button and motion input-model gestures

All modifier keys (:shift, :control, :meta and :hyper) now work in button
and motion input-model gestures. See the description of input-model in
capi:output-pane for the details.

13.4.18 Stop playing of a sound file

The new function capi:stop-sound stops a sound from playing. You could
use this to interrupt playing a MIDI file.

13.4.19 Drag’n’drop enhancements

This section describes enhancements to the drag and drop functionality which
was introduced in LispWorks 5.1.

13.4.19.1 Drag’n’drop in lists and trees

capi:list-panel and capi:tree-view can now allow items to be dragged for
use with the drag and drop APIs. See the new initarg :drag-callback for
capi:simple-pane.

Additionally, on Cocoa capi:list-panel and capi:tree-view can now
accept objects dropped using the drag and drop APIs. See the initarg :drop-
callback for capi:simple-pane.

13.4.19.2 Drag lists of files on Cocoa

Dragging a list of files to LispWorks or another application such as the Finder
now works. Call capi:drag-pane-object with :filename-list in the plist.

13.4.19.3 Drop coordinates on Microsoft Windows

On Windows, when doing drag and drop operations in a scrollable output
pane the coordinates (capi:drop-object-pane-x and capi:drop-object-
pane-y) now include the current capi:%scroll-x% and capi:%scroll-y%
geometry slot values. This now matches the behavior on Cocoa.

13.4 New CAPI features
13.4.20 Matching GTK+ and Motif resources

You can configure your application to use resources on GTK+ and X11/Motif.
(This was already true on Motif, but is now documented.)

An example showing how to make a CAPI GUI configurable by GTK+
resources is in examples/capi/elements/gtk-resources.lisp.

Example resource files are in examples/gtk/.

For more information see the sections "Matching resources" in the LispWorks
CAPI User Guide and the description of widget-name for capi:element in the
LispWorks CAPI Reference Manual.

13.4.21 Callback types including element

Subclasses of capi:callbacks now support new values of callback-type :ele-
ment, :element-item and so on. These allow you to specify that the callback is
called on the element (that is, a pane or menu item) that contains it.

13.4.22 read-only editor-panes

You can now specify enabled :read-only to make a capi:editor-pane be
read-only, which means that input to the pane by keyboard or mouse gestures
cannot change the text and the Cut and Paste menu entries are disabled. Pro-
grammatic modifications of the text are still allowed.

13.4.23 Uniform error handling in dialogs

capi:popup-confirmer and capi:display-dialog have a new keyword argu-
ment :callback-error-handler. This keyword allows uniform error han-
dling in callbacks across platforms.

The new function capi:current-popup allows you to find the dialog itself in
the scope of the callbacks.

13.4.24 Dialogs that are dismissed by any input

The new value :dismiss-on-input for the modal argument to capi:popup-
confirmer and capi:display-dialog specifies that the dialog is application-
 125

13 Release Notes

126
modal but any user gesture (a button or key press) causes the dialog to disap-
pear.

13.4.25 Enabling menu items when a dialog is on screen

On Cocoa, capi:menu-item now supports enabling its items even when a dia-
log is on the screen, via the new initarg :enabled-function-for-dialog.

This does not apply on other platforms, since the menu bar is not accessible
when a modal dialog is on the screen.

13.4.26 Support for file packages as directories on Cocoa

The new keyword argument file-package-is-directory to capi:prompt-for-file
allows you to specify that a file package should be treated as a directory.

file-package-is-directory corresponds to the treatsFilePackagesAsDirectories
method of NSSavePanel in Cocoa. It has no effect on other platforms.

13.4.27 Efficient modification of a range-pane

The new function capi:range-set-sizes set the start, end, slug-start and slug-
end values in a capi:range-pane, causing fewer redisplays than if you set
each slot directly using its accessor.

13.4.28 Testing for support of display of text and image in menus

The new function capi:pane-supports-menus-with-images tests whether
menus with an image-function display both the images and the text correctly.

13.4.29 Preserving interface state during session saving

If you use session saving in the LispWorks IDE and have your own interface
classes, then you might want to preserve their state. To do this, add methods
on the new generic function capi:interface-preserve-state.

13.5 Other CAPI changes
13.5 Other CAPI changes

13.5.1 Cocoa default fonts corrected

CAPI/Cocoa default fonts now match the Apple Human Interface Guidelines
(HIG). In LispWorks 5.1 and previous releases, the default fonts used by but-
tons and various text panes were slightly too small compared to what the
Apple HIG specifies.

The font returned by a graphics ports Portable Font Description with :stock
:system-font is now what Apple calls the "system" font. In LispWorks 5.1
and previous releases, it was the "User" font.

13.5.2 editor-pane scroller size

The size of the scroller in a capi:editor-pane scroll bar now depends on the
number of lines which are visible. In previous LispWorks releases, it
depended on the number of characters visible, which would cause the scroller
to change size noticeably during scrolling.

13.5.3 opengl-pane package change

The OpenGL example now defines opengl-pane in the OPENGL package
rather than the CAPI package. This avoids problems with modifying the CAPI
package.

13.5.4 menu items-function called earlier

The items-function of a capi:menu is now called earlier, before the menu is
raised (in order to initialize accelerators), and in particular it may be called
before the interface is created.

This change may break code which works in LispWorks 5.1 but relies on the
interface being displayed at the time items-function is called.

13.5.5 Interpretation of repeated initargs and geometric hints

When the initargs passed to make-instance (or the plist passed to capi:set-
hint-table) contain repeated geometric hints like this:
 127

13 Release Notes

128
 (make-instance 'capi:list-pane
 :visible-min-height '(:character 1)
 :visible-min-height '(:character 2))

then the first occurrence of each hint keyword is now used to supply the
value, that is (:character 1) in the example above. This behavior matches
the normal interpretation of keyword arguments.

LispWorks 5.1 and earlier versions use the value of the last occurrence of a
keyword, that is (:character 2) in the example above.

13.5.6 Change preventing premature destruction of a gp:image

Calling gp:load-image on a gp:image object now associates the image with
the specified port (if the image was not already associated). This means that
the image is not destroyed until the port is destroyed or gp:free-image is
called with that port and image.

In LispWorks 5.1 and earlier calling gp:load-image on a gp:image can create a
situation in which the image is destroyed while it is used by the port. The
change prevents this.

13.5.7 Redisplay of image buttons, and change to accessors

The accessors capi:button-image, capi:button-disabled-image, capi:but-
ton-armed-image, capi:button-selected-image and capi:button-
selected-armed-image have been changed. When called after the button has
been displayed, these accessors now return the value that was set initially.
This change also means that buttons with images can reliably be destroyed
and then displayed again.

In LispWorks 5.1 and earlier versions these accessors return the loaded image
(that is the result of calling gp:load-image) and buttons with images cannot
reliably be displayed again after being destroyed.

13.5.8 Limiting text in a Cocoa text-input-pane

The capi:text-input-pane initarg max-characters now works on Cocoa. In
LispWorks 5.1 max-characters has no effect on this platform.

13.6 More new features
13.5.9 Change in set-rich-text-pane-character-format

capi:set-rich-text-pane-character-format no longer accepts a keyword
argument default. You can get the same effect by passing :default as the value
of attributes-plist.

13.6 More new features
For details of these, see the documentation in the LispWorks User Guide and Ref-
erence Manual, unless a manual is referenced explicitly.

13.6.1 Load and evaluate from the command line

The new command line arguments -load and -eval allow you to specify a file
to load, or a form to evaluate, when LispWorks starts. See "The Command
line" in the LispWorks User Guide and Reference Manual for details of these and
all the LispWorks command line arguments.

13.6.2 Unicode character and string functions

13.6.2.1 Unicode case insensitive character comparision

New functions lw:unicode-char-equal, lw:unicode-char-not-equal,
lw:unicode-char-lessp, lw:unicode-char-not-lessp, lw:unicode-char-
greaterp and lw:unicode-char-not-greaterp compare characters similarly
to cl:char-equal etc, but using Unicode's simple case folding rules.

13.6.2.2 Unicode case insensitive string comparision

New functions lw:unicode-string-equal, lw:unicode-string-not-equal,
lw:unicode-string-lessp, lw:unicode-string-not-lessp, lw:unicode-
string-greaterp and lw:unicode-string-not-greaterp compare strings
similarly to cl:string-equal etc, but using Unicode's simple case folding
rules.
 129

13 Release Notes

130
13.6.2.3 Unicode character predicates

New predicates lw:unicode-alphanumericp, lw:unicode-alpha-char-p,
lw:unicode-lower-case-p, lw:unicode-upper-case-p and lw:unicode-
both-case-p test for properties of a character in Unicode's "general category".

13.6.3 System message log

There is now a system message log recording messages that indicate that
something is not as expected, but is not an error. For example, putting a bad
Break-Gesture in a GTK resource file.

The function hcl:set-system-message-log allows you to manipulate the sys-
tem message log.

13.6.4 Logging errors

A new API allows your programs to generate a bug form and write it to a log
file, optionally printing a message saying that this has been done. See
dbg:log-bug-form for the details.

Also, dbg:output-backtrace is now documented, for use when you want to
include Lisp backtraces in log files which you control directly.

Note: Adequate logging of errors is frequently omitted from customer appli-
cations, but it is important for the maintenance of any complex application. If
your LispWorks application does not log errors via its error handlers, use one
of the above APIs to add error logging now!

13.6.5 Debugger command to obtain the current function object

The new debugger command :func returns (and sets the value of * to) the
function object of the current call frame. This is especially useful for call
frames of closures and method functions.

13.6.6 Debugger wrapper

The new macro dbg:with-debugger-wrapper executes code with a specified
function bound as a "debugger wrapper" which takes effect if the code gets an
error and tries to invoke the debugger.

13.6 More new features
Your wrapper function can do whatever is needed, such as locking entry to
the debugger in order to prevent multiple processes entering the debugger at
once.

13.6.7 Profiling multiple threads

hcl:do-profiling is a new convenience function for profiling multiple
threads.

13.6.8 Profiler shows each thread separately

When displaying profiler output, the profiler now shows a separate call tree
for each thread. The cumulative profile summary is the total for all threads.

13.6.9 Profiler does not count calls by default

On Intel-based platforms, the profiler no longer collects call count information
by default.

This has been changed because the counting significantly affects the perfor-
mance of the application, which skews the results, especially for multi-
threaded applications.

13.6.10 Profiling inside foreign calls, or not

You can now specify that programmatic profiling ignores processes that are
inside foreign calls. See hcl:start-profiling.

13.6.11 Long and short forms of paths

Microsoft Windows supports Long and Short forms of paths. You can convert
a pathname using one of the new functions win32:long-namestring or
win32:short-namestring.

13.6.12 Finding a directory for writing temporary files

The function hcl:get-temp-directory returns a writable directory that can
be used for temporary files.
 131

13 Release Notes

132
13.6.13 Splitting saved images to allow code signing

The function save-image now accepts a keyword argument :split, which
allows the Lisp heap to be split into a separate file. The main use of split is to
allow third-party code signing to be applied to the executable, which is often
not possible for an image with the Lisp heap included in a single file.

13.6.14 Saving a Mac OS X application bundle

You can create a Mac OS X application bundle whilst saving a LispWorks
image by using the new function hcl:save-image-with-bundle.

To simply create an application bundle, use hcl:create-macos-application-
bundle.

13.6.15 Split sequence utilities

lw:split-sequence and related functions split a sequence into subsequences.

13.6.16 Predicate for weak arrays

The new function hcl:array-weak-p tests whether an object is a weak array.

13.6.17 Free action for weak hash tables

There is now an option to add a "free action" to weak hash tables, called after
an entry is automatically removed by the Garbage Collector. See cl:make-
hash-table in the LispWorks User Guide and Reference Manual.

13.7 IDE changes
This section describes new features and other changes in the LispWorks Inte-
grated Development Environment (IDE).

See the LispWorks IDE User Guide for details of the features mentioned.

13.7 IDE changes
13.7.1 ASDF integration

You can now work with ASDF systems in the System Browser tool and Search
Files tool in the same way as you can use LispWorks own lw:defsystem sys-
tems. Various LispWorks editor commands also work on ASDF systems.

To use ASDF in the LispWorks IDE:

1. Load ASDF and some ASDF system definitions in the usual ASDF way.

2. Load the file (example-file "misc/asdf-integration.lisp").

In the tools, an ASDF system named cffi is denoted ASDF:cffi, while an
lw:defsystem system named foo is denoted LW:foo, so you can distinguish
the two types of system definition if necessary.

Note: The interface is intended to be able to accomodate other system defini-
tion utilities as well. The comments in asdf-integration.lisp explain how it
works in detail.

13.7.2 Break gesture available in the Cocoa IDE

On Cocoa the gesture Command+Ctrl+, (comma) is the break gesture.

This is useful if the "spinning beach ball" cursor appears for some time and
LispWorks appears to be hanging.

13.7.3 Enhanced Break gesture handling

When the break gesture is used, LispWorks attempts to break the current
operation in a useful way, allowing you to regain control even if the GUI is
busy. It attempts to find a busy process to break. If there is no obvious candi-
date and the LispWorks IDE is running, then it displays the Process Browser
tool.

13.7.4 Mac OS X toolbars

On Cocoa, the LispWorks tools now have standard Mac OS X toolbars.

You can hide or show these toolbars using the button at the top right corner of
the title bar, and modify them using the standard commands on the context
menu.
 133

13 Release Notes

134
13.7.5 Customizable toolbars

On all platforms you can now select which toolbar buttons are displayed for
each tool in the LispWorks IDE. To do this, select Customize on the context
menu of the toolbar.

13.7.6 Preferences consolidated

The IDE preference options are now all shown in a single Preferences window
which is easier to use than the separate global and per-tool preference dialogs
seen in LispWorks 5.1.

Raise the Preferences window by Tools > Preferences.... On Cocoa, press
Command+, (comma) or select LispWorks > Preferences....

The Preference options you choose affect all tools including those currently on
screen, as well as those created later and after restarting LispWorks.

13.7.7 Editor font preference changed

You now select the Editor font preference option by Preferences... > Environ-
ment > Styles > Editor Font.

The Editor Font preference takes effect only if you select Override the system
default font. Then an area displaying sample text in the current preference font
become active, and you can choose a new font by double-clicking on the sam-
ple text.

The Editor Font preference setting now affects all Editor tools and other tools
based on capi:editor-pane such as the Listener tool.

There are no longer options for applying the setting only to current Editor
windows or the current window only, as in LispWorks 5.1.

13.7.8 Parenthesis coloring

The Editor now displays Lisp code with matching pairs of parentheses col-
ored acording to their depth within the current top level form.

You can switch parenthesis coloring on and off by Preferences... > Environment
> Styles > Color parenthesis, and you can configure the colors used with
capi:set-editor-parenthesis-colors.

13.7 IDE changes
13.7.9 Snapshot debugging on initialization

The new variable *debug-initialization-errors-in-snap-shot* controls
whether, in an image which is configured to start the LispWorks IDE automat-
ically, an error during initialization is handled and displayed in a snapshot
debugger after the IDE starts.

13.7.10 The default directory for opening files

Operations such as File > Open now, by default, use the directory of the file
most recently edited in the IDE as the default directory in the file dialog.

This behavior is controlled by the new preference option Preferences... > Envi-
ronment > General > Use recent directory for opening files.

If this option is deselected, the current working directory will be used, which
is the behavior seen in LispWorks 5.1 and previous versions.

Note that this does not apply to the Editor tool itself, for which the file dialog
always uses the directory of the currently visible file as the default directory.

13.7.11 Prompt on exit for modified buffers not associated with a file

By default the IDE now prompts for confirmation on exit when there is a mod-
ified buffer which is not associated with a file, such as one created by File >
New or the editor command New Buffer.

This behavior is controlled by the option Preferences... > Environment > General
> Confirm Before Exiting > When modified buffers.

In LispWorks 5.1 this option would cause a prompt only for buffers associated
with files.

13.7.12 Scroller size in Editor and other tools

By default, the size of the scroller in an Editor tool’s scroll bar now depends on
the number of lines which are visible. This change also applies to other tools
based on capi:editor-pane, such as the Output Browser and Shell.

In LispWorks 5.1 and earlier versions the scroller size depends on the number
of characters visible, which can cause it to change size greatly during scroll-
 135

13 Release Notes

136
ing. The method of calculating the scroller size can be reverted to that used in
LispWorks 5.1 by the new editor command Toggle Count Newlines.

13.7.13 Editor status bar shows line numbers

The Editor tool’s status bar now shows the range of line numbers currently
displayed, along with the total number of lines in the displayed editor buffer.
This is configurable, as described in “Position indicator shows line numbers”
on page 141.

13.7.14 New and changed Edit menu operations

The Edit menu operations Copy, Cut, Paste, Select All, Deselect All, Find, Find
Next and Replace now work on the active pane rather than the "primary
object" in the tool. The Edit > Object submenu allows you to cut, copy and
paste the primary object. For more information see "Performing editing func-
tions" in the LispWorks IDE User Guide.

13.7.15 Standard Edit gestures on Cocoa

On Cocoa, LispWorks now adds a minimal Edit menu to all CAPI interfaces
when running in the IDE, which makes Edit gestures Command+X, Command+C
and Command+V work in every interface displayed in the LispWorks IDE. To
remove the IDE's automatic menu, pass :auto-menus nil initargs when mak-
ing the interface.

Note: to implement these gestures in your CAPI/Cocoa runtime application,
you must include an Edit menu explicitly in your interface definition.

13.7.16 More control over Process Browser automatic updates

You can now specify a delay after each automatic update of the Process
Browser tool. This has been added because because immediate automatic
updates are often too frequent to be useful, and can be expensive.

To set the delay period, first ensure automatic updates are enabled via the
Update Frequency preference option, and then set the new Process Browser
preference option Automatic Update Delay.

13.7 IDE changes
13.7.17 Search Files with known definitions

The Search Files tool now allows searching amongst all files known to contain
definitions, as specified by the value of dspec:*active-finders*.

Select Known Definitions from the dropdown list in the toolbar to perform this
kind of search.

13.7.18 Search Files option for relative or full paths

You can now control how the name of each matching file is shown in the result
of the Search Files tool, via the option Preferences... > Search Files > Display >
Files shown.

13.7.19 Search Files highlights first match for file

After you double-click on a filename in the Search Files tool results area, the
cursor moves to the first match in that file when it is displayed in the Editor
tool.

13.7.20 Symbol Browser sortable

The main list displayed by the Symbol Browser tool is now sortable. Click on
the header of either the Home Package or Name column.

13.7.21 Completion in Tracer

The Tracer tool now does in-place completion on the symbol to trace. Press Up
or Down in the Trace: pane to complete the text already entered.

13.7.22 Inspecting the function in a stack frame

The Debug menu in the Debugger tool and the Listener tool now allows you to
display an Inspector tool showing the selected frame’s function, by Debug >
Frame > Inspect Function.
 137

13 Release Notes

138
13.7.23 Bad interaction with pretty printer eliminated

Display of forms in lists such as method dspecs in the Generic Function
Browser no longer interact with the pretty printer. The complete form is now
always displayed on one line.

In LispWorks 5.1 and previous releases, setting the global value of *print-
pretty* to t could cause the display to be truncated.

13.7.24 Removal of breakpoints

Edit Breakpoints > Remove now closes the dialog immediately when all break-
points have been removed. Thanks to Nick Levine for suggesting this
improvement.

13.7.25 Output Browser accelerator

There is now an accelerator key which raises the Output Browser tool.

See "Tool accelerator keys" in the LispWorks IDE User Guide for the full list of
tool accelerators.

13.7.26 Listen operations move Listener point

Listen operations which put a value in *, such as Slots > Listen in the Inspector
tool, now move the cursor to the Listener prompt automatically if it is not
already there. This is useful because that is usually where you need to type
next.

13.8 Editor changes
This section describes new features and other changes in the LispWorks edi-
tor, which is used in the Editor tool of the LispWorks IDE.

See the LispWorks Editor User Guide for details of these changes.

13.8 Editor changes
13.8.1 Change to Tab key in Lisp mode

The Tab key is now overridden in Lisp mode to invoke the new command
Indent Selection or Complete Symbol (described in “New commands” on
page 139).

13.8.2 New commands

The default key bindings mentioned in this section apply to Emacs emulation.

Indent Selection or Complete Symbol does Lisp indentation if there is a
visible region. Otherwise, it attempts to indent the current line. If the current
line is already indented correctly then it attempts to complete the symbol
before the current point, like Complete Symbol. In Lisp mode Indent Selec-
tion or Complete Symbol is bound to Tab.

Indent or Complete Symbol attempts to indent the current line. If the cur-
rent line is already indented correctly then it attempts to complete the symbol
before the current point, like Complete Symbol.

Function Arglist Displayer shows or hides information about the operator
in the current form. The command controls display of a special window (dis-
player) on top of the editor. The displayer shows the operator and its argu-
ments, and tries to highlight the current argument (that is, the argument at the
cursor position). If it does not recognize the operator of the current form, it
tries the surrounding form, and if that fails it tries a third level of surrounding
form. Function Arglist Displayer is bound to Ctrl+`. Additionally, while
the displayer is visible:

Ctrl+/ controls whether the documentation string of the oper-
ator is also shown

Ctrl++ moves the displayer up

Ctrl+- moves the displayer down

Invoke Tool activates or creates a tool in the LispWorks IDE, prompting for a
shortcut character corresponding to the desired tool. Invoke Tool is bound to
Ctrl+#. Tip: if you cannot remember the shortcut character, enter Ctrl+# ? to
raise the Tools menu, which displays the shortcuts.
 139

13 Release Notes

140
Make Directory prompts for a directory name and makes the directory in the
filesystem.

Insert Double Quotes For Selection inserts a pair of double quotes around
the selected text "like this". Insert Double Quotes For Selection is bound
to Meta+".

Insert Multi Line Comment For Selection inserts multi-line comment
markers around the selected text #|like this|#. Insert Multi Line Comment
For Selection is bound to Meta+#.

Insert Parentheses For Selection inserts a pair of parentheses around the
selected text (like this). Insert Parentheses For Selection is bound to
Meta+(.

Toggle Count Newlines controls the size of the scroller in editor-based tools,
and how the Editor tool’s status bar represents the extent of the displayed part
of the buffer. When counting newlines, the status bar shows the range of line
numbers currently displayed, along with the total line count. When counting
characters, the status bar shows the range currently displayed as precentages
of the total number of characters in the buffer.

Mark Word marks the word following the current point. A prefix argument, if
supplied, specifies the number of words marked. Mark Word is bound to
Meta+@.

Diff Ignoring Whitespace compares the current buffer with another file,
ignoring whitespace. A prefix argument, if supplied, compares any two files.

Next Breakpoint and Previous Breakpoint move the point to the next or
previous breakpoint in the current buffer. A prefix argument p, if supplied,
specifies that p-1 breakpoints are skipped.

Describe Method Call displays a Generic Function Browser tool, with a spe-
cific method combination shown. When invoked with a prefix argument
while the cursor is in a defmethod form, Describe Method Call uses the
generic function and specializers of the method to choose the method combi-
nation. Otherwise, it prompts for the generic function name and the list of spe-
cializers.

13.8 Editor changes
Build Application invokes the Application Builder tool and does a build. By
default, it uses the current buffer as the build script. If a prefix argument is
supplied it prompts for a file to use as the build script.

Find Unwritable Character finds the next occurrence of a character in the
current buffer that cannot be written using the buffer external format.

List Unwritable Characters lists the characters in the current buffer that
cannot be written with the buffer external format.

13.8.3 New echo area commands

Ctrl+C Ctrl+C invokes the new command Insert Selected Text which
inserts the editor window’s selected text in the echo area.

You can now add the editor window’s selected text to an incremental search
string with the key sequence Ctrl+S Ctrl+C.

13.8.4 Position indicator shows line numbers

By default the editor’s position indicator (displayed in the status bar of the
Editor tool) now shows the range of line numbers currently displayed, along
with the total number of lines in the buffer, like this:

<StartLine>-<EndLine>[totalLines]

The editor can be changed to count characters rather than lines by the com-
mand Toggle Count Newlines. It then displays percentages rather than line
numbers.

13.8.5 Popping marks rotates the mark ring like GNU Emacs

The Editor commands Set Mark with a prefix argument, Pop and Goto Mark
and Pop Mark and the function editor:current-mark with the pop-p argu-
ment now rotate the mark ring instead of discarding the current mark. This
makes them compatible with GNU Emacs and allows you to cycle around all
of the marks by repeated invocation. The word "pop" in the names is retained
for compatibility, even though the operation is now a rotation.
 141

13 Release Notes

142
13.8.6 File completion shows trailing slash for directories

Completion lists displayed by commands such as Find File now display the
trailing / (slash) on directory names, which makes it possible to distinguish
them from regular files.

13.8.7 Escaped symbols recognized correctly

Escaped symbols such as |BAZ-foobar| are now recognized correctly by com-
mands such as Find Source which operate on the symbol at the current point.

13.8.8 prompt-for-file :direction and :create-directories

editor:prompt-for-file now takes a :direction argument. You can specify
direction :input (when expecting to read the file) or direction :output (when
expecting to write the file).

editor:prompt-for-file also has a new :create-directories argument. If
create-directories is true, then the user is prompted to create any missing direc-
tories in the path she enters.

13.8.9 Definers for editor variables

The new macro editor:define-editor-variable defines (or sets the value
of) a global editor variable.

The new macro editor:define-editor-mode-variable defines (or sets the
value of) an editor variable in the specified editor mode.

The main advantages of these macros are that they:

• provide a way of defining editor variables which is more readable than
(setf editor:variable-value)

• are recognized by the source location system including commands such
as Find Source.

13.8.10 Buffer variable value

The new function editor:buffer-value accesses the value of an editor vari-
able in the specified buffer.

13.9 Foreign Language interface changes
13.8.11 New exports

The functions editor:get-symbol-from-point and editor:point>= are now
exported.

13.9 Foreign Language interface changes
See the LispWorks Foreign Language Interface User Guide and Reference Manual
for details of these changes.

13.9.1 Using arbitrary Lisp integers in the FLI

A new mechanism allows you to convert any Lisp integer into a foreign array
of bytes and to convert that array back to an equivalent Lisp integer. This
would allow the integer to be stored in and retrieved from a database, for
example.

See the section "Lisp Integers", the macro fli:with-integer-bytes and the
functions fli:convert-integer-to-dynamic-foreign-object and
fli:make-integer-from-bytes in the LispWorks Foreign Language Interface
User Guide and Reference Manual

13.9.2 Enum type values and symbols

New functions fli:enum-values, fli:enum-symbols and fli:enum-symbol-
values-pairs return the values and symbols for a FLI enumerator type speci-
fier which was defined by fli:define-c-enum.

13.9.3 :ignore in define-foreign-function lambda list

fli:define-foreign-function has a new option :ignore in the syntax for an
argument which is useful for :reference-return arguments. It specifies that
nil is always passed through to the foreign code and the argument is omitted
from the lambda list of the Lisp function.

13.9.4 define-foreign-variable with aggregate types

The implementation of fli:define-foreign-variable has changed to
require the :accessor argument if the type is an aggregate type. This is to
 143

13 Release Notes

144
avoid accidental copying of aggregates. To retain the existing copying seman-
tics, use :accessor :value.

13.9.5 Pointer and array type information

The functions fli:pointer-element-size and fli:pointer-element-type
have been extended to accept a FLI pointer type as argument, and return the
size (or type) of the elements of that type.

The functions fli:foreign-array-dimensions (and fli:foreign-array-
element-type) have been extended to accept the name of a FLI array type as
argument and in this case return the dimensions (or type of the elements) of
the array type.

13.9.6 New foreign types

This section describes the new FLI types in LispWorks 6.0.

13.9.6.1 FLI types for ISO C size_t and ptrdiff_t

New foreign types :size-t and :ptrdiff-t convert between a Lisp integer
and an ISO C size_t or ISO C ptrdiff_t.

13.9.6.2 ISO C99 types

New foreign types are defined for integers of particular sizes. These are equiv-
alent to the types defined by ISO C99. For example, Lisp :uint8 is C99
uint8_t. The new foreign types are:

:int8 8-bit signed integer

:uint8 8-bit unsigned integer

:int16 16-bit signed integer

:uint16 16-bit unsigned integer

:int32 32-bit signed integer

:uint32 32-bit unsigned integer

:int64 64-bit signed integer

13.9 Foreign Language interface changes
:uint64 64-bit unsigned integer

:intmax largest type of signed integer available

:uintmax largest type of unsigned integer available

:intptr signed integer the same size as a pointer

:uintptr unsigned integer the same size as a pointer

13.9.6.3 FLI type for ssize_t

The FLI :ssize-t type converts between a Lisp integer and a platform-spe-
cific ssize_t type, which is a signed integer representing the size of an object in
bytes.

13.9.6.4 FLI type for ISO C time_t

The FLI :time-t type converts between a Lisp integer and an ISO C time_t
type, which is an integer type used for storing system time values.

13.9.7 define-foreign-function result-type :void

The function defined by fli:define-foreign-function (or fli:define-for-
eign-funcallable) now returns no value when result-type is :void. In previ-
ous releases, the value nil was returned. In practice, this change only affects
cases where additional values are returned due to arguments with :reference
or :reference-return types.

13.9.8 define-foreign-converter documented

The macro fli:define-foreign-converter is now fully documented. It
defines a new FLI type specifier that converts to and/or from another type
specifier.

13.9.9 Deprecated macro

The macro fli:with-dynamic-foreign-objects-with-cleanups is depre-
cated.
 145

13 Release Notes

146
13.10 COM/Automation changes
This section applies only to Windows platforms. See the LispWorks COM/Auto-
mation User Guide and Reference Manual for details.

13.10.1 Building a COM server

You can now build a DLL with the standard symbols that a COM server
needs, by passing :com as the dll-exports in deliver or save-image.

13.10.2 com:get-object

The new function com:get-object returns an interface pointer for a named
object.

13.10.3 Automation server example

A new example shows how you can build a CAPI application controlled by
Automation, and an Automation server to control it.

See the files in examples/com/automation/capi-application/.

13.11 Objective-C changes

13.11.1 Creating a standalone Objective-C executable

A new example demonstrates how to deliver the AreaCalculator example as a
standalone executable. See examples/objc/area-calculator/deliver.lisp.

13.12 Common SQL changes

13.12.1 Refreshing select recomputes deferred join slots

Passing refresh t to an object-oriented sql:select clause now causes any join
slots defined using retrieval :deferred to be recomputed the next time time
they are accessed.

13.13 Application delivery changes
13.12.2 Oracle on 64-bit Mac OS X

64-bit LispWorks now supports Oracle 10.2.0.4 on Intel Mac OS X.

At the time of writing there no 64-bit PowerPC Oracle instant client library is
available, therefore 64-bit LispWorks cannot support Oracle on PowerPC
Macintoshes.

13.12.3 PostgreSQL TIMESTAMP and sql:universal-time

PostgreSQL TIMESTAMP columns are now converted to Lisp universal val-
ues when sql:universal-time is specified as the type in sql:def-view-
class.

13.13 Application delivery changes
See the LispWorks Delivery User Guide for more details of the changes
mentioned in this section.

13.13.1 Splitting delivered images to allow code signing

The function deliver now accepts a keyword argument :split, which allows
the Lisp heap to be split into a separate file. The main use of split is to allow
third-party code signing to be applied to the executable, which is often not
possible for an image with the Lisp heap included in a single file.

13.13.2 Application control over multiprocessing startup

Delivery now allows the application to control startup of multiprocessing. In
previous LispWorks releases, only automatic startup of multiprocessing was
supported.

See the new value :manual for the :multiprocessing keyword argument to
deliver.

13.13.3 GTK+ is the default GUI on some platforms

On Linux and FreeBSD (and the X11 GUI option on Mac OS X), the distributed
image now uses GTK+ rather than Motif. This also applies to your delivered
 147

13 Release Notes

148
application unless you modify your build script, as described in “Building
Motif applications” on page 148.

13.13.4 Building Motif applications

To build a Motif application on Linux, x86/x64 Solaris and FreeBSD (and
when using the X11 GUI option on Mac OS X), add

(require "capi-motif")

to the build script.

For all platforms, you should ensure that Motif is installed on the target
machine. Additionally, if your application uses image formats other than
BMP, you should ensure that Imlib is installed on the target machine.

13.13.5 Control of make-instance initarg checking simplified

The :make-instance-keyword-check keyword in deliver is now processed
regardless of the setting of the :keep-clos keyword.

In addition, its default behavior is now to retain the current setting of make-
instance checks when :keep-debug-mode is used, rather than forcing the
checks to be switched on.

13.14 CLOS/MOP changes
cl:update-instance-for-redefined-class and cl:update-instance-for-
different-class lock the redefined instance against access whilst updating,
so your methods should take care to avoid deadlocks. See the reference entries
in the LispWorks User Guide and Reference Manual.

The function clos:compute-default-initargs is now exported for compati-
bility with AMOP.

13.15 CLIM changes
13.15 CLIM changes

13.15.1 Default I/O streams corrected.

The following CLIM macros have been changed to match the documentation
if the stream variable is not specified:

accept-values-command-button, accepting-values, with-input-editing,
with-input-editor-typeout and completing-from-suggestions now
default to *query-io*. In LispWorks 5.1 and previous versions, the default
was *standard-input*.

dragging-output and tracking-pointer output now defaults to *standard-
output*. In LispWorks 5.1 and previous versions, the default was *standard-
input*.

13.16 Other changes

13.16.1 Switching off Windows themes before windows are made

The call (win32:set-application-themed nil) in LispWorks for Windows
now works when the call is made before any windows have been opened.

LispWorks 5.x programs which make an early call capi:convert-to-screen
or clim:find-port to initialize windowing solely for the purpose of enabling
win32:set-application-themed no longer need to do so in LispWorks 6.0.

13.16.2 Non-string argument in find-symbol and intern

Calling cl:find-symbol or cl:intern with a first argument which is not a
string now signals error, as required by ANSI Common Lisp. LispWorks 5.1
and previous versions erroneously allowed a symbol argument.

13.16.3 Compiler messages are written to *error-output*

Warning messages from cl:compile and cl:compile-file now go to the
stream that is the value of cl:*error-output*. This is consistent with the
passed X3J13 cleanup issue COMPILER-WARNING-STREAM and also
 149

13 Release Notes

150
matches some other Common Lisp implementations. In previous LispWorks
releases, such messages were written to cl:*standard-output*.

13.16.4 Re-reading from terminal stream on Cocoa fixed

On Cocoa, reading from cl:*terminal-io*, closing Terminal.app and then
reading again opens a new Terminal.app window. In LispWorks 5.1 and previ-
ous versions, an end of file error is signalled.

13.16.5 Explaining failed funcall optimizations

A new compiler explanation, available via (declare (:explain ...)), tells
you when a funcall optimization fails because of lack of type information.

13.16.6 Change in make-random-state

(cl:make-random-state t) now uses /dev/urandom, if available, and only if
this is not available does it resort to /dev/random.

The reason for this change is that /dev/random pauses when it runs out of
entropy, so code with multiple calls can be slow.

13.16.7 Escaping of printed symbols depends on macro chars

When printing symbols any characters in the package name or symbol name
that have a reader macro in the current readtable are now escaped, as required
by the ANSI Common Lisp standard.

13.16.8 dotimes count type-checked

cl:dotimes now always checks the type of its count argument. In LispWorks
5.1 and earlier versions, there was a type check only in code compiled at debug
3.

13.16.9 Changes in cl:*features*

For a full description including information about the features used to
distinguish new LispWorks implementations and platforms, see the entry for
cl:*features* in the LispWorks User Guide and Reference Manual.

13.16 Other changes
13.16.10 Gesture Spec changes

See sys:make-gesture-spec for details of the changes listed in this section.

13.16.10.1 Gesture Spec keyword changes

The following changes apply to the keywords which can be passed as the data
in sys:make-gesture-spec:

• :prev is now :prev-item

• :next-item is new.

• On X11, "Sys_Req" now generates :sys-req (like it already does on
Cocoa in LispWorks 5.1).

Also, the full set of keywords which sys:make-gesture-spec accepts are now
documented.

13.16.10.2 Combining both-case-p characters with Shift

In order to ensure a consistent representation of both-case-p characters, Ges-
ture Specs representing these were designed such that they may not have a
single modifier Shift. This restriction can now be overridden.

13.16.11 64-bit OpenSSL on Mac OS X

A 64-bit OpenSSL library is now installed by default in all versions of Mac OS
X that LispWorks supports, therefore you should use this rather than any
other version of 64-bit OpenSSL.

If you think you might be using a non-standard OpenSSL library, check for
calls to comm:set-ssl-library-path.

13.16.12 Lambda lists corrected

The lambda lists of appendf and other users of define-modify-macro have
now been corrected.

Lambda lists previously recorded as &rest args for special forms like
cl:when and cl:unless have also been corrected.
 151

13 Release Notes

152
Lambda lists are reported by commands like Function Lambda List and can
be seen interactively by using examples/editor/show-arglist.lisp.

13.16.13 Loading old data files

Binary files created with hcl:dump-forms-to-file or hcl:with-output-to-
fasl-file in LispWorks 5.1, LispWorks 5.0, LispWorks 4.4 or LispWorks 4.3
can be loaded into LispWorks 6.0 using sys:load-data-file.

13.16.14 Deprecated APIs

hcl:set-promotion-count is deprecated, because experience has shown that
it is not useful.

13.16.15 Harlequin

Long term users may be interested to know that there is a Harlequin in
LispWorks 6.0, which was not present in previous versions. Can you spot it?

13.17 Documentation changes
The HTML documention now contains breadcrumbs at the top of each content
page. These aid navigation.

The LispWorks User Guide and LispWorks Reference Manual are now consoli-
dated into the combined LispWorks User Guide and Reference Manual, with
cross-references.

The LispWorks Editor User Guide now includes documentation for some editor
variables that you may want to change.

The printable manuals are PDF Version 1.5. You may need to upgrade to a
compatible PDF reader.

13.18 Known Problems
13.18 Known Problems

13.18.1 Runtime library requirement on Windows

LispWorks for Windows requires the Microsoft Visual Studio runtime library
msvcr80.dll. The LispWorks installer installs this DLL if it is not present.

Applications you build with LispWorks for Windows also require this DLL, so
you must ensure it is available on target machines.

13.18.2 Problems with CAPI on GTK+

The capi:interface-override-cursor is ignored by capi:text-input-pane
which always displays its usual I-beam cursor. This is due to a limitation in
the way that text-input-pane is implemented by GTK.

The normal navigation gesture (Tab) is treated as an editor command in
capi:editor-pane and IDE tools based on this. Instead, use Ctrl+Tab to navi-
gate from an editor pane in GTK+.

In GTK+ versions older than 2.12, the value of capi:option-pane enabled-posi-
tions has no effect on the visible representation of the items. In later versions of
GTK+, the disabled items are grayed out.

13.18.3 Problems with LispWorks for Macintosh

The Motif GUI doesn't work "out of the box" with Fink because LispWorks
does not look for libXm etc in /sw/lib/.

Functions run by mp:process-run-function have their standard streams
connected to cl:*terminal-io* (which is not normally visible). Possibly
when the IDE is running, output should be connected to the Background Out-
put buffer.

13.18.4 Problems with the LispWorks IDE on Cocoa

Multithreading in the CAPI is different from other platforms. In particular, all
windows run in a single thread, whereas on other platforms there is a thread
per window.
 153

13 Release Notes

154
The debugger currently doesn't work for errors in Cocoa Event Loop or Editor
Command Loop threads. However, there is a Get Backtrace button so you can
obtain a backtrace and also a Debug Snapshot button which aborts from the
error but displays a debugger with a copy (snapshot) of the stack where the
error occurred.

The online documentation interface currently starts a new browser window
each time.

Setting *enter-debugger-directly* to t can allow the undebuggable
processes to enter the debugger, resulting in the UI freezing.

Inspecting a long list (for example, 1000 items) via the Listener's Inspect Star
editor command prompts you about truncation in a random window. If you
cancel, the inspect is still displayed.

The editor's Help about help (Control+h Control+h) dialog is messy because
it assumed that a fixed width font is being used.

The Definitions > Compile and Definitions > Evaluate menu options cause
multiple "Press space to continue" messages to be displayed and happen
interleaved rather than sequentially.

The Buffers > Compile and Buffers > Evaluate menu options cause multiple
"Press space to continue" messages to be displayed and happen interleaved
rather than sequentially.

13.18.5 Problems with CAPI and Graphics Ports on Cocoa

The capi:interface-override-cursor is ignored.

Some graphics state parameters are ignored, in particular operation, stipple,
pattern, fill-style and mask (other than a rectangle).

LispWorks ignores the System Preferences setting for the smallest font size to
smooth.

There is no support for state images or checkboxes in capi:tree-view.

capi:with-page does not work, because Cocoa tries to control page printing.

The :help-callback initarg is only implemented for the :tooltip value of
the type argument.

13.18 Known Problems
The :visible-border initarg only works for scrolling panes.

Caret movement and selection setting in capi:text-input-pane is
implemented, but note that it works only for the focussed pane.

capi:docking-layout doesn't support (un)docking.

There is no meta key in the input-model of capi:output-pane. Note that, in
the editor when using Emacs emulation, the Escape key can be used as a
prefix.

There has been no testing with 256 color displays.

There is no visual feedback for dead-key processing, for example Option+n is
the tidle dead-key.

The graph pane's plan mode rectangle doesn't redraw when moved or resized.

Some pinboard code uses :operation boole-xor which is not implemented.

There is no way to make the close icon on a window show the "modified" state
(NSWindow:setDocumentEdited).

capi:editor-pane will only work with fonts whose widths are (almost) inte-
gral. Unfortunately Mac OS X fonts do not generally guarantee that, so for
example Monaco 10, 15, 20 pt can be used etc but not Monaco 12 pt. The near-
est good size is used instead, so as another example you might select Menlo
11-pt, but editor text would be displayed in Menlo 12-pt.

The default menu bar is visible when the current window has no menu bar.

capi:tree-view is slow for a large number (thousands) of items.

The editor displays decomposed characters as separate glyphs.

The :gap option is not supported for the columns of capi:multi-column-
list-panel.

capi:display-dialog ignores the specified :x and :y coords of the dialog (for
drop-down sheets the coords are not relevant and for dialogs which are sepa-
rate windows Cocoa forces the window to be in the top-center of the screen).
 155

13 Release Notes

156
13.19 Binary Incompatibilty
If you have binaries (fasl files) which were compiled using LispWorks 5.1 or
previous versions, please note that these are not compatible with this release.
Please recompile all your code with LispWorks 6.0

Index
A
accessor functions
button-armed-image 128
button-disabled-image 128
button-image 128
button-selected-armed-image 128
button-selected-image 128
choice-selection 121, 122
collection-items 121
interface-override-cursor 153, 154
scroll-if-not-visible-p 122

active-pane-copy function 123
array-weak-p function 132
ASDF 133
Automation server 146

B
beach ball

on Cocoa 120, 133
buffer-value function 142
bug forms

logging 130
Build Application

editor command 141
button-armed-image accessor function

128
button-disabled-image accessor function

128
button-image accessor function 128
button-selected-armed-image accessor

function 128
button-selected-image accessor function

128

C
callbacks class 125
choice-selection accessor function 121,

122
classes
docking-layout 155
editor-pane 155
multi-column-list-panel 155
output-pane 155
text-input-pane 153, 155
tree-view 154, 155

code signing
in delivered image 147
in saved image 132

collection-items accessor function 121
column-layout class 121
command line arguments
-eval 129
-load 129

Command+C 136
Command+V 136
Command+X 136
compile function 149
compile-file function 149
compiler messages 149
compute-default-initargs function 148
convert-integer-to-dynamic-foreign-

object function 143
convert-to-screen function 149
create-macos-application-bundle

function 132

157

Index

158
current-mark function 141
current-popup function 125
current-process-pause function 118
Customizable toolbars 134

D
debugger commands
:func 130

*debug-initialization-errors-in-
snap-shot* variable 135

define-c-enum macro 143
define-editor-mode-variable macro

142
define-editor-variable macro 142
define-foreign-converter macro 145
define-foreign-funcallable macro 145
define-foreign-function macro 143,

145
define-foreign-variable macro 143
defsystem macro 133
def-view-class macro 147
deliver function 146, 147
Describe Method Call

editor command 140
Diff Ignoring Whitespace

editor command 140
display-dialog function 125, 155
docking-layout class 155
do-profiling function 131
dotimes macro 150
:drag-callback initarg 124
drag-pane-object function 124
:draw-pinboard-objects initarg 123
:draw-with-buffer initarg 123
:drop-callback initarg 124
drop-object-pane-x function 124
drop-object-pane-y function 124
dump-forms-to-file function 152

E
Edit menu

standard gestures 136
standard keystrokes 136

editor commands
Build Application 141
Describe Method Call 140
Diff Ignoring Whitespace 140
Find File 142
Find Source 142
Find Unwritable Character 141
Function Arglist Displayer 139
Indent or Complete Symbol 139
Indent Selection or Complete Sym-

bol 139
Insert Double Quotes For Selection

140
Insert Multi Line Comment For

Selection 140
Insert Parentheses For Selection

140
Insert Selected Text 141
Invoke Tool 139
List Unwritable Characters 141
Make Directory 140
Mark Word 140
Next Breakpoint and Previous

Breakpoint 140
Pop and Goto Mark 141
Pop Mark 141
Set Mark 141
Toggle Count Newlines 140

editor font size
on Macintosh 155

editor fonts
on Macintosh 155

editor-pane class 120, 125, 127, 153, 155
element class 125
:enabled-function-for-dialog initarg

126
enter-debugger-directly variable 154
enum-symbols function 143
enum-symbol-values-pairs function 143
enum-values function 143
error-output variable 149
errors

logging 130
evaluate on startup 129
extended-time macro 109

F
Failed to enlarge memory 98
features variable 150
Find File

editor command 142
Find Source

editor command 142
Find Unwritable Character

editor command 141
find-port function 149
find-symbol function 149
foreign types
:int16 144
:int32 144

Index
:int64 144
:int8 144
:intmax 145
:intptr 145
:ptrdiff-t 144
:size-t 144
:ssize-t 145
:time-t 145
:uint16 144
:uint32 144
:uint64 145
:uint8 144
:uintmax 145
:uintptr 145

foreign-array-dimensions function 144
foreign-array-element-type function

144
free-image function 128
:func debugger command 130
Function Arglist Displayer

editor command 139
functions
active-pane-copy 123
array-weak-p 132
buffer-value 142
compile 149
compile-file 149
compute-default-initargs 148
convert-integer-to-dynamic-for-

eign-object 143
convert-to-screen 149
create-macos-application-bundle

132
current-mark 141
current-popup 125
current-process-pause 118
deliver 146, 147
display-dialog 125, 155
do-profiling 131
drag-pane-object 124
drop-object-pane-x 124
drop-object-pane-y 124
dump-forms-to-file 152
enum-symbols 143
enum-symbol-values-pairs 143
enum-values 143
find-port 149
find-symbol 149
foreign-array-dimensions 144
foreign-array-element-type 144
free-image 128
get-object 146

get-scroll-position 122
get-symbol-from-point 143
get-temp-directory 131
interface-customize-toolbar 120
interface-default-toolbar-states

120
interface-toolbar-state 120
interface-update-toolbar 120
intern 149
load-data-file 152
load-image 128
lock-locked-p 117
lock-owned-by-current-process-p

117
lock-owner 117
lock-recursively-locked-p 117
lock-recursive-p 117
log-bug-form 112, 130
long-namestring 131
mailbox-read 119
make-gesture-spec 151
make-integer-from-bytes 143
make-lock 117
make-random-state 150
output-backtrace 130
pane-descendant-child-with-focus

122
pane-supports-menus-with-images

126
point>= 143
pointer-element-size 144
pointer-element-type 144
popup-confirmer 125
process-all-events 118
process-event-queue 119
process-interrupt 116
process-join 118
process-mailbox 119
process-plist 119
process-run-function 118, 153
process-send 118
process-wait 117
process-wait-with-timeout 117
prompt-for-file 126, 142
prompt-with-list-non-focus 122
range-set-sizes 126
room 109
save-image 14, 132, 146
save-image-with-bundle 132
scroll 122
select 146
set-application-themed 149
 159

Index

160
set-editor-parenthesis-colors 120,
134

set-interactive-break-gestures 120
set-promotion-count 152
set-rich-text-pane-character-for-

mat 129
set-ssl-library-path 151
set-system-message-log 130
short-namestring 131
split-sequence 132
start-environment 13, 95
start-profiling 131
stop-sound 124
text-input-pane-in-place-complete

122
unicode-alpha-char-p 130
unicode-alphanumericp 130
unicode-both-case-p 130
unicode-char-equal 129
unicode-char-greaterp 129
unicode-char-lessp 129
unicode-char-not-equal 129
unicode-char-not-greaterp 129
unicode-char-not-lessp 129
unicode-lower-case-p 130
unicode-string-equal 129
unicode-string-greaterp 129
unicode-string-lessp 129
unicode-string-not-equal 129
unicode-string-not-greaterp 129
unicode-string-not-lessp 129
unicode-upper-case-p 130

G
Garbage Collector message 98
Garbage Collector output 98
GC message 98
GC output 98
general-handle-event generic function

118
generic functions
general-handle-event 118
interface-preserve-state 126
pane-interface-copy-object 123
update-instance-for-different-

class 148
update-instance-for-redefined-

class 148
geometry slots
%scroll-x% 124
%scroll-y% 124

get-object function 146
get-scroll-position function 122
get-symbol-from-point function 143
get-temp-directory function 131
GTK 119
GTK+ 119

H
Harlequin 152
:help-callback initarg 154

I
IDE 132
image class 128
Indent or Complete Symbol

editor command 139
Indent Selection or Complete Symbol

editor command 139
Insert Double Quotes For Selection

editor command 140
Insert Multi Line Comment For Selec-

tion
editor command 140

Insert Parentheses For Selection
editor command 140

Insert Selected Text
editor command 141

:int16 foreign type 144
:int32 foreign type 144
:int64 foreign type 144
:int8 foreign type 144
Integrated Development Environment 132
interface class 120
interface-customize-toolbar function

120
interface-default-toolbar-states

function 120
interface-override-cursor accessor

function 153, 154
interface-preserve-state generic func-

tion 126
interface-toolbar-state function 120
interface-update-toolbar function 120
intern function 149
:intmax foreign type 145
:intptr foreign type 145
Invoke Tool

editor command 139

L
List Unwritable Characters

editor command 141

Index
list-panel class 121, 122, 124
load on startup 129
load-data-file function 152
load-image function 128
lock-locked-p function 117
lock-owned-by-current-process-p

function 117
lock-owner function 117
lock-recursively-locked-p function 117
lock-recursive-p function 117
log-bug-form function 112, 130
long-namestring function 131

M
macros
define-c-enum 143
define-editor-mode-variable 142
define-editor-variable 142
define-foreign-converter 145
define-foreign-funcallable 145
define-foreign-function 143, 145
define-foreign-variable 143
defsystem 133
def-view-class 147
dotimes 150
extended-time 109
profile 109
with-debugger-wrapper 130
with-dynamic-foreign-objects-

with-cleanups 145
with-integer-bytes 143
without-interrupts 116
without-preemption 116
with-output-to-fasl-file 152
with-page 154

mailbox-read function 119
Make Directory

editor command 140
make-gesture-spec function 151
make-integer-from-bytes function 143
make-lock function 117
make-random-state function 150
Mark Word

editor command 140
menu class 127
menu-item class 126
Motif 119
multi-column-list-panel class 155

N
Next Breakpoint and Previous Break-

point
editor command 140

O
opengl-pane class 127
option-pane class 153
output-backtrace function 130
output-pane class 123, 124, 155

P
pane-descendant-child-with-focus

function 122
pane-interface-copy-object generic

function 123
pane-supports-menus-with-images

function 126
pinboard

buffered output 123
redisplay 123

pinboard-layout class 121, 123
point>= function 143
pointer-element-size function 144
pointer-element-type function 144
poor performance 109
Pop and Goto Mark

editor command 141
Pop Mark

editor command 141
popup-confirmer function 125
printed symbols

escaping 150
process-all-events function 118
process-event-queue function 119
process-interrupt function 116
process-join function 118
process-mailbox function 119
process-plist function 119
process-run-function function 118, 153
process-send function 118
process-wait function 117
process-wait-with-timeout function 117
profile macro 109
prompt-for-file function 126, 142
prompt-with-list-non-focus function

122
:ptrdiff-t foreign type 144

R
range-pane class 126
range-set-sizes function 126
room function 109
 161

Index

162
row-layout class 121

S
save-image function 14, 132, 146
save-image-with-bundle function 132
scroll function 122
scroll-if-not-visible-p accessor func-

tion 122
%scroll-x% geometry slot 124
%scroll-y% geometry slot 124
select function 146
Set Mark

editor command 141
set-application-themed function 149
set-editor-parenthesis-colors func-

tion 120, 134
set-interactive-break-gestures func-

tion 120
set-promotion-count function 152
set-rich-text-pane-character-format

function 129
set-ssl-library-path function 151
set-system-message-log function 130
short-namestring function 131
simple-pane class 124
:size-t foreign type 144
spinning ball

on Cocoa 120, 133
split-sequence function 132
:ssize-t foreign type 145
standard-output variable 150
start-environment function 13, 95
start-profiling function 131
static-layout class 121
stop-sound function 124

T
terminal-io variable 150, 153
text-input-pane class 128, 153, 155
text-input-pane-in-place-complete

function 122
:time-t foreign type 145
Toggle Count Newlines

editor command 140
toolbar

customizing 134
toolbar buttons

selecting 134
tree-view class 124, 154, 155
types
universal-time 147
U
:uint16 foreign type 144
:uint32 foreign type 144
:uint64 foreign type 145
:uint8 foreign type 144
:uintmax foreign type 145
:uintptr foreign type 145
unicode-alpha-char-p function 130
unicode-alphanumericp function 130
unicode-both-case-p function 130
unicode-char-equal function 129
unicode-char-greaterp function 129
unicode-char-lessp function 129
unicode-char-not-equal function 129
unicode-char-not-greaterp function 129
unicode-char-not-lessp function 129
unicode-lower-case-p function 130
unicode-string-equal function 129
unicode-string-greaterp function 129
unicode-string-lessp function 129
unicode-string-not-equal function 129
unicode-string-not-greaterp function

129
unicode-string-not-lessp function 129
unicode-upper-case-p function 130
universal-time type 147
update-instance-for-different-class

generic function 148
update-instance-for-redefined-class

generic function 148

V
variables
*debug-initialization-errors-in-

snap-shot* 135
enter-debugger-directly 154
error-output 149
features 150
standard-output 150
terminal-io 150, 153

:visible-border initarg 155

W
window system 119
with-debugger-wrapper macro 130
with-dynamic-foreign-objects-with-

cleanups macro 145
with-integer-bytes macro 143
without-interrupts macro 116
without-preemption macro 116
with-output-to-fasl-file macro 152

Index
with-page macro 154

 163

Index

164

	LispWorks® Release Notes and Installation Guide
	Copyright and Trademarks
	Contents
	1 Introduction
	1.1 LispWorks Editions
	1.1.1 Personal Edition
	1.1.2 Professional Edition
	1.1.3 Enterprise Edition

	1.2 LispWorks for UNIX
	1.3 Further details
	1.4 About this Guide
	1.4.1 Installation and Configuration
	1.4.2 Troubleshooting
	1.4.3 Release Notes

	2 Installation on Mac OS X
	2.1 Choosing the Graphical User Interface
	2.2 Documentation
	2.3 Software and hardware requirements
	2.4 Installing LispWorks for Macintosh
	2.4.1 Main installation and patches
	2.4.2 Information for Beta testers
	2.4.3 Information for users of previous versions
	2.4.4 Use an adminstrator account
	2.4.5 Launch the LispWorks installer
	2.4.6 The Read Me
	2.4.7 The License Agreement
	2.4.8 Select Destination
	2.4.9 Choose your installation type
	2.4.9.1 The native Mac OS X GUI
	2.4.9.2 The X11 GTK+ and Motif GUIs
	2.4.9.3 The Documentation

	2.4.10 Installing and entering license data
	2.4.11 Add LispWorks to the Dock
	2.4.12 Finishing up
	2.4.13 Installing Patches
	2.4.14 Obtaining X11 GTK+
	2.4.15 Obtaining Open Motif and Imlib

	2.5 Starting LispWorks for Macintosh
	2.5.1 Start the native Mac OS X LispWorks GUI
	2.5.2 Start the GTK+ LispWorks GUI
	2.5.3 Start the Motif LispWorks GUI

	2.6 Upgrading to LispWorks Enterprise Edition

	3 Installation on Windows
	3.1 Documentation
	3.2 Installing LispWorks for Windows
	3.2.1 Main installation and patches
	3.2.2 Visual Studio runtime components and Windows Installer
	3.2.3 Installing over previous versions
	3.2.4 Information for Beta testers
	3.2.5 To install LispWorks
	3.2.5.1 Entering the License Data
	3.2.5.2 Installation location
	3.2.5.3 Installing the Documentation
	3.2.5.4 Installing Patches
	3.2.5.5 Starting LispWorks

	3.3 Upgrading to LispWorks Enterprise Edition

	4 Installation on Linux
	4.1 Software and hardware requirements
	4.1.1 GUI libraries
	4.1.1.1 GTK+
	4.1.1.2 Motif

	4.1.2 Disk requirements

	4.2 License agreement
	4.3 Software on the CD-ROM
	4.3.1 Professional and Enterprise Edition distributions

	4.4 Installing LispWorks for Linux
	4.4.1 Main installation and patches
	4.4.2 Information for Beta testers
	4.4.3 Installation from the binary RPM file
	4.4.3.1 Installation directories
	4.4.3.2 Selecting the correct RPM files
	4.4.3.3 Installing or upgrading LispWorks for Linux
	4.4.3.4 Installing CLIM 2.0
	4.4.3.5 Installing loadable Enterprise Edition modules
	4.4.3.6 Documentation and saving space
	4.4.3.7 Installing Patches

	4.4.4 Installation from the tar files
	4.4.4.1 Installing Patches

	4.5 LispWorks looks for a license key
	4.6 Running LispWorks
	4.6.1 Entering the license data

	4.7 Configuring the image
	4.8 Printable LispWorks documentation
	4.9 Uninstalling LispWorks for Linux
	4.10 Upgrading to LispWorks Enterprise Edition

	5 Installation on x86/x64 Solaris
	5.1 Software and hardware requirements
	5.1.1 GUI libraries
	5.1.1.1 GTK+
	5.1.1.2 Motif

	5.1.2 Disk requirements

	5.2 Software on the CD-ROM
	5.2.1 Professional and Enterprise Edition distributions
	5.2.2 Personal Edition distribution

	5.3 Installing LispWorks for x86/x64 Solaris
	5.3.1 Main installation and patches
	5.3.2 Information for Beta testers
	5.3.3 Installation directories
	5.3.4 Selecting the correct software package file
	5.3.5 Installing the package file
	5.3.6 Installing Patches

	5.4 LispWorks looks for a license key
	5.5 Running LispWorks
	5.5.1 Entering the license data

	5.6 Configuring the image
	5.7 Printable LispWorks documentation
	5.8 Uninstalling LispWorks for x86/x64 Solaris
	5.9 Upgrading to LispWorks Enterprise Edition

	6 Installation on FreeBSD
	6.1 Software and hardware requirements
	6.1.1 GUI libraries
	6.1.1.1 GTK+
	6.1.1.2 Motif

	6.1.2 Disk requirements

	6.2 License agreement
	6.3 Software on the CD-ROM
	6.3.1 Professional and Enterprise Edition distributions

	6.4 Installing LispWorks for FreeBSD
	6.4.1 Main installation and patches
	6.4.2 Information for Beta testers
	6.4.3 Installation directories
	6.4.4 Selecting the correct software package file
	6.4.5 Installing LispWorks for FreeBSD
	6.4.6 Installation by non-root users
	6.4.7 Installing Patches

	6.5 LispWorks looks for a license key
	6.6 Running LispWorks
	6.6.1 Entering the license data

	6.7 Configuring the image
	6.8 Printable LispWorks documentation
	6.9 Uninstalling LispWorks for FreeBSD
	6.10 Upgrading to LispWorks Enterprise Edition

	7 Installation on UNIX
	7.1 Introduction
	7.2 Extracting software from the CD-ROM
	7.2.1 Finding out which CD-ROM files you need
	7.2.2 Unpacking the CD-ROM files

	7.3 Moving the LispWorks image and library
	7.4 Obtaining and Installing your license keys
	7.4.1 Keyfiles and the license server for HP PA and Sun Sparc (32-bit)
	7.4.1.1 If you are using the keyfile system
	7.4.1.2 If you are using the License Server

	7.5 Configuring the LispWorks image
	7.5.1 Saving a configured image
	7.5.2 Testing the newly saved image

	7.6 Using the Documentation
	7.7 Using Layered Products on HP PA or Sun Sparc (32-bit)

	8 Configuration on Mac OS X
	8.1 Introduction
	8.2 License keys
	8.3 Configuring your LispWorks installation
	8.3.1 Levels of configuration
	8.3.2 Configuring images for the different GUIs
	8.3.3 Configuration files available

	8.4 Saving and testing the configured image
	8.4.1 Create a configuration file
	8.4.2 Create and use a save-image script
	8.4.3 What to do if no image is saved
	8.4.4 Testing the newly saved image
	8.4.5 Saving a non-windowing image

	8.5 Initializing LispWorks
	8.6 Loading CLIM 2.0
	8.7 The Common SQL interface
	8.7.1 Loading Common SQL
	8.7.2 Supported databases
	8.7.3 Special considerations when using Common SQL
	8.7.3.1 Location of .odbc.ini
	8.7.3.2 Errors using PSQLODBC
	8.7.3.3 PSQLODBC version
	8.7.3.4 Locating the Oracle, MySQL or PostgreSQL client libraries

	8.8 Common Prolog and KnowledgeWorks

	9 Configuration on Windows
	9.1 Introduction
	9.2 License keys
	9.3 Configuring your LispWorks installation
	9.3.1 Levels of configuration
	9.3.2 Configuration files available

	9.4 Saving and testing the configured image
	9.4.1 Create a configuration file
	9.4.2 Create and use a save-image script
	9.4.3 What to do if no image is saved
	9.4.4 Testing the newly saved image
	9.4.5 Saving a non-windowing image

	9.5 Initializing LispWorks
	9.6 Loading CLIM 2.0
	9.6.1 Running the CLIM demos

	9.7 The Common SQL interface
	9.7.1 Loading the Common SQL interface

	9.8 Common Prolog and KnowledgeWorks

	10 Configuration on Linux, x86/x64 Solaris, and FreeBSD
	10.1 Introduction
	10.2 License keys
	10.3 Configuring your LispWorks installation
	10.3.1 Levels of configuration
	10.3.2 Configuration files available

	10.4 Saving and testing the configured image
	10.4.1 Create a configuration file
	10.4.2 Create and use a save-image script
	10.4.3 Testing the newly saved image
	10.4.4 Saving a non-windowing image

	10.5 Initializing LispWorks
	10.6 Loading CLIM 2.0
	10.6.1 Running the CLIM demos

	10.7 The Common SQL interface
	10.7.1 Loading the Common SQL interface

	10.8 Common Prolog and KnowledgeWorks
	10.9 Documentation on x86/x86 Solaris and FreeBSD

	11 Configuration on UNIX
	11.1 Disk requirements
	11.2 Software Requirements
	11.3 The CD-ROM
	11.3.1 The LispWorks 6.0 CD-ROM
	11.3.1.1 CD-ROM format

	11.3.2 Unpacking LispWorks products
	11.3.3 Mounting the CD-ROM
	11.3.3.1 HP UX (HP Precision Architecture)
	11.3.3.2 Solaris (Sun Sparc)

	11.4 Installing LispWorks
	11.4.1 Unpacking the TAR files
	11.4.1.1 Considerations to be made before extracting product files
	11.4.1.2 Keeping your old LispWorks installation
	11.4.1.3 How to extract the product files from the tar container files
	11.4.1.4 HP UX (HP Precision Architecture)
	11.4.1.5 SPARC Solaris (LispWorks 32-bit)
	11.4.1.6 SPARC Solaris (LispWorks 64-bit)

	11.4.2 Keyfiles and how to obtain them
	11.4.2.1 Where LispWorks looks for keyfiles
	11.4.2.2 The contents of a keyfile
	11.4.2.3 How to obtain keys

	11.4.3 The License Server

	11.5 Components of the LispWorks distribution
	11.5.1 The LispWorks image
	11.5.2 The LispWorks library

	11.6 Printing copies of the LispWorks documentation
	11.7 Configuring your LispWorks installation
	11.7.1 Multiple-platform installations
	11.7.2 Configuration files available
	11.7.3 Saving and testing the configured image
	11.7.4 Create a configuration file
	11.7.5 Create and use a save-image script
	11.7.5.1 Testing the newly saved image

	11.8 LispWorks initialization arguments

	12 Troubleshooting, Patches and Reporting Bugs
	12.1 Troubleshooting
	12.1.1 License key errors in the Professional and Enterprise Editions
	12.1.2 Failure of the load-on-demand system
	12.1.3 Memory requirements

	12.2 Troubleshooting on Mac OS X
	12.2.1 Default installation requires administrator on Mac OS X
	12.2.2 Text displayed incorrectly in the editor on Mac OS X

	12.3 Troubleshooting on Linux
	12.3.1 Processes hanging
	12.3.2 RPM_INSTALL_PREFIX not set
	12.3.3 Using multiple versions of Motif on Linux

	12.4 Troubleshooting on x86/x64 Solaris
	12.4.1 GTK+ version

	12.5 Troubleshooting on FreeBSD
	12.5.1 Poor latency when using multiple threads

	12.6 Troubleshooting on UNIX
	12.6.1 Problems with CD-ROM file system
	12.6.2 License key errors

	12.7 Troubleshooting on X11/Motif
	12.7.1 Problems with the X server
	12.7.2 Problems with fonts on Motif
	12.7.3 Problems with colors
	12.7.4 Motif mnemonics and Alt
	12.7.5 Non-standard X11/Motif key bindings
	12.7.6 X11/Motif resources
	12.7.7 Motif installation on Mac OS X

	12.8 Updating with patches
	12.8.1 Extracting simple patches
	12.8.2 If you cannot receive electronic mail
	12.8.3 Different types of patch
	12.8.3.1 Public patches
	12.8.3.2 Private patches

	12.9 Reporting bugs
	12.9.1 Check for existing fixes
	12.9.2 Performance Issues
	12.9.3 Generate a bug report template
	12.9.4 Add details to your bug report
	12.9.5 Reporting crashes
	12.9.6 Log Files
	12.9.7 Reporting bugs in delivered images
	12.9.8 Send the bug report
	12.9.9 Sending large files
	12.9.10 Information for Personal Edition users

	12.10 Transferring LispWorks to a different machine

	13 Release Notes
	13.1 Platform support
	13.1.1 x86/x64 Solaris
	13.1.2 Running on 64-bit machines
	13.1.3 Older platforms

	13.2 Symmetric Multiprocessing
	13.2.1 Old interrupt blocking APIs removed
	13.2.2 New ways to block interrupts
	13.2.3 Atomic operations
	13.2.4 New features of locks
	13.2.5 Efficient ways to synchronize between threads
	13.2.6 Access to specials
	13.2.7 Processing and handling events
	13.2.8 Automatic creation of a mailbox
	13.2.9 Sending and interpreting events
	13.2.10 mp:mailbox-read distinguishes a read value from a timeout
	13.2.11 mp:process-plist deprecated
	13.2.12 mp:process-event-queue deprecated

	13.3 GTK+ window system
	13.3.1 Using Motif instead of GTK+

	13.4 New CAPI features
	13.4.1 Break gesture available in CAPI Cocoa applications
	13.4.2 Setting the break gestures
	13.4.3 Lisp mode parenthesis coloring
	13.4.4 Toolbar API for capi:interface
	13.4.5 Lightweight positioning of panes
	13.4.6 Grid cells spanning multiple columns or rows
	13.4.7 Separators in rows and columns
	13.4.8 Ratio specification for dividers and separators
	13.4.9 Lists with a filter
	13.4.10 Lists which do not take input focus
	13.4.11 Finding the child pane with input focus
	13.4.12 Automatic scrolling to show the focus pane
	13.4.13 Programmatic scrolling of lists etc implemented on Cocoa
	13.4.14 Edit/select operations for the active pane
	13.4.15 Buffered output to improve drawing on Windows and Motif
	13.4.16 Detecting key presses and releases
	13.4.17 Modifiers in button and motion input-model gestures
	13.4.18 Stop playing of a sound file
	13.4.19 Drag’n’drop enhancements
	13.4.19.1 Drag’n’drop in lists and trees
	13.4.19.2 Drag lists of files on Cocoa
	13.4.19.3 Drop coordinates on Microsoft Windows

	13.4.20 Matching GTK+ and Motif resources
	13.4.21 Callback types including element
	13.4.22 read-only editor-panes
	13.4.23 Uniform error handling in dialogs
	13.4.24 Dialogs that are dismissed by any input
	13.4.25 Enabling menu items when a dialog is on screen
	13.4.26 Support for file packages as directories on Cocoa
	13.4.27 Efficient modification of a range-pane
	13.4.28 Testing for support of display of text and image in menus
	13.4.29 Preserving interface state during session saving

	13.5 Other CAPI changes
	13.5.1 Cocoa default fonts corrected
	13.5.2 editor-pane scroller size
	13.5.3 opengl-pane package change
	13.5.4 menu items-function called earlier
	13.5.5 Interpretation of repeated initargs and geometric hints
	13.5.6 Change preventing premature destruction of a gp:image
	13.5.7 Redisplay of image buttons, and change to accessors
	13.5.8 Limiting text in a Cocoa text-input-pane
	13.5.9 Change in set-rich-text-pane-character-format

	13.6 More new features
	13.6.1 Load and evaluate from the command line
	13.6.2 Unicode character and string functions
	13.6.2.1 Unicode case insensitive character comparision
	13.6.2.2 Unicode case insensitive string comparision
	13.6.2.3 Unicode character predicates

	13.6.3 System message log
	13.6.4 Logging errors
	13.6.5 Debugger command to obtain the current function object
	13.6.6 Debugger wrapper
	13.6.7 Profiling multiple threads
	13.6.8 Profiler shows each thread separately
	13.6.9 Profiler does not count calls by default
	13.6.10 Profiling inside foreign calls, or not
	13.6.11 Long and short forms of paths
	13.6.12 Finding a directory for writing temporary files
	13.6.13 Splitting saved images to allow code signing
	13.6.14 Saving a Mac OS X application bundle
	13.6.15 Split sequence utilities
	13.6.16 Predicate for weak arrays
	13.6.17 Free action for weak hash tables

	13.7 IDE changes
	13.7.1 ASDF integration
	13.7.2 Break gesture available in the Cocoa IDE
	13.7.3 Enhanced Break gesture handling
	13.7.4 Mac OS X toolbars
	13.7.5 Customizable toolbars
	13.7.6 Preferences consolidated
	13.7.7 Editor font preference changed
	13.7.8 Parenthesis coloring
	13.7.9 Snapshot debugging on initialization
	13.7.10 The default directory for opening files
	13.7.11 Prompt on exit for modified buffers not associated with a file
	13.7.12 Scroller size in Editor and other tools
	13.7.13 Editor status bar shows line numbers
	13.7.14 New and changed Edit menu operations
	13.7.15 Standard Edit gestures on Cocoa
	13.7.16 More control over Process Browser automatic updates
	13.7.17 Search Files with known definitions
	13.7.18 Search Files option for relative or full paths
	13.7.19 Search Files highlights first match for file
	13.7.20 Symbol Browser sortable
	13.7.21 Completion in Tracer
	13.7.22 Inspecting the function in a stack frame
	13.7.23 Bad interaction with pretty printer eliminated
	13.7.24 Removal of breakpoints
	13.7.25 Output Browser accelerator
	13.7.26 Listen operations move Listener point

	13.8 Editor changes
	13.8.1 Change to Tab key in Lisp mode
	13.8.2 New commands
	13.8.3 New echo area commands
	13.8.4 Position indicator shows line numbers
	13.8.5 Popping marks rotates the mark ring like GNU Emacs
	13.8.6 File completion shows trailing slash for directories
	13.8.7 Escaped symbols recognized correctly
	13.8.8 prompt-for-file :direction and :create-directories
	13.8.9 Definers for editor variables
	13.8.10 Buffer variable value
	13.8.11 New exports

	13.9 Foreign Language interface changes
	13.9.1 Using arbitrary Lisp integers in the FLI
	13.9.2 Enum type values and symbols
	13.9.3 :ignore in define-foreign-function lambda list
	13.9.4 define-foreign-variable with aggregate types
	13.9.5 Pointer and array type information
	13.9.6 New foreign types
	13.9.6.1 FLI types for ISO C size_t and ptrdiff_t
	13.9.6.2 ISO C99 types
	13.9.6.3 FLI type for ssize_t
	13.9.6.4 FLI type for ISO C time_t

	13.9.7 define-foreign-function result-type :void
	13.9.8 define-foreign-converter documented
	13.9.9 Deprecated macro

	13.10 COM/Automation changes
	13.10.1 Building a COM server
	13.10.2 com:get-object
	13.10.3 Automation server example

	13.11 Objective-C changes
	13.11.1 Creating a standalone Objective-C executable

	13.12 Common SQL changes
	13.12.1 Refreshing select recomputes deferred join slots
	13.12.2 Oracle on 64-bit Mac OS X
	13.12.3 PostgreSQL TIMESTAMP and sql:universal-time

	13.13 Application delivery changes
	13.13.1 Splitting delivered images to allow code signing
	13.13.2 Application control over multiprocessing startup
	13.13.3 GTK+ is the default GUI on some platforms
	13.13.4 Building Motif applications
	13.13.5 Control of make-instance initarg checking simplified

	13.14 CLOS/MOP changes
	13.15 CLIM changes
	13.15.1 Default I/O streams corrected.

	13.16 Other changes
	13.16.1 Switching off Windows themes before windows are made
	13.16.2 Non-string argument in find-symbol and intern
	13.16.3 Compiler messages are written to *error-output*
	13.16.4 Re-reading from terminal stream on Cocoa fixed
	13.16.5 Explaining failed funcall optimizations
	13.16.6 Change in make-random-state
	13.16.7 Escaping of printed symbols depends on macro chars
	13.16.8 dotimes count type-checked
	13.16.9 Changes in cl:*features*
	13.16.10 Gesture Spec changes
	13.16.10.1 Gesture Spec keyword changes
	13.16.10.2 Combining both-case-p characters with Shift

	13.16.11 64-bit OpenSSL on Mac OS X
	13.16.12 Lambda lists corrected
	13.16.13 Loading old data files
	13.16.14 Deprecated APIs
	13.16.15 Harlequin

	13.17 Documentation changes
	13.18 Known Problems
	13.18.1 Runtime library requirement on Windows
	13.18.2 Problems with CAPI on GTK+
	13.18.3 Problems with LispWorks for Macintosh
	13.18.4 Problems with the LispWorks IDE on Cocoa
	13.18.5 Problems with CAPI and Graphics Ports on Cocoa

	13.19 Binary Incompatibilty

	Index

