LispWorks®

IDE User Guide

\Version 6.0

Copyright and Trademarks
LispWorks IDE User Guide (Unix version)
\ersion 6.0

December 2009

Copyright © 2009 by LispWorks Ltd.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of LispWorks Ltd.

The information in this publication is provided for information only, is subject to change without notice, and should not be construed as a
commitment by LispWorks Ltd. LispWorks Ltd assumes no responsibility or liability for any errors or inaccuracies that may appear in this
publication. The software described in this book is furnished under license and may only be used or copied in accordance with the terms of
that license.

LispWorks and KnowledgeWorks are registered trademarks of LispWorks Ltd.

Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the registered trade-
marks or trademarks of their respective holders.

The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986, 1987, 1988 Xerox
Corporation.

The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom:

Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, pro-
vided that this copyright and permission notice appear in all copies and supporting documentation, and that the name of M.1.T. not be used
in advertising or publicity pertaining to distribution of the software without specific, written prior permission. M.1.T. makes no representa-
tion about the suitability of this software for any purpose. It is provided “as is” without express or implied warranty. M.1.T. disclaims all war-
ranties with regard to this software, including all implied warranties of merchantability and fitness. In no event shall M.1.T. be liable for any
special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of con-
tract, negligence or other tortious action, arising out of or in connection with the use or performance of this software.

LispWorks contains part of ICU software obtained from http://source.icu-project.org and which bears the following copyright and permis-
sion notice:

ICU License - ICU 1.8.1 and later

COPYRIGHT AND PERMISSION NOTICE

Copyright © 1995-2006 International Business Machines Corporation and others. All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Soft-
ware"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, provided that the above copyright
notice(s) and this permission notice appear in all copies of the Software and that both the above copyright notice(s) and this permission
notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIM-
ITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF
THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE
FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the sale, use or
other dealings in this Software without prior written authorization of the copyright holder. All trademarks and registered trademarks men-
tioned herein are the property of their respective owners.

US Government Restricted Rights

The LispWorks Software is a commercial computer software program developed at private expense and is provided with restricted rights.
The LispWorks Software may not be used, reproduced, or disclosed by the Government except as set forth in the accompanying End User
License Agreement and as provided in DFARS 227.7202-1(a), 227.7202-3(a) (1995), FAR 12.212(a)(1995), FAR 52.227-19, and/or FAR 52.227-14
Alt 111, as applicable. Rights reserved under the copyright laws of the United States.

Address Telephone Fax

LispWorks Ltd 1 Centre From North America: 877 759 8839 From North America: 617 812 8283
Cowley Road (toll-free) From elsewhere: +44 870 2206189
Cambridge From elsewhere: +44 1223 421860

England

www.lispworks.com

http://www.lispworks.com

Contents

Preface xi

1 Introduction 1

Major tools 2

2 A Short Tutorial 5

Starting the environment 6

Creating a Listener 7

Using the Debugger 9

Viewing output 12

Inspecting objects using the Inspector 13
Examining classes in the Class Browser 15
Summary 18

3 Common Features 21

Displaying tool windows 22

Setting preferences 28

Performing editing functions 39

The Break gesture 42

The history list 43

Operating on files 44

Displaying packages 45

Performing operations on selected objects 48
Using different views 50

Tracing symbols from tools 54
Linking tools together 54
Filtering information 55
Regexp matching 58
Completion 59

Examining a window 63

Getting Help 65

Online manuals in HTML format 65

Online help for editor commands 69

Browsing manuals online using Adobe Reader 69
Reporting bugs 70

Session Saving 71

What session saving does 71

The default session 72

What is saved and what is not saved 72

Saving sessions 73

Redirecting images to a Saved Session image 78
Non-IDE interfaces and session saving 78

Manipulating Graphs 81

An overview of graphs 81

Searching graphs 82

Expanding and collapsing graphs 83
Moving nodes in graphs 84
Displaying plans of graphs 85
Preferences for graphs 87

Using graphs in your programs 91

The Podium 93

The podium window 93
Specifying the initial tools 94

The Class Browser 95

Simple use of the Class Browser 96
Examining slot information 103

10

11

12

Examining superclasses and subclasses 105
Examining classes graphically 108

Examining generic functions and methods 112
Examining initargs 115

Examining class precedences 117

The Object Clipboard 121

Placing objects on the Object Clipboard 122
Browsing clipped objects 125

Removing objects 126

Filtering 126

Using the Object Clipboard with a Listener 127

The Compilation Conditions Browser 131

Introduction 131

Examining error conditions 132
Configuring the display 133
Access to other tools 137

The Debugger Tool 139

Description of the Debugger 141

What the Debugger tool does 145

Simple use of the Debugger tool 146

The stack in the Debugger 147

An example debugging session 147

Performing operations on the error condition 150
Performing operations on stack frames 150
Performing operations on frame variables 151
Configuring the debugger tool 152

The Notifier window 154

The Tracer 157

Introduction 157

Tracing and Untracing functions 157
Examining the output of tracing 158
Example 159

vi

13

14

15

16

The Editor 165

Displaying and editing files 167

Displaying output messages in the Editor 170
Displaying and swapping between buffers 170
Displaying Common Lisp definitions 174

Changed definitions 175

Finding definitions 177

Setting Editor preferences 178

Basic Editor commands 181

Other essential commands 186

Cutting, copying and pasting using the clipboard 187
Cutting, copying and pasting using the kill ring 188
Searching and replacing text 191

Using Lisp-specific commands 195

Help with editing 202

The Function Call Browser 203

Introduction 203

Examining functions using the graph views 204
Examining functions using the text view 208
Configuring the function call browser 210
Configuring graph displays 211

Performing operations on functions 212

The Generic Function Browser 213

Examining information about methods 214
Examining information about combined methods 217
Configuring the Generic Function Browser 222

The Search Files tool 223

Introduction 223

Performing searches 225

Viewing the results 233

Modifying the matched lines 234
Configuring the Search Files tool 235

17

18

19

20

21

The Inspector 243

Inspecting the current object 243
Description of the Inspector tool 244
Filtering the display 245

Examining objects 247

Operating upon objects and items 248
Configuring the Inspector 253
Customizing the Inspector 257
Creating new inspection formats 257

The Symbol Browser 263

Introduction 263
Description of the Symbol Browser 264
Configuring the Symbol Browser 269

The Interface Builder 271

Description of the Interface Builder 272

Creating or loading interfaces 273

Creating an interface layout 276

Creating a menu system 280

Editing and saving code 284

Performing operations on objects 287

Performing operations on the current interface 291
Performing operations on elements 293

Example: Using The Interface Builder 295

Creating the basic layout 297

Specifying attribute values 299

Creating the menu system 302

Specifying callbacks in the interface definition 305
Saving the interface 307

Defining the callbacks 307

Creating a system 310

Testing the example interface 311

The Listener 313

The basic features of a Listener 314

vii

viii

22

23

24

25

Evaluating simple forms 315
Re-evaluating forms 316
Interrupting evaluation 317

The History menu 317

The Expression menu 318

The Values menu 319

The Debug menu 320

Execute mode 320

Setting Listener preferences 325
Running Editor forms in the Listener 326
Help with editing in the Listener 326

The Output Browser 327

Interactive compilation messages 329

The Process Browser 333

The process list 336

Process control 336

Other ways of breaking processes 337
Updating the Process Browser 337
Process Browser Preferences 338

The Profiler 341

Introduction 341

Display of Profiler Data 344

A description of profiling 347

Steps involved in profiling code 348
Format of the cumulative results 354
Interpreting the cumulative results 355
Profiling pitfalls 355

Some examples 357

The Shell and Remote Shell Tools 359

Introduction 359

The Shell tool 359

Command history in the shell 360
Configuring the shell to run 361

26

27

28

29

The Remote Shell tool 361

The Stepper 363

Introduction 363

Simple examples 365

The implementation of the Stepper 369
Stepper controls 370

Stepper restarts 373

Breakpoints 373

Stepping macro forms 378

Listener area 380

Configuring the Stepper 381

The System Browser 385

Introduction 385

A brief introduction to systems 386

The System Browser 388

A description of the System Browser 388
Examining the system tree 389
Examining systems in the text view 392
Generating and executing plans in the preview view 394
Examining output in the output view 397
ASDF Integration 399

Configuring the display 401

Setting options in the system browser 402

The Window Browser 403

Introduction 403
Configuring the Window Browser 406
Performing operations on windows 409

The Application Builder 411

Introduction 411

Preparing to build your application 413
Building your application 416

Editing the script 417

Troubleshooting 417

Running the saved application 417
Configuring the Application Builder 419

Index 421

Preface

Conventions used in this manual

This manual assumes that you have at least a basic knowledge of Common Lisp.
Many source code examples are used throughout the manual to illustrate important
concepts, but only extensions to Common Lisp which are specific to the environment
are explained in detail.

This manual does provide a complete description of the windowed development envi-
ronment available in your Lisp image. Thisincludes a description of the user interface
itself, and a description of how the user interface interacts with Common Lisp.

Using the mouse

Throughout this manual, actions that you perform using the mouse are described in
terms of the gesture used, rather than the combination of mouse buttons and keys that
need to be used to perform the operation. Thisis because the buttons that are used are
highly dependent on the platform you are running your Lisp image on, the operating
system you are using, and even the type of mouse that you have attached to your com-
puter. The mouse gestures available in the environment are described below.

Select

Thisis by far the most common mouse gesture, and is used for nearly al mouse oper-
ationsin the environment. Use the select gesture to

e display amenu,

» choose acommand from a menu which is aready displayed,

Xi

xii

e selectitemsfromalist or graph

» select or deselect atoggle switch,

* click on abutton,

e position the mouse pointer in a piece of text.

Depending on the characteristics of your operating system or (if you are using aUNIX
system) your window manager, you may also need to use select in order to move the
mouse focus to another window.

If you are using a mouse with several buttons, you can nearly always select by click-
ing the left-most button, but you should refer to the documentation for your operating
system or window manager if you are unsure. Thisis particularly trueif you are using
amouse which has been set up for use by aleft-handed person, sinceit is possible that
the function of the mouse buttons has been reversed.

Multiple select

Multiple selection is used in lists and graphs when you want to select more than one
item. You can select several items from any list or graph in the environment, and there
are alarge number of commands which can operate equally well on these multiple
selections.

There are anumber of standard ways of making multiple selectionsin alist or graph,
depending on your operating system or window manager. Check the relevant docu-
mentation if you are unsure, or try any of the following:

* Holding down the shift key while selecting an item.
e Holding down the control key while selecting an item.
e The middle mouse button (if you have a three-button mouse).

Typically, in lists, holding down the shi £t key lets you make a contiguous selection,
and holding down the control key lets you make a discontiguous selection.

* To select ablock of items from alist, select the first item, hold down the shift
key, and then select the last item; the intervening items are al so selected.

* To select several items which do not form ablock, hold down the control key
while selecting each item individually.

Thisbehavior istypical in anumber of operating systems or window managers. You
are probably familiar with it if you are familiar with using a mouse.

Double-click

The double-click gesture consists of two select gestures, performed in rapid succes-
sion. In generd, any itemin alist or graph may be double-clicked.

Double-clicking is usually a shortcut for selecting an item and choosing a common
menu command, and the precise action that takes place depends on the context in
which the double-click was performed.

Double-clicking can only be performed on single selections.
Alternate select

Thisisaless common gesture, and is used amost exclusively within the LispWorks
IDE to display a context menu (sometimes referred to as the "context menu” or the
"right button menu").

If you are using a mouse with several buttons, you should find that you can perform
this gesture by clicking the right-most mouse button. On a Macintosh with asingle
button mouse, the context menu is raised by holding down the control key and click-
ing the mouse button. Refer to the documentation for your window manager or operat-
ing system if you are unsure.

Choosing menu commands and other controls

Throughout this manual, menu command names and other text labels are shown in
This Bold Font.

Submenus are indicated by use of the > character. Thus, for instance, the instruction
“Choose File > Open”

means that you should select the File menu on amenu bar, and choose the Open com-
mand in the menu that appears. Similarly,

“Choose Works > Tools > Editor”

means that you should display the Works menu by selecting it, select Tools from this
menu to display a submenu, and choose the Editor command from this submenu.

The sequence can include label s of other GUI elements such astabs and list items. For
example the instruction

“Choose Preferences... > Environment > General > Use in-place completion”

Xiii

Xiv

means that you should select the Preferences... menu item, then select the
Environment item in alist within the dialog that appears, then select the General tab
within that dialog, and lastly access the button labelled Use in-place completion.

Using the keyboard

Throughout this manual there are descriptions of commands that you can choose by
typing at the keyboard. Thisis especially true when discussing the built-in editor,
which relies heavily on the use of keyboard commands, and the Common Lisp lis-
tener, which uses many of the same commands.

Throughout this manual, keyboard input including the names of keysyou pressis
shown in This Font.

Keyboard commands generally use a combination of ordinary keys together with the
modifier keys control, shift, Escape, Alt, Meta and command (not all of these are
available on each platform).

UNI X implementation note: You should use the Meta or © key wherever this manual
referstothe ait key.

In all cases, the control, shift, Meta and command keys should be held down con-
currently with the specified letter. For example:

ctrl+s isread as“hold down the Control key and press S’.
ctrl+shift+a isread as“hold down the Control and Shift keysand press A”.

In the editor in Emacs emulation mode, instead using the meta (a1t) modifier with a
key, the Escape key can be pressed and rel eased before pressing the key. For example:

Esc Eisread as"“press and release the Escape key, then pressE”.
alt+E isread as “hold down the Alt key and pressE”.

The two key inputs above are equivalent in Emacs emulation mode. This manual
generally refersto a1t when referring to the editor key strokes.

For more information on using keyboard commands in the built-in editor and the Lis-
tener, see “Using keyboard commands’ on page 169.

Appearance of the graphical tools

The screenshots in this manua show toolbars that may have been customized (using
the context menu) so you might see some differences from your setup.

XV

XVi

1

| ntroduction

This manual gives you a complete guide to the LispWorks IDE devel opment environ-
ment. This environment comprises alarge number of window-based tools which have
been designed with the Common Lisp developer in mind. The following are among
the features provided by the environment:

« A fully functional code Editor specifically designed to make writing Common
Lisp source code as swift as possible, emulating Emacs or KDE/Gnome key
styles

e A Common Lisp Listener for evaluating Common Lisp forms interactively.

« A range of debugging toolsincluding a graphical Debugger, source code Step-
per, code Profiler, Tracer, and the Inspector.

« A range of browsers for examining different objectsin your Lisp image, such
as the generic functions or CL OS classes that have been defined.

e A tool for simplifying source code management; vital if you areinvolved in
developing large applications.

e (Microsoft Windows, Linux, x86/x64 Solaris and FreeBSD platforms only) A
tool for designing window-based interfaces to your applications. A point-and-
click interface is used to design the interface, and Lisp code is generated for
you.

1

Introduction

« A Shell window that lets you run system utilities (DOS commands on Win-
dows, shell commands on Unix-based systems) inside LispWorks. Remote
shells are also supported on Unix-based systems.

« A Search Filestool that allows you to find text matching aregular expression
infiles.

e An Object Clipboard that allows you to manage selected and copied objects.

« Saved sessions which can be restarted at alater date, allowing you to resume
work after restarting your computer.

Because of the large number of tools available, consistency isavital themein the
environment; each tool has a similar look and feel so that you need only spend a mini-
mum amount of time learning how to use the environment.

In addition, there is a high degree of integration between the tools available. This
means that it is possible to transfer pieces of information throughout the environment
in alogical fashion; if you create an object in the Listener, you can examine it by
transferring it directly to the Inspector. The class of objects that it belongs to can be
examined by transferring it to a Class Browser, and from there, the generic functions
which have methods defined on it can be browsed.

To reflect these themes of consistency and integration, the earlier chaptersin this man-
ual deal with the generic aspects of the environment, while at the same time introduc-
ing you to the more important tools.

1.1 Major tools

The environment supports awide range of tools which can help you to work on your
Lisp source code more quickly and efficiently. This section gives you abrief introduc-
tion to the most important tools.

You can create any of the tools described here by choosing the appropriate command
from the Tools menu of the podium window, or by selecting the relevant tool from the
Works > Tools menu on any other tool.

For full details about any of these tools, see the relevant chapter. The second part of
this manual covers each of the toolsin the order that they are found on the Tools
menu.

11

1.1.1 The Listener

A Common Lisp Listener is provided to let you evaluate Common Lisp forms. This
tool isinvaluable as a method of testing your code without necessitating compilation
or evaluation of whole files of Common Lisp source code.

1.1.2 The Editor

A built-in editor is provided to alow you to develop Common Lisp code. It is based
on Emacs, an editor which you may already be familiar with. As an alternative to
Emacs keys, the editor offers KDE/Gnome emulation.

The built-in editor offers awide range of functions specifically designed to help you
develop Common Lisp code, and it isfully integrated into the environment so that
code being developed isimmediately available for testing.

1.1.3 The Class Browser

Thistool alows you to examine the Common Lisp classes that are defined in your
environment. You can look at the superclasses and subclasses of a given class and see
the rel ationships between them, and you can examine the slots available for each
class.

In addition, you can examine the functions and methods defined on a given class, or
the precedence list or initargs for the class.

1.1.4 The Output Browser

The Output Browser collects and displays all output from the environment which may
be of use. Thisincludes warning and error messages displayed during compilation and
output generated by tracing or profiling functions. Many other toolsin the environ-
ment also provide you with an output view, which lets you see any output which is
appropriate to that tool.

1.1.5 The Inspector

The Inspector lets you examine and destructively modify the contents of Common
Lisp objects. It isan invaluable tool during development, sinceit lets you inspect the
state of any part of your data at any stage during execution. Thus, it is easy to see the

Major tools

1 Introduction

value of adot and, if necessary, alter itsvalue, so that you can test out the effects of
such an alteration before you make the changes necessary in the source code itself.

1.1.6 The Object Clipboard

The Object Clipboard is used to manage multiple Lisp objects. You can select any
object in the Object Clipboard for use in paste operations.

As an example of adding a Lisp object to the Object Clipboard, follow these steps:
1. EvaluateaLisp expression in the Listener window. Its value is printed.
2. Choose the menu command Values > Clip.

The value from the Listener is now in the Object Clipboard.

If you have not aready made an Object Clipboard visible, then do so now using the
menu command Works > Tools > Object Clipboard.

The Object Clipboard can be seen in Figure 1.1.
Figure 1.1 Object Clipboard Tool

Object Clipboard 1
Works File Edit Object Help

D BDDE %MERE DR
Filter v X Matches 1
Name Value

FUNCTION-1 #<Function COPY-READTAELE 2017BBA2>

FEeady.

You can use the left mouse button to select any item in the Object Clipboard, then use
the context menu (usually invoked by the right mouse button) to inspect, inspect class,
open a Listener, or copy the object.

2

A Short Tutorial

This chapter gives you a short tutorial illustrating simple use of some of the major
tools in the environment, and attempts to familiarize you with the way that tools can
be used developing Common Lisp applications.

Note that some of the examples given in this chapter use symbols taken from the
CAPI library. Do not worry if you are not familiar with the CAPI (if, for instance, you
have been using another library, such as CLIM, to develop your applications). It is not
essential that you fully understand the example code used in order to gain benefit from
the tutorial. If you wish to learn more about the CAPI, you should refer to the Lisp-
Works CAPI User Guide and the LispWorks CAPI Reference Manual, both of which
are supplied in electronic form with your LispWorks software. The Help menu allows
you to search all documentation from inside the LispWorks IDE.

Note: When using either the GTK+ GUI or the deprecated X 11/Motif GUI, before you
start working through the tutorial, ensure that the pzspLay UNIX environment vari-
ableis set correctly, and that you have started the LispWorks IDE, for example by

(env:start-environment)

To maintain continuity, try to work your way through the whole of this tutorial in one
session.

2 A Short Tutorial

2.1 Starting the environment

On Linux and FreeBSD, assuming that you have the LispWorks executable location in
your path, just type its name in any xterm or command shell window. Thisnameis
lispworks-6-0-0-x86-1linux, lispworks-6-0-0-amdé64-1linux Ol 1ispworks-
6-0-0-x86- freebsd depending on which product you are running. Under KDE or
Gnome, you might want to set up a system menu item to start LispWorks.

On Solaris and HP-UX, the supplied imageisinthe 1ib/6-0-0-0/config directory
of the LispWorks installation. You may have a configured image elsewhere.

On Linux and FreeBSD, the LispWorks environment starts automatically in the sup-
plied image. On Solaris and HP-UX, the LispWorks environment starts when the com-
mand line argument -env is specified. If -env is not specified, LispWorkswill start in
terminal ("tty") mode with a prompt similar to the following:

CL-USER 1>
Type the following Lisp form at the prompt to start the LispWorks environment:
(env:start-environment)

After a short pause, you should see a splash screen, followed by the Podium window.
The Podiumisshownin Figure 2.1. A Listener window will also appear if your image
is configured to start one.

Figure 2.1 The Podium

LispWorks 6.0.0 on higson.cam.lispworks.com

Works File Edit Tools Windows._Help
@ wp B WML ADS, @
Ready . /

/

Toolbar Menu Bar

The Podium window is automatically displayed whenever you start the LispWorks
IDE. Its menu bar gives you access to various commands, aswell asall the other tools
in the environment. Itstoolbar gives you quick accessto some of the more convenient
menu commands.

2.2 Creating a Listener

Like many other applications, the menu bar contains File,Tools, Windows and Help
menus and a LispWorks specific menu named Works. The Works menu contains com-
mands that apply to the current window and also contains menus that allow navigation
between tools in the LispWorks environment.

The File menu allows you to open afile in an Editor, or print afile, regardless of
which window is active. When the Editor or Listener tool is active, the File menu
contains other commands for miscellaneous operations on the file displayed. The
Tools menu gives you access to all of the LispWorks IDE tools. The wWindows menu
lists al the active LispWorks windows you have running.

Note: If you wish to exit the Lisp image during this tutorial or at any other time,
choose Works > Exit > LispWorks.

2.1.1 The Lisp Monitor

In the deprecated Motif IDE only, aLisp Monitor window also appears when you start
the LispWorks IDE. Thisis actually a separate process which shows you the state of
the Lisp image, and monitors any garbage collection activity which occurs. For the
most part you can ignore this window, although you may sometimes find the buttons
on it useful for breaking into the Lisp processif you run source code which crashes
Lisp for any reason. If you wish, you may close the Lisp Monitor window.

Figure 2.2 The Lisp Monitor

Break to tty |

Interrupt Lisp |

(uit GcMonitor |

Idle

2.2 Creating a Listener

The Listener tool interactively evaluates the Lisp forms you enter. During atypical
session, you eval uate pieces of code in the Listener, then examine the effects in other

2 A Short Tutorial

tools, returning to the Listener whenever you want to eval uate another piece of. The
structure of thistutoria reflects this two-stage approach.

Except on Unix platforms, a Listener is created when you start the LispWorks IDE. If
you don't currently have a Listener (check the windows menu), start one by choosing
Tools > Listener from the podium or clicking on ‘ in the Podium. This section of
the tutorial demonstrates some of its more useful features. A Listener window is
shown in Figure 2.3 below.

Figure 2.3 Listener

Listener 1

Works File Edit Expression Values Debug History Help
— Y e — e
vieaw @ 2 ¥ IETE @

...H'_,,V

Listener | Output

CL-USER 1 > (print 42)

42
42

CL-USER 2 > -

Ready.

The Listener containstwo views: the Listener view and the output view. At the bottom
of the Listener is an echo area that isvisible in either view. The echo areais used to
prompt you for information when performing editor commands such as searching for
text. You can switch between the two views by clicking the Listener and Output tabs
respectively. You can evaluate Lisp formsin the Listener view by typing the form, fol-
lowed by rReturn. Any output that is produced is displayed in the Listener view.

1. Typethefollowing form into the Listener and press Return.

(+ 1 2)

2.3 Using the Debugger

The result of the evaluation, 3, appears in the Listener, and anew prompt is
printed. Notice that the number in the prompt has been incremented, indicating
that a form has been evaluated.

Because you may want to enter a number of very similar forms, commands are
provided which make this easy.

2. PressMeta+P.

The form that you just evaluated is printed at the new prompt. You can press
Return to evaluate this form again, or, more usefully, you can edit the form
dightly before evaluating it.

3. Pressctrl+B to move the cursor back one space. Now pressthe Backspace
key to delete the number 2, and type 3 inits place.

You have edited the form (+ 1 2) tocreateanew form, (+ 1 3).
4, PressRreturn to evauate the new form.

The result of the evaluation, 4, appears in the Listener, followed by another new
prompt, with the prompt number incremented once again.

2.3 Using the Debugger

A debugger toal is provided to help track down the cause of problems in your source
code. This section introduces you to some of the waysin which it can be used.

1. Enter the following definition in the Listener:

(defun test ()
(let ((total 0))
(loop for i below 100 do
(incf tota;l. i) when (= i 50) do
(break "We ve reached fifty"))))

This function counts from 0 to 100, accumulating the total asit progresses, and
forces entry into the debugger when the count has reached 50.

2. Next, cal the function by entering (test) into the Listener.

Initially, the command line debugger is entered. Thisisadebugger which can be
used from within the Listener itself. More detail s about what you can do in the
command line debugger can be found by typing : 2 at the debugger prompt.

2 A Short Tutorial

3. To enter the debugger tool at this point, choose the menu command Debug >
Start GUI Debugger or press # in the Listener toolbar.

The debugger tool appears, as shown in Figure 2.4.

10

2.3 Using the Debugger

Figure 2.4 Debugger tool

Error condition. Control buttons. Debugger backtrace.

Debugging CAPI Execution Listener 1

Works File Edit WView Condition rame Yafiables Restars Help

o€ =@ £ 12 2 &

C ondition:
We've reached fifty

e

Backtrace:
I A INVOKE-DEBUGGER
> N BREAK
<& TOTAL 1275
ol 50
2 #|by-667) 1
2 #|to-666| 100
O SYSTEM: %% LO0OP-IT-VARIABLE®: % T
I A EVAL
> A CAPI:CAPI-TOP-LEVEL-FUNCTION
> A CAPI:INTERACTIVE-PANE-TOP-LOOP
> X MP::PROCESS-SG-FUNCTION

Ready.

State of variables for
selected frame.

The debugger tool givesaview of the backtrace (in the Backtrace: pane), show-
ing the functionsthat are on the stack, and their internal variables (including any

2 A Short Tutorial

arguments) at the point that the error occurred.

4. IntheBacktrace: pane, notice that thereis aright-pointing triangle to the left of
the word TEsT. Thisindicates an expandable node. Click on this to open up the
tree display, showing the local variables used in function test. Notice that the
value for i is 50, asyou would expect.

Thereisarow of toolbar buttons at the top of the debugger which let you per-
form a number of different actions.

5. Choose Restarts > (continue) Return from break. or click on the Continueicon
from the toolbar to exit the Debugger and continue execution.

The debugger disappears from the screen, and the command line debugger in the Lis-
tener is exited, leaving you at the Lisp prompt in the Listener.

2.4 Viewing output

There are many different ways to view output generated by the environment. In many
tools, for example, output appears as soon as it is generated — this happens, for
instance, when you compile code in the built-in editor.

At other times, you can view output in atool called the Output Browser. Thistool col-
lects together all the output generated by the environment, and is particularly useful
for viewing output generated by your own processes (which cannot be displayed in
any other environment tool). The Output Browser displays all the output sent to the
default value of the variable *standard-output*.

1. Evaluatethe following in the Listener.

(capi:contain
(make-instance 'capi:push-button-panel
:items '(:red :yellow :blue)
:selection-callback
#' (lambda (data interface)
(format t
"Pressed button in interface ~S~%
data=~S~%"
interface data))))

Thisis apiece of CAPI code that creates awindow with three buttons, |abeled
RED, YELLOW and BLUE, as shown in Figure 2.5. Pressing any of these buttons
prints the value of the button pressed.

12

2.5 Inspecting objects using the Inspector

Figure 2.5 Example CAPI window

RED|| YELLOW || BLUE

Click on the Output tab in the Listener.

Try clicking on any of the buttons in the window you just created, and look at
the output generated.

Now try a second example by entering the form below into the Listener at the
current prompt (remember to click the Listener tab in the Listener first).

(capi:contain (make-instance
'capi:text-input-pane
:callback #'(lambda (text interface)
(format t
"You entered: ~S~%" text))
:title "My Text Input Pane"))

The object that this code creates is going to demonstrate the I nspector tool. The
code above creates a window containing atext input pane. You can type text
directly into atext input pane, and this can be passed, for instance, to other func-
tions for further processing.

Type the word hello into the text input pane and press Return. LOOK at the
generated output in the output view.

2.5 Inspecting objects using the Inspector

Thevariables *, **, and *** hold the results of expressions which have been evalu-
ated in the Listener. * always holds the result of the last expression evaluated; **
holds the previous value of *, and *** holds the previous value of **. These variables
(* in particular) are not only useful in their own right; the environment uses them to
pass values between different tools.

1. Makesurethe Listener tab isvisible, and type *.

13

2 A Short Tutorial

14

If you have followed thistutorial so far, the text input pane object that you cre-
ated above isreturned. Thisis because the capi : contain function returnsthe
object that is being contained. You can easily inspect this aobject more closely in
the Inspector tool.

2. Choose the menu command Values > Inspect.

This creates an Inspector tool which displaysthe capi:text-input-pane
object currently contained in *.

Figure 2.6 Examining atext input pane in the Inspector

Inspector 1

Works Fle Edit View Object Slots History Help

WEL R

e T

b

Text Input Pane | Local Slots

Filter v X Matches 48
Attribute Value %
CAPILACCEPTS-FOCUS-P T i
CAPI:ALLOWS-NEWLINE-P T

CAPI:BACKGROUND #:RGB 1.050 1.050 1.050)
CAPI-INTERNALS:CALLBACK #<anonymous interpreted fu ——
£ S »]
Ready.

TEXT-INPUT-PANE: #<CAPLTEXT-INPUT-PANE 21BEE273>

The commands in the Values menu always act upon the current value of *. This
enables you to pass a value easily from one tool to ancther.

The main part of the Inspector isalist of all the dotsin the object being inspected.
Thislist shows both the name of each dot and its current value. Above thislistisa
button labeled Filter with atext box to itsright. Thisletsyou filter the information
shown in the main list, which can be useful when you are inspecting objects with a

2.6 Examining classes in the Class Browser

large number of slots. The name of the object being inspected appears immediately
below the echo area.

3. Click inthe Filter text box, type the word text.

Thisrestricts the display in the Inspector to only those items which contain the
string “text”, either in the slot name or in the slot value.

After using the filter, you can easily see that one of the available slots contains
the word hello that you typed into the text input pane.

The Inspector always displays the actual instantiation of a given object (as
opposed to acopy of it), so that you can be certain that any changesto the object
itself arereflected in the Inspector.

4. Display the text input pane that you created earlier.

If you can no longer seeit, choose Works > Windows > Container; thisisasim-
ple way to display any of the windows and tools that you have created so far.
(There are actually two windows with this name; if you choose the wrong one
first of al, then just choose the other one.)

5. Click inthetext input pane and delete theword hello. Type goodbye and press

Return.

6. Sdlect the Inspector to make it the active window and choose Works > Refresh.
The description of the text slot now reflects the new value you specified.

7. Closethe Inspector by choosing Works > Exit > Window.

You can close any window in the environment in this way, although there are often
other ways of closing windows.

2.6 Examining classes in the Class Browser

This section shows you how to use the Class Browser tool to examine information
about the Common Lisp class of any given object. The examples given use the text
input pane object that you created earlier, and show you how you can change the
values of aslot programmatically.

1. IntheListener, type * once again.

15

2 A Short Tutorial

16

Notice that the * variable still contains the value of the text input pane object.
Thismeansthat it is easy to perform several actions on that object. Notice
further that the environment is aware that the object has been changed: the value
returned by * reflects the change to the text slot that you made in the last
section.

From the Listener, choose Values > Class.

This creates a Class Browser, shown in Figure 2.7, which allows you to examine
the class of the object contained in *.

2.6 Examining classes in the Class Browser

Figure 2.7 Examining the class of an object using the Class Browser

Class Browser 1

Works File Edit View Description Slots Classes Methods History Help

v DD "YU DO R v
E[CP1 TEXT INPUT-PANE v X

Hierarchy | Superclasses | Subclasses Initargs | Functions | Precedence |
Include Inherited Slots

Filerv | | X Matches 48

CAPIHNTERNALS:CALLBACK
CAPIL:CALLEACK-TYPE
CAPILINTERNALS. CARET-POSITION
CAPIHINTERNALS:CHANGE-CALLEBACK
CAPI-:CHANGFE-CAI | BACK-TYPE

From Classes: CAPLTEXT-INPUT-PANE
Slot Mame: CAPIL:CALLBACK-TYPE
Type: T
Initargs: :CALLBACK-TYPE
Initform: :DATA-INTERFACE
Readers:
Writers:
Allocation: [INSTANCE

Ready.

Ensure that the Slots tab is selected, asin theillustration. In the Class: box, the name
of the current Common Lisp classis printed. The list below the Filter box displaysthe
dots available to the current class, and list labeled Description: displays the descrip-
tion of any selected slot. The filter works in the same way as the Inspector’sfilter.
Thereisaso acheckbox labeled Include Inherited Slots. Selecting this checkbox lets
you switch between displaying all the slots defined on the current class and all its

17

2 A Short Tutorial

superclasses, and only those slots defined directly on the current class. By default,
dots defined on any superclasses (inherited slots) are shown in the main area.

3. Filter the display asyou did for the Inspector; click in the Filter box, and this
time type the word foreground.

Only those slots with the string “foreground” in their names are displayed.

4. Select the car1: : FOREGROUND Slot from thelist. A description of the ot
appearsin the description area, including information such as the initargs, read-
ers, and writers of the slot.

Notice that the class text input pane has both areader, capi:simple-pane-fore-
ground, and awriter, (setf capi:simple-pane-foreground).\We can usethis
information to programmatically change the text shown in the text input pane.

5. Typethisform into the Listener:
(setf (capi:simple-pane-foreground *) :red)

The text displayed in the text input paneis displayed in red to reflect the new value
you have specified. Notice how you were able to use the * variable to refer directly to
the text input pane abject itself.

2.7 Summary

In thisintroductory tutorial you have seen how to perform the following actions:
* Start the windowing environment.
e Evauate and re-evaluate Common Lisp forms using the Listener.

« Invoke the Debugger, follow the backtrace that it produces, and return from the
error which caused entry to the Debugger.

e Collect and display data generated by your own code in the Output Browser.
e Usethe Inspector to examine the current state of an object.

» Usethe Class Browser to find out detailed information about a given class, so
that you can make arbitrary programmatic changes to an instance of that class.

The next two chapters describe elements of the environment which are common to all
tools.

18

2.7 Summary

Other chaptersin this manual describe the other tools available in the environment.
Each chapter isintended to be reasonably independent of the others, so you can look at
them in any order you wish. You are advised to study the chapters on the basic tools,
such as the Inspector, the Class Browser and the Editor first, since a knowledge of
these toolsisvital if you want to get the best out of the environment.

19

2 A Short Tutorial

20

3

Common Features

Th LispWorks IDE has been designed so that its features are consistent throughout,
and tools have a uniform look and feel. All tools have certain characteristics which
look the same, and behave in a consistent manner. By making as many common fea-
tures as possible, learning how to use each tool is much simpler.

Chapter 2, “A Short Tutoria”, introduced you to some of the major tools in the envi-
ronment, demonstrating the commonality and high integration between them, and
showing how this can be used to good effect in the devel opment process. This chapter
describes these common features in more detail.

Most of the common features in the environment can be found under the Works, File,
Tools, Windows, History and Help menus. Using the commands avail able under these
menus you can:

e Moveto any other tool.

e Cut, copy or paste viathe clipboard and the Object Clipboard tool.
« Perform search and replace operations.

* Re-issue a previous command, or re-examine an object.

« Perform operations such as loading and saving files.

Each menu command operates on the window associated with the menu.

21

3 Common Features

22

In addition, some other conventions have been adopted throughout the LispWorks
IDE:

* Many tools have a number of different views: ways of displaying information.
Each view is made available by clicking on a different tab in the tool.

e Listsdisplayed in many tools can be filtered in order to hide redundant or unin-
teresting information.

These features are described in full in this chapter. Please note that subsequent
descriptions of individual tools in the environment do not include a description of
these menus, unless a feature specific to the individua tool is described.

Online help is also available from the Help menu in any window. These facilities are
described in Chapter 4, “ Getting Help”.

Many tools allow you to display information in the form of a graph. These graph
views behave consistently throughout the environment, and a description of the graph
features offered is given in Chapter 6, “Manipulating Graphs”.

3.1 Displaying tool windows
There are many tools available, and you can display them in a number of ways.

You can also control how tools are re-used within the environment. That is, whether
an existing Listener window (for example) israised or a new one created, when you
ask for a Listener tool. In this section we will discuss globa and per-tool control of
reuse.

3.1.1 Displaying existing windows

Choose the Windows menufrom the podium. This menu contains alist of all the win-
dows currently available in the environment. Choosing any item from this list brings
the window to the front of the display.

3.1.2 Iconifying existing windows

To iconify awindow, use the command provided by your window manager.

3.1

3.1.3 Displaying tools using the mouse
To display most tools:
1. Choose the Tools menu from the podium.
Most tools in the environment are listed in this menu.
2. Choose thetool you require from the menu.
or
1. Choosethe Works > Tools menu from any tool.
2. Choosethetool you require from this menu.
or

1. Click the appropriate button on the Podium.
For example, to display a Process Browser, click # .

Displaying tool windows

Thetool iscreated (if necessary), and displayed. Using this method can be useful you
may not remember immediately whether you have an existing instance of a given tool

or not.

3.1.4 Displaying tools using the keyboard

Accelerators are provided for the popular items on the Tools menu.

Each tool accelerator is an a phanumeric key together with platform-specific modifier

keys as shown in “Tool accelerator keys’ on page 24.

You cannot configure these pre-defined tool accelerators.

3.1.4.1 Tool accelerator modifier keys

On GTK+ and Motif the modifiers are Meta+ctrl. For example, Meta+Ctrl+L raises

alListener.

23

3 Common Features

3.1.4.2 Tool accelerator keys

The accelerator keys for each tool are as shown in Table 3.1

24

Table 3.1 Tool accelerators

Tool Name Accelerator

Listener Meta+Ctrl+L
Editor Meta+Ctrl+E
Output Browser Meta+Ctrl+U
I nspector Meta+Ctrl+I
Class Browser Meta+Ctrl+C
Generic Function Browser Meta+Ctrl+G
Symbol Browser Meta+Ctrl+S
Object Clipboard Meta+Ctrl+0
Function Call Browser Meta+Ctrl+X
System Browser Meta+Ctrl+Y
Compilation Conditions

Browser Meta+Ctrl+D
Search Files Meta+Ctrl+F
Profiler None

Tracer Meta+Ctrl+T
Stepper None
Window Browser Meta+Ctrl+W
Process Browser Meta+Ctrl+P
Shell None
Application Builder Meta+Ctrl+A

3.1 Displaying tool windows

Table 3.1 Tool accelerators

Tool Name Accelerator

Debugger ‘ None

3.1.4.3 Special considerations when using tool accelerators

In the deprecated Motif GUI, tool accelerators work only in KDE/Gnome editor emu-
lation. Also, you need a keyboard with a1t on mod1 and meta on adifferent modifier
(for example, mod3).

3.1.5 Re-using tool windows

3.1.5.1 Global control of re-use

By default, tools windows are re-used where possible. For example, suppose you
aready have a Listener window (potentially iconified) but do not have an Inspector
window. When you choose Tools > Listener in the podium, the existing Listener is
displayed. When you choose Tools > Inspector, an Inspector is created and displayed.

You can switch off re-use of tool windows. To do this, first raise the Preferences dia-

log as described in “ Setting preferences’ on page 28. In the Preferences dialog under

Environment > General > Window Options uncheck the Reuse all tools box and click
OK. Now, when you choose Tools > Listener anew Listener is created, regardless of

whether one already exists, and other tools behave in the same way.

The setting of Reuse all tools will be retained for your subsequent LispWorks
sessions.

3.1.5.2 Per-window control of re-use

When the Reuse all tools option ison, tools windows are reusable by default. How-
ever, it ispossible to specify that a particular instance of atool is not reusable. To
make your Inspector not reusable, follow these steps:

1. Ensurethat the Reuse all tools option is checked under Works > Tools > Prefer-
ences....

25

3 Common Features

26

2. Inthe Inspector window, open the menu Works > Customize and deselect the
Resuable option.

3. Now try Tools > Inspector. A hew Inspector window is created.

TheReuse all tools option is persistant, but the per-tool setting Resuable applies only
to the current instance of the tool, and it does not affect future sessions.

3.1.6 Toolbar configurations

Most tools have toolbars offering one-click access to frequently-used commands. For
example, the Editor has atoolbar for operating on source code.

Figure 3.1 The Editor’s source operations tool bar

@y ®

You may prefer to remove such toolbars. You can control whether atool displaysits
toolbars by the option Show Toolbar.

To hide toolbars for a particular type of tool:
1. Raisethe Preferences dialog as described in “ Setting preferences’ on page 28.
2. Sdect thetool inthelist on the left side of the dialog.
3. Select the General tab on the right side of the dialog.
4. Uncheck Show Toolbar and press OK to confirm the setting.

You can aso customize the toolbar by removing rarely-used buttons and adding or
removing separators between groups of buttons. To do this, raise the context menu on
the toolbar, choose Customize and make your selections in the Customize Toolbar
dialog. You can aso use this menu to select whether this toolbar’s buttons show an
image, or text, or both.

Note: The functionality of each toolbar is available el sawhere. For example the Edi-
tor’s source code operations are also available on the Buffer, Definitions and Expres-
sion menus.

3.1 Displaying tool windows

3.1.7 Copying windows

Choose Works > Clone in agiven tool window to make a copy of that tool window.
Thisisuseful, for instance, if you wish to have two different views on an object
simultaneously, and allows you to have several copies of atool without having to
change its re-use property using the Works > Customize menu.

3.1.8 Closing windows

Close any window in the environment using one of the following methods:
* Choose Works > Exit > Window
« Use awindow-manager-specific feature, if available

« In Editor windows only, use the Emacs-like command pelete window (key-
stroke ctrl+x 0)

3.1.9 Updating windows
To manually update any tool, choose Works > Refresh.

Updating atool is a useful way of making a snapshot of an aspect of the environment
that you are interested in. For instance, imagine you want to compare a number of
instances of a CLOS class against a known instance of the same class using the
Inspector. You can do this as follows:

1. Create an object to inspect, by entering in a Listener
(make-instance 'capi:text-input-pane)
2. Choose Values > Inspect to view the object in the Inspector.

3. Make sure the Inspector is the active window, and choose Works > Clone to
make a copy of it.

4. Inthe Listener, enter the same form again to create a second object.

Note: You can use Esc P in Emacs emulation or ctr1+Up in Windows emula-
tion to get the previous Listener command.

5. View the new object in the Inspector asin Step 2. Compare it to the origina
instance that is still displayed in the clone.

27

3 Common Features

28

3.2 Setting preferences

Choose Tools > Preferences... from the podium or Works > Tools > Preferences... Or
click #F to raise the Preferences dialog. This dialog is used to specify:

« options affecting the development environment in genera such as those
described in “Re-using tool windows’ on page 25 or the name of your initial-
ization file, and

» options specific to each type of tool, such as the Editor tool, Inspector tool and
SO on.

The tool-specific options are described in the chapter relevant to each tool.

The remainder of this section describes the general environment options. To see these,
ensure that Environment is selected in the list on the |eft side of the Preferences dia-
log, and select the General, Emulation, Styles, and File Encodings tabs.

In all casesyour setting is preserved for future use after you press OK to close the
Preferences dialog.

3.2 Setting preferences

3.2.1 General options
Thefirst tab under Environment contains the General options.
Figure 3.2 The Preferences dialog

LispWorks: Preferences

General | Emulation |Sty1e5 | File Encodings |

& Application Builder

&3 Class Browser

c ompilation Conditions
& Debugger

= Editor

<= Function Call Browser

Window Options

Reuse all tools

Use recent directory for opening files

Completion

Pg . . Use in-place completion
Genenc Function Browser i p

B Inspector

U3 Listener

[*] Object Clipboard
teit Output Browser

[] Auto-insert on single file completion

Confirm Before Exiting

) Never (@ When modified buffers (O Always

Process Browser

Lists
© Profiler
R search Files Add a filter to dialog lists longer than: 25 b
& Shell Use Find Definitions list for more items than:
I Stepper

°A Symbol Browser Initialization File

ﬁﬁ System Browser

fu/dubyay.lispworks| B X =

I Tracer
Windt}w Browser

|'Qancel” o« OK ‘

3.2.1.1 The window options

Checking Reuse all tools ensures that LispWorks uses an existing tool rather than
starting up anew copy. For example, if an editor isalready open, choosing File > Open
and selecting a new file causes the file to be opened in the existing editor.

29

3 Common Features

30

Check Use recent directory for opening files to make operations such asFile > Open
use the directory of the file most recently edited as the default directory in thefile
dialog. Deselect this option to make the dialog’s default directory be the current work-
ing directory.

Note: this option does not affect the Editor tool, for which the file dialog always uses
the directory of the currently visible file as the default directory.

3.2.1.2 Controlling completion behavior

In-place completion is enabled by default in the IDE. If you prefer the modal dialog
style of completion familiar to users of LispWorks 5.0 and previous versions, desel ect
the Use in-place completion option.

When using in-place completion to complete afilename, by default you must always
select an item from the in-place completion window. You can accelerate this
interaction by checking the option Auto-insert on single file completion. Then, if
thereisjust one possible completion, it isautomatically sel ected and appended to your
input.

3.2.1.3 Quitting the environment
Choose Works > Exit > LispWorks... to exit LispWorks.

You can control whether LispWorks prompts for confirmation before exiting, using
Works > Tools > Preferences.... The Confirm Before Exiting preference has these
meanings:

Never LispWorks exits immediately.

When modified buffers

If there are modified editor buffers, a dialog asks you whether
these should be saved before exiting.

Always A dialog asks you to confirm whether LispWorks should exit.

3.2 Setting preferences

3.2.1.4 Automatic filters on dialogs

The option Add a filter to dialog lists longer than: affects modal dialogs containing
long lists. When the list is longer than the value of this option, the list has afilter,
which you can use as described in “Filtering modal dialog completion” on page 63.

3.2.1.5 Automatic use of Find Definitions view

The option Use Find Definitions list for more items than: affects the behavior of
source location commands such as the editor commands Find Source and Find
Source for Dspec, and the menu command Expression > Find Source. When the
number of source location results exceeds the value of this option, then the results are
immediately displayed in the Find Definitions view of an Editor tool. Thisis particu-
larly useful when you need to locate the definition of a particular CLOS method from
the generic function name.

The Find Definitions view is described in “Finding definitions’ on page 177.

3.2.1.6 Initialization file

By default LispWorks looks for afile . 1ispworks to be loaded automatically when
LispWorksis started. You should create an initialization file and add to it Lisp code to
initialize the LispWorks image to suit your needs.

The global preferences dialog can be used to specify adifferent initiaization file. You
can either enter the path and filename directly into the text input box, or use the f’_":!;-
button to display afile selection dialog. Clicking on }(undoes any alterations
entered.

Note: it isup to each user to create and maintain their own personal initiaization file.
A sample personal initidization fileis supplied with LispWorks - see thefile 1ib/6-
0-0-0/config/a-dot-lispworks.1lisp inthe LispWorks distribution.

31

3 Common Features

32

3.2.2 Configuring the editor emulation
The second tab under Environment contains the Emulation options.

Figure 3.3 The Emulation tab of the Environment Preferences

General | Emulation | Styles | File Encodings

Keys

() Editor keys like Emacs

@ Editor keys like KDE;’GnnmEE

Cursor Blink Rate

() None ® Native O Specify 500 = Milliseconds

Here you can configure the editor to behave according to one of two pre-defined edi-
tor input styles (emulations) which determine how keyboard input is processed and
other properties such as the shape of the input cursor. You can also set the cursor blink
rate.

The choice of emulation affects the Editor and other LispWorks tools containing edi-
tors such as the Output Browser, Stepper and Profiler.

3.2.2.1 Choosing the key input style

The Editor and other tools using capi : editor-pane Offer two key input styles:
Emacs emulation or KDE/Gnome emulation. By default, Emacs emulationis used. To
choose an emulation, select Environment > Emulation in the Preferences dialog as
shown in “Configuring the editor emulation” on page 32 and select one of the Editor
keys are like... options.

3.2 Setting preferences

Note: Inthis and other manuals, the Emacs keys are generally given. For help with
findings keys for editor commands, choose Help > Editing > Command to Key. Also
scethefilesconfig/key-binds.lisp and config/msw-key-binds.1lisp Which
contain the forms defining the keys for each input style.

3.2.2.2 Setting the cursor blink rate
By default the editor cursor blinks on and off at the usua rate for your computer.

To change the blink rate, select Specify in the Cursor Blink Rate area. Either scroll to
choose the rate in Milliseconds, or enter an integer between 100 and 2000.

To stop the editor cursor from blinking, select None in the Cursor Blink Rate area.

33

3 Common Features

3.2.3 Setting the editor font, color and other style attributes

The third tab under Environment contains the Styles options.

Figure 3.4 The Stylestab of the Environment Preferences

General | Emulation | Styles | File Encodings

Editor Font

Sample:

Colors And Attributes

Override the system default font

Click here to choose the font

Style Name: | Lisp Keyword

Background: | None w7

Foreground: | Specified *

Restore Defaults

Color parenthesis

By default the editor uses a system default font. You can choose an alternative font
and see asample of it displayed in the Editor Font area. Click in the Sample: areato
raise afont chooser. After you select the font, the text "Click here to choose the font"

is displayed in your selected font.

X
-

[] Bold []Italic [] Underline [] Inverse

3.2 Setting preferences

To make the LispWorks editor actually use your alternative font, select Override the
system default font.

This specifies the font used in Editor and Listener windows and all other tools based
on the editor, such as the Shell, Stepper and Profiler tools.

If you deselect Override the system default font the system remembers your choice
of alternative font, but does not actually use it for display.

3.2.3.1 Setting the text style attributes
By default the LispWorks IDE uses a variety of text stylesto:

» highlight selected text

e distinguish interactive input in the Listener and Shell tools

» distinguish compiler messages in the Output tab or Output Browser

* make Lisp code more easily readable with syntax coloring

« indicate matching parentheses, easing the writing of correct Lisp forms
Note: The last two of these features operate only in Lisp mode.

To change the attributes of one or more text styles, first select Environment > Styles
in the Preferences dialog as shown in “ Setting the editor font, color and other style
attributes” on page 34.

Then, to make Common Lisp symbols appear with red foreground rather than the
default purple for example, first select Lisp Keyword in the Style Name list. Then
select Specified alongside Foreground and double-click on the color areato theright.
In the Color chooser that appears, choose the new color and click OK. Now click OK
on the Preferences dialog and see the change in the way your Lisp code is displayed.
You may need to force the editor window to redisplay, for example by scrolling, to see
the change take effect.

For each named style, the Foreground and Background each have exactly one of the
following values:

None No specia formatting

Default Platform-standard highlighting, as for selected text

35

3 Common Features

Specified The color specified is used.

Modified The system generates a color which is usable for
highlighting.

A large cross appears in the Foreground (Background) color areawhen None, Modi-
fied or Default is selected. Thisindicates that the color is not used for the Foreground
(Background).

If you wish to turn off the highlighting of interactive input in the Listener and Shell
tools, first select Interactive Input in the Style Name list. Then uncheck all the
attributes and click OK.

To restore al styles to those in LispWorks as shipped, click Restore Defaults.

Note: the foreground and background colors of windows are set viathe system, not in
LispWorks. To alter these colors on GTK+ or Motif, see "Matching resources' in the

36

LispWorks CAPI User Guide and specify resources for the application class Lisp-

works.

The text styles used in syntax coloring have these meanings and default appearance:

Style Name

Table 3.2 Syntax styles

Use

Default appearance

Region Highlight

The active region

Native highlight

Show Point

Matching parentheses

:green background

Interactive Input

Input in a Listener or Shell

Bold

Editor help such as

Highlight . e Bold
Describe Bindings
Completion Dynamic and in-place Modified
P completions. Transient. background

Line Wrap Marker

Displays the editor’s line
wrap marker, where a line is
wrapped or truncated

:purple fore-
ground, modified
background

Style Name

Table 3.2 Syntax styles

Use

3.2 Setting preferences

Default appearance

Lisp Function Name

Name in defun, defmacro,
defmethod and defgeneric
forms

:blue foreground

. Comments and feature :firebrick
Lisp Comment .
expressions foreground
Name in deftype or other
. . :forestgreen
Lisp Type def... form, or lambda list
_ foreground
keyword such as soptional
. . Name in defvar Or :darkgoldenrod
Lisp Variable Name g
defparameter fOrms foreground
. . . . :rosybrown
Lisp String A string literal Y
foreground
. defun, defmacro Or other :purple
Lisp Keyword . purp
definer named get. .. foreground
. . :orchid
Lisp Builtin A keyword symbol
foreground
The current argument in a
Arglist Highlight Function Arglist Inverse

Displayer Window

3.2.3.2 Controlling parenthesis coloring

You can control whether the editor colors parenthesesin Lisp code. By default, pairs
of matching parens are displayed in the same color, with a different color for forms at
different depths. You can switch off this coloring by deselecting the option Color
parenthesis in the Styles tab of the Environment preferences.

3.2.4 Setting the default encodings

The fourth tab under Environment contains the File Encodings options.

37

3 Common Features

The Editor has defaults for the encodings used when opening and saving files. For
many users these defaults will suffice. If you need to change either, select the Environ-
ment > File Encodings tab of the Preferences dialog.

Figure 3.5 The File Encodings tab of the Preferences dialog

General | Emulation | Styles iFiIe Encﬂding5§

Encoding and Line Termination Options

I nput

AUTO-DETECT ¥ || AUTO-DETECT v

Output
LATIN-1 ¥ || LF
CRLF
| CR
DEFAULT

For example, to make the Editor save Carriage Return line-terminated files by default,
select CR in the Line Termination Options under Output.

38

3.3 Performing editing functions

3.3 Performing editing functions

This section discusses commands available in the Edit menu of any window. These
commands fall into five areas:

* Undoing changes.

e Using the clipboard.

e Selecting text and objects.
e Searching for text.

e Substituting text.

3.3.1 Undoing changes

You can undo changes made in atool using Edit > Undo. Thisfacility is most useful in
the Editor and Listener— see “ Other essential commands” on page 186 for more
details.

3.3.2 Using the clipboard

You can use the clipboard to transfer data between tools, or even between the Lisp-
Works IDE and other applications that you are running. There are three commands
available, asfollows:

e Choose Edit > Copy to put the selected item or text from the active pane onto
the clipboard.

e Choose Edit > Cut to put the selected item or text from the active pane onto the
clipboard and remove it from the active pane.

» Choose Edit > Paste to replace the selected item or text in the active pane with
the contents of the clipboard.

Use of Copy or Cut followed by Paste lets you transfer items between tools, or to dif-
ferent parts of the same tool.

Unlike the clipboard in many other applications, the LispWorks IDE clipboard can
contain a Common Lisp object. This makes the LispWorks IDE clipboard an excep-
tionally powerful tool, allowing you to pass objects between different toolsin the
environment so that they can be examined in different ways.

39

3 Common Features

If the clipboard contains a Lisp object and you use the Paste command on a pane that
only accepts text, then the object's printed representation will be pasted.

There are several ways to use these commands:

In the Editor, you can Copy chunks of text and Paste them into different
places, either within the same file or between different files. If you have sec-
tions of code which are very similar, rather than typing each section out explic-
itly, just Paste in the same section as many times as you need and change only
the relevant parts. “ Cutting, copying and pasting using the kill ring” on page
188 describes a number of more sophisticated methods that can be used in the
Editor.

In the Class Browser's Hierarchy view (for example), you can Copy a selected
class from the Superclasses pane to the clipboard and then Paste it into
another tool. Because the Common Lisp object itself is copied to the clipboard,
it istreated usefully according to the tool. For instance, if you paste it into an
Inspector using Edit > Object > Paste Object, then the classisinspected. If you
paste it into an editor however, the class name is simply pasted as text.

Aswell as the menu commands, you can use the c'ﬁ':, , and E buttons in the tool-
bar, for Cut, Copy and Paste respectively.

Note: You can aso transfer data within the environment using the standard actions
commands described in “ Performing operations on selected objects’ on page 48.

3.3.3 Using the Object operations with the clipboard

You can use the clipboard to transfer atool's " primary object" between tools. There are
three commands available, as follows:

Choose Edit > Object > Copy Object to put the selection or “primary object”
onto the clipboard.

Choose Edit > Object > Cut Object to put the selection or “primary object”
onto the clipboard and remove it from the tool it was copied from.

Choose Edit > Object > Paste Object to put the contents of the clipboard into
the current tool.

3.3 Performing editing functions

Use of Copy Object or Cut Object followed by Paste Object lets you transfer items
between tools, or to different parts of the same tool. There are several ways to use
these commands:

* Inthe Class Browser (for example) you can Copy Object the class to the clip-
board and then Paste Object it into another tool. Because the Common Lisp
object itself is copied to the clipboard, it is treated usefully according to the
tool. For instance, if you pasteit into an Inspector, it isinspected. If you pasteit
into an editor however, the class nameis simply pasted as text.

« Between any of thetools, you can Cut Object, Copy Object, and Paste Object
Common Lisp objects. You can, for instance, make an instance of aclassin the
Listener, inspect it by Values > Inspect, and then Copy Object it in the Inspec-
tor, and then Paste Object it into a Class Browser to examine its class.

« |If you have several Common Lisp objects which you want to keep track of,
store them in the Object Clipboard. You can do this by a Clip command in tools
such as the Class Browser, or by Edit > Object > Paste Object in the Object
Clipboard tool. See Chapter 9, “The Object Clipboard” for more information
about that tool.

Note: You can aso transfer data within the environment using the standard actions
commands described in Section 3.8 on page 48.

UNIX Implementation Note: The environment also interacts with the standard
UNIX clipboard, so that data can be transferred to or from applications other than
Lisp. Todo this, the UNIX and the LispWorks IDE clipboards are kept in synchroniza-
tion all the time, asfollows:

* Whenever aCommon Lisp object is copied to the LispWorks IDE clipboard, its
string representation is copied onto the UNIX clipboard.

* Whenever astring is copied to the UNIX clipboard, it is copied onto the Lisp-
Works IDE clipboard as a string.

3.3.4 Selecting text and objects

Choose Edit > Select All or Edit > Deselect All to select or deselect all thetext in an
Editor or Listener window, or all theitemsin alist or graph. These commands are use-
ful whenever there istoo much information to be able to select items one at atime.

These commands operate on the active pane of the current tool.

41

3 Common Features

42

3.3.5 Searching for text and objects

You can search for and change text in most tools using Edit > Find..., Edit > Find Next,
and Edit > Replace....

Choose Edit > Find... to find an item in the current tool (this might be a piece of text,
or afragment of Common Lisp, or an object, depending on the tool). You must supply
anitem to find in the dialog that appears.

Choose Edit > Find Next if you want to search for the next occurrence of an item you
have already found. This command does not prompt you for an item to find, and so is
only available if you have aready found something.

Choose Edit > Replace... if you want to replace one string of text with another. A dia-
log box prompts you for atext string to find, and atext string to replace it with. This
command is only available in the Editor and the Listener, and is most useful in the
Editor.

These commands operate on the active pane of the current tool.

3.4 The Break gesture
The keyboard Break gesture iSMeta+Ctrl+c.
This chooses a process that is useful to break, and breaks it.

Note that you cannot use Escape in place of Meta. Asthere are many different types
of keyboard, if it isnot possible to assert which isthe meta key on your keyboard, it
may be marked with a special character, such as adiamond, or it may be one of the
function keys — try Fi1.

Meta+Ctrl+C gppliesto both GTK+ and Motif. If your keyboard has the Break key,
then you can also use this aternate break gesture. The key sequence can be configured

using capi:set-interactive-break-gestures.
The process to break is chosen as follows:

1. If the break gestureis sent to any LispWorks IDE window or other CAPI inter-
face that iswaiting for events, it does "Interface break", as described below.

3.5 The history list

2. Otherwiseit checksfor abusy processesthat is essential for LispWorksto work
correctly, or that interacts with the user (normally that means that some CAPI
interface usesit), or that is flagged as wanting interrupts (currently that means a
REPL). If it finds such abusy process, it breaks it.

3. Otherwiseit activates or starts the Process Browser. Note that this tool, docu-
mented in “The Process Browser” on page 333, can be used to break any other
process.

"Interface break" depends on the interface. For an interface that has another process,
notably the Listener with its REPL, it breaks that other process. For most toolsit starts
the Process Browser, otherwise just it breaks the interface's process.

3.5 The history list

The history list of atool stores the most recent events which have been carried out in
that tool, or the most recent objects which have been browsed in it.

TheHistory > Items submenu provides alist of these events (or objects), allowing you
to repeat any of them (or browse them again) by choosing them from the menu. This
gives you an easy way of repeating formsin the Listener, inspecting objects or brows-
ing classes again, revisiting searches, and so on.

The menu lists the last ten unique items to have entered the history list of the active
window. Because each entry is unigue, someitems may have occurred more than ten
events ago.

If the editor is the active window, the History > Items submenu lists the buffers cur-
rently open.

3.5.1 Repeating events from the history list

The easiest way of repeating an event from the history list isto choose it from the His-
tory > Items submenu. There may be times, though, when thisisinconvenient (the
items on the list may be too long to be able to distinguish between them easily, or you
might want to repeat an item that occurred more than ten events ago). In such cases,
there are three commands which offer an alternative way of choosing items.

Choose History > Previous to perform the previousitem in the history list of the tool.
Thisisusually the most recent event you have performed, but may not be (if, for
instance, the last action was itself an event that was already on the history list).

3 Common Features

Choose History > Next to perform the next item in the history list. Thisitem is not
usually available unless the last event you performed involved an item already on the
history list.

Note: You can also usethe = and =} buttonsin the toolbar.

3.5.2 Editing the history list

Choose History > Modify to remove items from the History > Items menu. A dialog
appearsthat contains all of the itemsin the current History menu. Select theitemsyou
wish to retain, and click OK. Any items which were not selected in the dialog are
removed from the history list.

Note: another way to keep track of itemsthat you're interested in (such as appear in
the history lists of various tools) isto place them on the Object Clipboard. See Chapter
9, “The Object Clipboard” for more details.

3.6 Operating on files

The File menu alows you to perform operations on files stored on disk. Some com-
mands are only available for toolswhich need to interact with the files you have stored
on disk, such asthe Listener and Editor.

The default commands available in the File menu are described below. Note that in
some tools, the File menu contains additional commands specific to that tool. Please
refer to the relevant chapters for each tool for a description of these additional com-
mands.

Choose File > New to open anew buffer in the built-in Editor. If an Editor window has
not yet been created, this command also creates one. The new buffer is
unnamed.Alternatively, you can click the D button in the toolbar. Thistoolbar button
is available on appropriate tools, and in the podium as shown in Figure 2.1, page 6.

Choose File > Open to open an existing file in anew editor buffer. Where appropriate,
adiaog appears, allowing you to choose afilename. If an editor window has not yet
been created, this command creates one. Alternatively, you can click theﬁ,“. buttonin
thetoolbar. Thistoolbar button is available on appropriate tools, and in the LispWorks
podium, shown in Figure 2.1, page 6.

Choose File > Load to load afile of Lisp source code or afad (binary) file. Choose
File > Compile to compile afile of Lisp source code. Choose File > Compile and Load

3.7 Displaying packages

compile a source file and load the resulting fadl file. When appropriate, each com-
mand displays a dialog, allowing you to choose the file you want to load or compile.

Choose File > Print to print afile. A dialog alows you to choose afileto print. The
current printer can be changed or configured by choosing the File > Printer Setup...
menu option.

Choose File > Browse Parent System to view the parent system of the current file in
the System Browser. This command is only available if the system has already been
defined. See Chapter 27, “The System Browser” for a compl ete description of the Sys-
tem Browser.

Choose File > Recent Files t0 raise a submenu listing the last 10 files visited via
the File > Open... and File > Save As... commands. This allows speedy return to
the files you are working on.

Note: Asdescribed above, the behavior of each command can vary slightly according
to the tool in which the command is chosen. For instance, choosing File > Print in the

Editor prints out the displayed file, whereas choosing File > Print in the Listener
prompts you for afileto print.

3.7 Displaying packages
Symbols can be displayed either with their package information attached or not. In the
LispWorks IDE, symbols are displayed with the package nhame attached by default.

For example, suppose you have created a package roo which includes a symbol
named bar and a symbol named baz. Suppose further that you created a new package
Foo2, which used the Foo package. This can be done as shown below:

(defpackage foo (:use "COMMON-LISP"))
(defpackage foo2 (:use "FOO" "COMMON-LISP"))

Note that in defining both packages, the common-LIsP package has also been used. It
is good practice to use this package, to ensure that commonly-used symbols are avail-
able.

When creating packages which use other packages, exported symbols can be called
without having to refer to the package name.

45

3 Common Features

46

Toillustrate this, let us return to our example.

Figure 3.6 Two example packages

FOO1 FOO2
bar bar
baz fool::baz

We have two packages. Foo1 and Foo2. Fool contains symbolsbar and baz. The
symbol bar has been exported, whereas the symbol baz is not exported.

When the current package is Foo2, you can refer to bar without using the package
name. Thisis because Foo2 uses Fool and bar isexported. However to refer to baz
you must still usethe Foo1 package namelikethis. fool: :baz. Thisisbecausebaz is
not exported.

Note a so that when the current package is other than Foo1 or Foo2, you can refer to
fool:bar, but you can only refer to baz as fool: :baz.

Package names are usually displayed alongside symbolsin alist. Having a package
entry on every line can be unhelpful, especialy if the majority of itemslisted are from
the same package. To hide the package names for the symbolsin a given type of tool:

1. Raisethe Preferences dialog as described in “ Setting preferences’ on page 28.
2. Select thetool typeinthelist on the left side of the diaog.

3. Uncheck Show Package Names in the General tab.
4

Click OK to confirm your setting.

3.7.1 Specifying a package

If you are working in a particular package, you can adjust the tools to display symbols
asyou would refer to them from that package—that is, as the package sees them. This
can make listings clearer and, more importantly, can show you which symbols have
been exported from a package.

3.7 Displaying packages

Doing this changes the process package of the tool. This means that both displayed
symbols and symbols typed into the tool are assumed to be in the package specified.
This can be useful in abrowser, for example, if you intend to browse a number of
different objects which come from the same package.

To change the process package for a given type of tool:
1. Raisethe Preferences dialog as described in “ Setting preferences’ on page 28.
2. Sdect thetool typeinthelist on the left side of the diaog.
3. Select the General tab on the right side of the dialog, if necessary.
4

Delete the package name in the Package box, and type in the name of the new
package.

5. Click 4 to confirm this new name.
6. Click OK to make the change.

Note: If you wish, you can partially type the package name and then click ”“:!;. This
allowsyou to select from alist of al package names which begin with the partlal input
you have entered. See “ Completion” on page 59 for detailed instructions on using
completion.

As an example, imagine you are looking at alist of symbolsin the Inspector. You are
working in the package Foo, and some of the symbols in the Inspector are in that
package, while others are in another package. To change the current package of the
Inspector to Foo, follow the instructions below:

1. Raisethe Preferences dialog as described in “ Setting preferences’ on page 28.

The Preferences dialog indicates that comMoN-LISP-USER iSthe current pack-
age in thiswindow.

2. Sdect Inspector inthelist on the left side of the dialog.

3. Inthe Package box on the right side of the dialog, delete comMoN-LISP-USER,
and type Foo.

4. Click OK to make the change.

In the Inspector all the symbols available from roo appear without the package prefix
Foo. Similarly, all exported symbolsin packages which roo uses appear without a
package prefix, while all others have an appropriate package prefix.

47

3 Common Features

3.8 Performing operations on selected objects

In any tool, there are a number of operations that you can always perform on the
selected objects, irrespective of the type of objects you have selected. This allows you
to perform some powerful operations and also ensures aconsistent feel to every tool in
the environment.

In this context the term “ selected objects’ is meant in the widest sense, and can refer
to any items selected anywhere in atool, beit in alist of items, or agraph. It can also
refer to thetool’s current object: that is, the object which is currently being examined.

These operations are availabl e throughout the environment, and are referred to as stan-
dard action commands. As with other commands that are specific to the active win-
dow, standard action commands are usually available from menus on the main menu
bar of the tool you are using. The objects which are operated on by a given standard
action command depend on the menu from which you chose the command.

As an example, consider examining the contents of Common Lisp objects using the
Inspector.

The standard action commands for the Inspector are present in two places: the Object
menu, and the Slots menu.

e Choose a standard action command from the Object menu to perform an opera-
tion on the Inspector’s current object.

e Choose a standard action command from the Slots menu to perform an opera-
tion on the selected components of the Common Lisp object.

Notice that in the first case, the object operated on isthe tool’s current object: you do
not have to take any further action before performing the operation.

In the second case, the objects examined represent more specific pieces of informa-
tion: you need to select them before you can perform the operation. This, therefore,
examines more discrete pieces of information about the current object.

Many tools have one or more submenus like those described above. The first operates
on the current object. What that object is, and hence the name of the submenu in
which the commands are to be found, depends on the tool you are using. For instance,
if you are examining classes, the commands can be found in a Classes menu. If you
are examining methods, they can be found in a Methods menu.

3.8 Performing operations on selected objects

Sometools contain two or more such menus; precise details are given in the relevant
chapters.

Asaguide, if amenu has aplural for aname, the commands in that menu can be
performed on multiple selections. If the menu nameis not pluralized, commands only
affect asingle selection.

3.8.1 Operations available

The standard action commands available are described below. In these descriptions,
theterm “current object” refersto the Lisp abject that is being acted upon by the menu
command. This depends on the tool being used and the menu in which the command
appears, but should be obvious from the context.

Choose Browse to browse the current object using an appropriate browser. A browser
isatool which lets you examine a particular type of Common Lisp object, and there
are alarge number of them available in the environment. Some of the browsers
available are:

e The Class Browser, which lets you examine CL OS classes.

e The Generic Function browser, which lets you examine the generic functionsin
the environment, and the methods you have defined on them.

See the appropriate chapters for afull description of each browser; there is a chapter
of this manual devoted to each available browser. The precise name of the Browse
menu command reflects the type of browser that is used to examine the selected
object. Thus, if the command is Browse — Generic Function, a Generic Function
Browser is used.

Choose Class to look at the class of the current object in a Class Browser.
Alternatively, click on #3 inthetoolbar. See Chapter 8, “The Class Browser” for full
details about thistool.

Choose Clip to add the current object to the Object Clipboard. See Chapter 9, “The
Object Clipboard” for full details about this tool.

Choose Copy to copy the current object to the clipboard, thus making it available for
use elsewhere in the environment. Note that performing this operation on the object
currently being examined by the tool (for example, choosing the command from the
Object menu when an Inspector isthe active window) has the same effect as choosing

49

3 Common Features

50

Edit > Copy, whereas choosing this option from other menus (such as a Description
menu) copies more discrete information to the clipboard.

Choose Documentation to display the Common Lisp documentation (that is, the result
of the function documentation) for the current object. It is printed in a help window.

Choose Find Source to search for the source code definition of the current object.
Alternatively, click on = in thetoolbar. If it is found, the file is displayed in the Edi-
tor: the cursor is placed at the start of the definition. See Chapter 13, “The Editor” for
an introduction to the Editor tool. You can find only the definitions of objects you
have defined yourself (those for which you have written source code)—not those pro-
vided by the environment or the Lisp implementation.

Choose Inspect to invoke an Inspector on the current object. Alternatively, click on
& in the toolbar. See Chapter 17, “The Inspector”, for details about the Inspector. If
you are ever in any doubt about which object is operated on by a standard action com-
mand, choose this command.

Choose Listen to paste the current object into the Listener. Alternatively, click on ®;
in the toolbar. Chapter 21, “The Listener” provides you with full details about this
tool.

Choose Function Calls to describe the current object in afunction call browser. See
Chapter 14, “The Function Call Browser” for more details.

Choose Generic Function to describe the current object (a generic function or a
method) in a Generic Function Browser. If the current object is a method, then its
generic function is described in the Generic Function Browser and the method is
selected. See Chapter 15, “The Generic Function Browser” for more details.

Choose Browse Symbols Like to display symbols matching the current object in a
Symbol Browser. See Chapter 18, “The Symbol Browser” for more details.

3.9 Using different views

Many toolsin the LispWorks IDE have several different views, each of which can dis-
play information which is pertinent to the task at hand. You can switch to any of the

3.9 Using different views

available views by clicking on the appropriate tab at the top of the tool. When choos-
ing adifferent view, the layout of the tool itself changes.

Figure 3.7 Click tabsto display different views of atool

Click here to display The slots view is
the hierarchy view. currently visible.

Hierarchy | Superclasses | Subclasses | Slots | Initargs | Functions | Precedence

Click here to display
the precedence view.

In tools which are browsers, different views allow you to display different pieces of
information about the same objects; for instance, in the Class Browser you can switch
from aview which shows you information about the slots in a given Common Lisp
class to one which showsinformation about the initargs of the class.

In other tools, different views may show you completely different types of related
information. For example, in the Listener you can switch from the Listener view to a
view that shows you any output that has been generated by the Listener.

All tools have a default view when you first start them. The default view isthe one
which you are most likely to make most use of, or the one which you use first. When
you first start the built-in Editor, the default view is the text view. When you start a
Class Browser, the default view shows you the slots available for the current class, as
you have already seen.

3.9.1 Sorting items in views

You can sort the items displayed in the main area of any view using the Preferences
for agiventool.

To specify the sorting for the Class Browser, for example:

1. Raisethe Preferences dialog as described in “ Setting preferences’ on page 28.

51

3 Common Features

2. Sdect thetool (the Class Browser in this example) in the list on the left. Note
that an image representing each tool is shown alongside the tool names.

Figure 3.8 Example General Preferences

LispWorks: Preferences

Environment ﬂ General ‘ Subclass Graph | Superclass Graph P
& Application Builder Sort Package

|| OUnsoted COMMON-LISP-USER | v

@'Cumpllaﬂon Conditions @ By Name

Debi
_i eoHgger) By Package
[2) Editor

“= Function Call Browser

Show Package Names

Toolbar

. Show Toolbar
Genen’c Function Browser

B Inspector

U2y Listener

["] Object Clipboard
=) Qutput Browser
Process Browser
) Profiler
H@Search Files

& Shell

B Stepper

5% Symbol Browser
E!f?System Browser
I Tracer
Windaw Browser

|'Qancel” o« OK ‘

Select the type of Control the sort

tool in this panel. order of a tool
using the options
in this panel.

Notice that tool Preferences, such as the one shown above, have several tabs. In

these cases, the options described in this section are always available in the
General tab, so select thistab if necessary.

52

3.9 Using different views

3. Choose one of the optionsin the Sort areato specify the sort order of itemsin
Class Browser windows.

The options available vary according to the tool, but at least the following will
be available:

By Name Sorts symbolsin alist or graph according to the name of each
item. The packages that the symbols are resident in are
ignored when this option is used; thus, the symbol vv:allo-
cate would belisted before aa:vectorize.

By Package Sorts symbolsin alist or graph according to the package they
arelisted in. Thus, al symbolsin the aa package would be
listed together, as would all symbolsin the vv package. In
addition, the aa package would be listed before the vv pack-
age. Within agiven package, objectsare listed in a phabetical
order when using this option: thus, aa: carry-out-condi-
tions would be listed before aa:vectorize.

Unsorted Listsal symbolsin agraph or list in the order in which they
are occur naturally in the object being examined. This can
sometimes be a useful option in itself, and is aways the
quickest option available. You may sometimes want to use
this option if you are displaying a large number of items and
you are not filtering those items in any way.

The option you specify takes effect when you click OK in the Preferences dialog. Your
setting affects existing tools and is remembered for use when you create the same type
of tool in the future.

Note: There are sometimes other sort options available in the Sort area of the Prefer-
ences dialog, depending on the nature of the tool itself. These options are described in
the chapter specific to each tool.

Only those views whose main area consists of alist or agraph can be sorted. In partic-
ular, the default views of tools such as the Listener or the Editor, which is an editor
window which you can type directly into, cannot be sorted.

53

3 Common Features

3.10 Tracing symbols from tools

For some tools, submenus under the relevant main menus (for example, the Expres-
sion menu on the Editor tool) contain a Trace submenu that allows you to set tracing
options for afunction, method, macro, or generic function. Thisis a useful shortcut to
the trace macro, sinceit gives you some control over tracing in the environment
without having to work directly at the Common Lisp prompt.

Below, the current function means the currently selected function, method, macro or
generic function, or in the case of the Editor and Listener, the symbol under the cursor.

A Trace submenu generally has the following commands:
e Choose Trace to trace the current function.

* Choose Trace Inside to trace the current function within the current context.
Choosing this command setsthe : inside option for trace.

» Choose Trace with Break to trace the current function, and enter the debugger
on entry to it. Choosing this command setsthe :break option to t.

e Choose Untrace to turn off tracing on the current function.

» Choose Untrace All to turn off tracing on currently traced functions. Note that
this does not turn off tracing in the environment as awhole.

e Choose Show in Tracer to trace the current function and display in the Tracer
tool. This offers you more control over tracing. See Chapter 12, “The Tracer”
for details.

e Choose Toggle Tracing to turn all tracing commands in the environment on or
off. Choose Toggle Tracing again to restore the previous tracing state.

3.11 Linking tools together

You can link together pairs of tools, so that changing the information displayed in one
tool automatically updates the other. This can be done for virtually any tool in the
LispWorks IDE, and provides a simple way for you to browse information and see
how the state of the Lisp environment changes as you run your code. For instance, you
can make between an Inspector and a Listener so that every time you evaluate aform
in the Listener, its value is automatically inspected.

3.12 Filtering information

You can aso link two copies of the sametool. This can be avery useful way of seeing
two views of atool at once. For instance, you could create a copy of the Class Browser
by choosing Works > Clone, and then link them together. By keeping one browser in
the subclasses view, and the other in the slots view, you can automatically see both the
subclasses and the available slots for agiven class.

Linked tools have a master-slave relationship. One tool (the slave) gets updated auto-
matically, and the other tool (the master) controlsthe linking process. To link together
any two tools:

1. Select thetool that the link isto be established to. For example, to form alink
from an Inspector to a Class Browser to ensure that a class selected in the Class
Browser is automatically inspected, you would use the Edit menu of the Class
Browser.

2. Choose Edit > Link > fromtool where fromtool is the title of the tool you wish to
link from.

To break alink, select -- No Link -- instead of a specific tool.

To view all the current links that have been established, choose Edit > Link from >
Browse Links... Select any of the linkslisted and click on Remove Link(s) to remove
them.

3.12 Filtering information

Many tools have views which display information in alist. [temsin these lists may be
selected, and you can usually perform operations on selected items (for instance, by
means of the standard action commands, as described in “Performing operations on
selected objects’ on page 48).

Such lists are often long, including information which you are not interested in. For
instance, Common Lisp objects may contain alarge number of slots, most of which
are of no importance to your work.

Most such listsin have afilter area which allows you to hide theuninteresting infor-
mation. Thefilter areais above thelist, and consists of the Filter pane into which you
can enter text, toolbar buttons, and the Matches pane. Thereis also afilter modes
dropdown menu, described in “ Advanced Filtering” on page 57.

55

3 Common Features

56

3.12.1 Plain Filtering

This section describes how you can filter list items based on a substring match.

Figure 3.9 Filter areawith plain match

Filter modes Enter string to

menu

filter by here

Filter « callback|

Click here to Number of
unfilter items matching items

AN

> Matches 11

Attribute Value
CAPI::CALLBACK-TYPE ‘DATA-INTERFACE
CAPI-INTERMALS:CHANGE-CALLBACK NIL
CAPI::CHANGE-CALLBACK-TYPE ‘FULL
CAPI::DRAG-CALLBACK MIL
CAPI::DROP-CALLBACK MIL
CAPI:EDITING-CALLBACK MIL
CAPI::GESTURE-CALLBACKS MIL
CAPI:NAVIGATION-CALLBACK MIL
CAPI::SCROLL-CALLEBACK MIL

Matching items listed here

To usethefilter, ssimply enter text in the box to theright of the Filter button. Thelistis
filtered automatically as you type. Only those items that contain the specified string
are displayed in the list—all the others are hidden from the display. The number of
itemsthat are listed is printed in the Matches areato the right of the Filter box.

To unfilter items (that is, display al the itemsin alist once again) delete the string in
the Filter box or click the ¢ button.

3.12 Filtering information

3.12.2 Advanced Filtering

This section describes how you can filter list items by aregular expression match
rather than a plain string match, make the match case-sensitive, and how to invert the
filter.

To alter the way that the filter operates, select one or more options from the Filter
dropdown menu to the left of the filter pane. This can be done using the mouse, but is
more convenient with a keyboard gesture. Each gesture selects or desel ects one filter
mode. The keyboard gestures invoking advanced filter modes are shown in Table 3.3.

Table 3.3 Advanced Filter modes

Keyboard gesture Filter mode Description
Ctrl+Shift+R Regexp Search Filters by regular expression matching
Ctrl+Shift+E Exclude Matches | Excludesitems matching the filter
Ctrl+Shift+C Case Sensitive Filters by a case-sensitive comparison

The choice of items displayed changes according to the content of the filter pane and
the selected filter options. The label on the Filter dropdown changes to indicate your
selected filter options.

In the example illustrated below, we have inspected the string "Lispworks™, entered
aregular expression which matches alphabetic characters, and pressed ctrl+shift+R
ctrl+shift+C to select the Regexp Search and Case Sensitive filter modes.

Figure 3.10 Filter areawith regular expression match

Select filter mode here. Enter regular expresion
to filter by here.

FilterRC + |[A-Z] > Matches 2
Attnbute “U’alue
4 AW

57

3 Common Features

Now press ctrl+shift+E to select the Exclude Matches filter option. Only the low-
ercase characters of the string "Lispworks" aredisplayed in thelist.

Note: For details of the regular expression syntax, see“Regular expression syntax” on
page 58.

Note: Thethree filter modes are mutually independent.

3.13 Regexp matching

Regular expressions (regexps) can be used when searching and filtering throughout
the IDE. This section describes exactly how LispWorks regexp matching operates.

3.13.1 Regular expression syntax

Matches any single character except a newline. For example,
c.r matches any three character string starting with ¢ and
ending with r.

* Matches the previous regexp any number of times (including
zero times). For example, ca*r matches strings beginning
with ¢ and ending with r, with any number of asin-between.

+ Matches the previous regexp any humber of times, but at
least once. For example, ca+r matches strings beginning
with ¢ and ending with r, with at least one a in-between.

? Matches the previous regexp either 0 or 1 times. For exam-
ple, ca?r matches either the string cr or car, and nothing
else.

8 Matches the next regexp aslong asit is at the beginning of a

line. For example, ~ foo matchesthe string foo aslong asit is
at the beginning of aline.

$ Matches the previous regexp aslong asit is a the end of a
line. For example, £oo$ matchesthe string foo aslong asitis
at the end of aline.

58

\

NCL N

3.14 Completion

Contains a character set to be used for matching, where the
other special characters mentioned do not apply. The empty
string is automatically part of the character set. For example,
[a.b] matches either a or . or b or the empty string. The
regexp c [ad] *r matches strings beginning with ¢ and ending
with = , with any number of as and ds in-between.

The characters - and * have special meaningsinside
character sets. - defines arange and * defines a complement
character set. For example, [a-d] matches any character in
therange a to d inclusive, and [*ab]l matches any character
except a O b.

Quotes the special characters. For example, * matches the
character * (that is, * haslost its special meaning).

Specifies an alternative. For example, ab\ | cd matches either
ab O cd.

Provides a grouping construct. For example, ab\ (cd\ | e£f\)
matches either abcd Or abef.

3.13.2 Regexp and plain string matching

Sometimes you need to select an option to use regexp matching, as the default behavor
uses a plain string comparison. For example, see “ Advanced Filtering” on page 57.

Other areas always use regexp matching, such as the search target in some modes of
the “The Search Filestool” on page 223, and editor commands with names containing

"Regexp".

3.14 Completion

Where thereis afinite set of meaningful text inputs (symbol names, names of existing
files or editor commands, and so on) the IDE helps you to enter your text by offering
completion. When you invoke completion, the system takes your partial input and

either:

e extendsyour partial input to an unambiguous longer (but possibly partial)

input, or

59

3 Common Features

60

e presents achoice of the possible meaningful inputs.
When your input remains partial, you may repeat the completion gesture.

When you see a choice of the possible meaningful inputs, certain gestures allow you
to narrow the choice and quickly select the desired input, as described in “ Selecting
the completed input” on page 60.

3.14.1 Invoking completion

When a command prompts for input in the echo area, the keys Tab, ? and space can
invoke completion, depending on the context.

In the Editor tool, avariety of completion commands are available. For example, in
Emacs emulation Tab invokes the command Indent Selection or Complete
symbol. Seethe LispWorks Editor User Guide for details of this and other editor com-
mands.

In the Shell tool, Tab expands filenames.
In the Listener tool using Emacs emulation, Escape Tab expands filenames.

In many text input panes such asthe Class: field of a Class Browser tool, up and bown
invoke in-place completion while pressing the button raises a completion dial og.

Also, clicking the f’_“:!;- button to the right of atext input pane raises amodal comple-
tion dialog, as described in “Completion dialog” on page 63.

3.14.2 Selecting the completed input

The IDE presents the choice of inputs in one of two ways, described in the next two
sections. The option Works > Tools > Preferences... > Environment > General > Use
in-place completion controls whether in-place completion is used.

3.14.2.1 In-place completion

In-place completion presents the choice of complete inputs in a special non-modal
window. Figure 3.11 below shows this in the context of the editor command com-
plete Symbol.

Figure 3.11 Examplein-place completion window

{in-package)]

(define-J]
define-action-list
define-compiler-macro
define-condition
define-declaration
define-loop-macro
define-loop-method
define-method-combination
define-modify-macro
define-setf-expander
define-setf-method

define-symbol-macro

While this window is visible, most keyboard gestures such as unmodified

aphanumeric and punctuation keys are processed as ordinary input, adding to your
partial input. This reduces the number of possible completions. Conversely, deleting
part of your input will increase the number of possible completions.

You can navigate the choice with up and pown and you can select the desired
completion at any time with Return or double-click. To cancel the attempt to com-
plete, press Escape.

3.14 Completion

61

3 Common Features

3.14.2.2 Filtering in-place completion

You can reduce the number of displayed completions by adding afilter to the in-place
compl etion window.

To add thefilter, press ctrl+Return. To use the filter, type a substring of the desired
result. By default, filtering is by a case-insensitive substring comparision.

Figure 3.12 Example in-place completion window with filter

{in-package)]

(define-J]

define-compiler-macro

define-condition

define-method-combination

Filter |co

Regexp Filter

Exclude Matches

Case Sensitive

You can set filter modes to ater the way that the filter operates, just as described in
“Advanced Filtering” on page 57. Briefly, you select options from the Filter dropdown
menu or with the keyboard gestures ctr1+shift+R, Ctrl+Shift+E and
ctrl+shift+c. The choice of itemsdisplayed changes according to the content of the

62

3.15 Examining a window

filter pane and the selected filter options, and the label on the Filter dropdown changes
to indicate your selected filter options.

3.14.3 Completion dialog

When the Use in-place completion option (see “ Selecting the completed input” on
page 60) is off, all keyboard completion gestures raise amodal dialog presenting a
choice of completion options.

Also, clicking the ?_“:!;. button to the right of atext input pane raises a modal comple-
tion dialog.

You can navigate the choice with up and pown and you can select the desired comple-
tion at any time with Return, double-click, or press the OK button. To cancel the
attempt to complete, press Escape.

3.14.3.1 Filtering modal dialog completion

A modal completion dialog automatically has afilter if the number of possible com-
pletions exceeds the value of the option Works > Tools > Preferences... > Environ-
ment > General > Add a filter to dialog lists longer than:. By default this option has
value 25.

The filter options described above are also available in amoda completion dialog,
and are controlled by the same keyboard gestures, for example ctrl+shift+R. See
“Advanced Filtering” on page 57 for details.

3.15 Examining a window
You can examine any tool window with the Works > Interface menu.

This menu contains the standard action commands described in Section 3.8 on page
48. Thus, choose Works > Interface > Inspect to inspect the capi:interface object
for the window.

Choose Works > Interface > Browse - Window to browse the structure of the window
object. From here you can browse the child windows.

For information about the tools mentioned, see Chapter 8, “ The Class Browser” and
Chapter 17, “The Inspector” and Chapter 28, “ The Window Browser”.

63

3 Common Features

A

Getting Help

All tools contain a Help menu that gives you access to a variety of forms of online
help. This chapter describes how to use this online help.

4.1 Online manuals in HTML format

A complete documentation set is provided with LispWorksin the form of HTML files.
Asuming that you have installed the documentation, these files are in the directory
which isthe result of evaluating this form:

(sys:lispworks-dir "manual/online/web/")

The Help menu links directly to these HTML files, allowing you to go straight to the
most relevant documentation for the current context.

No proprietary extensionsto HTML have been used, so you can use any HTML
browser to view the documents. The Help menu drives the following browsers:
Netscape, Firefox, Mozilla, Opera.

4.1.1 Browsing manuals online

Choose Help > Manuals... to browse any of the available manuals online. A dialog
appears, allowing you to choose a manual.

65

4 Getting Help

If you already have an HTML browser running, alink to the first page of the manual
you choose is displayed in it. If you do not have a browser running, oneis started for
you.

66

4.1 Online manuals in HTML format

4.1.2 Searching the online manuals

Choose Help > Search... to search the online documentation. The Search dialog,
shown in Figure 4.1, appears.

Figure4.1 Search dialog

Enter string to search for here. Select other options here.
1 Search for: I button-panel]
2 How would you like to search for the specified text?
Partial Search
~ Whole Word
3 Search using:
« Index
“* Contents
— Manuals — Packages
ANSI Comnon Lisp Standard 2 8
CAPT Refersnce Manual J
CAPT U Guide CAPI-LAYOUT
CLIM 2.0 User Guide CLIM
Common LispWorks U37/Guide i CLIM-DEMO i
= | = |~
0K | Cancell
Select manuals to search here. Select packages to search here.

67

4 Getting Help

68

Thisdialog lets you specify what you want to search for, and which manuals you want
to searchiin.

Enter a string of text in the Search for area.
There are anumber of additional options that you can set if you want:

e Select Whole Word if you want to confine your search to whole words only.
Select Partial Search if you want to match part of aword aswell. By default,
partial searches are performed. For example, if Whole Word is selected, search-
ing for “pane” only matches the word “pane’. If Partial Search is selected,
searching for “pane” also matches “panels’.

¢ You can choose whether to search the index or the table of contents of any
given manual; select Index or Contents as appropriate. By default, indexes are
searched, as these tend to produce the richest information.

Select the manuals you want to search in the Manualslist. If nothing is selected, all
manuals are searched. You can select any number of itemsin thislist.

Select the packages you want to search from the Packages list. If nothing is selected
(the default), all packages are searched. You can select any number of itemsin thislist.

Note that selections made in the Manuals and Packages lists reflect each other. If you
choose one or more manuals, the relevant packages are a so selected, and if you
choose one or more packages, the relevant manuals are selected.

Once you have specified the search options, click OK. The results of the search are
displayed in your HTML browser.

The Help menu has acommand Lisp Knowledgebase... which takes you to the Lisp-
Works support page where a knowledgebase of problems and solutions can be
searched. Thereis also acommand LispWorks Patches... which takes you to the page
where you can download the latest patches for LispWorks. The support page also con-
tains guidelines on how to prepare a useful bug report.

4.1.3 Getting help on the current tool

Choose Help > On Tool... to get help on the current tool. This takes you to the appro-
priate online chapter of this manual.

4.2 Online help for editor commands

4.1.4 Getting help on the current symbol

Choose Help > On Symbol... to search for help on the symbol under the point (in an
editor-based window) or the current object of atool. This option displays the Search
dialog described in Section 4.1.2, but with options pre-sel ected to enable you to search
for documentation on the current symbol. Click OK, and the results of the search are
displayed in your HTML browser.

4.1.5 Getting help from the LispWorks website

Please check our online knowledgebase at www. 1ispworks . com before reporting
problemsto Lisp Support. You may find a solution or workaround there. Choose Help
> Lisp Knowledgebase to visit the online knowledgebase.

4.1.6 Getting patches from the LispWorks website

You must run LispWorks with the latest patch release installed. Thisis available from
www . lispworks.com. The command Help > LispWorks Patches isa convenient
shortcut to visit the patch download page.

4.1.7 Configuring the browser used

We recommend that you use Netscape. You can specify the location of the browser
used by Help > Browser Preferences... > Browser > Browser Executable Location.
You can enter the directory here in the Directory window. However, the default
setting, Use PATH, is adequate for most users. It means that the Netscape executable
found viayour UNIX environment variable PATH is used.

Alternatively, set the variable *browser-location* (detailsin the LispWorks User
Guide and Reference Manual).

4.2 Online help for editor commands
You can display online help for any available editor command using the commands

under Help > Editing. See Section 13.14 on page 202 for details.

4.3 Browsing manuals online using Adobe

69

http://www.lispworks.com
http://www.lispworks.com

4 Getting Help

70

Reader

The LispWorks manuals are also available in PDF (Portable Document Format).
These can be found in the LispWorks library directory 1ib/6-0-0-0/manual/
offline/pdf .

You can view these files and print them using Adobe Reader, which can be down-
loaded freely from the Adobe website at www . adobe. com.

You may aso download the PDF format manuals from the LispWorks website at

www.lispworks.com/documentation/.

4.4 Reporting bugs

The Help menu also contains aReport Bug command that provides atemplate for
reporting LispWorks bugs. Please do use this when you contact Lisp Support.

Before sending areport, please check the instructions at

www.lispworks.com/support/bug-report.html.

http://www.adobe.com
http://www.lispworks.com/support/bug-report.html
http://www.lispworks.com/documentation/

5

Session Saving

You can save a LispWorks IDE session, which can be restarted at alater date. This
allows you to resume work after restarting your computer.

This chapter describes what session saving does, and how you can configure and useit
in the LispWorks IDE.

It is aso possible to save a session programmatically, which is described in the Lisp-
Works User Guide and Reference Manual, but saving sessions is primarily intended
for users of the LispWorks IDE.

5.1 What session saving does

When you save a session, LispWorks performs the following three steps:
1. Closing all windows and stopping multiprocessing.
2. Saving an image.
3. Redtarting the LispWorks IDE and al of its windows.

If asaved session isrun later, then it will redo the last step above, but see “What is
saved and what is not saved” on page 72 for restrictions.

Sessions are stored on disk as LispWorks images, by default within your personal
application support folder (the exact directory varies between operating systems).

71

5 Session Saving

72

5.2 The default session

Thereisaways adefault session, which is used when you run the supplied LispWorks
image.

Initially the default session is the one named LispWorks Release.

When you run any other image directly, including a saved session or an image you
created with save-image, it runsitself (not the default session).

Saved sessions are platform- and version-specific. In particular, a 32-bit LispWorks
saved session cannot be the default session for 64-bit LispWorks, or vice-versa.

5.3 What is saved and what is not saved

All Lisp code and data that was loaded into the image or was created in it is saved.
Thisincludes all editor buffers, the Listener history and thevaluesof c1:*, c1:** and

Cl:***,

All threads are killed before saving, so any datathat is accessible only through a
mp : process Object, or by adynamically bound variable, is not accessible.

All windows are closed, so any data that is accessible only within the windowing
system is not accessible after saving a session.

The windows are automatically re-opened after saving the session and all Lisp data
within the CAPI panesis retained.

External connections (including open files, sockets and database connections) become
invalid when the saved session is restarted. In the image from which the session was
saved, the connections are not explicitly affected but if these connections are thread-
specific, they will be affected because the thread is killed.

In recreated Shell tools the command history is recovered but the side effects of those
commands are not. Debugger and Stepper windows are not re-opened because they
contain the state of threads that have been killed.

See "Saving a session programmatically" in the LispWorks User Guide and Reference
Manual for interfaces allowing you to control what happens when saving a session.

5.4 Saving sessions

5.4 Saving sessions

This section describes how you can use the Sessions dialog to save a session, schedule
regular saving, and manage your saved sessions.

Choose Works > Tools > Saved Sessions... to raise the Sessions dialog.

Figure5.1 The Sessionsdialog

LispWorks 6.0.0 on higson.cam.lispworks.com ! E

Saved Sessions | Scheduled

Saved sessions (¥ denotes default):
Saved session at lunchtime

" LispWorks Release

Details:
Executable: LW-save-6.0.0-session-2009-12-11-12-26
Executable Date: 11 Dec 2009 12:27:07
Full Path: (u/davef/LispWorks-Appdata/session-saves-6.0/LW-save

< |

Save Now Delete Launch Set As Default

X Close

In the Saved Sessions tab isalist of known saved sessions. The default sessionis
marked with *. If you select a session (other than LispWorks Release) in the list, you
can see details of when and where it was saved in the Details: area.

To save a session from the running image, press the Save Now button, which raisesthe
Save Session dialog (see “The Save Session dialog and actual saving” on page 76).

73

5 Session Saving

74

To launch asession, select it in the list and press the Launch button. Thisinvokesthe
saved session.

To delete a session, select it in the list and press the Delete button. Note that this does
not merely remove it from the list but permanently deletes the session, deleting the
actual file from the disk.

To make a session be the default saved session, select it in thelist and pressthe Set As
Default button. This causes LispWorks images to redirect to this session when they
start (see “Redirecting images to a Saved Session image” on page 78).

5.4 Saving sessions

5.4.1 Scheduling automatic session saving

You can set up automatic periodic session saving using the Scheduled tab of the Ses-
sions dialog.

Figure 5.2 The Scheduled tab of the Sessions dialog

LispWorks 6.0.0 on higson.cam.lispworks.com !E

Saved Sessions | Scheduled

[+]:Save sessions using this schedule:

Days of week: Mon Tue Wed Thu Fri []15Sat [|Sun

Time of day: 03 | % | |00+~

Allow cancellation: | 10 | * |minutes before saving

Defaults...

X Close

Select or deselect Save session using this schedule to switch automatic saving on or
off.

You can select daysin the week and a time of the day to do the saving.

When the saving time is reached, the system raises the Save Session dialog and waits
for some period of timeto allow you to change the settings, cancel the saving, or con-
firmit. If the period of time passes without you cancelling, the system proceeds to do
the saving. The period of time to wait is set by the Allow cancellation option.

75

5 Session Saving

Press the Defaults... button to raise the Save Session dialog which allows you to set
the parameters for the saving. When you confirm, it does not save the session, but
remembers the settings and uses them when doing the automatic saving.

5.4.2 The Save Session dialog and actual saving

Press the Defaults... button in the Scheduled tab of the Sessions dialog to raise the
Save Session dialog.

Figure 5.3 Setting the defaults for scheduled session saving

Y% LispWorks 6.0.0 on higson.cam.lispworks.co !E
Defaults for scheduled session saving:

Session name: | daily

File name:
Prefix: | LW-save
Append: [Version [+] Weekday [| Date [| Time

Sample: LW-save-session-Fri

Options

Save in directory:

Javef/LispWorks-Appdata/session-saves-6.0/ | &,

Euse as default session:

Ovenwrite existing file

[] Re-load init files when starting session

® Cancel o oK

76

5.4 Saving sessions

Enter anamefor the session in the Session name: box. This name will be displayedin
the list of sessionsin the Saved Sessions tab of the Sessions dial og.

Under File name: you can define the filename in which to save theimage. The nameis
constructed by a prefix, optionally followed by one or more of the Version (of Lisp-
Works), the Weekday, the Date or the Time. The full name that would be used is dis-
played after Sample:. Note that:

1. Thename does not contain the file type.

2. The Weekday, Date and Time are derived from the moment when the Save
Session dialog was raised. They are not updated.

Under Options: there are additional options:

1. You can change the directory in which to save the image in the Save in direc-
tory: box.

2. You can specify that the saved session is the default session by selecting Use as
default session. Thismeansthat LispWorksimages will redirect to it (see
“Redirecting images to a Saved Session image” on page 78).

3. The saving process can be made to overwrite an existing image if it exists by
selecting Overwrite existing file. If thisis not checked the saving process
refuses to save on top of an existing image.

4. You can specify that the saved session will reload the initialization fileswhen it
restarts, by selecting Re-load init files when starting session.

When you press OK to confirm the dialog, the session saving is scheduled.

5.4.3 Saving a session interactively

If you invoked the Save Session dialog from the Save Now button, it appears as
described in “ Scheduling automatic session saving” on page 75 except that a default
Session name: is provided and there is also an option Remember these settings. If
thisis selected, then when you confirm the saving the settings are remembered and
used the next time this dialog appears.

Once you press OK to confirm, the saving starts. First all the IDE interfaces are
destroyed in away that makes it possible to resurrect them. Then multiprocessing is
stopped. It then savesthe LispWorksimage. Whileit is saving it prints messagesto the

7

5 Session Saving

78

console. Onceit finished saving it restartsthe IDE and all itsinterfaces. The pathname
of the saved image is printed to the background output as well.

If thereis an error during the saving, you can interact with it viathe console. Thereis
arestart "Abort saving and restart the IDE" to allow you to return to the IDE.

5.5 Redirecting images to a Saved Session image

Redirecting an image means that when the image starts it actually causes another
imageto start. The ideais that you save your sessions and redirect the rel ease image,
so that starting LispWorks from the link in /usr/bin or other shortcut will actualy start
the saved session.

Only the installation image redirects, or images that were saved from it by using
save-image With the -build command line argument. Images that were re-saved
using the -init command line argument do not redirect.

Redirection occurs automatically when the default saved session is not the LispWorks
Release. The default saved session can be set by Works > Tools > Saved Sessions... >
Saved Sessions > Set As Default. It ismarked by * inthelist. It is possible to make
the process of saving a session set the default saved session to the newly saved session
by selecting it under Options: in the Save Session dialog, described in “The Save Ses-
sion dialog and actual saving” on page 76.

When the redirection switch is on, when the install ation image starts it redirectsto the
default saved session. It does it after processing the command line arguments (includ-
ing -build, -load and -eval), but before loading any initialization file (whether the
default or those that are passed by -siteinit Or -init). It passes all the command
line arguments to the saved session, followed by few other arguments. Note that this
means that if you start a redirected image with command line arguments, it will pro-
cess the arguments, redirect and then the redirected image will process the arguments
too.

Passing the command line argument -1w-no-redirection prevents the redirection.

5.6 Non-IDE interfaces and session saving

If there are CAPI interfaces on the screen (other than the LispWorks IDE) when ses-
sion saving isinvoked, these interfaces are destroyed and then displayed again. Note

5.6 Non-IDE interfaces and session saving

that the display will occur in adifferent thread than the one running the interface
before the saving (which was killed when the interface was destroyed).

If an interface (or any of its children) contains information that is normally destroyed
(in some sense) in the destroy-callback, thisinformation can be preserved. For the
details see capi:interface-preserving-state-p and capi:interface-pre-
serve-state in the LispWorks CAPI Reference Manual.

79

5 Session Saving

80

6

Manipulating Graphs

Viewsthat use graphs are provided in the Class Browser, Function Call Browser, and
Window Browser. These views let you, for instance, produce a graph of all the sub-
classes or superclasses of a given class, or the layouts of agiven CAPI interface.

In the Class Browser, the subclasses and superclasses views use graphs. The Function
Call Browser uses graph views for its Called By and Calls Into views. Thereis only
one view in the Window Browser, and that uses a graph.

All graphsin the LispWorks IDE can be manipulated in the same way. This chapter
gives you a complete description of the features available.

All graphs have an associated graph layout menu, available by displaying a context
menu over the graph itself by using the alternate select gesture. This menu contains all
the commands that are directly relevant to graphs.

6.1 An overview of graphs

An example graph is shown in Figure 6.1 below. All graphs are laid out by the Lisp-
Works IDE, so that their elements are displayed in an intuitive and easily visible hier-
archy. A graph consists of anumber of nodes, linked together by branches. By default,
graphsin the environment are plotted from Ieft to right: for any given node, the node
towhich it islinked on the left is known as its parent, and the nodes to which it is
linked on the right are known as its children. The originating node of the graph (on the

81

6 Manipulating Graphs

82

far left) is referred to as the root node, and the outermost nodes of the graph (towards
the right) are referred to as leaf nodes. The root node does not have a parent, and |eaf
nodes do not have any children.

Figure 6.1 Example graph pane

Branches. Selected node. Nodes.

/API - CHECK-BUTTON-PANEL

CAPL:BUTTON-FPANEL® < CAPT : PUSH-BUTTON-FANEL
CAPI:RADIO-BUTTON-PANEL

CAPL:DOUBLE-LIST-PAMEL
CAPI:GRAPH-PANE=

CAPL: :LIST-PANEL-MIXINo Leaf nodes.
CAPI:CHOICES CAPT :MENU-COMPONENT
/ CAPL: : OFTLON-PANE-CHOICE-MIXINo
CAPL:TAB-LAYOUT
Root node. CAPL:TOOLBAR-COMPONENT o

CAPI:TREE-VIEW® —s—CAPT: EXTENDED-SELECTION-TREE-VIEW

You can select nodes in a graph pane in exactly the same way that you select itemsin
alist. Selected nodes are highlighted, as shown in Figure 6.1.

Similarly, you can copy nodes from a graph onto the clipboard in a manner consistent
with use of the clipboard in the rest of the environment. When you copy any selected
node onto the clipboard, the Lisp object itself is copied onto the clipboard, so that it
can be transferred into other toolsin the LispWorks IDE.

UNIX Implementation Note: The string representation of the Lisp object is copied
into the UNIX clipboard, so that it can be transferred to other applications.

6.2 Searching graphs

Sometimes graphs can be too large to fit onto the screen at once. In this case, it isuse-
ful to be able to search the graph for any nodes you are interested in. There are two
commands which let you do this.

Choose Edit > Find... to find any node in the graph whose name contains agiven
string. Choose Edit > Find Next to find the next node in the graph that contains that

6.3 Expanding and collapsing graphs

string. Whenever a matching nodeisfound, it is selected in the graph. If necessary, the
window scrolls so that the selected nodeis visible.

Note that you do not have to specify a complete node name: to find all nodes that
include the word “debug” in their name, just type debug into the dialog. All searches
are case insensitive.

A full description of these commands can be found in Section 3.3.5 on page 42.

6.3 Expanding and collapsing graphs

You may often find that you are only interested in certain nodes of a graph. Other
nodes may be of no interest and it is useful, especially in large graphs, to be able to
remove their children from the display.

Notice that some nodes have a small circle drawn alongside them, as shown in Figure
6.2. Thecircleindicates that the node is not aleaf node, that is, it has children. More-
over, thecircleisfilled black if the node is currently expanded, and is unfilled if the
node is currently expandable (also referred to as collapsed).

83

6 Manipulating Graphs

6.3.1 Expanding and collapsing by clicking

To collapse or expand any node with children in a graph, click on the circle alongside
it. Thus, click on the unfilled circle of an expandable node to display its children, and
click onthefilled circle of an expanded node to hide its children.

Figure 6.2 Expanded and expandable nodes
CAPT : CHECK-BUTTON-PANEL
CAPIL:BUTTON-PANEL® <EAPI s PUSH-BUTTON-PANEL
CAPT : RADIO-BUTTON-PANEL
CAPL:DOUBLE-LIST-PANEL

CAPIL:GRAPH-PANE®
CAPIL::LIST-PANEL-MIXINe
. ™ Expandable
CAPT: CHOICE CAPI :MENU-COMPONENT noses
CAPI: :OFTION-PANE-CHOLCE-MIKING
CAPL:TAB-LAYOUT
CAPI:TOOLBAR-COMPONENT 2

CAPL:TREE-VIEW® —m=—CAPT : EXTENDED-SELECTION-TREE-VIEW

Expanded node

For instance, in Figure 6.2, click on the unfilled circle aongside CAPI: TOOLBAR-
COMPONENT to display its subclasses. Click on thefilled circle to hide them.

6.3.2 Expanding and collapsing by menu commands
You can also collapse or expand nodes using the context menu:

e Choose Expand Nodes to expand the selected node.

e Choose Collapse Nodes to collapse the selected node.

6.4 Moving nodes in graphs

Although the layout of any graph is calculated automatically, you can move any node
in agraph manually. This can be useful if theinformation in the graph is dense enough
that some nodes are overlapping others.

6.5 Displaying plans of graphs

To move the selected node, hold down the shift key and select and drag the node to
the desired location.

Figure 6.3 Moving anodein agraph

—

2. Hold down Shift key.

.

3. Select and drag node to new location.

1. Select node.

At any time, you can choose Reset Graph Layout from the context menu to restore the
nodes to their original positions.

6.5 Displaying plans of graphs

Many graphs aretoo large to be ableto display in their entirety on the screen. Aswith
any other window, you can use the scroll bars to display hidden parts of the graph.
However, you can aso display aplan view of the entire graph.

85

6 Manipulating Graphs

To display the plan view of any graph, hold down the control key and select the
graph, or choose Enter Plan Mode from the context menu. The graphisreplaced by its
plan view, similar to the one shown in Figure 6.4.

Figure 6.4 Example plan view

Currently selected
Nodes. node

P éii - / |
l x’?{i——i I iﬂﬁl I !] / |
i =T ————F— |
I G B . = ' !
| - N 1\ i \‘l = — i
S - ——fme————

|
V;f*\\\\\\\\

Select inside inner rectangle Select inside outer rectangle
to move the boundary of the to resize the boundary of the
normal view. normal view.

Boundary of current
normal view.

Each node in the original graph is represented by arectanglein the plan view. The cur-
rently selected node is shown as afilled rectangle, and al other nodes are clear. You
can select nodes in the plan view, just as you can in the normal view.

A dotted grid is drawn over the plan view; you can use this grid to alter the section of
the graph that is shown in the normal view. The size and position of the grid represents
the portion of the graph that is currently displayed in the normal view.

* Tomovethegrid, so that adifferent part of the graph is shown in the normal
view, hold down shift and select and drag the innermost rectangle of the grid.
The entire grid moves with the mouse pointer.

86

« Toresizethegrid, so that a different proportion of the graph is shown, hold
down shift and select and drag the outermost rectangle of the grid. The entire
grid will resize. You can select any part of the grid except the innermost rectan-

gle to perform this action.

To return to the normal view, hold down control and select the graph again, or
choose Exit Plan Mode from the context menu. The part of the graph indicated by the

grid in the plan view is displayed.

6.6 Preferences for graphs

A number of graph layout preferences can be set for any tool that uses graphs. You can
control settings in the Preferences dialog. To do this:

1. Display the Preferences dialog either by choosing Graph > Preferences... from
the graph layout context menu or by one of the methods described in “ Setting

preferences’ on page 28.

2. Sdect therelevant tool in the left side of the Preferences dialog, and select a

graph layout tab on the right.

For example, the graph layout preferences for subclasses in the Class Browser are

shown in Figure 6.5.

6.6 Preferences for graphs

Figure 6.5 Layout Preferences for the Subclass Graph

<| General

Layout

Subclass Graph

@

et

Left to Right

() Right to Left
(_) Top Down
() Bottom Up

Superclass Graph

Max. Expansion

Depth | 2

EBreadth | None

Plan Mode
[] Rotation

87

6 Manipulating Graphs

88

This section describes the options available in the graph layout tabs of the Preference
dialogs for any tool that uses graphs.

6.6.1 Altering the depth and breadth of graphs

For large graphs, you may find that you want to alter the maximum depth and breadth
in order to simplify the information shown. Each graph pane hasits own depth and
breadth setting, which isused for all graphs drawn init. These are availablein the Max
Expansion panel of the graph layout tabs in the Preferences dial og.

The depth and breadth of a graph are depicted in Figure 6.6.
Figure 6.6 Depth and breadth of graphs

Depth =3

o o l Breadth = 3

l Breadth = 2

Choose a number from the Depth list to change the maximum depth of graphsin a
given tool. The depth of agraph is the number of generations of node which are dis-
played. Most graphs have a default initial depth of 2, which means that you must
expand any nodes you want to investigate by expanding them yourself. The default
valueis 2.

Note that the maximum depth setting is ignored for nodes which you have expanded
or collapsed. See Section 6.3 on page 83.

Choose a number from the Breadth list to change the maximum breadth of a given
tool. The breadth of agraph isthe number of child nodes which are displayed for each
parent. If there are more children than can be displayed (the maximum breadth setting
islessthan the number of children for agiven node) an extranodeisvisible. Thisnode
islabeled “...”, followed by the number of nodes that remain undisplayed.
Nonetheless you can expand this node by the Expand Nodes command allowing you
to display the additional children without having to alter the maximum breadth setting

6.6 Preferences for graphs

for the whole graph. By default, the maximum breadth is set to None, so that al the
children for anode are displayed, no matter how many there are. An example of this
feature is shown in Figure 6.7 below, where the maximum breadth has been set to 3.

Figure 6.7 Displaying children hidden by the maximum breadth setting

CAPL:BUTTOMN-PANEL
CAPL:DUBLE-LIST-PAMEL
CAFI:CHOICE®™ CAPI : GRAPH-PAME

CAPT::LIST-PANEL-MIXINe
{ 3 CAFT :MENU-COMPONENT
EAF‘I -DF'TI-DH FANE-CHOICE-MIXINe

This node has been Expancme to reveal 3

expanded. more nodes (currently hidden).

To ensure that all available information is graphed in agiven tool, set both the maxi-
mum depth and maximum breadth to None.

6.6.2 Displaying different graph layouts

As already mentioned, graphs are laid out from | eft to right by default, but they can be
laid out in other orientations. This can be configured in the Layout panel of the graph
layout tab in the Preferences dialog.

Click “Left to Right” to layout a graph from the left of the screen to theright, as
shownin Figure 6.8. Thisisthe default orientation for every graph in the environment.

Figure 6.8 Left to right layout

89

6 Manipulating Graphs

Click “Right to Left” to layout a graph from the right of the screen to the left, as
shown in Figure 6.9.

Figure 6.9 Right to left layout

o

Click “Top Down” to layout a graph from the top of the screen to the bottom, as
shown in Figure 6.10.

Figure 6.10 Top down layout
A

D

Click “Bottom Up” to layout a graph from the bottom of the screen to the top, as
shown in Figure 6.11.

Figure 6.11 Bottom up layout

D

0

6.7 Using graphs in your programs

6.7 Using graphs in your programs

You can read about the CAPI class graph-pane in the LispWorks CAPI Reference
Manual for detailed API information for using graphs in your own programs. We will
also look at ashort example in this section. The following code listing defines a call-
back function and creates a graph-pane object:

(defun node-children (node)
(if (equal node 'pets)
(list 'dog 'parrot)
(if (equal node 'dog)
(list 'Kito 'Otis 'Sammy 'Teddy)
(if (equal node 'parrot)
(list 'Brady)))))

(setq test-graph

(capi:contain

(make-instance 'capi:graph-pane
:roots ' (pets)
:children-function
'node-children)

:best-width 300

:best-height 400))

The children function node-children should return nil for aleaf node in the graph
or alist of child nodes for anon-leaf node. Figure 6.12 shows the generated graph-
pane.

Figure 6.12 Sample Graph from a User Program

Container
Works

KITO
oTIS

DOCe
SAMMY

PETS® TEDDY
PARROT= ERADY

91

6 Manipulating Graphs

92

v

The Podium

7.1 The podium window

When you start the LispWorks IDE, by default a window known as the podium
appears.
Figure 7.1 The LispWorks podium

LispWorks 6.0.0 on higson.cam.lispworks.com

Works File Edit Tools Windows - Help
&%) @ p e ids <SPQOFUTALTSL S
Ready . | ‘

Message area. Menu bar. Toolbar.

The podium contains a menu bar, atoolbar, and a message areaThe iconsin the
podium’s toolbar access the Listener, Editor, Output Browser, Inspector, Class
Browser, Generic Function Browser, Symbol Browser, Object Clipboard, Function
Call Browser, System Browser, Compilation Conditions Browser, Search Files, Pro-
filer, Tracer, Stepper, Window Browser, Process Browser, Shell and Application
Builder tools. If you hold the mouse over these icons for a second, the corresponding
tool name will appear as floating help text.

The IDE tools have most of these menu items in common with the podium.

93

7 The Podium

The menu bar contains five menus:
e TheWorks menu contains commands that operate on the current window.
e TheFile menu contains commands that open, load, save and compile Lisp files.

e TheTools menu contains commands to create and configure the LispWorks
IDE tools.

*« TheWwindows menu lists all the current windows in the environment. To make
any window the active window, choose it from this menu.

e TheHelp menu contains commands described in Chapter 4, “ Getting Help”.

7.2 Specifying the initial tools
By default the LispWorks IDE starts up with the Podium and a Listener.

If you want to see other tools each time you start the LispWorks I DE, then you can add
action items in your persona initalization file, or in a saved image.

For example, to start an Editor tool, define an action on the pre-defined "Initialize
LispWorks tools' action-list:

(define-action "Initialize LispWorks tools"
"Make an Editor Tool"
#' (lambda (screen)
(capi:find-interface 'lw-tools:editor
:screen screen))
cafter "Create default the tools")

Note: the names of the various tools are exported in the Lw-TooLs package.

For more information about action lists, including an example which opens specific
filesin the Editor tool, see the LispWorks User Guide and Reference Manual.

38

The Class Browser

The Class Browser alows you to examine Common Lisp classes. It contains seven
views, alowing you to view class information in anumber of different ways. You can
display each view by clicking the appropriate tab. The available views are as follows:

The dlots view is used to ook at the slots available to the class browsed. This
view isrich in information, showing you details about items such as the readers
and writers of the selected dot.

The subclasses view produces a graph of the subclasses of the current class,
giving you an easy way to see the relationship between different classesin the
environment.

The superclasses view produces a graph of the superclasses of the current class,
giving you an easy way to see the relationship between different classesin the
environment.

The hierarchy view lets you see the immediate superclasses and the immediate
subclasses of the current class, using a text-based interface.

Theinitargs view alows you to see the initargs of the current class together
with information about each initarg. See Section 8.6 on page 115 for more
details on how you can use this view.

95

8 The Class Browser

96

e Thefunctions view alows you to see information about the CLOS methods
that have been defined on the current class. See Section 8.5 on page 112 for
details on using the information in this view.

« The precedence view is used to show the class precedence list for the current
class. See Section 8.7 on page 117 for more details on how you can use this
information.

To create a Class Browser, choose Tools > Class Browser or click &5 . Alternatively,
to invoke a Class Browser on aLisp object use Meta+X Describe Class inan Edi-
tor, or choose Class from any submenu that provides the standard action commands to
invoke a Class Browser on the Lisp object referred to by that submenu, or click 93 .

This automatically browses the class of the Lisp object. For more information on how
the standard action commands refer to abjects in the environment, see Section 3.8 on

page 48.

8.1 Simple use of the Class Browser

This section describes some of the basic waysin which you can use the Class Browser
by giving some examples. If you wish, you can skip this section and look at the
descriptions of each individual view: these start with Section 8.2 on page 103.

When examining a class, the dot names of the class are displayed by default.
To examine aclass, follow the instructions below:
1. Create apush button panel by entering the following in the Listener:
(capi:contain
(make-instance 'capi:push-button-panel

:title "Test Buttons"
:items '(:one :two :three)))

The push button panel appears on your screen.

2. With the Listener as the active window, choose Values > Class.

8.1 Simple use of the Class Browser

Thisinvokes the Class Browser on the button panel. The class capi :push-
button-panel iSsdescribed in the Class Browser.

Figure 8.1 Examining classesin the Class Browser

- Class Browser 1 ! E

Works File Edit \iew Description Slots Classes Methods History Help

SEDISYY DE® « -

Class: | CAPI:PUSH-BUTTON-PANEL v X ™

b

S

Hierarchy |Superclasse5 |Subclasse5 Slots |Initargs |Funciic-n5 | Precedence |
Include Inherited Slots

Filter + ‘ ‘X Matches b4

CAPIL:ACTION-CALLBACK
CAPI::ARMED-IMAGES

CAPI:BACKGROUND

CAPL:BUTTON-CLASS -

S b S

Description:
From Classes: CAPI:SIMPLE-PANE
Slot Name: CAPI::BACKGROUND
Type: T
Initargs: :BACKGROUND
Initform: NIL
Readers: CAPI:SIMPLE-PANE-BACKGROUND
Writers: (SETF CAPI:SIMPLE-PANE-BACKGROUND)
Allocation: (INSTANCE

Notice that, although you invoked the browser on an object that is an instance of a
class, the classitself is described in the Class Browser. Similarly, if you had pasted the
object into an Inspector, the instance of that object would be inspected. Using the
environment, it is very easy to pass Common Lisp objects between different toolsin

97

8 The Class Browser

98

thisintelligent fashion. This behavior is achieved using the LispWorks IDE clipboard,;
see Section 3.3.3 on page 40 for details.

See Section 3.8 on page 48 for afull description of the standard action commands
available.

8.1.1 Examining slots

A list of the lotsin the current classis printed in the Slots area. By selecting any dlot,
you can examine it in more detail in the Description area.

While till examining the capi :push-button-panel class, select any slot in the
Slots area.

Figure 8.2 Description of aslot

Description:
From Classes: CAPLCALLBACKS
Slot Name: CAPI::ACTION-CALLBACK
Type: T
Initargs: :ACTION-CALLBACK
Initform: NIL
Readers: CAPI.CALLBACKS-ACTION-CALLBACK
Writers: (SETF CAPL:CALLBACKS-ACTION-CALLBACK)
Allocation: ([INSTANCE

A description of the slot is given in the Description area. For details about the infor-
mation contained in this description, see Section 8.2.4 on page 105.

8.1.2 Examining inherited slots

By default, inherited slots (those slots which are defined in a superclass of the current
class, rather than the current classitself) arelisted in the Slots areaaong with the dots
defined in the current class. Deselect the Include Inherited Slots button just above the
Filter box to inhibit this listing.

8.1 Simple use of the Class Browser

1. While still examining the capi : push-button-panel class, click Include
Inherited Slots to deselect this option.

No dots are displayed in the Slots area. Thisis because all the slots available to the
capi:push-button-panel class areinherited from its superclasses. No slots are
defined explicitly onthe capi: push-button-panel Class.

2. Select Include Inherited Slots again, and then select afew slotsin the Slot area
inturn.

Notice that the slot description for each slot tells you which superclassthe dot is
defined on.

8.1.3 Filtering slot information

The Filter box can be used to filter out information about slots you are not interested
in. Thisisespecialy useful if you are examining classes which contain alarge number
of dots.

The exampl e below shows you how to create an instance of a CAPI object, and then
limit the display in the Class Browser so that the only slots displayed are those you are
interested in:

1. InalListener, create a button object by typing the following:

(capi:contain (make-instance 'capi:list-panel
:items ' ("Apple" "Orange" "Pear")))

Thiscreates alist panel object and displays it on your screen. The list panel
object isthe current value in the Listener.

2. Makethe Listener window active and choose Values > Class to examine the
class of the object in the Class Browser.

3. Click the Slots tab in the Class Browser to switch to the Slots view.

Suppose you are only interested in seeing the callbacks that can be defined in a
list panel.

99

8 The Class Browser

4. Type callback inthe Filter box.

Figure 8.3 Using filtersto limit the display in the Class Browser

Class Browser 1

Eile Edit Slats Methods

D% 2R DER € -

lass: |CAPI:CALLBACKS

Works View Description Classes History Help

b

X

Initargs | Functions | Precedence |
Include Inherited Slots

Hierarchy |Superc|a‘55e5 |Subclasse5

Filterv | callbacK X Matches 5

CAPI:ACTION-CALLBACK
CAPI:CALLEACK-TYPE
CAPI:EXTEND-CALLBACK
CAPI:RETRACT-CALLBACK

Description:

From Classes: CAPI:.CALLBACKS
Slot Mame: CAPI:ACTION-CALLEACK

Type: T

Initargs
Initform
Readers
Writers

Allocation

D ACTION-CALLBACK

: NIL

: CAPIICALLBACKS-ACTION-CALLBACK

» (SETF CAPLCALLBACKS-ACTION-CALLBACK)
» INSTANCE

You can immediately see the types of callback that are available to CAPI list panel
objects. See the LispWorks CAPI Reference Manual for details about these call backs.

For more information about using filters, see “Filtering information” on page 55.

100

8.1 Simple use of the Class Browser

8.1.4 Examining other classes

There are two ways that you can examine other classes. Thefirst isto type the name of
the class you wish to see into the Class text box at the top of the browser. For long
class names, you might find it useful to type just afew characters and then press up or
Down t0 invoke in-place completion. PressReturn or click 4 and the named classis
described.

1. While still examining class capi: 1ist-panel, type
capi:push-button-panel into the Class area

The class capi:push-button-panel is described.

Because some class names may be potentially quite long, you can use completion to
reducetyping. Thisalowsyou to select from alist of all class nameswhich begin with
the partial input you have entered. See “Completion” on page 59 for detailed instruc-
tions. When you have entered the complete class name, click on 4+ to make this the
class being described.

The second way to examine other classesis by using the Superclasses and Sub-
classes listsavailable in the hierarchy view. Click on the Hierarchy tab to display the
hierarchy view.

The main part of the hierarchy view consists of two lists:

e TheSuperclasses list shows all the superclasses of the current class.

* TheSubclasses list shows all the subclasses of the current class.
Double-click on any superclass or subclass of the current class to examineit.

1. Double-click on cap1:BUTTON-PANEL in the Superclasses list.

The capi :button-panel classis described.

2. Double-click on cAPI:PUSH-BUTTON-PANEL in the Subclasses list.

The capi:push-button-panel classis described agai n.

So, using the Hierarchy tab, you can easily look through the related classesin asys-
tem.

101

8 The Class Browser

8.1.5 Sorting information

Aswith many of the other toolsin the LispWorks IDE, you can sort theitemsin any of
thelists or graphs of the Class Browser using the Preferences dialog. Raise this dialog

as described in “ Setting preferences’ on page 28, and then select Class Browser inthe
list on the left side.

Figure 8.4 Setting Class Browser preferences

ﬂ General Subclass Graph Superclass Graph |*

Sort Package
() Unsorted COMMON-LISP-USER v
@® By Name

Show Package Names
() By Package
Toolbar

Show Toolbar

Under the General tab, there are three options for sorting items, listed in the Sort
panel.

e Unsorted - Displaysitemsin the order they are defined in.
e By Name - Sortsitems alphabetically by name. Thisis the default setting.
e By Package - Sortsitems alphabetically by package name.

For more information on sorting items, see Section 3.9.1 on page 51.

102

8.2 Examining slot information

8.2 Examining slot information

When the Class Browser isfirst invoked, the default view is the slots view. You can
aso click the Slots tab to swap to it from another view. The slots view is shownin
Figure 8.5.

Figure 8.5 Examining dotsin the Class Browser

Class Browser 1

Works File Edit Miew Description Slots Classes Methods History Help

DO UY BO® €9 -

lass:| CAPI:PUSH-BUTTON-PANEL v X

Hierarchy |Superclas ses |Subclas ses Initargs | Functions | Precedence |
Include Inherited Slots

Filter + ‘ ‘X Matches 64

CAPI:ACTION-CALLBACK
CAPI::ARMED-IMAGES
CAPI::BACKGROUND
CAPL:BUTTON-CLASS

Description:
From Classes: CAPI:SIMPLE-PANE
Slot Name: CAPI::BACKGROUND
Type: T
Initargs: :BACKGROUND
Initform: NIL
Readers: CAPL:SIMPLE-PANE-BACKGROUND
Writers: (SETF CAPL:SIMPLE-PANE-BACKGROUND)
Allocation: (INSTANCE

103

8 The Class Browser

104

Section 8.1 on page 96 introduced you to the slots view in the Class Browser. This
section gives a complete description of thisview. For completeness, some information
may be repeated.

The areas available in the slots view are described below.

8.2.1 Class box

You enter the name of the class you want to browse in the Class text box. You can type
in aclass name explicitly, or you can transfer a class to the Class Browser using the
Class standard action command in another tool, or by pasting a classin explicitly.

Note: You can use Edit > Paste to paste a class name into this area, even if the clip-
board currently contains the string representation of the class name, rather than aclass
object itself. This letsyou copy class names from other applications directly into the
Class Browser. See Section 3.3.3 on page 40 for a compl ete description of the way the
LispWorks I DE clipboard operates, and how it interacts with the UNIX clipboard.

8.2.2 Filter area

The Filter area lets you restrict the information displayed in the Slots list. See “Filter-
ing information” on page 55 for a description of how to use the Filter areain any tool,
and Section 8.1.3 on page 99 for an example of how to useit in the Class Browser.

8.2.3 Slots list

The main section of the slots view lists the slot names of the current class. Selecting a
dotinthislist displays adescription of it in the Description list, and you can operate
on any number of selected dots using the commands in the Slots menu.

The number of itemslisted in the Slots areais printed in the Matches box.

If Include Inherited Slots is selected, dots inherited from the superclasses of the cur-
rent class are listed as well as those explicitly defined on the current class. Deselect
this button to see only those slots defined on the current class. You can aso configure
the default setting of this option. To do thisraise the Preferences dialog as described in
“Setting preferences’ on page 28, then select Class Browser in thelist on the left side
of the Preferences dialog, and then select the Slots/Functions tab to seethe Include
Inherited Slots option.

8.3 Examining superclasses and subclasses

8.2.4 Description list

Thislist displays a description of the selected slot. The following information is
printed:

* From Classes - The classes that thisdlot is defined in.

* Slot Name - The name of the slot.

e Type- Thesdlot type.

e Initargs - Theinitargs, if any, which can be used to refer to the slot.
* Initform - Theinitform, or initial value, of the slot.

* Readers - The readers of the slot. These are the names of any functions which
can be used to read the current value of the slot.

* Writers - The writers of the slot. These are the set £ methods which may be
used to change the dot value.

* Allocation - The alocation of the dot.

To operate on any of the items displayed in this area, select them and choose a com-
mand from the Description menu. This menu contains the standard action commands
described in Section 3.8 on page 48. You can operate on more than oneitem at once by
making multiple selectionsin this area.

8.2.5 Performing operations on the current class

You can operate on the current class using the commandsin the Classes menu. The
standard action commands described in Section 3.8 on page 48 are available in this
submenu.

Choose Classes > Browse Metaclass to select, and describe in the normal way, the
class of the current class.

8.3 Examining superclasses and subclasses

The hierarchy view of the Class Browser lists the immediate superclasses and sub-
classes of the current class. This view can be useful for navigating the class hierarchy
if you want to be able to see both superclasses and subclasses at the same time.

105

8 The Class Browser

Click on the Hierarchy tab to browse classes with the hierarchy view. The hierarchy
view shown in Figure 8.6 appears.

Figure 8.6 Viewing superclass and subclass information in the Class Browser

Class Browser 1

Works File Edit View Description 5Slots Classes Methods History Help

%L D€ @ -

Class: | CAPI:CHOICE v X

W

Hierarchy | Superclasses | Subclasses | Slots | Initargs | Functions | Precedence |
Superclasses:
CAPIL.COLLECTION CAPILBUTTON-PANEL
CAPI:DOUBLE-LIST-PANEL
CAPI:GRAPH-PANE
CAPIL:LIST-PANEL-MIXIN
CAPIMENU-COMPONENT
CAPI::OPTION-PANE-CHOICE-MIXIN
CAPILTAB-LAYOUT

S

[¢]

Description:
Package: CAPI
Mame: BUTTON-PANEL
Metaclass: STANDARD-CLASS
Accessibility: :EXTERMNAL

The areas available in the hierarchy view are described below.
8.3.1 Class box

Aswith other views in the Class Browser, the name of the class being browsed is
given here. See Section 8.2.1 on page 104 for more details.

106

8.3 Examining superclasses and subclasses

8.3.2 Superclasses list

Thislist displays the immediate superclasses of the current class. Double-clicking on
any class makes it the current class.

Selecting aclassin thislist displays its description in the Description list.

8.3.3 Subclasses list

Thislist displays the immediate subclasses of the current class. Double-clicking on
any class makes it the current class.

Selecting aclassin thislist displaysits description in the Description list.

8.3.4 Description list

Thislist displays a description of the first class selected in either the Superclasses or
Subclasses lists, or the current class if there is no selection in either of theselists. The
following information is printed:

Package The name of the package that the selected classis defined in.
Name The name of the selected class.
Metaclass The class of the selected class. The metaclass is the class of

Lisp object that the current class belongs to.

Accessibility The accessibility of the selected class—whether the symbol is
externa or internal, asreturned by £ind-symbol.

To operate on any of the items displayed in this area, select them and choose a com-
mand from the Description menu. This menu contains the standard actions commands
described in Section 3.8 on page 48. You can operate on more than oneitem at once by
making a multiple selection in this area.

8.3.5 Performing operations on the selected classes or the
current class

You can usethe Classes menu to perform operations on any number of items selected
in either the Subclasses area or the Superclasses area. If no items are sel ected, then the

107

8 The Class Browser

current class is operated on by the commands in this submenu. The standard actions
commands described in Section 3.8 on page 48 are available in this submenu.

Choose Classes > Browse Metaclass to select, and describe in the normal way, the
class of the selected classes, or the current class.

Note: If more than oneitem is selected, and the command chosen from the Classes
menu invokes atool which can only display oneitem at atime, then the extraitemsare
added to the History > Items submenu of the tool, so that you can easily display them.

8.4 Examining classes graphically

As aready mentioned, you can view class relationships graphically using either the
superclasses or subclasses views. This gives an immediate impression of the class
hierarchy, but contains no detail s about information such as slots, readers and writers.

Click on the Subclasses tab to browse subclasses in a graph, and click on the
Superclasses tab to view superclassesin agraph. Except for the type of information

108

8.4 Examining classes graphically

shown, these two views are visually identical. The subclasses view is shown in Figure
8.7.

Figure 8.7 Viewing subclasses graphically in the Class Browser

Works File Edit Miew Description 5Slots Classes Methods History Help

= D © R RO® €~

Class: | CAPI:CHOICE v X2

b

Hierarchy | Superclasses | Subclasses | Slots | Initargs | Functions | Precedence
CAPI:.CHECK-BUTTON-PANEL
CAPILBEUTTON-PANEL® éﬂhpl :PUSH-BUTTON-PANEL
CAPLRADIO-BUTTON-PANEL
CAPI:DOUBLE-LIST-PANEL
R —=CAPI:SIMPLE-NETWORK-PANE
CAPI:LIST-PANEL-MIXIN®

e AE CAPI:MENU-COMPONENT
CAPI::OPTION-PANE-CHOICE-MIXIN®
CAPI:TAB-LAYOUT
CAPI:TOOLBAR-COMPONENT®
CAPI:TREE-VIEW®

Description:

Package: CAPI
Name: GRAPH-PANE
Metaclass: STANDARD-CLASS
Accessibility: :EXTERMNAL

The areas available in the subclasses and superclasses views are described bel ow.

8.4.1 Class box

Aswith other views in the Class Browser, the name of the class being browsed is
shown here. See Section 8.2.1 on page 104 for details.

109

8 The Class Browser

110

8.4.2 Subclasses and superclasses graphs

The main area of these views is a graph showing either the subclasses or the super-
classes of the current class, depending on the view you have chosen. The generic facil-
itiesavailable to al graph views throughout the environment are available here: see
Chapter 6, “Manipulating Graphs’ for details.

Selecting anode in this displays a description of the classit representsin the Descrip-
tion list.

8.4.3 Description list

Thislist displays a description of the first class selected in the graph. This gives the
same information as the Description list in the hierarchy and precedence views. See
Section 8.3.4 for details.

8.4.4 Performing operations on the selected classes or the
current class

You can operate on the selected node in the graph using the commands in the Classes
menu. If no node is selected, then the current class is operated on by the commandsin
this menu. The standard actions commands described in Section 3.8 on page 48 are
availablein this menu.

Choose Classes > Browse Metaclass to select, and describe in the normal way, the
class of the selected classes, or the current class.

8.4.5 An example

1. Examinetheclass capi:choice by typing capi:choice into the Class area of
the Class Browser and pressing Return or clicking on .

The class is described in the current view.

2. Click onthe Subclasses tab in the Class Browser.

8.4 Examining classes graphically

The relationships between capi : choice and its subclasses are shownin a
graph, asin Figure 8.8.

Figure 8.8 Relationship between capi : choice class and its subclasses

CAPLBUTTON-PANEL®
CAPI:DOUBLE-LIST-PANEL
CAPI:GRAPH-PANE®
CAPILLIST-PANEL-MIXIN®
CAPI:CHOICE® CAPI:MENU-COMPONENT
CAPI::OPTION-PANE-CHOICE-MIXIN©
CAPI:TAB-LAYOUT
CAPI:TOOLBAR-COMPONENT®
CAPI.TREE-VIEW®

By default, the subclasses of the current class are shown in the graph. To expand
anon-leaf node in the graph, click on the circle to itsright.

Expand the cap1 : BUTTON-PANEL Node to see the subclasses of this class.

The classes of button panel object available are displayed in the graph, includ-
ing the push button panel class that you saw in the examplesin Section 8.1 on

page 96.
To graph the superclasses, click the Superclasses tab.

The relationships between capi : choice and its superclasses are shownin a
graph, asin Figure 8.9.

Figure 8.9 Relationship between capi:choice classand its superclasses

SCAPI.COLLECTION —==CAPI:CHOICE

8 The Class Browser

8.5 Examining generic functions and methods

Click the Functions tab to examine information about the generic functions and meth-
ods defined on the current class. The functions view shown in Figure 8.10 appears.

Figure 8.10 Displaying function information in the Class Browser

. Class Browser 1 ! E

Works File Edit Miew Description Slots Classes Methods History Help

SEDIBUL BEE e P -
Class: | CAPI:CHOICE v X2

Hieramhy|5uperclasse5 Subclasses | Slots |Initargs | Functions Precedence|

Methods |V Include Inherited [«] Include Accessors

Filterv | X Matches 186

(METHOD (SETF CAPI.CALLEACKS-ACTION-CALLBACK) (T CAPL.CALLBACKS))

=0

(METHOD (SETF CAPI.CALLEACKS-CALLEACK-TYPE) (T CAPI.CALLBACKS))
(METHOD (SETF CAPI.CALLBACKS-EXTEND-CALLBACK) (T CAPL.CALLBACKS))
(METHOD (SETF CAPI.CALLBACKS-RETRACT-CALLBACK) (T CAPI:CALLBACK

(METHOD (SETF CAPI:CALLBACKS-SELECTION-CALLBACK) (T CAPI:CALLBACK
| |]

[¢]

Description:
Name: (METHOD (SETF CAPI:CALLBACKS-ACTION-CALLBACK) (T CAPI:C
Function: #<STANDARD-WRITER-METHOD (SETF CAPI:CALLEACKS-ACTION
Lambda List: (VALUE CALLBACKS)

Documentation:

Source Files:

€| S +

This view can be especially useful when used in conjunction with the Generic Func-
tion Browser. The areas available are described below.

12

8.5 Examining generic functions and methods

8.5.1 Class box

Aswith other views in the Class Browser, the name of the class being browsed is
given here. See Section 8.2.1 on page 104 for more details.

8.5.2 Filter box

The Filter box lets you restrict the information displayed in the list of functions or
methods. See “Filtering information” on page 55 for a description of how to use the
Filter box in any tool, and Section 8.1.3 on page 99 for an example of how to useit in
the Class Browser.

8.5.3 List of functions or methods

Thislists either the generic functions with applicable methods for the current class, or
the applicable methods for the current class. Items selected in thislist can be operated
on viathe Methods menu, as described in Section 8.5.6 on page 114. Double-clicking
on afunction or method displays its source code definition in the Editor, if possible.

Select Methods or Generic Functions from the drop-down list box to choose which
type of information to list.

If Include Inherited is checked, generic functions or methods inherited from the super-
classes of the current class are displayed.

If Include Accessors is checked, accessor methods/functions are displayed. When
Include Accessors is not checked, methods/functions defined by the : readers,
:writers and :accessors SOt Optionsin defclass are omitted from the display.

You can configure the default settings of these optionsin the Preferences dialog. To do
this raise the dialog as described in “ Setting preferences’ on page 28, then select
Class Browser inthelist on the left side and then select the Slots/Functions tab to see
the default settings that you can configure.

8.5.4 Description list

Thelist at the bottom of the tool gives a description of the function or method selected
in the main list. The following information is shown;

Name The name of the selected generic function or method.

113

8 The Class Browser

114

Function The function which the selected function or method rel ates
to.

Lambda List The lambdal list of the selected generic function or method.

Documentation The Common Lisp documentation for the selected function or
method, if any exists.

Source Files The source files for the selected generic function or method.

To operate on any of the items displayed in this area, select them and choose a com-
mand from the Description menu. This submenu contains the standard actions com-
mands described in Section 3.8 on page 48. You can operate on more than one item at
once by making a multiple selection in this area.

8.5.5 Performing operations on the current class

You can operate on the current class using the commandsin the Classes menu. The
standard action commands described in Section 3.8 on page 48 are available from this
submenu.

Choose Classes > Browse Metaclass to select and describe the class of the current
class.

8.5.6 Operations specific to the current function or method

In addition to the commands described above, the following commands are available
when using the functions view.

The standard action commands described in Section 3.8 on page 48 are available from
the Methods menu.

Choose Methods > Undefine... to remove the selected functions or methods from the
LispWorks image. You are prompted before the functions or methods are removed.

War ning: Do not remove system functions and methods, such as those defined for
CAPI classes used as examples in this chapter.

Choose Methods > Trace to display the Trace submenu available from several tools.
This submenu lets you trace the sel ected methods or generic functions. A full descrip-
tion of the commands in this submenu is given in Section 3.10 on page 54.

8.6 Examining initargs

8.6 Examining initargs

Click the Initargs tab to examine information about the initargs of the current class.
The initargs view shown in Figure 8.11 appears.

Figure 8.11 Displaying initarg information in the Class Browser

Class Browser 1

Works File Edit Miew Description Slots Classes Methods History Help

R B e

lass:| CAPI:CHOICE v X ™

Hierarchy | Superclasses | Subclasses Initargs | Functions Precedence|

Filter + » Matches 68

ACCEPTS-FOCUS-P
ACTION-CALLBACK
‘CALLBACK-TYPE
DATA-FUNCTION

Description:

Initarg: (CALLBACK-TYPE
Default Initarg:
Default From Class:
From Classes: CAPLCALLEACKS
Slot Name: CAPI::CALLBACK-TYPE
Type: T
Initargs: (CALLBACK-TYPE
Initform: NIL
Readers: CAPI:CALLBACKS-CALLBACK-TYPE
Writers: (SETF CAPI:CALLBACKS-CALLBACK-TYPE)
Allocation: :[INSTANCE

115

8 The Class Browser

116

The areas available are described bel ow.

8.6.1 Class box

Thisareagives the name of the class being browsed. See Section 8.2.1 on page 104 for
details.

8.6.2 Filter box

The Filter box lets you restrict the information displayed in the initargs list. See “Fil-
tering information” on page 55 for a description of how to use the Filter box in any
tool, and Section 8.1.3 on page 99 for an example of how to useit in the Class
Browser.

8.6.3 List of initargs

Thislists the slotsin the current class for which initargs have been defined. Selecting
aniteminthislist displaysinformation in the Description list. Any items selected can
also be operated on via the Slots menu.

8.6.4 Description list

This area gives adescription of theinitarg selected in the Initargs area. The following
items of information are displayed:

Initarg The name of the selected initarg.

Default Initarg The default value for the selected initarg, if defined with

:default-initargs.

Default From Class
The class providing the default for the initarg.

From Classes The class from which the selected initarg isinherited.
Slot Name The name of the slot to which thisinitarg relates.

Type The type of the selected initarg.

8.7 Examining class precedences

Initargs All initargs applicable to the same daot.

Initform The initform for the slot to which thisinitarg relates.
Readers The readersfor the dot to which thisinitarg relates.

Writers The writersfor the dot to which thisinitarg relates.
Allocation Theallocation for slot to which thisinitarg relates. See CLOS

in the ANSI Common Lisp specification for details.

Items selected in thislist can be operated on viathe Description menu.

8.6.5 Performing operations on the current class

You can operate on the current class using commands in the Classes menu. The stan-
dard action commands described in Section 3.8 on page 48 are available in this sub-
menu.

Choose Classes > Browse Metaclass to select, and describe in the normal way, the
class of the current class.

8.7 Examining class precedences

Click the Precedence tag to examine information about the precedence list of the cur-
rent class. The precedence view shown in Figure 8.12 appears.

The precedence list is used to generate the method combinations for a class, and thus
can be used to tell you which method appliesin agiven case.

17

8 The Class Browser

See Chapter 15, “ The Generic Function Browser” for details on examining informa-
tion about methods.

Figure 8.12 Displaying precedence information in the Class Browser

Class Browser 1

Works File Edit Miew Description Slots Classes Methods History Help

D% 2R DR -9~

lass: | CAPI:CHOICE v X

Hierarchy | Superclasses | Subclasses Initargs Precedence
Filerv | | X Matches 8

CAPI:.CHOICE
CAPI.COLLECTION
CAPI::SIMPLE-ELEMENT
CAPI::BASIC-ELEMENT
CAPI.CALLEACKS
CAPI.CAPI-OB JECT
STANDARD-OB JECT

Package: CAPI
Name: CHOICE
Metaclass: STANDARD-CLASS
Accessibility: :EXTERMNAL

The areas available are described bel ow.

8.7.1 Class box

Aswith all other views in the Class Browser, the current classis printed in this area.
See Section 8.2.1 on page 104 for full details of its use.

118

8.7 Examining class precedences

8.7.2 Filter box

The Filter box lets you restrict the information displayed in the list of precedences.
See “Filtering information” on page 55 for adescription of how to usethe Filter box in
any tool, and Section 8.1.3 on page 99 for an example of how to useit in the Class
Browser.

8.7.3 List of precedences

Thislist isthe class precedence list of the current class. Precedences are listed highest
first. Double-clicking on an item in this list describes that class in the Class Browser.

8.7.4 Description list

This gives the same class description available in the superclasses, subclasses, and
hierarchy views. See Section 8.3.4 on page 107 for details.

8.7.5 Performing operations on the selected classes or the
current class

You can operate on any number of selected itemsin the list of precedences using the
commands in the Classes menu. If no items are selected, then the current classis
operated on by the commands in this submenu. The standard actions commands
described in Section 3.8 on page 48 are available in this submenu.

Choose Classes > Browse Metaclass to select, and describe in the normal way, the
class of the selected classes, or the current class.

Note: If more than oneitem is selected, and the command chosen from the Classes
menu invokes atool which can only display oneitem at atime, then the extraitemsare
added to the History > Items submenu of the tool, so that you can easily display them.

119

8 The Class Browser

120

9

The Object Clipboard

The Object Clipboard is a utility that allows you to keep track of multiple Lisp objects
as you examine and manipulate them with the LispWorks IDE toals.

Recall that a Lisp object which isviewed in some tool can be temporarily stored and
then pasted into another tool. See the descriptions of the Copy, Cut and Paste com-
mands in “Using the Object operations with the clipboard” on page 40 and “ Opera-
tions available” on page 49.

The Object Clipboard, and its associated Clip command provides a more powerful
mechanism whereby multiple Lisp objects can be stored ("clipped") and later
retrieved.

Note: the Clip command retains a pointer to the clipped object even if you do not have
an Object Clipboard tool visible. When you create the tool, the clipped objects are
visiblein it

121

9 The Object Clipboard

122

To create an Object Clipboard tool, choose Works > Tools > Object Clipboard or click
[] inthe Podium.

Figure 9.1 The Object Clipboard

Object Clipboard 1
Works File Edit Object Help

DD SED WYY O ®
Filter + # Matches 1
MName Value

FUNCTION-1 #<Function COPY-READTAELE 2017BBAZ>

Ready.

The Object Clipboard creates a name for the clipped object based on its type, and
shows the object itself in the Va ue column.

9.1 Placing objects on the Object Clipboard

You can place an object on the Object Clipboard by using the menu command Clip,
available in most tools as described below..

9.1.1 The Listener

To place the current object of a Listener on the Object Clipboard (that is, the value of
the variable c1: *), choose Values > Clip in the Listener.

If your Listener isin the debugger, you can clip the condition object by Debug > Con-
dition > Clip.

9.1 Placing objects on the Object Clipboard

9.1.2 The Class Browser

To place aclassfrom the Class Browser on the Object Clipboard, select the class name
in the Hierarchy, Superclasses, Subclasses or Precedence tab, and choose Classes
> Clip.

To place adlot definition object from the Class Browser on the Object Clipboard,
select the slot namein the Slots tab, and choose Slots > Clip.

To place a method or generic function object from the Class Browser on the Object
Clipboard, select it in the Functions tab, and choose Methods > Clip.

9.1.3 The Inspector

To place the currently inspected object in the Inspector on the Object Clipboard,
choose Object > Clip.

To place the value in adot of the currently inspected object, select the dot in the
Inspector, and choose Slots > Clip.

9.1.4 The Function Call Browser

To place the current function on the Object Clipboard, choose Function > Clip. If you
have selected a function name in the Function Call Browser, that function is clipped
instead.

9.1.5 The Generic Function Browser

To place amethod from the Generic Function Browser on the Object Clipboard, select
the method and choose Methods > Clip. For the generic function object itself, choose
Function > Clip.

9.1.6 The Debugger

To place the condition object from the Debugger tool on the Object Clipboard, choose
Condition > Clip.

To place the value of avariable in the Debugger’s backtrace area on the Object Clip-
board, select the variable and choose Vvariables > Clip.

123

9 The Object Clipboard

124

9.1.7 The Stepper

To place the value of avariable in the Stepper’s Backtrace tab onto the Object Clip-
board, select the variable and choose Variables > Clip.

9.1.8 The System Browser

To place the system object from the System Browser onto the Object Clipboard,
choose Systems > Clip.

9.1.9 General clipping

To place any CAPI top level window itself on the Object Clipboard, choose Works >
Interface > Clip.

To place data from a Description panel, such asin the Class Browser or in the Tree tab
of the Compilation Conditions Browser, select the desired parts of the Description and
choose Description > Clip.

9.2 Browsing clipped objects

9.2 Browsing clipped objects

For each object in the Object Clipboard, you can can browse it in various tools as
described below. First, select the object you want to browse and note that the Object
menu is enabled:

Figure 9.2 An object selected in the Object Clipboard

Object Clipboard 1
Works File Edit Object Help

DD %Yy Y &
Filter « 2 Matches 2
Mame Value

FUNCTION-2 #<Closure 2 subfunction of STRUCTURE:: MAKE-SIMPLE-VE
0 on COPY-READTAR 2

€| A »

Ready.

9.2.1 The Inspector

To inspect any object that is on the Object Clipboard, select it and choose Object >
Inspect.

9.2.2 The Class Browser

To browse the class of any object that is on the Object Clipboard, select it and choose
Object > Class.

9.2.3 The Listener

To paste an object from the Object Clipboard into the Listener, choose Object > Lis-
ten.

125

9 The Object Clipboard

126

9.2.4 General browsing

To browse an object that is on the Object Clipboard, select it and choose the Browse
command from the Object menu. For example, if the object is a generic function, the
menu command is Object > Browse - Generic Function.

9.2.5 Pasting of clipped objects
Thisisanother way to view a clipped object in another tool.
Paste an object from the Object Clipboard into another tool by:
1. Select the object in the Object Clipboard window
2. Choose Edit > Copy.
3. Make the other tool window active.
4

Choose Edit > Paste.

9.3 Removing objects

To remove an object from the Object Clipboard, select it and choose Edit > Object >
Cut Object.

To empty the Object Clipboard, first remove any filter. Then choose Edit > Select All
followed by Edit > Object > Cut Object.

Note: if you close the Object Clipboard window, the objectsin it are not removed
from the Object Clipboard. They are preserved and displayed in a subsequently cre-
ated Object Clipboard windows.

9.4 Filtering

You can use the Filter box of the Object Clipboard in the standard way to reduce the
number of clipped objects displayed.

9.5 Using the Object Clipboard with a Listener

For example to see only the method objectsin the Object Clipboard, enter "method" in
the Filter box.

Figure 9.3 Use of the Filter box in the Object Clipboard

Object Clipboard 1
Works File Edit Object Help

o= B B et DD E
Filter~ | method| > Matches 4
Mame Value
STANDARD-METHOD-2 #<STANDARD-METHOD CAPI-LIBRAF
STANDARD-METHOD-1 #<STANDARD-METHOD CAPI-LIBRAF

STANDARD-READER-METHOD-2 #<S5TAMDARD-READER-METHOD CA
STANDARD-READER-METHOD-1 #<STANDARD-READER-METHOD CA

| »

Ready.

For more information about filtering, see “Filtering information” on page 55.

9.5 Using the Object Clipboard with a Listener

Here we place several objects on the Object Clipboard. Then we link the Object Clip-
board with a Listener tool, giving a convenient way to manipulate these objectsin
turn.

In the Listener:

1. Enter

127

9 The Object Clipboard

128

(capi:contain
(make-instance 'capi:display-pane
:text "Display Pane"
:background :green))

A green display paneis displayed.

Ensure that the Listener window is active, so that the Values menu is enabled.
Choose Values > Clip to place the display pane on the Object Clipboard.

Enter

(capi:contain
(make-instance 'capi:editor-pane
:text "Editor Pane"
:background :yellow))

A yellow editor paneis displayed.

Return to the Listener and choose Values > Clip to place the editor pane on the
Object Clipboard.

Enter

(capi:contain
(make-instance 'capi:graph-pane))
A graph paneis displayed.
Return to the Listener and choose Values > Clip to place the graph pane on the
Object Clipboard.

Now choose Tools > Object Clipboard or click ["] in the Podium. Notice that this
creates an Object Clipboard tool if you do not already have one. The Object Clipboard

shows the objects you just clipped, and the most recently clipped object appears at the

9.5 Using the Object Clipboard with a Listener

top. It should look like Figure 9.4.

Figure 9.4 CAPI panesin the Object Clipboard

Object Clipboard 1

Works File Edit Object Help

Filter «

ESIEY

> Matches 3

LR R F A=K

MName

Value

GRAPH-PANE-1

#<CAPI.GRAPH-PANE [31 items] 22476DC7 =

EDITOR-PANE-1
DISPLAY-PANE-1

#<CAPLLEDITOR-PANE 200D1C73=
#<CAPL.DISPLAY-PANE Z21BDO0AST-

Ready.

In the Listener choose Edit > Link from and select the Object Clipboard in the sub-
menu. Now, whenever you select an object in the Object Clipboard, it is aso pasted
into the Listener - that is, it becomes the value of *. We use thislink to manipulate the
CAPI pane objectsin the Listener.

1

In the Object Clipboard select DISPLAY-PANE-1. Thisraisesthelinked Lis-
tener window and pastes the display pane object.

Enter in the Listener:

(capi:apply-in-pane-process
* #'(setf capi:simple-pane-background) :red *)

The display pane background becomes red.

In the Object Clipboard select EDITOR-PANE-1. Thisraisesthelinked Listener
window and pastes the editor pane object.

129

9 The Object Clipboard

130

4.

In the Listener choose History > Previous Or US€ Esc P, and press Return, t0
enter the same command again

(capi:apply-in-pane-process
* #'(setf capi:simple-pane-background) :red *)

The editor pane background also becomes red.

In the Object Clipboard select GRAPH-PANE-1. Thisraisesthelinked Listener
window and pastes the graph pane object.

Enter in the Listener:

(capi:apply-in-pane-process
* #'(setf capi:graph-pane-roots) '(2 3) ¥*)

The graph paneis altered.

Notice how linking the Listener with the Object Clipboard allows you to manipulate
the clipped objectsin turn viathe value of *.

10

The Compilation Conditions
Browser

10.1 Introduction

The Compilation Conditions Browser gives you an interface to the warning and error

conditionsyou are likely to encounter when compiling your source code. It allowsyou
to see the relationship between different errors or warnings encountered during compi-
lation, and gives you immediate access to the source code which produced them.

You can useit to view the conditions signaled during compilation of files from any
part of the environment: whether you are compiling files using the System Browser or
the Editor, any ensuing conditions can be displayed in the Compilation Conditions
Browser. The Compilation Conditions Browser requires the source code to come from
afile.

The Compilation Conditions Browser has two views.
« The Conditions view, which shows the conditions grouped by file name.

e The Output view, which can be used to display the output messages in the envi-
ronment.

To create a Compilation Conditions Browser, you can choose Works > Tools > Compi-
lation Conditions Browser or click &2 in the Podium.

131

10 The Compilation Conditions Browser

132

A more common way to create a Compilation Conditions Browser iSto press Return
when the Output tab (of any tool) reports compilation conditions. See “ Compiling in
memory” on page 197 for details.

10.2 Examining error conditions

The Conditions view isvisible when the Compilation Conditions Browser is first
invoked. The tool appears as shown in Figure 10.1.

Figure 10.1 The Compilation Conditions Browser

Compilation Conditions Browser 1

Works File Edit Miew Description Help

AcE =R NSk R A=k

Conditions | Output

= [/amd/lwfs 1-cam/u/ldisk/sp/lispsrc/clc/local/doc/lw/capi/env/src/output-brc

A "GRAPH-MAME" assumed special in SETQ
€ Calling FLOOR Find Source
€ Implementation level calling S Hide Delate & with 1 argur
& "GRAPH-NAME" assumed spe

#: More than three arguments in If

Unhide in file

Unhide all
q | E

JE-DIRECTIY

|Description:

Condition: Q is bound but not referenced
Class: CONDITIONS::SIMPLE-STYLE-WARNING
Definition: FACTORP

File: famd/lwfs1l-cam/u/ldisk/sp/lispsrc/clc/local/doc/lw/capifenv/src/outy

4 A ¥

Ready.

10.3 Configuring the display

There are two tabs. These show the same information, in different ways:

e Conditions - default view that shows all conditionsin atree representation,
grouped by filename. Each item in the tree can be expanded to show the condi-
tions that were generated during compilation of that file. Selecting a compila-
tion message in the tree view causes the data for the selected message to be
shown in the Description area. Double-clicking on an item (or using Find
Source on the context menu, as illustrated above) shows the source code of the
condition in an Editor, highlighting the nearest subform to where the condition
occurred. After doing this, cer1+x - (backquote) can be used to find the
source of the next condition shown in the browser.

e Output - shows the raw compilation output. You will see this same output in
the tool that performed the compilation.

The description areain the Conditions view of the Compilation Conditions Browser
shows a description of any item selected in the conditions area. The description con-
tains details of the selection condition. The following information is shown:

Condition The error condition for the selected item in the message area.

Class The class of the selected condition.

Definition The name of the form in which the condition was signaled.

File The name of the file that contains the Lisp source code that
caused the selected condition.

Items selected in this areamay be examined using the Description menu which allows
avariety of LispWorkstoolsto be invoked on the selected item in the description area.

10.3 Configuring the display

The manner in which the Compilation Conditions Browser displays information can
be customized using the Preferences dialog. To do this, raise the dialog as described in

133

10 The Compilation Conditions Browser

“Setting preferences’ on page 28 and then select Compilation Conditions in the list
on the | eft side of the Preferences dialog. The General tab is shown:

Figure 10.2 The Compilation Conditions Browser General preferences

General | Display

Package
COMMON-LISP-USER v %

Show Package Names

Toolbar
Show Toolbar

Here you can select or deselect Show Package Names to toggle display of packages
in al references to symbols, and you can use the Package box to specify the current
package when displaying symbols.

Setting a suitable package and turning off display of package names can greatly sim-
plify acomplicated list.

Select of deselect Show Toolbar to control whether Compilation Condition Browser
tools have atoolbar.

134

10.3 Configuring the display

10.3.1 Display preferences

The Display tab of the Compilation Conditions Browser preferences appearsasin Fig-
ure 10.3.

Figure 10.3 The Compilation Conditions Browser Display preferences

General | Display

Pathnames

() Show Leaf Pathname

Conditions : | Types to Display...

This tab includes the pathnames selection area, which has two radio buttons.

Check Show Full Pathname to show the full pathname of all files displayed. Thisis
the default setting.

Check Show Leaf Pathname to show just the filename of all files displayed, and omit
the full pathname.

10.3.2 Condition type preferences

Clicking on Types to Display... in the Display tab of the Compilation Conditions
Browser preferences displays the condition types dialog as shown in Figure 10.4, page
136. It consists of a Select Type: box and two lists.

e TheSelected Types list shows the condition types that are displayed in the
browser.

135

10 The Compilation Conditions Browser

e TheUnselected Types list shows the condition typesthat are not displayed in
the browser.

Figure 10.4 The Condition Typesdialog

LispWorks: Preferences : Condition Types

Select the condition types to display:

Select Type: v
Unselected Types: Selected Types:
PRINT-NOT-READABLE] ERROR
PRINT-NOT-READABLE-EVAL RI0 ONDITIO

PROGRAM-ERROR
PROPERTY-LIST-ERROR
READER-ERROR
REDEFINING-CONSTANT-ERROR
REQUIRE-ERROR
SEQUENCE-ERROR
SETF-REFERENCE-NOT-FOUND
SIGNAL-HANDLER-ERROR
SIMPLE-COMPILER-ERROR
SIMPLE-COMPILER-WARNING
SIMPLE-CONDITION
SIMPLE-END-OF-FILE
SIMPLE-ERROR

| | B

cLw

B3

L¢]

None All % Cancel|| « 0K

By default, the condition typeis selected asit includes all subclasses.

To remove a condition type from the Selected Types list, select it and click on <<<. It
istransferred into the Unselected Types list.

To add a condition type back into the Selected Types list, either:

e selectitinthe Unselected Types list and click on >>>, or

136

10.4 Access to other tools

e Enteritsnamein the Select Type: areaand press Return.

If you use the second of these methods, you can press 7"1? which allows you to select
from alist of all condition type names which begin with the partial input you have
entered. See “ Completion” on page 59 for detailed instructions.

To display all condition types, click on All.

To display no condition types, click on None. If you only want to display afew
condition types, click on this button and then transfer the error types you do want to
see into the Selected Types list using one of the methods described above.

When you have finished choosing the condition types, click on OK. The dialogisdis-
missed, and the Compilation Conditions Browser is updated to display the condition
types you have requested.

Click on Cancel to cancel the dialog. The dialog is dismissed, and no changes are
made to the display.

10.4 Access to other tools

The Compilation Conditions Browser is integrated with the other tools allowing intui-
tive interaction.

You can easily find the source the generated a condition, as described in “ Examining
error conditions’ on page 132.

Items selected in the Description area may be examined using the Description menu.
See “Operations available” on page 49 for more information on the operations avail-

able from this menu. Additionally, double-clicking on part of the description displays
it in an Inspector or Class Browser, as appropriate.

137

10 The Compilation Conditions Browser

138

11

The Debugger Tool

When devel oping source code, mistakes may prevent your programs from working
properly, or even at all. Sometimes you can see what is causing a bug in a program
immediately, and correcting it istrivial. For example, you might make a spelling mis-
take while typing, which you may instantly notice and correct.

More often, however, you need to spend time studying the program and the errors it
signalled before you can debug it. Thisis especially likely when you are developing
large or complex programs.

A Debugger tool is provided to make this process easier. Thistool is agraphical front-
end to the command line debugger which is supplied with your Lisp image. In order to
get the best use from the Debugger toal, it is helpful if you are familiar with the com-
mand line debugger supplied. See the LispWorks User Guide and Reference Manual
for a description of the command line debugger.

The Debugger tool can be used to inspect programs which behave in unexpected
ways, or which contain Common Lisp forms which are syntactically incorrect.

There are two ways that you can invoke the Debugger tool:

e |If you evaluate code that signals an error in a Listener, the command line
debugger is entered automatically. At this point, choose Debug > Start GUI
Debugger or pressthe #& button in the Listener toolbar to invoke the Debug-
ger tool.

139

11 The Debugger Tool

140

e |If you run code that signals an error from another source (for example, asa
result of running awindowed application, or compiling code in afile of source
code), anotifier window appears. Click on the Debug button in this notifier to
invoke the Debugger tool.

Here is a short exampl e introducing the Debugger tool:
1. Definethefollowing function in the Listener.

(defun thing (number)
(/ number 0))

This function which attempts to divide a number given as an argument by zero.
2. Now call this function asfollows:

(thing 12)

The call to thing invokes the command line debugger.

3. Choose Debug > Start GUI Debugger or pressthe # button to invoke the
Debugger tool. Notice that the window title contains the name of the process
being debugged.

4. For now, click the Abort button (= in the Debugger toolbar to return to the top
level loop in the Listener.

The command line debugger can be entered by signaling an error in interpretation or
execution of a Common Lisp form. For each error signaled, afurther level of the
debugger is entered. Thus, if, while in the debugger, you execute code which signals
an error, alower level of the debugger is entered. The number in the debugger prompt
isincremented to reflect this.

Note that you can also invoke the command line debugger by tracing a function and
forcing abreak on entry to or exit from that function. See the tutorial chapter (Section
2.3) for the example code used in Figure 2.4 and Figure 11.1.

11.1 Description of the Debugger

11.1 Description of the Debugger
By default the debugger tool appears as shown in Figure 11.1 bel ow.
Figure 11.1 Debugger tool

Error condition. Control buttons. Debugger backtrace.

Debugging CAFPI Execution Listener 1

Works File Edit \\iew Condition Hrame Variables” Restarts Help

Condition:
Division-by-zero caused by / of (12 0).
Backtrace:
I A INVOKE-DEBUGGER
I A ERROR
N
¥ A THING
* NUMEBER 12
> A EVAL
I X CAPI:CAPI-TOP-LEVEL-FUNCTION
I A CAPI:INTERACTIVE-PANE-TOP-LOOP
I X MP::PROCESS-SG-FUNCTION

&
N

)

EJ
(=Y}
i<l
BEtl
Lt

W
&

Ready.

State of variables for

Echo area.
selected frame.

The debugger tool has two areas, and atoolbar. These are described below. If you
invoke the debugger tool by clicking Debug in a notifier window, the tool also con-
tains alistener pane. This provides you with auseful way of evaluating Common Lisp
formsinteractively in the context of the error.

141

11 The Debugger Tool

142

11.1.1 Condition box

This area displays the error condition which caused entry to the debugger. You cannot
edit the text in this box.

The error condition can be operated on by commands in the Condition menu. See
“Performing operations on the error condition” on page 150 for details.

11.1.2 Backtrace area

The backtrace area displays the function calls on the execution stack. Each tree root or
list item in the backtrace area represents a stack frame associated with a function call.

Double-clicking on any stack frame finds and displays the source code definition for
that function in the Editor, if thisis known. Any frame selected in this area can be
operated on using the commands in the Frame menu, which is aso available as the
context menu. See “Performing operations on stack frames’ on page 150 for details.

The backtraceis displayed either in atree or alist, with the behaviors described below.

You can choose which type of display it uses by the Frames and Arguments prefer-
ence, described in “ Configuring the debugger tool” on page 152.

11.1.2.1 Frames and Variables in a tree

When the Frames and Arguments preference has the value Tree-view, the Debugger
appears as shown in Figure 11.2 below.

Each expandable root node in the Backtrace: tree represents a stack frame associated
with afunction call. You can operate on the frame as described in “Backtrace area” on
page 142.

Expanding a stack frame node displays any variables associated with that function
call. You can double click on any variable to inspect it using the Inspector tool. Any

11.1 Description of the Debugger

items selected in this area can be operated on using the commands in the Variables
menu: see “Performing operations on frame variables’ on page 151 for details.

Figure 11.2 Variablesin the Debugger tree view

Debugging CAPI Execution Listener 1

Works File Edit WView Condition Frame Variables Restarts Help

B esis @ 2 SR S

IC ondition:
Division-by-zero caused by / of (1).

T
[<=1

(4]

Backtrace:
I A INVOKE-DEBUGGER
X ERROR
i FOO
®*ZERC* 0
& ONE 1
O TWO 2
I A EVAL
[A CAPI:CAPI-TOP-LEVEL-FUNCTION
[> A CAPI:INTERACTIVE-PANE-TOP-LOOP
I A MP::PROCESS-SG-FUNCTION

Ready.

The colored circular nodes in the backtrace tree have these meanings:

Yellow A normal lexical variable

Red A closure variable (either from an outer scope or used by an
inner scope)

Purple A special variable

143

11 The Debugger Tool

11.1.2.2 Frames and Variables in two lists

When the Frames and Arguments preference has the value Two list-panels, the
Debugger appears as shown in below.

Figure 11.3 Debugger tool with two list-panels

Error condition. Control buttons. Debugger backtrace.

Debugging CAPI Execution Listener 1

el @
C ondition:
Division-by-zero caused by / of (12 0).
Backirace:
INVOKE-DEEUGGER
ERROR
/

THING Find Source -

EVAL Documentation
CAPICAPI-TOP-LEVEL-FUNCTION

CAPILINTERACTIVE-PANE-TOP-LOOP
MP::PROCESS-SG-FUNCTION

Inspect Function

Method Combination

Local variables: Restart Frame

NUMBER 12 Restart Frame Stepping

Return from Frame

Break On Return from Frame

Ready . Trace ¥
State of variables for
Echo area. Context menu operates on selected
selected frame. frame or variable.

144

11.2 What the Debugger tool does

Each item in the Backtrace: list represents a stack frame associated with afunction
call. You can operate on the frame as described in “ Backtrace area’ on page 142.

A second list titled Local variables: showsthe local variables of the frame which si
selectd in the Backtrace: list. You can operate on the variables similarly to the back-
trace tree: double click on avariable to inspect it or use the commandsin the Variables
menu, which is also available as the context menu.

Note: with Two list-panels, only thelocal variables of the current frame are displayed.

11.1.3 Toolbar buttons
At the top of the debugger tool isarow of buttons, as described below. Press:
» (=4 to break the current execution.
(=) toreturn from the debugger and invoke the continue restart.
« {=) toreturn from the debugger and invoke the abort restart.
* to select the previous stack frame in the backtrace area.
* to select the next stack frame in the backtrace area.

L]
—

= to print the backtrace in the Listener.

. to print the variable bindings of the current frame in the Listener.
+ =] tofind the source code for the current stack frame.

If you hold the mouse cursor stationary over any button for about one second, then
help text appears that identifies the button.

11.2 What the Debugger tool does
The Debugger tool provides a number of important facilities for inspecting programs.

Common Lisp, like most programming languages, uses a stack to store data about pro-
grams during execution. The Debugger tool allows you to inspect and change this
stack to help get your programs working properly.

You can use it to trace backwards through the history of function calls on the stack, to
see if the program behaves as expected, and locate points at which things have gone
wrong.

145

11 The Debugger Tool

146

You can also inspect variables within those functions, again to verify that the program
isdoing what is expected of it.

The Debugger tool also allows you to change variables on the stack. Thisis useful
when testing possible solutions to the problems caused by abug. You can run a
bugged program, and then test fixes within the Debugger tool by altering values of
variables, and then resume execution of the program.

11.3 Simple use of the Debugger tool

When you enter the Debugger tool, the Condition area displays a message describing
the error. The Restarts menu lists a number of restart options, which offer you differ-
ent ways to continue execution.

1

For example, type the name of a variable which you know is unbound (say
fubar) at the Listener prompt.

Press # in the Listener toolbar or choose Debug > Start GUI Debugger to
enter the Debugger tool.

Select the Restarts menu to display the options available.

A number of restarts are displayed that offer you different waysin which to pro-
ceed. These are the same options as those displayed at the command line debug-
ger before you invoked the debugger tool.

Two special restarts can be chosen: the abort and continue restarts. These are
indicated by the prefixes (abort) and (continue) respectively. As a shortcut, you
can use the Abort (=) or Continue (=) toolbar buttons to invoke them, instead
of choosing the appropriate menu command.

In the case of the continue restart, different operations are performed in different
circumstances. In this example, you can evaluate the form again. If you first set
the variable to some value, and then invoke the continue restart, the debugger is
exited.

In the Listener, set the value of fubar asfollows:
(setq fubar 12)

Press Continue (=) in the debugger tool.

11.4 The stack in the Debugger

The debugger tool disappears, and the command line debugger is exited in the
Listener, and the value 12 isreturned; the correct result if the variable had been bound
in the first place.

You can also press Abort (=i to invoke the abort restart. This restart always exits the
current level of the debugger and returns to the previous one, ignoring the error which
caused the present invocation of the debugger.

In general, you should use the continue restart if you have fixed the problem and want
to continue execution, and the abort restart if you want to ignore the problem com-
pletely and stop execution.

11.4 The stack in the Debugger

As aready mentioned, the debugger tool allows you to examine the state of the execu-
tion stack, which is shown in the Backtrace area. This area consists of a sequence of
stack frames. A stack frame is a description of some part of a program, or something
relating to the program, which is packaged into a block of memory and placed on the
stack during program execution. These frames are not directly readable without the
aid of the debugger.

There can be frames on the stack representing active function invocations, specia
variable bindings, restarts, and system-related code. In particular, the execution stack
has a call frame for each active function call. That is, it stores information describing
calls of functions which have been entered but not yet exited. Thisincludes informa
tion such as the arguments with which the functions were called. By default, only call
frames for active function calls are displayed in the Backtrace area. See Section 11.9
on page 152 for details of how to display other types of call frame.

The top of the stack contains the most recently-created frames (and so the innermost
calls), and the bottom of the stack contains the oldest frames (and so the outermost
calls). You can examine acall frameto find the name of afunction, and the names and
values of its arguments, and local variables.

11.5 An example debugging session

To better understand how you can make use of the debugger, try working through the
following example session. In this example, you define the factorial function, save the
definition to afile on disk, compile that file and then call the function erroneously.

147

11 The Debugger Tool

148

Choose File > New or click on[.

A new fileis created and displayed in the Editor. If you have not already
invoked the Editor, it is started for you automatically.

In the new file, define the function £ac to calculate factorial numbers.

(defun fac (n)
(if (=n 1) 1
(* n (fac (- n 1)))))

Choose File > Save or click on] and enter afilename when prompted.

Choose File > Compile and Load to compile the file and load the resulting fasl
file.

The Editor switches to the output view while compilation takes place. When
prompted, press space to return to the text view. The £ac function is now
defined and available for you to use.

In the Listener, call £ac erroneoudly with a string argument.
(fac "turtle")

LispWorks notices the error: The arguments of = should be numbers, and one of
them is not.

Choose Debug > Start GUI Debugger or press # to invoke the Debugger tool.
Take amoment to examine the backtrace that is printed in the Backtrace area.

Starting from the selected frame, expand or select the next three frames in the
Backtrace areain turn to examine the state of the variables which were passed to
the functions in each call frame. Pay particular attention to the £ac function.

The error displayed in the Condition box informs you that the = functionis
called with two arguments: the integer 1 and the string “turtle”. Clearly, one of
the arguments was not the correct type for =, and this has caused entry into the
debugger. However, the arguments were passed to = by £ac, and so the real
problem liesin the £ac function.

In this case, the solution isto ensure that £ac generates an appropriate error if it
is given an argument which is not an integer.

Double-click on the line Fac in the Backtrace area of the debugger tool.

10.

12.

11.5 An example debugging session

The Editor appears. The subform within the definition of £ac which actually
caused the error is highlighted. Double-clicking on alinein the Backtrace area
is ashortcut for choosing Frame > Find Source or using the w=] button. If the
Debugger can find the erroneous subform, thisis highlighted, otherwise the def-
inition itself is highlighted if it can be found.

Edit the definition of the £ac function so that an extra i £ statement is placed
around the main clause of the function. The definition of £ac now reads as fol -
lows:

(defun fac (n)
(if (integerp n)
(if (=n 1) 1
(* n (fac (- n 1))))
(print "Error: argument must be an integer")))

The function now checks that the argument it has been passed is an integer,
before proceeding to evaluate the factorial. If an integer has not been passed, an
appropriate error message is generated.

Choose File > Save and File > Compile and Load again, to save, recompile and
load the new definition.

Click onthe Abort button in the debugger tool, to destroy the tool and return the
Listener to the top level loop.

In the Listener, type another call to £ac, once again specifying astring as an
argument. Note that the correct error message is generated. You will seeit twice,
becase £ac prints the message and then the Listener prints the return value of
fac.

This next part of the example shows you how you can use the various restarts which
are listed as commands in the Restarts menu.

1

2.

Call £ac again with anew argument, but this time type the word 1ength incor-
rectly.

(fac (legnth "turtle"))

Choose Debug > Start GUI Debugger or press # to invoke the debugger tool.

You can spot immediately what has gone wrong here, so the simplest strategy isto
return avalueto use.

3. Choose Restarts > Return some values from the form (LEGNTH "turtle").

149

11 The Debugger Tool

150

You are prompted for aform to be evaluated.

4. Enter 6 inthedialog and press OK. Thisisthe value that would have been
returned from the correct call t0 (length "turtle").

Having returned the correct value from (length "turtle"), fac iscaled with the
correct argument and returns the value 720.

11.6 Performing operations on the error
condition

You can perform operations on the error condition that caused entry into the debugger
using the commands available in the Condition menu.

The standard action commands are available in the Condition menu. For more details
about these commands, see Section 3.8 on page 48.

Choose Condition > Report Bug to generate a bug report template.

11.7 Performing operations on stack frames

Any frame in the Backtrace list can be operated on using commands in the Frame
menu. This menu is also available as a popup from the backtrace areaitself. The com-
mands available alow you to operate on the function displayed in the selected frame.

11.7.1 Source location, documentation, inspect and method
combination for the current frame

Choose Frame > Find Source to search for the source code definition of the object
pointed to by the current frame. If it isfound, thefile is displayed in the Editor: the
cursor is placed at the start of the definition or at the subform which cause the error, if
known. The form is highlighted. See Chapter 13, “ The Editor” for an introduction to
the Editor.

Choose Frame > Documentation to display the Common Lisp documentation for the
object pointed to by the current frame, if any exists. Note that thisis the result of the
Common Lisp function documentation, not the supplied manuals. It is printedin a
special Output Browser window.

11.8 Performing operations on frame variables

Choose Frame > Inspect Function to display an Inspector tool showing the selected
frame's function.

Choose Frame > Method Combination to display a Generic Function Browser tool in
the Method Combinations view for the arguments in the selected frame. This com-
mand is only available when the selected frame is a call to a standard method. See
“Examining information about combined methods” on page 217 for information about
using the Method Combinations view.

11.7.2 Restarts and returning from the frame

Choose Frame > Restart Frame to continue execution from the selected restart frame.
The action that is taken when choosing this command is printed with each restart
framein the Backtrace area. Note that restart frames must be listed for this command
to be available: see “ Configuring the call frames displayed” on page 152 for details.

Choose Frame > Restart Frame Stepping to step through execution from the selected
restart frame. This frame becomes the active frame in a Stepper tool. See Chapter 26,
“The Stepper” for information about using the Stepper tool.

Choose Frame > Return from Frame to resume execution from the selected frame. A

dialog promptsfor avalueto return from the selected frame. Previously entered values
are available viaadropdown in this dialog. This option alows you to continue execu-
tion smoothly after you have corrected the error which caused entry into the debugger.

Choose Frame > Break On Return from Frame to trap execution when it returns from
the selected frame. This command prints a message telling you that the trap has been
set, and when Lisp returns from the frame it calls break, allowing you to enter the
debugger again.

11.7.3 Tracing the function in the frame

Choose Frame > Trace to display the standard Trace menu. This lets you trace the
function in the selected frame in a variety of ways: see “ Tracing symbols from tools’
on page 54 for details.

11.8 Performing operations on frame variables

You can perform operations on a variable selected in the Variables area by the
standard action commands which are available in the Variables menu or from the con-

151

11 The Debugger Tool

text menu on the variables list itself. For more details about these commands, see Sec-
tion 3.8 on page 48.

Choose Variables > Set... to set the value of avariable selected in the Variablesarea. A
dialog prompts you to enter aform which is evaluated to yield the new value for the
variable. Previously entered forms are available via adropdown in this dialog. The
Common Lisp variable * isbound to the current value of the variable in the frame.

11.9 Configuring the debugger tool

You can control the behavior and appearance of the debugger using the Preferences
dialog.

To do this, raise the Preferences dialog by one of the methods described in “ Setting
preferences’ on page 28 and select Debugger in thelist on the left side of the dialog.

Figure 11.4 Debugger Preferences

General | Debugger

WView Frame Package

[Bindings. COMMON-LISP-USER | v ™
L Catchers Show Package Names

[] Handlers

[] Hidden Symbals Options

[] Restarts Abort When Closed

[] Invisible Functions Frames and Arguments

@ Tree-view) Two list-panels

11.9.1 Configuring the call frames displayed

By default, the call frame for each active function call in the backtraceislisted in the
Backtrace area. There are a number of other types of call frame which are hidden by

152

11.9 Configuring the debugger tool

default. Display call frames of these types by selecting them in the View Frame panel
of the debugger Preferences:

Bindings Displays all the binding frames in the Backtrace list.
Catchers Lists the catch frames in the Backtrace list.
Handlers Lists the handler frames in the Backtrace list.

Hidden Symbols Listsany hidden symbolsin the Backtrace list.

Restarts Lists all the restart frames in the Backtrace list. Each restart
frameislisted, with the restart action to be taken given in
brackets. To restart execution at any restart frame, select the
frame, and choose Debug > Frame > Restart Frame.

Invisible Functions

Listsall invisible frames (such asthe call to the error function
itself) in the Backtrace list.

Note that all these commands can be toggled: choosing any command switches the
display option on or off, depending on its current state. By default, al the options are
off when the debugger isfirst invoked.

11.9.2 Displaying package information

Aswith other toals, you can configure the way package names are displayed in the
debugger tool in the Package box of the Debugger Preferences.

Check Show Package Names to turn the display of package names in the Backtrace
and Variableslists on and off.

Specify apackage name in the text box to change the process package of the debugger
tool. You can use completion to reduce typing: click on ?_":!? to which alows you to
select from alist of al package names which begin with the partial input you have
entered. See “ Completion” on page 59 for detailed instructions.

By default, the current package is the same as the package from which the error was
generated.

153

11 The Debugger Tool

154

11.9.3 Behavior on closing the Debugger

By default, when you close the Debugger window it attempts to abort, that is to call
the abort restart.

Uncheck the Abort When Closed option only if you want to turn off this behavior.

11.9.4 Frames and variables display

To choose to view frames and variables in two lists rather than one tree, select the
value Two list-panels in the Frames and Variables option.

11.10 The Notifier window

When an error issignalled in processes other than the Listener REPL, by default a
Notifier window appears. This shows the error message, and allows you to choose
how to proceed by offering the restarts and other options.

Figure 11.5 The Notifier window

LispWorks

Error in process "Evaluate foo"
Message:
The variable FOO is unbound.

Bestarts:

Try evaluating FOO again.

Specify a value to use this time instead of evaluating FOO.

Specify a value to set FOO to.
(abort) Quit process.

Report Bug Debug Abort o oK

The Notifier window has three main areas.

11.10 The Notifier window

The Message: area displays the error message.

The Restarts: areacontains alist of available restarts. To invoke arestart, select it in
the list and press OK, or double-click on it in thelist.

The row of buttons at the bottom of the Notifier window operate as follows:

Report Bug

Debug
Abort

OK

Prompts for basic information about the bug and then creates
an Editor tool containing atemplate bug form with a stack
backtrace and other information. Use thisif you believe you
have found a bug and wish to report it to Lisp Support. Visit
www. lispworks.com/support/bug-report.html for
more information about reporting bugs.

Raises a Debugger tool, as described earlier in this chapter.
Invokes the abort restart.

Invokes the restart which is selected in the Restarts: list.

Some processes cannot be debugged in the LispWorks IDE. Errorsin these processes
are handled slightly differently in the Notifier window which has these two buttons:

Debug Snapshot Creates a snapshot Debugger. This contains a copy of the

Get Backtrace

stack backtrace which you can examine as described in this
chapter. However it islessinteractive in that you cannot take
any restart or return from a frame. For more information see
" Snapshot debugging of startup errors” in the LispWorks User
Guide and Reference Manual.

Creates an Editor tool containing the stack backtrace.

In this case thereis no Debug button.

155

http://www.lispworks.com/support/bug-report.html

11 The Debugger Tool

156

12

The Tracer

12.1 Introduction

The Tracer tool is a debugging aid which gives you an interface to the LispWorks
trace facilities. These allow you to follow the execution of particular functions and
help you identify where errors occur during execution.

To create a Tracer, choose Works > Tools > Tracer or click 2= in the Podium. Alter-
natively, atracer can be created or displayed from within many other tools by choos-
ing the command Trace > Show in Tracer in any menu whose commands operate on a
traceable symbol.

The Tracer has three views:

* The Trace State view alows you to trace and untrace functions and change
trace options for each function.

e The Output Data view records all tracing eventsin atree structure and allows
you to examine the arguments and results of each function call.

e The Output Text view shows al tracing events in textual format.

12.2 Tracing and Untracing functions

The Trace State view has a Trace pane where you can enter a function name. Press
Return Or click the 4 button to trace that function.

157

12 The Tracer

158

The Traced Functions pane shows the list of functions that are currently traced. When
some functions are selected, the Function menu contains the standard commands
described in “Performing operations on selected objects’ on page 48. As with other
tools, choose Edit > Select All and Edit > Deselect All to select and deselect all the
functionslisted in the Traced Functions area.

The Selected Options area shows the trace options for afunction selected in the
Traced Functions pane. The trace options allow you to restrict or expand upon the
information printed during atrace and can be modified by double-clicking on the item
in the Traced Functions pane which raises the Trace Options dialog. For information
about the trace options, see the section "Tracing options" in the LispWorks User Guide
and Reference Manual. Note that the options only apply to the first selected function.
Each traced function hasits own, independent, set of options.

The Tracing Enabled button can be used to turn al tracing off, whilst retaining the
tracing state, and switch it back on again.

The Untrace button untraces the functions selected in the Traced Functions pane.
The Untrace All button untraces all functions.

In addition, the Tracer tool will track changes to the set of traced functions that are
made from other tools, for example calls to the macros trace and untrace or the
Trace submenu described in “ Tracing symbols from tools’ on page 54.

12.2.1 Tracing methods

You can trace methods (primary and auxiliary) within a generic function by entering
the method dspec. For example, enter

(method my-function :before (integer))

in the Trace pane to trace the :before method of the generic function my - function
that specializes on the class integer.

12.3 Examining the output of tracing

When you call afunction that is traced, LispWorks collects information about the
arguments it was called with and the valuesthat it returned. Thisinformation is
printed to the trace output stream, which might be the Listener or the Background Out-

12.4 Example

put. In addition, if a Tracer tool ison the screen, the information is shown in its Output
Text view and collected in its Output Data view in atree format.

12.3.1 The Output Data view
Each call isanodein thetree with a h icon and has three kinds of subnode:

* The subnode marked with a &= shows the arguments passed to the function.
Expanding this node shows each argument with its name (if known). Double-
clicking on the arguments node or one of the arguments shows that argument in
the Inspector.

* Thesubnode marked with a & shows the values returned from the function.
Expanding this node shows each argument with its name (if known). Double-
clicking on the arguments node or one of the arguments shows that argument in
the Inspector.

* Any subnodes marked with a },k show calls to traced functions within the
parent function.

You can collapse the tree by clicking on the *%: toolbar button.

You can clear the trace output data from the display by clicking on the #: toolbar
button.

You can restore the last cleared output data by clicking on the ¥} toolbar button.

12.3.2 The Output Text view
Thissimply displays the textual trace outpuit.

12.4 Example

This section shows an example of tracing two functions and examining the output.

Define the following functions
(defun foo (x y) (bar y x))

(defun bar (x y) (values (vector x y) (list y x)))

159

12 The Tracer

160

in aListener and start the Tracer tool. The trace these functions by entering £oo into
the Trace pane of the Tracer and pressing Return or clicking the 4" button. Notice
that the symbol name appears in the Traced Functions: area.

Do the samefor bar.

For longer function names, you might find it useful to type just afew characters and
then press up or bown to invoke in-place completion.

Figure 12.1 The Trace State view showing bar and foo

Tracer 1

Works Fle Edit View Function Values Help

"L CDER

Trace State |Output Data | Output Text
Trace: v X

e T

Tracing Enabled | Untrace || Untrace All Collect Trace Output

Traced Functions:
BAR
FOO

Selected options:

Then call
(foo 100 200)

in the Listener. You will see output something like this printed in the Listener.

12.4 Example

CL-USER 1 > foo 100 200

0 FOO >
>> X : 100
>> Y : 200
1l BAR >
>> X : 200
>> Y : 100
1l BAR <

<< VALUE-0 : #(200 100)
<< VALUE-1 : (100 200)
0 FOO <
<< VALUE-0 : #(200 100)
<< VALUE-1 : (100 200)
#(200 100)
(100 200)

CL-USER 2 >

Note: the format of the output is affected by the value of *trace-verbose*.

161

12 The Tracer

Now switch to the Output Text view of the Tracer and you will similar output.

Figure 12.2 The Output Text view

- XK
Works File Edit Miew Fupnction WYalues Help

R DR X4

Trace State |Qutput Data | Output Text

St

0 FOO > ... n
»>» X @ 100
»>> ¥ 200
e
1 BAR > ... z
»>> X @ 200
>> ¥ @ 100
1 BAR < ...

<< VALUE-O : #(200 100)
<< VALUE-1 : (100 200)
0 FOO < ...
<< VALUE-O : #(200 100)
<< VALUE-1 : (100 200)

162

12.4 Example

Now switch to the Output Data view of the Tracer, which will looks like this

Figure 12.3 The Output Data view

Tracer 1

Works Fle Edit View Function Yalues Help

LR D€ X4 e

Trace State | Output Data | Qutput Text i/ to foo

Argumentsto
[> & Arguments 100 200 g

Bt

foo
= A Called BAR
[& Argumenrs“.\ Inner call
[<& Values #200 100) (100 200) lobar
b % Values #200100) (100 200) ——0 values
| Teturned by
foo

The node that islabeled Arguments 100 200 contains the arguments to the function
foo. Double-click on this node to show those argumentsin an Inspector.

Thefirst node that islabeled Values #(200 100) (100 200) contains the values returned
by bar. Expand this node to revea the two values. Double-click on one of the values
nodesto inspect it. You can also see that these values were in turn returned by foo, as
shown by the second node that is labeled Values #(200 100) (100 200).

163

12 The Tracer

164

13

The Editor

The environment has atext editor which is designed specifically to make writing Lisp
source code easier. By default it emulates the GNU Emacs text editor, and you should
refer to the LispWorks Editor User Guide supplied with your software, for afull
description of the extensive range of functions and commands available. It can also
emulate a KDE/Gnomestyle text editor.

The Editor features a comprehensive set of menus, as well as a number of different
views, and itsinterface is consistent with the other tools in the environment. This
chapter gives a complete description of these aspects of the Editor, as well as giving
you agenera overview of how the Editor is used. If you have not used Emacs before,
this chapter tells you all you need to know to get started.

The Editor isintegrated with the other tools and offers awide range of operations. The
most commonly used of these can accessed using menu commands. The full range of
editor commands is accessed via the keyboard commands described in more detail in
the LispWorks Editor User Guide. These operations range from simple tasks such as
navigating around afile, to more complex actions which have been specifically
designed to ease the task of writing Lisp code.

By becoming familiar with the menu commands available, you can learn to use the
Editor effectively in avery short space of time, before moving on to more advanced
operations.

165

13 The Editor

Like many other tools, the Editor offers a number of different views, which you can
switch between using the tabs at the top of the Editor window. Unlike other tools, one
view in particular is used more often than any other.

The text view is the most commonly used view in the Editor. This lets you read
and edit text files which are stored in your filesystem.

The output view shows output messages. Compiler messages are highlighted
and you can easily locate the source code that generated them.

You can edit many different files at once in the same Editor. The buffers view
provides a quick way of navigating between different files that you have open.

The definitions view is a convenient way of seeing the classes, functions, mac-
ros, variables and so on that are defined in the current file.

Files may contain many definitions. The find definitions view lets you search
for particular definitions of interest across many files.

You can create an Editor using any of the following methods:

Choose Tools > Editor. Notice that you are not actually editing afile immedi-
ately when you create an Editor like this.

Choose File > Open..., or click on in the toolbar, and choose afilenamein the
dialog that appears.

Choose File > Recent Files and choose a filename from the submenu that
appears.

Make the Listener the active window, and press ctrl+x ctrl+F. Typeinthe
name of afile that you want to edit. If the fileis not in the current directory,
enter the full pathname.

Choose the command Find Source (available on various menus, for example
Frame in the Debugger tool), or click on ¥=Jor ¥=] to display source codein
an Editor tool.

Use the keyboard accelerator described in “Displaying tools using the key-
board” on page 23.

Note: this chapter assumes you are using the default Emacs emulation. Thus one way
to open afileiswith the keystrokes ctr1+x ctrl+F asdescribed above. If you use
KDE/Gnome keys, you would use instead the keystroke ctri+o.

166

13.1 Displaying and editing files

You can always discover which key to use for aparticular editor command, or con-
versely which command is invoked by a particular key. See “Help with editing” on
page 202 for details.

13.1 Displaying and editing files

The Text view is the default view in the Editor, and is the one which you will become
most familiar with. In thisview, a buffer containing the text of the current fileisdis-
played, and you can move around it and change its contents as you wish, then save it
back to the original file (assuming that you have permission to write to it). The text
view is automatically displayed when you first invoked the Editor, and you can click
on the Text tab to switch back to it from any other view. Figure 13.1 below shows an
Editor in the text view with afile open.

Figure 13.1 Text view in the Editor

Editor 1 - editor.lisp

Works File Edit View Buffers Definitions Expression History Help

HEBRDD €«v9 - @0y ®

Text | Output | Buffers | Definitions | Changed Definitions | Find Definitions
(in-package]

Idefl_m fact (n)
(if (zerop n)
1
(* n (fact (1- n))))f

LATIN-1 — editorlisp {CL-USER] (Lisp) 0-7 [7] /famd/lwfs 1-cam/u/ldisk/sp/lispsrc

The text view has three areas, described below.

167

13 The Editor

168

13.1.1 The toolbar

The Editor toolbar offers easy access to commands which operate on source code. In
the text view it allows you to set breakpoints, and macroexpand, compile or evaluate
code.

The Editor toolbar also contains the standard history toolbar. Thisis enabled in every
view of the Editor tool.

13.1.2 The editor window

The editor window isthe main part of the Editor. The text of the current fileis shown
inthisarea. A block cursor denotes the current position in the files in Emacs emula-
tion. In KDE/Gnome editor emulation, avertical line cursor appearsin the active edi-
tor window. Text is entered into the file at this position when you type or paste.

To move the cursor to a particular point in thefile, you can use any combination of the
following methods:

« Position the cursor by moving the mouse pointer and selecting the point at
which you want to place the cursor.

« If thefileistoo largeto display al of it in the editor window, use the scroll bars
to move up and down thefile.

« Useany of the numerous keyboard commands that are available for navigating
within afile.

If you are unfamiliar with the Editor, you can use the first two methods to begin with.
Asyou become more familiar, you will find it is often quicker to use the keyboard
commands described in the LispWorks Editor User Guide. Some of the most basic
commands are also described in this chapter, in Section 13.8 on page 181.

13.1.3 The echo area

Underneath the editor window is an echo area, identical to the echo areain the other
tools. Thisis used by the Editor to display status messages, and to request more
information from you when necessary. The echo areais contained in every view in the
Editor.

Whenever you invoke a command which requires further input (for instance, if you
search afile for apiece of text, in which case you need to specify the text you want to

13.1 Displaying and editing files

search for), you are prompted for that input in the echo area. Type any information
that is needed by the Editor, and the characters you type are displayed ("echoed") in
the echo area.

For many commands, you can save time by using completion. When you have
partially specified input in the echo area, you can press akey (usually Tab, ? or
Space, depending on the command) and the Editor attempts to complete what you
have typed. If it cannot complete your partial input uniquely, a window appears which
lists all the possible alternatives and allows you to select the desired completion. See
“Completion” on page 59 for detailed instructions.

For example, suppose you have three filesin the current directory, test1.1lisp,
test2.lisp and test3.lisp, and you want to edit test2.1isp using keyboard
commands. Typectrl+X ctrl+F, thentypetest and pressTab. A list appearswhich
shows all three files. To edit test2.1isp, double-click on the item marked
test2.1lisp inthislist. For longer lists, the completion GUI helps you to quickly
reduce the choice. See “ Completion” on page 59 for details.

To see when completion is appropriate and when it is not, experiment by pressing the
Tab key when typing in the echo area. Asarule, if there are afinite number of things
you could meaningfully enter, then completion is appropriate. Thus, when opening a
file aready on disk, completion is appropriate (there is afinite number of filesin the
current directory). When specifying a string to search for, however, completion is not
appropriate (you could enter any string).

13.1.4 Using keyboard commands

A full description of the keyboard commands available in the Editor is beyond the
scope of this manual, and you are advised to study the LispWorks Editor User Guide
to gain afull appreciation of the capabilities of the Editor. However, of necessity, cer-
tain basic keyboard commands are discussed in this chapter. See Section 13.8 on page
181 of thismanual for a brief introduction to some of the most important ones. The
menu commands available are described throughout the rest of this chapter.

Aswith other keyboard commands used in the environment, the keyboard commands
used in the Editor are invoked by using a combination of the modifier keys control,
shift, Escape, Alt and command (Not all of these are available on each platform), in
conjunction with ordinary keys. Some of the commands available perform the same,
or asimilar task asamenu command.

169

13 The Editor

170

Each keyboard command in the editor is actually a shortcut for an extended editor
command. You can invoke any extended command by typing its command namein
full, preceded by the keyboard command a1t+x. Thus, to invoke the extended com-
mand visit Tags File,typealt+X visit tags file followed by Return. Case
is not significant in these commands, and compl etion (described in “Completion” on
page 59) may be used to avoid the need to type long command names out in full. This
method is often useful if you are not certain what the keyboard shortcut is, and there
are many extended commands which do not have keyboard shortcuts at al.

Many of the keyboard commands described in this chapter and in the LispWorks Edi-
tor User Guide also work in the Listener. Fed free to experiment in the Listener with
any of the keyboard commands that are described.

13.2 Displaying output messages in the Editor

Aswith several other tools, the Editor provides an output view which can be used to
examine any output messages which have been generated by the environment. Click
on the Output tab to switch to this view. See Chapter 22, “ The Output Browser”, for
more information about this view.

13.3 Displaying and swapping between buffers

The contents of the editor window is the buffer. Technically speaking, when you edit a
file, for example by File > Open..., its contents are copied into a buffer which isthen
displayed in the window. You actually edit the contents of the buffer, and never the
file. When you save the buffer, for example by File > Save, its contents are copied
back to the actual file on disk. Working in thisway ensures that there is always a copy
of thefile on disk—if you make a mistake, or if your computer crashes, the last saved
version of thefileis aways on disk, ensuring that you do not lose it completely.

Because of this distinction, the term buffer is used throughout, when referring to the
text in the window.

An Editor can only have one editor window, although there can be many buffers open
at once. This means that you can edit more than one file at once, although only one
buffer can be displayed at atime in the window—any others remain hidden.

13.3 Displaying and swapping between buffers

When you close abuffer, for example with the menu command File > Close or the key
ctrl+X K, the buffer isremoved. Thisis different to the command Works > Exit >
window which closes the window and does not affect the buffer.

The diagram below shows the distinctions between the window, buffers and files on
disk.

Figure 13.2 Distinctions between the window, buffers, and files on disk

Editor Window

The buffers view allows you to display alist of all the buffersthat are currently open
in the Editor, and gives you an easy way of navigating between them. Click on the

171

13 The Editor

Buffers tab to switch to this view, or press ctrl+x ctrl+B. The Editor appearsas
shown in Figure 13.3 below.

Figure 13.3 Listing buffersin the Editor

Editor 1 - editor.lisp

Works File Edit View Buffers Definitions Expression History Help

RDDl ¢ -

Text | Output Definitions | Changed Definitions | Find Definitions
Filter » X Matches 6

Attributes | Name Mode Size | Pathnal

*Messages Buffer” Fundamental 1266 NIL
CAPI editor-pane 4 Fundamental 11 NIL
editor.lisp 90 famd/lw

frames-and-variables-in-debugger-tree.lisp Lisp 304 famd/l
Main Fundamental 0 MIL

output-browser-conditions.lisp Lisp 821 famd/|

The buffers view has two areas, described below.

172

13.3 Displaying and swapping between buffers

13.3.1 Filter area

You can use this area to restrict the number of buffers displayed in the Buffers area.
For example you could display just the Lisp sourcefiles (that is, those with file type
1lisp) by entering . 1isp as shown in Figure 13.4, page 173.

Figure 13.4 Filtering the bufferslist in the Editor

Editor 1 - editor.lisp
Works File Edit View Buffers Definitions Expression History Help

A= RE-"NEN - NRCIR 50

Text | Output | Buffers | Definitions | Changed Definitions | Find Definitions

Filter+ | .lisp > Matches 3
Attributes | Name Mode | Size | Pathname
- editor.lisp Lisp 90 /famd/lwfs1l-can
- frames-and-variables-in-debugger-tree.lisp Lisp 304 famdflwfs1-can
- output-browser-conditions.lisp Lisp 821 /amdflwfsl-can
L s *

You can filter by regular expression matching, and you can exclude matches and make
the filtering case-insensitive. See “Filtering information” on page 55 for the details.

13.3.2 Buffers area

Each item in the Buffers area list represents an editor buffer. Properties of the buffer
such asits size (in bytes) and its mode are displayed. See the LispWorks Editor User
Guide for information about editor modes.

Double-click on any buffer to display it in the Editor’s text view.

Buffers selected in the Buffers area can be operated on by commands in the Buffers
menu, which is also available as the context menu. The associated files can be oper-
ated on by commands in the File menu. For example, to save multiple buffers, select

173

13 The Editor

174

them the Buffers area and choose File > Save. See “Using Lisp-specific commands’
on page 195 for more details.

13.4 Displaying Common Lisp definitions

The definitions view lists all the Common Lisp definitions which can be found in the
current buffer. Open afile containing several defining forms, such asthe Othello game
example in examples/capi/applications/othello.lisp. and then click on the
Definitions tab. The Editor appears as shown in Figure 13.5 below.

Figure 13.5 Examining Common Lisp definitions in the Editor

Editor 1 - othello.lisp

Works File Edit View EBuffers Definitions Expression History Help

Text | Output | Buffers | Definitions | Changed Definitions | Find Definitions

Filter » > Matches 61

(DEFMETHOD (S5ETF OTHELLO-5QUARE-PIECE) :AFTER (T OTH ELLO-EQE
(DEFVAR "ALGORITHMS®)

(DEFVAR "OTHELLO-DIRECTIONS™)

(DEFVAR "PLAY-DELAY™)

ALGORITHM-FOR-PLAYER

ALL-BUT-NEXT-TO-UNTAKEN-CORNER-MOVES
<] | 2]

The definitions view has two areas, described below.

13.4.1 Filter box

You can use this area to restrict the number of definitions displayed in the definitions
area. See Section 3.12 on page 55 for details about how to use the Filter box in atool.

13.5 Changed definitions

13.4.2 Definitions area

Double-click on any definition in this area to display its source code in the Editor’s
text view. Definitions selected in this area can be operated on using commands in the
Editor’s Definitions menu, which is also available as the context menu. See “ Other
facilities” on page 201 for complete detail s of the commands available.

13.5 Changed definitions

The Changed Definitions view alows you to see which definitions have been edited
in the current session.

Edit some of the definitions in the Othello game examplein examples/capi/appli-
cations/othello.lisp and then click on the Changed Definitions tab. The Editor
appears as shown in Figure 13.6 below.

Figure 13.6 The Changed Definitions view in the Editor

Editor 1 - othello.lisp

Works File Edit View EBuffers Definitions Expression History Help

DD €~ o0

Text |Output | Buffers | Definitions | Changed Definitions | Find Definitions

B

Show definitions changed since: | First Edit A

Filter + > Matches 5

(DEFVAR "PLAY-DELAY™)
(DEFCLASS OTHELLO-SQUAR)
(COLOR:DEFINE-COLOR-ALIAS :OTHELLO-SQUARE-BACKGROUMND)

PLAY-MOVE-FOR-PLAYER

REMOVE-PLAY-TIMER

175

13 The Editor

176

Notice that the Changed Definitions view is similar to the Definitions view. The
Editor’s Definitions menu, and the filter box, can be used on definitions listed herein
the same way as in the Definitions view.

13.5.1 Setting the reference point for changed definitions

The Changed Definitions view has an additional area labelled Show definitions
changed since:. Thisalowsyou to change the reference point against which the cur-
rent buffer is compared when computing the changes.

The reference point can be:

First Edit The state of the buffer just before you first edited it in the
current LispWorks session. Thisistheinitia reference point.

Last Save The state of the buffer when you last saved it to file

Last Compile The state of the buffer when you last compiled it.

13.6 Finding definitions

Select from the Show definitions changed since: popup list to change the reference
point.

Figure 13.7 Setting the reference point in the Changed Definitions view.

Editor 1 - othello.lisp

Works File Edit View EBuffers Definitions Expression History Help

YRR

Text | Output | Buffers | Definitions | Changed Definitions | Find Definitions

St

Show definitions changed since: | First Edit

Filter + Last Save > Matches 5

(DEFVAR "PLAY-DELAY™) Last Compile

(DEFCLASS OTHELLO-5QUAR)
(COLOR:DEFINE-COLOR-ALIAS :OTHELLO-SQUARE-BACKGROUMND)

PLAY-MOVE-FOR-PLAYER

REMOVE-PLAY-TIMER

When you alter the reference point, the list of changed definitions is recomputed.

Thelist of changed definitions is computed using the editor command Buffer
Changed Definitions. Seethe Editor User Guide for moreinformation about this
and related commands.

13.6 Finding definitions

Use the Find Definitions view to locate definitions recorded by the system with a
given name. Firstly click on "%} to ensure you have compiled the buffer displaying the
Othello example. Then enter the name of the definition you are searching for in the

177

13 The Editor

name box and press Return or click on 4" to display alist of matches together with
their locations. Double-click on a match to display the source.

Figure 13.8 Displaying matchesin the Find Definitions view

Editor 1 - othello.lisp

Works File Edit View EBuffers Definitions Expression History Help

5 B

Text |Output | Buffers | Definitions | Changed Definitions | Find Definitions

IName: | CHOOSE-MOVE-FOR-FLAYER v X2
Filter « > Matches 8
Definition =

(DEFGENERIC CHOOSE-MOVE-FOR-PLAYER)

(METHOD CHOOSE-MOVE-FOR-PLAYER ((EQL MINIMIZE-OPPONENTS-C
(METHOD CHOOSE-MOVE-FOR-PLAYER ((EQL LEAST-PIECES-AWARE-O
(METHOD CHOOSE-MOVE-FOR-PLAYER {(EQL MOST-PIECES-AWARE-OF +]

<] | 2]
B definitions matching CHOOSE-MOVE-FOR-FLAYER

In addition, after using the editor command Find Source (boundtoalt+.) or other
source location commands, you can invoke the Find Definitions view to display a
complete list of the matches with the editor command Alt+X View Source Search.

Further, the option Use Find Definitions list for more items than: controls automatic
use of thisview, as described in * Automatic use of Find Definitions view” on page 31.

13.7 Setting Editor preferences
You can configure several aspects of the Editor tool, including:
e how items arelisted in buffers and definitions views

« whether the Editor toolbar is displayed

178

13.7 Setting Editor preferences

These editor-specific options are described in “ Controlling options specific to the Edi-
tor” on page 179.

13.7.1 Controlling other aspects of the Editor

Other configuration options affect the Editor but also apply to other tools in the Lisp-
Works IDE which are based on capi : editor-pane. These options control

» the choice of Emacs or KDE/Gnome editor key input

e thecursor style and blink rate

» thefont

» thetext styles used for selected text and Lisp syntax coloring

e automatic use of the Find Definitions view by the source location commands
» thedefault encodings used when opening and saving files

» whether parentheses are colored in Lisp code.

You set these options via Works > Tools > Preferences... > Environment. These Envi-
ronment options are described in “ Setting preferences’ on page 28, which you should
read for afull appreciation of the options affecting your Editor tools.

13.7.2 Controlling options specific to the Editor

This section describes options affecting only the Editor tool.

179

13 The Editor

180

To configure these choose Works > Tools > Preferences... and select Editor inthe list
on the |eft side of the Preferences dialog. This displays these options:

Figure 13.9 Editor Preferences

General
Sort Package
() Unsorted COMMON-LISP-USER v %

@ By Name Show Package Names

() By Package
O By Type Toolbar
Show Toolbar

Any changes you make are applied and saved for future use when you choose OK to
dismiss the Preferences dialog.

13.7.2.1 Sorting items in lists

By default, items in the buffers and various definitions views are sorted al phabetically
according to their name. The optionsin the Sort panel in the Editor Preferences allow
you to change this, asfollows:

Unsorted Leaves itemsin these lists unsorted. For views which list
definitions, choosing this option lists definitions in the order
in which they appear in the source code.

By Name Sort according to the item name. Thisis the default setting.

By Package Sort according to the buffer package or the package of the
definition’s name.

13.8 Basic Editor commands

By Type Sorts items according to the type of the definition, or the
attributes of the buffer.

13.7.2.2 Displaying package information

Aswith many other tools, you can configure the way package names are displayed in
the Editor. Because of the nature of thistool, you need to be alittle more aware of the
precise nature of these commandsin order to avoid confusion. Thisinformation can be
configured using the Package box of the Editor Preferences shown in Figure 13.9.

Click show Package Names to toggle display of package namesin the main areas of
the buffers and various definitions views.

Type a package name into the text field to change the current package in the Editor.
You can use completion to reduce typing, by clicking ”“’1? which allows you to select
from alist of all package nameswhich begin with the partlal input you have entered.
See “Completion” on page 59 for detailed instructions. When you have entered the
complete name, click the " button to confirm the package name.

Note that this does not change the package currently displayed; it merely changes the
Editor’s notion of “where” it isin the environment, and this in turn affects the way
symbols are printed in the buffers and various definitions views.

By default, the current package is cL-USER.

13.7.2.3 Controlling toolbar display

You can control whether Editor tools display toolbars such as the source operations
and history toolbars by the option Show Toolbar, as described in “ Toolbar configura-
tions” on page 26.

13.8 Basic Editor commands

This section deals with some of the most basic commands available in the Editor. It
describes how to perform simple file management, how to move around a buffer, and
tells you about some other more general commands available.

13.8.1 Opening, saving and printing files
When you first start up the Editor, the first thing you must do is open afile.

181

13 The Editor

182

Usefile extensions . 1isp or .1sp for Common Lisp files. The Editor recognizes
these extensions and places the buffer in Lisp mode. Lisp mode provides special fea-
tures for use in Lisp editing, as described in “Lisp mode” on page 195.

You can create anew Lisp buffer by choosing File > New or clicking on |__“| . The new
fileisautomatically in Lisp mode, and the buffer is called “Unnamed”. When you try
to save this buffer, the Editor prompts you for afilename.

Asyou have already seen, you can open an existing file by choosing File > Open... or
clicking on E’: A dialog appears from which you can select afile to edit.

To save afile, choose File > Save or click on [g. If the file has not been saved before
(that is, if you created the file by choosing File > New and thisis the first time you
have saved thefile), you are prompted for a directory and a filename.

You can also save afile by using the keyboard command ctrl+x ctrl+s.

If you want to make a copy of thefile (save the file under a different name) choose
File > Save As... and specify anamein the dialog that appears.

Choose File > Revert to Saved to revert back to the last saved version of the file. This
replaces the contents of the current buffer with the version of that file which was last
saved on disk. Thiscommand is useful if you make a number of experimental changes
which you want to abandon.

Aswell as saving whole filesto disk, you can save any part of afileto disk under a
different filename. To do this:

1. Select aregion of text by clicking and holding down the select mouse button,
and dragging the pointer across the region of text you want to save. The text is
highlighted as you drag the pointer across it.

2. With the text still highlighted, choose File > Save Region As....
3. Inthe echo area, specify the name of afile to save the selected text to.

Note that the selected text is copied into the new file, rather than moved; it is still
availablein the origina buffer.

To find out more about selecting regions of text, see “Marking the region” on page
188. To find out more about operating on regions of text, see “Using Lisp-specific
commands’ on page 195.

13.8 Basic Editor commands

To print the file in the current buffer to your default printer, choose File > Print.... The
printer can be changed or configured by choosing the File > Printer Setup... menu
option.

13.8.2 Moving around files

This section describes how you can move the cursor around the buffer. There are a
variety of commands, allowing you to move sideways, up, or down by one character,
or by anumber of characters.

To move directly to any point in the buffer, position the pointer and click the left
mouse button. If necessary, use the scroll bars to reveal sections of the buffer which
are not visible in the window.

You can either use the arrow keys, or the keyboard commands shown below to move
the cursor in any direction by one character.

Figure 13.10 Moving the cursor by one character

Ctrl+P

al
l

Ctri+Bj <— —> | Ctrl+F

Ctrl+N

183

13 The Editor

184

The keyboard commands below move to the beginning or end of the line, or the top or
bottom of the buffer.

Figure 13.11 Keyboard commands for basic movement within an editor buffer

Alt+<

CtrI+A<l - D Ctrl+E

|
af My

Alt+>

Press ctr1+v or the page Down key to scroll down one screenful of text.
PresseEsc v or alt+v or the page up key to scroll up one screenful of text.

You should ensure that you learn the keyboard commands described above, since they
make navigation in a buffer much easier.

13.8.3 Inserting and deleting text

The editor provides a sophisticated range of commands for cutting text which are
described in “ Cutting, copying and pasting using thekill ring” on page 188. However,
the two basic commands for deleting text which you should remember are as follows:

« To erase the previous character, use the Backspace key.
« To erasethe next character, use ctr1+D Or the Delete key if available.

You can insert text into a buffer by typing characters, or by pasting (see “ Cutting,
copying and pasting using the kill ring” on page 188) or by inserting the contents of a
file.

By default, when typing in a buffer, any charactersto theright of the cursor are moved
further to the right. If you wish to overwrite these characters, rather than preserve

13.8 Basic Editor commands

them, press the 1nsert key. To return to the default behavior, just pressthe 1nsert
key once more.

To insert the contents of one file into another, choose File > Insert.... A dialog appears
so that you can choose afile to insert, and thisis then inserted into the current buffer,
starting from the current position of the cursor.

13.8.4 Using several buffers

As mentioned above, you can have as many buffers open at once asyou like. Repeated
use of File > Open... Or ctrl+X Ctrl+F just creates extrabuffers.

Because the Editor can only display one buffer at atime, you can use either menu
commands or keyboard commands to swap between buffers.

Eachitem in the History > Items submenu is an open buffer. To swap to agiven buffer,
choose it from the menu, and it is displayed in the editor window.

Alternatively, click on the Bufferstab to swap to the buffers view; see “ Displaying and
swapping between buffers’ on page 170 for details.

To usethe keyboard, type ctr1+x B. You are prompted for the name of the buffer you
wish to display. The last buffer you displayed is chosen by default, and islisted in the
echo areain brackets, as shown below.

Select Buffer: (test.lisp):

To swap to the buffer shown in brackets, just press Return. To Swap to another buffer,
type in the name of that buffer. Remember that completion (press Tab) can help.

To close the buffer that is currently displayed, choose File > Close, or typectrl+x K.
e |If you useFile > Close, the current buffer is closed.

e If youusectrl+x K, you can close any buffer, not just the current one. Type a
buffer name in the echo area, or press Return to close the current buffer.

Note: If you attempt to close any buffer which you have changed but not yet saved, a
dialog appears, giving you the opportunity to cancel the operation.

To save al the buffersin the Editor, choose File > Save All.... A dialog appears which
lists each modified buffer. By default, each buffer is selected, indicating that it isto be
saved. If there are any buffers that you do not want to save, deselect them by clicking
on them. The dialog has four buttons, as follows:

185

13 The Editor

186

» Click Yes to save the selected buffers.

» Click All to save al the listed buffers.

» Click No to save none of the listed buffers.
e Click Cancel to cancel the operation.

Thisdiaogisalso displayed if there are any unsaved files when you exit the environ-
ment.

Sometimes you may find that being able to display only one buffer in the window sim-
ply does not give you enough flexibility. For instance, you may have several buffers
open, and you may want to look at two different buffers at once. Or you may have a
very large buffer, and want to look at the beginning and end of it at the sametime.

You can do any of these by creating a new Editor window. Choose Works > Clone or
press ctri+x 2 or pressthe [] button. This creates a copy of your original Editor.
The new Editor displays the same buffer as the original one.

« |f youwant to look at two different sections of this buffer at once, simply move
to the section that you want to look at in one of the Editors.

e |f youwant tolook at adifferent buffer, use the History > Items submenu or the
keyboard commands described above to switch buffers.

Changes made to a buffer are automatically reflected across all editor windows—the
buffer may be displayed in two different windows, but there is still only one buffer.
This meansthat it isimpossible to save two different versions of the same file on disk.

13.9 Other essential commands

Finally, there are three basi ¢ functions which you should add to your stock of familiar
commands.

13.9.1 Aborting commands

To abort any command which requires you to type information at the echo area, type
ctrl+e at any point up to where you would normally press Return. For instance, if
you type ctrl+x ctrl+F inorder to open afile, and then decide against it, type
ctrl+G instead of specifying afilename.

If you are using KDE/Gnome editor emulation, press Esc to abort acommand.

13.10 Cutting, copying and pasting using the clipboard

13.9.2 Undoing commands

If you choose Edit > Undo the last editor action performed is undone. Successive use
of Edit > Undo revokes more actions (rather than undoing the last Undo command, as
is the case with many other editors).

When using Emacs emulation you can undo viathe Emacs keystroke ctr1+ . Thus,
to undo the last five words typed, press ctr1+ fivetimes.

If you are using KDE/Gnome editor emulation, press ctr1+z to undo.

13.9.3 Repeating commands

To perform the same command n times, type ctr1+u n followed by the command you
want to perform.

For instance, to move forward 10 characters, type ctrl+U 10 Ctrl+F.

If you are using KDE/Gnome editor emulation, type ctr1++* n followed by the com-
mand.

13.10 Cutting, copying and pasting using the
clipboard

The Editor provides the standard methods of cutting, copying and pasting text using
the clipboard. To select aregion of text, click and hold down the select button, and
drag the pointer across the region you want to select: the text is highlighted using the
Region Highlight text style asyou select it.

Choose Edit > Select All to select all the text in the buffer, and Edit > Deselect All if
you want to deselect it.

Once you have selected aregion use either of the following commands:

e Choose Edit > Copy to copy the region to the clipboard. This leaves the
selected region unchanged in the editor buffer.

» Choose Edit > Cut to delete the region from the current buffer, and placeitin
the LispWorks IDE clipboard. This removes the selected region from the
buffer.

Choose Edit > Paste to copy text from the clipboard into the current buffer. Thetextis
placed at the current cursor position.

187

13 The Editor

188

These commands are also available from the context menu in the editor window,
which is usualy invoked by clicking the right mouse button.

The Editor also provides a much more sophisticated system for cutting, copying and
pasting text, as described below.

13.11 Cutting, copying and pasting using the Kill
ring
The Editor provides a sophisticated range of commands for cutting or copying text

onto a special kind of clipboard, known asthekill ring, and then pasting that text back
into your Editor later on. There are three steps in the process, as follows:

« Marking aregion of text.
e Cutting or copying the text in that region to placeit in the kill ring.
e Pasting the text from the kill ring back into a buffer.

13.11.1 Marking the region

First of all, you need to mark aregion of text in the current buffer which you want to
transfer into the kill ring. There are two ways that you can do this:

* Select the text you want to copy or cut using the mouse. Click and hold down
the Select mouse button, and drag the pointer across the region you want to
mark.

The selected text is highlighted using the Region Highlight text style.

e Using keyboard commands

To mark the region with the keyboard, place the cursor at the beginning of the
text you want to mark, press ctrl+space, and move the cursor to the end of the
region you want to mark, using keyboard commands to do so. Unlike marking
with the mouse, this does not highlight the region.

Because the Editor does not highlight the marked region when you use keyboard
commands, a useful Emacs key to remember isctrl+x ctrl+x. Pressing this
exchanges the current cursor position with the start of the marked region and
highlights the region. Press ctr1+x ctrl+x asecond timeto return the cursor to its
original position and leave the region marked.

13.11 Cutting, copying and pasting using the kill ring

Press ctri+c (or Esc in KDE/Gnome emulation) to remove the highlighting in a
region.

13.11.2 Cutting or copying text

Once you have marked the region, you need to transfer the text to the kill ring by
either cutting or copying it.

Cutting text moves it from the current buffer into the kill ring, and deletes it from the
current buffer, whereas copying just places a copy of the text in thekill ring.

e Choose Edit > Cut or press ctr1+w to cut the text. In KDE/Gnome emulation
thekey isctrl+x.

e Choose Edit > Copy or press alt+w to copy thetext. In KDE/Gnome emula-
tionthekey isctri+c.

Notice that these commands transfer the selected text to the LispWorks IDE clipboard
aswell asthekill ring. Thisis so that the selected text can be transferred into other
tools, or even into other applications.

UNIX Implementation Note: The selected text is also transferred to the UNIX clip-
board.

13.11.3 Pasting text

Once you have an item in the kill ring, you can paste it back into a buffer as many
timesasyou like.

* Pressctril+y to paste the text in the kill ring back into the buffer. In KDE/
Gnome emulation the key is ctri+v.

Note that you must use the keyboard command if you wish to paste the item that
isin thekill ring (as opposed to the item in the LispWorks IDE clipboard).

With many editors you can only do thiswith oneitem at atime. The clipboard is only
able to contain one item, and so it is the only one available for pasting back into the
text.

However, the kill ring allows you to keep many items. Any of these items can be
pasted back into your document at any time. Every time you cut or copy something, it
is added to the kill ring, so you accumulate more items in the kill ring as your session
progresses.

189

13 The Editor

190

Consider the following example. In Figure 13.12, the kill ring contains three items; the
words factorial, function and macro respectively.

Figure 13.12 Kill ring with three items

function | factorial

First, theword factorial was cut from the current buffer (thiswould removeit from
the buffer). Next, the word function was copied (which would leave it in the buffer
but add a copy of it to the kill ring), and lastly, the word macro Was cut.

Note the concept of thekill ring rotating (thisiswhy it isknown asaring). Every time
anew itemisadded (at the top, in these figures), the others are all shunted around in a
counter-clockwise direction.

Whenever you perform a paste, the current item in the kill ring—the word macro in
this case—is copied back into the buffer wherever the cursor currently is. Note that the
current itemis not removed fromthe kill ring.

Figure 13.13 Pasting from the kill ring

function|factorial

What you have seen so far does exactly the same thing as the standard clipboard. True,
all threeitems have been kept in the kill ring, but they are of no useif you cannot actu-
aly get at them.

The Emacs key to do thisisalt+y or Esc Y. Thisrotatesthe kill ring in the opposite
direction—thus making the previous item the current one—and pastes it into the
buffer in place of the item just pasted. In Figure 13.13, the word macro would be
replaced with the word function.

13.12 Searching and replacing text

You can use alt+Y as many timesasyou like. For instance, if you actually wanted to
paste the word factorial in the document, pressing a1t+y would replace the word
function With theword factorial.

Figure 13.14 Rotating the kill ring

s)
factorial

function

If you pressed a1t+Y athird time, the kill ring would have rotated completely, and
macro Would have been the current item once again.

Note: You can never use alt+Y without having used ctrl+y immediately before-
hand.

Hereisasummary of the way ctrl+y and alt+Y work:
* ctrls+y pastesthe current item in the kill ring into the buffer.

e Aalt+Y rotatesthekill ring back one place, and then pastes the current item into
the buffer, replacing the previoudy pasted item.

13.12 Searching and replacing text

The Editor provides awide range of facilitiesto search for and replace text. The exam-
ples below introduce you to the basic principles; please refer to the LispWorks Editor
User Guide for a complete description of the facilities available.

13.12.1 Searching for text

The simplest way of searching for text in abuffer isto use the commands availablein
the menu bar:

1. Choose Edit > Find... to search for text in the current buffer.

2. Typeastring to search for in the dialog that appears.

1901

13 The Editor

3. Click the Find Next button.
Figure 13.15 Use of the Find dialog in the Editor

Find (=B
Find what: w

Direction
[] Erom Top O Up ® Down

Find Next|| Cancel

Editor 1 - pong.lisp
Works File Edit View Buffers Definitions Expression History Help

v @ &S

Text [Output | Buffers | Definitions | Changed Definitions | Find Definitions

(:default-initargs :confirm-destrov-callback "interfacs [[*
e-dead))

e

(defun interface-dead (self)
(FEREIAlES (timer) self
{when timer
(mp:unschedule-timer timer)
(setq timer nil)))
t)

B3

(defun move-paddle (self x v)
{declare (ignore x))
(with-=lots (right-paddle) (capi:element-interface sels [

b

JLATIN-1 -6 %a- pung.lisp {CL-USER} (Lisp) 90-101 [211] famd/lwfs1-cam/u/ldisk/s

The cursor is placed immediately after the next occurrence in the current buffer of the
string you specified. To search the buffer from the start, rather than the current point,
check From Top and click Find Next. To search upwards, select Up in the Direction

192

13.12 Searching and replacing text

panel and click Find Next. To search again for a string that you previously searched
for, select the string from the Find what list and click Find Next.

To dismiss the Find dialog, click Cancel.

After you have used the Find dialog, you can use Edit > Find Next to find the next
occurrence of the last string for which you searched using the dialog, without raising
the dialog again.

13.12.2 Incremental searches

Press ctri+s to perform an incremental search (in which every character you type
further refines the search). A prompt appears in the echo area, asking you to type a
string to search for. As soon as you start typing, the search commences.

Consider the following example: open the file examples/capi/applications/
othello.lisp. You want to search for the word “defmethod” in the buffer.

1. Pressctri+s
The following prompt appears in the echo area.
I-Search:
2. Typetheletter a.
The prompt in the echo area changes to
I-Search: d
The cursor moves to the first occurrence of “d” after its current position.
3. Typetheletter e.
The prompt in the echo area changesto
I-Search: de
The cursor moves to the first occurrence of “de”.
4. Typetheletter £.
The prompt in the echo area changes to
I-Search: def

The cursor moves to the first occurrence of “def”.

193

13 The Editor

194

This continues until you stop typing, or until the Editor failsto find the string you have
typed in the current buffer. If at any point this does occur, the prompt in the echo area
changes to reflect this. For instance, if your file contains the word “defun” but no
word beginning “defm”, the prompt changes to

Failing I-Search: defm

as soon as you type m.

13.12.3 Replacing text

You can search for text and replace it with other text using the Edit > Replace... menu
item. Type a string to search for and a string to replace it with in the Replace dialog
that appears, and click Find Next. The cursor is placed immediately after the next
occurrence in the current buffer of the string you specified. To replace this occurrence
and locate the next one, click Replace. To leave this occurrence asit is and locate the
next one, click Find Next. Note that this type of searching is not incremental.

For instance, assume you wanted to replace every occurrence of “equal” to “equalp”.

1. Choose Edit > Replace....
The Replace dialog appears.

2. Type equal inthe Find what box:
3. Type equalp inthe Replace with box and click Find Next.
The search will stop at every occurrence of “equal” after the current cursor position:
« |If you want to replace this occurrence, click Replace.
» If you do not want to replace this occurrence, click Find Next.

« |f you want to replace this occurrences and all later occurrences, click
Replace All.

« If you want to abandon the operation altogether, click Cancel.

Note: Both Edit > Find... and Edit > Replace... start searching from the current posi-
tion in the buffer. When the end of the buffer isreached, you are asked whether to start
again at the beginning. To start from the top of the buffer initially, check the From Top
option before searching.

13.13 Using Lisp-specific commands

13.13 Using Lisp-specific commands

One of the main benefits of using the built-in editor is the large number of keyboard
and menu commands available which can work directly on Lisp code. Aswell as
editing facilities which work intelligently in a buffer containing Lisp code, there are
easily-accessible commands which load, evaluate or compile, and run your code in
any part of abuffer.

Other toolsin the LispWorks IDE are integrated with the Editor. So for example you
can find the source code definition of an object being examined in a browser, or set
breakpointsin your code, or flag symbolsin editor buffers for specific actions such as
tracing or lambda list printing.

This section provides an introduction to the Lisp-specific facilities that are available
using menu commands. For afull description of the extended editor commands,
please refer to the LispWorks Editor User Guide.

All of the commands described below are available in the Editor’s Buffers, Defini-
tions, and Expression menus. They operate on the current buffers, definitions, or
expression, the choice of which is affected by the current view.

13.13.1 Lisp mode

Some aspects of the LispWorks editor behave differently depending on which "mode"
the buffer isusing (see the LispWorks Editor User Guide for information about editor
modes). These include syntax coloring and parenthesis matching. which operate only
in Lisp mode and are described in “ Setting the text style attributes’ on page 35. Also,
certain commands such as those for indentation operate specialy in Lisp mode.

To make a new buffer suitable for Lisp code, you can use the New Buffer command
or the File > New menu item, both of which start the buffer in Lisp mode.

If your Lisp source files are saved with an extension . 1isp or . 1sp, then the editor
will automatically open them in a Lisp mode buffer.

13.13.2 Current buffers, definitions and expression

In the Text view, the current buffer is the currently visible buffer, and the Buffers
menu acts on this. The current expression is the symbol over which the cursor is posi-
tioned, or the oneimmediately before the cursor if it is not on a symbol. The current
definition is the definition in which that current symbol occurs. For example:

195

13 The Editor

196

(defun test ()
(test2))

In the function shown above, if the cursor were placed on the letter “€” of test2, the
current expression would be the symbol test2, and the current definition would be
test.

In the Buffers view, the current buffer(s) are all the selected buffers. The Definitions
and Expression menus are not available.

In the Definitions, Changed Definitions and Find Definitions views, the current defi-
nitions are all the selected definitions. The Buffers and Expression menus are not
available.

In each view, the Buffers, Definitions and Expression menu commands act on the
current buffer(s), definition(s) or expression.

13.13.3 Evaluating code

When you are editing Lisp code, you may want to evaluate part or all of the buffer in
order to test the code. The easiest way to do this is using menu commands, although
there are keyboard commands which allow you to evaluate Lisp in the Editor as well.

There are three menu commands which alow you to evaluate Lisp in the current
buffer.

Choose Buffers > Evaluate to evaluate all the code in the current buffer. If you arein
the buffers view, then this command evaluates the code in all the selected buffers.

Choose Expression > Evaluate Region to evaluate the Lisp code in the current region.
You must make sure you have marked a region before choosing this command; see
“Marking the region” on page 188. Whether you use the mouse or keyboard com-
mands to mark aregion does not matter. If you have afew Lisp forms that you want to
evaluate, but do not want to evaluate the whole buffer, you should use this command.

Choose Definitions > Evaluate or click “ in the toolbar to evaluate the current defi-
nition. In the text view thisis alittle like eval uating the marked region, except that
only the current definition is evaluated, whereas working with a marked region lets
you evaluate several. This command is useful if you have a single function in the cur-
rent buffer which you want to test without taking the time to evaluate the whol e buffer
or mark aregion.

13.13 Using Lisp-specific commands

In the various definitions views, this command eval uates the code for all the selected
definitions.

To load the file associated with the current buffer, choose File > Load. To load multi-
ple files associated with buffers, select them in the buffers view and choose File >
Load. If thereis not a current buffer, the menu command File > Load... is available,
which prompts for afile to load.

13.13.4 Compiling code

You can aso compile Lisp code in an editor buffer in much the same way that you can
evaluate it. Code can be compiled in memory or to afile.

13.13.4.1 Compiling in memory

Choose Buffers > Compile or click 5 in the toolbar to compile all the codein the
current buffer.

Choose Expression > Compile Region to compile the Lisp code in the current region.
Choose Definitions > Compile or click * in the toolbar to compile the current defi-
nition.

During compilation, the Editor tool temporarily displays compiler output in the Out-
put tab. Once compilation has finished, you can press space to display the current
buffer once again.

Additionally, if any conditions were signalled during the compilation, you can view
these in the Compilation Conditions Browser by pressing Return. You can also locate
the source code that generated a message viathe context menu, as described in “Inter-
active compilation messages’ on page 329.

You can review the output at any time by clicking the Output tab of the Editor.

13.13.4.2 Compiling to afile

To compile the file associated with the current buffer, choose File > Compile. To com-
pile multiple files associated with buffers, select them in the buffers view and choose
File > Compile. If thereis not a current buffer, the menu command File > Compile... is
available, which prompts for afile to compile.

197

13 The Editor

198

Note: this command calls the Common Lisp function compile-£ile; it createsthe
fadl file but does not load it. You can use File > Load to later load the fasl.

To compile afile (or files) and load the resulting fadl file(s) with a single command,
choose File > Compile and Load. If there is not a current buffer, the menu command
File > Compile and Load... isavailable.

13.13.5 Argument list information

Press ctr1+- to show information about the operator in the current form, in adis-
player window on top of the Editor. The displayer shows the operator and its argu-
ments, and tries to highlight the argument at the cursor position using the style
“Arglist Highlight” .

While the displayer isvisible:

e ctrl+/ controls whether the documentation string of the operator is also
shown

* ctrl++ movesthedisplayer up

* ctrl+- movesthe displayer down

13.13.6 Breakpoints

A breakpoint causes execution of Lisp code to stop when it isreached, and the Lisp-
Works IDE displays the stack and the source code in a Stepper Tool. See “ Break-
points’ on page 373 for information about using breakpoints with the Stepper Tool.

A breakpoint can be at the start, function call or return point of aform.

13.13.6.1 Setting breakpoints
To set a breakpoint, for example at the cal to + in one of your functions:
1. Open thefile containing the call in an Editor tool.

2. Ensurethedefinition isindented. You can usethe Lisp mode command Indent
Form (Meta+Ctr1l+Q in Emacs emulation).

3. Ensure the definition is compiled.

4. Position the cursor on the symbol +.

13.13 Using Lisp-specific commands

5. Choose the menu command Expression > Toggle Breakpoint, or click ¥ in
the Editor toolbar, or run the editor command Toggle Breakpoint. The sym-
bol + ishighlighted red indicating that a breakpoint is set.

When the breakpoint is reached, a Stepper tool isinvoked, allowing you to step
through the code, add further breakpoints, and so on. See “ The Stepper” on page 363
for more information about the Stepper tool.

13.13.6.2 Editing breakpoints

To edit the Conditional or Printing properties of a breakpoint, choose the menu com-
mand Expression > Edit Breakpoints and proceed as described in “ Editing break-
points’ on page 377.

To visit the source code where a breakpoint was set, choose the menu command
Expression > Edit Breakpoints, select abreakpoint and pressthe Goto Source button.
This cancels the dialog and then displays the source containing the breakpoint.

13.13.6.3 Removing breakpoints

To remove a breakpoint under the cursor, click @ in the toolbar. Equivalently choose
the menu command Expression > Toggle Breakpoint or run the editor command Tog-
gle Breakpoint.

Where you wish to remove one or more breakpoints without finding them in the
source, choose Expression > Edit Breakpoints, select a breakpoint or breakpointsin
the Breakpointslist, and click Remove.

13.13.6.4 Reloading code with breakpoints
A message like this:
Retain 1 breakpoint from loaded file...

means that a breakpoint is set in abuffer while you have loaded that buffer's underly-
ing file from disk, for example by menu commands File > Load or File > Compile And
Load. Loading thefile re-evaluates all of itsforms, but the IDE does not have away to
reset the breakpoints in these forms automatically. Therefore it asks you what to do.

Answer Yes to add breakpoints to the newly loaded definitions. Answer No to remove
the breakpoints.

199

13 The Editor

200

13.13.7 Tracing symbols and functions

A wide variety of tracing operations are available in the Buffers, Definitions and
Expression menus. The scope of each operation depends on which menu the com-
mand is chosen from.

Choose Trace from either the Buffers, Definitions or Expression menusto display a
menu of trace commands that you can apply to the current region or expression, or the
currently selected buffers or definitions, as appropriate. Note that you can select sev-
eral itemsin the buffers and definitions views.

See “Tracing symbols from tools’ on page 54 for full details of the tracing facilities
availablein the Editor.

13.13.8 Packages

It isimportant to understand how the current package (that is, the value of the Com-
mon Lisp variable *package*) is determined when running Lisp operations such as
evaluation or compilation commandsin a buffer. Usually it is obvious: most Lisp
source fileshave asingle in-package form. The Editor uses the specified package as
the current package when you evaluate or compile code in that buffer, or perform
some other operation that depends on the current package.

However it is possible for a source file to contain multiple in-package forms, or
none at al. In this case, the Editor uses a suitable binding for the current package
depending on the location in the buffer, as described below. This means that you do
not have to worry about setting the package explicitly before evaluating part of a
buffer, and that operations within a buffer use the expected current package.

13.13.8.1 The primary package

Each buffer has a package associated with it, known as the primary package. Thisis
set when the buffer is created, and is displayed in the message area at the bottom of the
Editor window. The primary package provides a default, used when the current pack-
age cannot be determined by other means.

If the buffer is created by opening afile containing an in-package form, that package
isthe primary package. If there are multiple in-package forms, the primary package
istaken from the first of these forms. If there isno in-package form, the primary
package is CL-USER.

13.13 Using Lisp-specific commands

You can set the primary package if needed with the editor command set Buffer
Package. See the LispWorks Editor User Guide for details.

13.13.8.2 The current package for Lisp operations

When evaluating or compiling an entire buffer, the Editor uses in-package forms as
they appear in the code. For any code that precedes the first in-package form, or
when there isno in-package form, the code is evaluated or compiled in the primary
package.

When evaluating or compiling a region of the current buffer (as opposed to al of it),
the Editor uses in-package forms as they appear in the region. For any code that
precedes the first in-package form of the region, or when thereisno in-package
formin the region at all, the Editor searchesfor the previous in-package formin the
buffer. If thisis found, it determines the current package, otherwise the primary pac-
akgeisused.

When evaluating or compiling a definition, and for operations such as symbol comple-
tion at the cursor point, the Editor searches for the previous in-package formin the
buffer. If thisisfound, it determines the current package, otherwise the primary pac-
akge isused.

13.13.9 Indentation of forms

The Editor provides facilities for indenting your code to help you seeits structure.
These facilities are available only in Lisp mode. The Emacs key a1t+ctrl+g indents
the current Lisp form, and the Tab key indents asingle line.

You can customize Lisp mode indentation by using the pefindent command, see the
LispWorks Editor User Guide for details.

See“Lisp mode’ on page 195 for more information about Lisp mode.

13.13.10 Other facilities
A number of other Lisp-specific facilities are available using the menus in the Editor.

If the current buffer is associated with afile that is part of a system as defined by de£-
system, ChooSe File > Browse Parent System to browse the system it is part of in the
System Browser. See Chapter 27, “ The System Browser” for more information about
this tool.

201

13 The Editor

202

Choose Definitions > Undefine... to remove the current definitions from your Lisp
image. Similarly, choose Buffers > Undefine... to remove the definitionsin the current
buffer or selected buffers. By selecting items in the buffers view, or the various defini-
tions views, you can control over the definitions which can be removed with one com-
mand. Both of these commands prompt you for confirmation with a second chance to
modify the list of definitions to remove.

Choose Definitions > Generic Function to describe the current definition in a Generic
Function Browser. See Chapter 15, “The Generic Function Browser” for more details.

Standard action commands can be found on the Expression menu, allowing you to
perform anumber of operations on the current expression. See“ Performing operations
on selected objects’ on page 48 for full details.

Choose Expression > Arguments to print the lambda list of the current expression in
the echo areg, if it isafunction, generic function or method. Thisisthe same asusing
the Emacs key command a1t+=, except that the current expression is automatically
used.

Choose Expression > Value to display the value of the current expression in the echo
area.

Choose Expression > Macroexpand or click {{} in the toolbar to macroexpand the
current form. The macroexpansion is printed in the Output tab, in the same way that
compilation output is shown. Note how an in-package form containing the current
package is printed with the macroexpansion, meaning that you can preform a further
macroexpansion. Press Space when the cursor is at the end of the output window to
return to the Text tab.

Choose Expression > Walk to recursively macroexpand the current form.

13.14 Help with editing

Two help commands are available which are specific to the Editor and any toolswhich
use editor windows.

Choose Help > Editing > Key to Command and type a key sequence to display a
description of the function it is bound to, if any.

Choose Help > Editing > Command to Key and supply an editor command name to
see the key sequence it is bound to, if any.

14

The Function Call Browser

14.1 Introduction

The Function Call Browser gives you away to view a user-defined function in the
Lisp image together with the functions that call it or the functionsit calls.

It has three views.

e ThecCalled By view alowsyou to examine a graph of the functions which call
the function being browsed. This is the default view.

e TheCadlslInto view alows you to examine a graph of the functions which are
called by the function being browsed.

e The Text view lets you see immediate callers and callees of the browsed func-
tion using lists rather than a graph.

To create a Function Call Browser, choose Works > Tools > Function Call Browser or
click #= inthe Podium. Alternatively, select afunction in another tool, and choose
Function Calls from the appropriate actions menu to browse the selected function in
the Function Call Browser. Finally, in an editor executing A1t+X List Callers Of
Alt+X List Callees calsup aFunction Call Browser on the current function.

Note: the cross references between function calls are generated by the compiler, hence
you can use the Function Call Browser only for compiled code. M oreover, the com-

203

14 The Function Call Browser

piler setting to generate cross references must be on when you compile your code.
Switch it on by evaluating

(toggle-source-debugging t)

When cross referencing is on, this line appears in the output of the compiler:

Cross referencing is on

rr

14.2 Examining functions using the graph views

There are two graph views in the Function Call Browser. The Called By view isthe
default view. The Function Call Browser appears asin Figure 14.1.

Figure 14.1 Viewing functions using the “Called By” view

Function Call Browser 1 ! E

Works File Edit Mew Description Fupnction History Help

SR Y S VR Rl =K - SRR

Function: NAME-FOR-PLAYER

Show functions from packages: | All &7

Text| Called By |Calls Into

PLAY-SQUARE
GSTART_GAME)'DISPLAY—CU RRENT-SCORE

> NAME-FOR-PLAYER

2DISPLAY-FINAL-SCORE

Function Description >>

In this view, the Function Call Browser has five areas.

204

14.2 Examining functions using the graph views

14.2.1 Function area

The Function area displays the name of the function being examined, and here you can
enter the name of another function to examine. You can use completion to reduce typ-
ing. Thisalowsyou to select from alist of al functionsin the current package whose
names begin with the partial input you have entered. Invoke completion by up, Down

or click the ?_":!? button. See “Completion” on page 59 for detailed instructions. When
you have entered the complete function name, click 4" to confirm your choice

14.2.2 Show functions control

The popup list Show functions from packages alows you to restrict the functions
displayed based on their package. It affectsthe display in all views. Below, the current
package means the symbol -package Of the function currently being examined in the
Function Call Browser. The options are:

All Display al the functions known to the compiler.

Current and Used

Display only those functions in the current package or pack-
ages on the package use list of the current package.

Current and Standard

Display only those functionsin the current package or the
standard packages coMMON-LISP, HCL and LISPWORKS.

Current Display only functions in the current package.

14.2.3 Graph area

A graph of al the callers of the function is displayed in agraph in the Called By view.
The graph area of the Calls Into view issimilar, but the graph displayed is of the
functions called by the function being browsed.

Notethat if source level debugging is off, or the function was not compiled, thereis no
information to display here. To turn on source level debugging, call

(toggle-source-debugging t)

205

14 The Function Call Browser

The generic facilities available to all graph viewsin the LispWorks IDE are available
here; see Chapter 6, “Manipulating Graphs’ for details.

14.2.4 Echo area

The echo area of the Function Call Browser is similar to the echo area of the podium.
It displays messages concerning the Function Call Browser.

206

14.2 Examining functions using the graph views

14.2.5 The function description button

Clicking on Function Description >> changes the view of the Function Call Browser
to include more information on the function being browsed. The browser appearsasin
Figure 14.2

Figure 14.2 The Function Call Browser in function description mode

Function Call Browser 1

Works File Edit View Description Function History Help

B/ %Y E®

Function: CORNER-PIECE-P

B

Show functions from packages: | All b

Text| Called By |Calls Into

= o
ALL-CORNER-MOVES) CORNER-PIECE-P

SNEXT-TO-CORNER-FIECE-P

Name: CORNER-PIECE-P
Function: #<Function CORNER-PIECE-P 4140065F54=
Lambda List: (PIECE GAME)

Source Files: jusr/libe4/Lis pWorks/lib/6-0-0-0/examples/capi/applications/othellc
< S | [»

Documentation:
The predicate for whether a square is a comer square.

Function Description <<

Ready.

Two further panes appear. Note that the function description button has now changed
to Function Description << and that clicking on it restores the view of the Function

Call Browser

The extra panes are a function description area, and a documentation area.

207

14 The Function Call Browser

208

14.2.5.1 Function description area

The Function Description area gives a description of the function selected in the main-
areg, or, if nothing is selected, the current function (as displayed in the Function area).
The following items of information are displayed:

Name The name of the function.
Function The function object.
Lambda List The lambdal list of the function.

Source Files The source file in which the function is defined, if any.

You can operate on any of theitemsin this area using the commands in the Descrip-
tion menu, which is also available as the context menu. This contains the standard
actions described in “ Performing operations on selected objects’ on page 48.

14.2.5.2 Documentation area

The Documentation area shows the documentation for the function selected in the
main area as returned by the Common Lisp function documentation. If no function
is selected, the documentation for the current function is shown.

14.3 Examining functions using the text view

Click on the Text tab to see atextual display of the callees and callers of afunction.
This view has the advantage that both callees and callers can be seen simultaneously.
It isvery similar to the text view in the Class Browser, as described in “ Examining

14.3 Examining functions using the text view

other classes’” on page 101. When in the text view, the Function Call Browser appears
as shown in Figure 14.3.

Figure 14.3 Viewing functions using the text view

Function Call Browser 1

Works File Edit Mew Description Function History Help

ERER R RO =E

Function: CORMER-PIECE-P

e

Show functions from packages: | All b

Text |Called By | Calls Into
Called by: Calls into:
ALL-CORNER-MOWVES !
NEXT-TO-CORNER-PIECE-P -
1-

DSPEC:DEF
EQ B
SLOT-VALUE
[¢] A | [*]

[

e

‘Function Description >>

Ready.

The function area, show functions from packages area, function description area and
echo area are asin the graph views.

14.3.1 Called By area
The Called By arealists those functions which the current function calls.

To make any function in thislist be the current function, double-click on it.

209

14 The Function Call Browser

210

14.3.2 Calls Into area
The Calls Into arealists those functions which call the current function.

To make any function in thislist be the current function, double-click on it.

14.4 Configuring the function call browser

The Function Call Browser can be configured using the preferences dialog. Select
Works > Tools > Preferences... or click ¥ to display the dialog, and select Function
Call Browser in the list on the left side of the dialog which appears. This displays
these options:

Figure 14.4 The function call browser preferences

General |Called By Layout | Calls Into Layout

Sort Package
© Unsorted COMMON-LISP-USER | v 2
(@ By Name

Show Package Names
() By Package
Toolbar

Show Toolbar

14.4.1 Sorting entries

The functions displayed in each tab of the Function Call Browser can be sorted in a
number of ways.

Choose By Name to sort entries according to the function name. Thisisthe default set-
ting.

Choose By Package to sort functions according to their package.

Choose Unsorted to leave functions unsorted.

14.5 Configuring graph displays

14.4.2 Displaying package information

As with other tools, you can configure the way package names are displayed in the
Function Call Browser.

Choose Show Package Names to turn on and off the display of package namesin the
Text, Called By, Calls Into and Description areas.

See “Displaying packages’ on page 45 for more information about using Show Pack-
age Names.

14.5 Configuring graph displays

The preferences can a so be used to configure how the Function Call Browser displays
graphical information in the Called By and Calls Into views. Click on the Called By
Layout tab or the Calls Into Layout tab in the Preferences. Both views perform the
same operations on the relevant Function Call Browser view.

Figure 14.5 A layout view in the Function Call Browser preferences

General | Called By Layout |Calls Into Layout

Layout Max. Expansion
OLefttoRight pepth | 2 .
@ Right to Left

Breadth | 40 w
() Top Down

() Bottom Up Plan Mode

[] Rotation

14.5.1 Graph layout settings

The layout radio buttons are used to set the direction in which the graph is displayed.
The default setting is Left to Right.

211

14 The Function Call Browser

212

14.5.2 Graph expansion settings

The Max. Expansion settings determine how much of the graph to display. The default
depth value is 2—this ensures that only functions that directly call (or are directly
called by) are shown in the graph. If this vaue were set to 3, for example, then func-
tions that call afunction that calls the function being browsed would aso be dis-
played.

The breadth value has a default value of 40, and sets how many functions are dis-
played at each level of the graph.

14.5.3 Plan mode settings

The Rotation checkbox determines whether the graph layout can be rotated when in
plan mode. By default it is unchecked.

You can enter plan mode when displaying a graph by selecting Enter Plan Mode from
the context menu. If rotation is enabled and the plan is smaller than the graph, you can
rotate the plan by holding down the shift key and moving the mouse left or right.

14.6 Performing operations on functions

A number of operations can be performed on functions selected in the Text area (when
in the Text view) or in the Called By or Calls Into areas, or on the current function
(when there are no functions selected elsewhere).

The Function menu gives you access to the standard actions described in “ Performing
operations on selected objects’ on page 48.

The Function > Trace submenu gives you the ability to trace and untrace the functions
selected in the Text, Called By and Calls Into views.

15

The Generic Function Browser

The Generic Function Browser allows you to examine the generic functionsin the
Lisp image, together with any methods that have been defined on them. It has two
views which allow you to browse different types of information:

e The methods view, which shows you a description of the generic function and
the methods defined on it. Thisis the default view.

* The method combinations view, which lets you examine the list of method
combinations for any generic function.

To create a Generic Function Browser, choose Works > Tools > Generic Function
Browser or click &g in the Podium.

Other ways to create a Generic Function Browser are;

< |f the current object in atool is a generic function or method, choose the
Generic Function standard action command from the appropriate menu

¢ Usetheeditor command Alt+X Describe Generic Function

e |f thereis amethod on the debugger stack, you can display the Method Combi-
nation viathe Frame menu of a Debugger tool

213

15 The Generic Function Browser

214

15.1 Examining information about methods

When the Generic Function Browser isfirst displayed, the default view isthe methods

view. You can also choose it explicitly by clicking on the Methods tab of the Generic
Function Browser.

The methods view is shown in Figure 15.1 below.

Figure 15.1 Generic function browser

Generic Function Browser 1

Works File Edit WView Description Methods Function History Help

LRaR R A=K

Function: | CAPL.DRAW-PINEOARD-OB JECT

e T

Methods | Method Combinations

Filter+ 2 Matches 16

(METHOD DRAW-PINBOARD-OB JECT (GRAPH-PANE EXPANDAELE-ITE
(METHOD DRAW-PINEOARD-OB JECT (T ARROW-PINEOARD-OB JECT))
(METHOD DRAW-PINBOARD-OB JECT (T CAPI-GENERIC-LIST-VIEW-ITE
(METHOD DRAW-PINBOARD-OB JECT :ARQUND (T DOUBLE-HEADED-AF
(METHOD DRAW-PINEOARD-OB JECT (T DRAWN-PINEOARD-OB JECT))

<] P | [+]

Dl

Description:

Method: #<STANDARD-METHOD DRAW-PINBOARD-OBJECT NIL (T AR
Lambda List: (OQUTPUT-PAMNE SELF &KEY X Y ‘WIDTH :HEIGHT &ALLOW-O
Combination: STANDARD
< | E
Ready.

15.1 Examining information about methods

The methods view has four main sections, described below.

15.1.1 Function area

The Function: box shows the name of the generic function you are examining. To
browse a generic function, you can enter its name directly into the Function: box. You
can aso paste the generic function from another tool in one of two ways:

» Choose Edit > Copy or the standard action command Copy in another tool to
copy the generic function to the clipboard, then choose Edit > Paste in the
Generic Function Browser to transfer the generic function in.

e Choose the standard action command Generic Function in the other tool to dis-
play the generic function in the Generic Function Browser in one action.

When entering the name of afunction, you can use completion to reduce typing. This
allows you to select from alist of all generic functions whose names are accessible in
the current package and begin with the partial input you have entered. Invoke comple-
tion by pressing up or bown, or by clicking the f’_":!;- button. The methods are listed
immediately. See“ Completion” on page 59 for more information about completion. If
you enter the generic function name directly without using completion, click 4 to
confirm the name.

Note: You can use Edit > Paste to paste in a generic function, even if the LispWorks
IDE clipboard currently contains the string representation of the function, rather than
the function itself. Thislets you copy in generic functions from other applications, as
well as from the environment. See “Using the Object operations with the clipboard”
on page 40 for a complete description of the way the LispWorks IDE clipboard oper-
ates, and how it interacts with the UNIX clipboard.

You can operate on the current generic function using the commands in the Generic
Function Browser’s Function menu. See “Performing operations on the current func-
tion or selected methods’ on page 216 for details.

15.1.2 Filter area

The Filter lets you restrict the list of methods displayed. See “Filtering information”
on page 55 for details about how to use the Filter area.

215

15 The Generic Function Browser

216

15.1.3 Methods list
This area displays the methods defined on the generic function.
e Sdecting amethod in thislist displays its description in the Description list.

« Double-clicking on a method displays its source code definition in the editor, if
itisavailable.

The number of itemslisted in the list of methodsis printed in the Matches box.

You can operate on any number of selected methods in this area using the commands
in the Generic Function Browser’s Methods menu. See Section 15.1.5 on page 216 for
details.

15.1.4 Description list

The Description list shows a description of the method selected in the list of methods,
or of the generic function itself if no method is selected.

The following information is listed:
Method The method abject that is selected in the list of methods.
Lambda List The lambdalist of the generic function.

Combination The class of method combination for the generic function.

To operate on any of the items displayed in this area, select them and choose a com-
mand from the Description menu. This menu contains the standard action commands
described in “ Performing operations on selected objects’ on page 48. You can operate
on more than one item at once by making a multiple selection in this area.

15.1.5 Performing operations on the current function or
selected methods

You can use the Function and Methods menusto access commands that operate on the
current generic function or the selected methods. These commands are similar to com-
mands available in other tools, and so you should find them familiar.

The following commands are available from either the Function or Methods menus.

15.2 Examining information about combined methods

e The standard action commands let you perform a number of operations on the
selected methods or the current function. For details on the commands avail-
able, see “Performing operations on selected objects’ on page 48.

e Choose Undefine... to undefine the current generic function or the selected
methods so that they are no longer available in the Lisp image. Choosing Unde-
fine... on amethod undefines the method function and removes it from the
methods of the generic function. However, the generic function can still be
called with its different method selection.

e The Trace submenu gives you the ability to trace and untrace the current
generic function or the selected methods. See “Tracing symbols from tools’ on
page 54 for details about the commands available in this submenu.

15.2 Examining information about combined
methods

The method combinations view lets you examine information about the combined
methods of the current generic function. You supply a signature and Generic Function
Browser displays the combined methods of the generic function together with the
arguments that match that method combination point.

Method combinations show you the calling order of methods. They use the class pre-
cedence lists of the classes on which the methods of a generic function operate. Being
able to view these combinations gives you a simple way of seeing how before, after,
and around methods are used in a particular generic function.

You can display this view by clicking the Method Combinations tab of a Generic
Function Browser, or from the Debugger tool by choosing Frame > Method Combina-

217

15 The Generic Function Browser

tion in aframe containing a standard method. The method combinations view is
shown in Figure 15.2 below.

Figure 15.2 Generic function browser displaying method combinations

Generic Function Browser 1

Works File Edit Wiew Description Methods Function History Help

i5 L RSR VR =K -,

Function: | CAPI:DRAW-PINBOARD-CB JECT

SN

Methods | Method Combinations

Arguments Types: | (T ARROW-PINBEOARD-OBJECT) " | Signatures...

PROGN]
CALL-METHOCD

(METHOD CAPI:DRAW-PINBOARD-OB JECT :BEFORE (T CAPI:PINBOAR |-
CALL-METHCD

0D CAPL:DRA FINBOARD-OE AFIIARRO FIMNBOAR [

(METHOD CAPI:DRAW-PINBOARD-OBJECT (T CAPLLINE-PINBOARD-([+]

€| e | [#]
Description:

Method: #<STANDARD-METHOD DRAW-PINEOARD-OB JECT NIL (T AR
Lambda List: (OUTPUT-PANE SELF &KEY XY ‘WIDTH :HEIGHT &ALLOW-O

Combination: STANDARD
< | E

Ready.

The method combinations view has a number of main sections, described below.

15.2.1 Function box

As with the methods view, the name of the generic function being browsed is shown
here. See “Function ared’” on page 215 for details.

218

15.2 Examining information about combined methods

15.2.2 Signatures button

Click Signatures... to display the Method Signatures dialog shown in Figure 15.3.
Thisdiaog lists the signatures for the methods defined on the current generic func-
tion. The signature of a method shows the types of the arguments.

Figure 15.3 Method Signatures dialog

Method Signatures

Restricted Class:

v X 3

Signatures

Filter~ |arrow > Matches 3

(T ARROW-PINBOARD-OB JECT)
(T DOUBLE-HEADED-ARROW-PINEOARD-OB JECT)
(T LABELLED-ARROW-PINBOARD-OB JECT)

o Apply ® Cancel|| ¢ 0K

To list the method combinations of any defined method in the Generic Function
Browser, select its signature from the list in the Signatures panel of the Method
Signatures dialog and click OK.

You can restrict the signatures displayed using Filter box in the usual way.

You can also restrict the display with the Restricted Class box. See “Restricting dis-
played signatures by class’ on page 220 for details.

219

15 The Generic Function Browser

220

15.2.3 Arguments types box

The Arguments Types: box is used to specify a signature, in order to see the method
combinations. You can specify a signature here by either:

* Choosing asignature using the Method Signatures dialog, as described in “Sig-
natures button” on page 219.

» Typing the signature list directly and clicking .

The method combinations for the relevant method are displayed in the list of method
combinations.

15.2.4 List of method combinations

The main list in the method combinations view shows method combinations for the
signature specified in the Arguments Types: box.

« Selecting any method in the list displays its description in the Description: list.

« Double-clicking on any method in the list displays its source code definition in
the editor, if it isavailable.

You can operate on any number of selected methods in this area using the commands
in the Methods menu. See “Performing operations on the current function or selected
methods” on page 216 for details.

15.2.5 Description list

The Description list displays adescription of any method selected in the list of method
combinations. The same items of information are shown as in the methods view; see
“Description list” on page 216.

To operate on any of the items displayed in this area, select them and choose a com-
mand from the Description menu. This menu contains the standard commands
described in “ Performing operations on selected objects’ on page 48. You can operate
on more than one item at once by making a multiple selection.

15.2.6 Restricting displayed signatures by class

The Method Signatures dialog was introducted in “ Signatures button” on page 219.
You can display this dialog by clicking Signatures... in the Generic Function Browser.

15.2 Examining information about combined methods

By default, the Method Signatures dialog displays the signatures of al methods
defined on the generic function. When there are many methods, or when the distinc-
tion between different classesis not clear, this can be confusing.

To simplify the display, you can restrict the signatures displayed to a chosen class and
its superclasses. To do this, enter the name of the chosen class into the Restricted

Class box. You can click 7“:!;. which allows you to select from alist of all class names
which begin with the partlal input you have entered. See“ Completion” on page 59 for
detailed instructions. Aswith similar text input panesin the IDE, click 4 to confirm

your choice,)(to cancel the current setting.

Figure 15.4 Restricting the signatures by class

Method Signatures

Restricted Class:
ARROW-PINBOARD-QOBJECT v X ?3?

Signatures restricted to ARROW-PINBOARD-OB JECT
Filter + < Matches 3

(T ARROW-PINBOARD-OBE JECT)
(T LINE-PINBOARD-OB JECT)
(T PINBOARD-OB JECT)

o Apply ® Cancel|| ¢ 0K

Once you have made a choice, only those signatures that contain the specified class or
one of its superclasses are listed in the Signatures restricted to... panel of the diaog.

221

15 The Generic Function Browser

222

Thissimplified display is useful when there are alarge number of complicated signa-
tures.

Be aware of the difference between this approach and the use of the Argument box in
the Signatures panel. Restricting signatures confines the signatures offered in the dia-
log by means of the class of the signatures.

Click }(to display the signatures for all methods defined once again.

15.3 Configuring the Generic Function Browser

Choose Works > Tools > Preferences... or click & , and then select Generic Func-
tion Browser in the list on the left side of the Preferences dialog.

Using the optionsin the Sort panel, you can sort the items in the Generic Function
Browser as you can in many of the other toolsin the LispWorks IDE.

Unsorted Displaysitemsin the order they are defined in.

By Method Qualifier

Sortsitems by the CLOS qualifier of the method. This groups
together any :before, :after, and :around methods.

By Name Sorts items alphabetically by name. Thisis the default set-
ting.
By Package Sorts items alphabetically by package name.
For more information on sorting items, see “ Sorting itemsin views’ on page 51.

You can also set the process package of the Generic Function Browser, and choose to
hide package names in the display, using the Package box. See* Displaying packages’
on page 45 for full details.

You can aso control whether the Generic Function Browser displays the history tool-
bar by the option Show Toolbar, as described in “Toolbar configurations’ on page 26.

16

The Search Files tool

16.1 Introduction

The Search Filestool gives you a convenient way of performing searches on
directories, individual files or systems. You can create a Search Files tool by choosing
Works > Tools > Search Files or clicking &5 in the Podiumor use the keyboard accel-
erator described in “ Displaying tools using the keyboard” on page 23. You can also
start context-dependent searches, for example by choosing Edit > Search Files... or
Systems > Search Files..., or from editor command such asMeta+X Search Files.

223

16 The Search Files tool

Out of necessity, this chapter makes some references to other tool s in the environment
which you may not yet be familiar with. However, this chapter does not assume any
prior knowledge of these tools.

Figure 16.1 The Search Files toal

Search Files 1

Works File Edit History Help

v @ v Plain Directory b

Search Specifications

Regexp Search String: | defmethod [] Case sensitive

Filenames Pattern: |/lib/6-0-0-0/examples/capi//™.lisp| & [] All files

Filter+ # Matches: 160 [] Hide edited

I+ B balloons.lisp {1} .u'u5r.u’|i|:t54.n’Li5qurkEJIiba’E-D-D-Da’examples.-’c;E
I B chatlisp {2} [fusr/lib64/LispWorks/lib/6-0-0-0/examples/capi/z
i Bl cocoa-applicationlisp {1} fusrlib64/LispWorks/lib/6-0-0-0/ex;
> B othellodlisp {10} /usr/libb4/LispW orks/lib/6-0-0-0/examples/cz
> Bl remote-debugger.lisp {4} fusi/lib64/LispWorks/lib/6-0-0-0/exa —

Finished: 160 matches in 26 files (searched 82 files)

The Search Filestool hasthe following areas:

e Thetoolbar contains a dropdown list that chooses the kind of search to perform
(Plain Directory was used in the screenshot above). There are also buttonsto
start and stop a search, and to perform a query replace operation on the
matched lines.

e The Search Specifications arealets you specify what to search for and where
to search. Thisareaisfilled in or partly filled in automatically when you start a
context-dependent search. You can also enter suitable values directly, or modify
the existing values.

224

16.2 Performing searches

e Thefilter arealets you restrict the search results displayed in the main area.

« Themain areadisplays the results of the last search in atree. You can expand
each file to showed the matched lines within it.

16.2 Performing searches
You can use the Search Filestool in two different ways.

e You can enter details of where to search and what to search for directly into the
tool and click the & button. Thisis described in more detail in “Entering
Search Specifications directly” on page 225.

e You can use an Editor command or menu command that starts a context-depen-
dent search. Thisis described in more detail in “Using context-dependent
searches’ on page 232.

Some kinds of the search use aregular expression (regexp). For details of the syntax
of regular expressions see "Regular expression searching” in the LispWorks Editor
User Guide.

While the toal is searching, you can examine the results but you cannot change the
search specifications. To stop a search, click the @ button in the tool bar.

16.2.1 Entering Search Specifications directly

To enter the search specifications directly, decide which kind of search to perform
from the dropdown list in the toolbar and then fill in the boxes in the Search
Specifications area. The different search kinds are described below. You can also hide
the search specifications by choosing Hide Search Area from the dropdown list in the
toolbar.

16.2.1.1 Plain Directory searches

A Plain Directory search is used to search for a particular regexp in al fileswhose
names match a particular pattern. Enter the regexp in the Regexp Search String box
and enter a set of filename patternsin the Filenames pattern box. You can press up or
Down in the Filenames pattern box to complete physical directory components, as
described in “Completion” on page 59.

225

16 The Search Files tool

226

The filename pattern should be a complete filename and can use the following syntax
to make it match more than onefile:

e Use * within the pattern to match any sequence of charactersin adirectory or
file name.

e Use ** within the the directory part of the pattern to match any number of
subdirectories.

Here are some examples of filename patterns.

* * Matches al filesin the root directory.

subdir/*.txt
Matches all txt filesin root/subdir.

examples/**/* lisp
Matches all 1isp filesin root/examples and its subdirecto-
ries. Thisis similar to the pattern shown in Figure 16.1.

*% /*zork* /* . bmp

Matches all bmp filesin any directory under the root directory
that contains zork in its name

See also the Match flat file-namestring option in “ Search Parameters’ on page 236 for
additional information.

If afilename pattern is adirectory then all filesin that directory are searched.

Check Case sensitive to make the search match only the case of letters exactly as
entered.

Check All files to ignore any list of File Types in the Preferences.

16.2.1.2 Root and Patterns searches

A Root and Patterns search is used to search for a particular regexp in al files whose
names match one or more patterns within a directory. Enter the regexp in the Regexp
Search String box, the starting directory in the Root Directory box, and a set of file-
name patterns in the Pattern List box.

16.2 Performing searches

You can press up Of Down in the Root Directory box to complete physical directory
components, as described in “ Completion” on page 59.

Figure 16.2 A Roots and Patterns search

Search Files 1

Works File Edit History Help

b Root and Patterns |+

¢ v
Search Specifications

Regexp Search String: | PARAMETER Case sensitive

Root Directory: |b64/LispWorks/lib/6-0-0-0/examples/| &, [| All files

Battern List: | ssl/*.pem ; capifl*/*lisp

Filter v > Matches: 2 [] Hide edited

= B dh_param_512.pem {2} Jusr/lib64/LispWorks/lib/6-0-0-0/example
11— BEGIN DH PARAMETERS-—-

Finished: 2 matches in 1 files (searched 11 files)

You can search subdirectories by including directory components (including wild
components) in the the Pattern List box.

Multiple filename patterns can be entered, separated by semicolons. Spaces before
and after each pattern are ignored. Each filename pattern should be a complete
filename and can use the following syntax to make it match multiple files:

» Use * within the pattern to match any sequence of charactersin adirectory or
file name.

e Use ** within the the directory part of the pattern to match any number of sub-
directories.

227

16 The Search Files tool

228

¢ Use {namel,name2, ...} to match any one of namel, name2 and so on.
Spaces before and after each name are ignored.

Here are some examples of pattern lists:
images/*.* ; icons/*.*
{images,icons}/*.*

Both of these patterns match all filesin the root/images and the root/icons
directories.

**/{images,icons}/sunrise. {bmp, jpg, jpeg}

** /images/sunrise. {bmp, jpg,jpeg} ; **/icons/
sunrise.{bmp, jpg,jpeg}

Both of these patterns match all files with the name sunrise.bmp, sunrise.jpg Of
sunrise.jpeg inadirectory named icons Or images, anywherein the root direc-
tory.

{maj,min}or-events/{*-name,date}/*.txt
major-events/{*-name,date}/.txt ; minor-events/{*-name,date}/.txt
{maj,min}or-events/date/*.txt ; {maj,min}or-events/*-name/*.txt

Each of these three patterns matches all . txt fileswhich arein adirectory date or a
directory that ends with -name inthemajor-events Or minor-events directories.

See also the Match flat file-namestring option in “ Search Parameters’ on page 236 for
additional information.

If afilename pattern is a directory then al filesin that directory are searched.

Check Case sensitive to make the search match only the case of |etters exactly as
entered, asillustrated above.

Check All files to ignore any list of File Types in the Preferences.

16.2.1.3 System Search

A System Search isused to search for aparticular regexp in al thefiles referenced by
aLispWorks defsystem definition. Enter the regexp in the Regexp Search String
box and the system namesin the System Names box. Multiple system names can be
entered, separated by semicolons.

Check Case sensitive to make the search match only the case of letters exactly as

entered.

You can also do a System Search in a"system" defined by another source code man-
ager such as ASDF, if you have configured LispWorks appropriately. See“ ASDF Inte-

gration” on page 399 for the details.

16.2.1.4 Known definitions searches

You can use the Search Filestool to search in all files known to contain definitions. To
do this, select Known Definitions in the the dropdown list in the toolbar. Then com-

plete your other search specifications and click the & button.

Figure 16.3 A Known Definitions search

Search Files 1

Works File Edit History Help

@3@ hd %@ ~ | | Known Definitions |+ @’ i

Search Specifications

Searching in: recorded definitions, loaded tags databases

<
Regexp Search String: | defun [] Case sensitive

Filter » > Matches: 1,702 [] Hide edited

[Bl abbrev.lisp {5} /fuslib64/LispWorks/lib/6-0-0-0/src/edita
[Bl auto-save.lisp {19} Jusr/lib64/LispWorks/lib/6-0-0-0/src/s
[+ B bufferlisp {103} /usr/lib64/LispWorks/lib/6-0-0-0/src/edil
I+ B c-mode.lisp {12} /(usr/lib64/LispWorks/lib/6-0-0-0/src/edi

16.2 Performing searches

L)

]
Z

Finished: 1702 matches in 83 files (searched 92 files)

A fileisknown to contain definitions in one of two ways:

« A filewasloaded and executed a defining form which was recorded by the
source location system. The associated source files are searched when the list

229

16 The Search Files tool

230

value of the variable dspec: *active-£finders* contains the keyword
:internal.

« Thefileisrecorded as alocation in atags database. Such files are searched
when the list value of the variable dspec: *active-finders* containsthe
path of the tags database.

See "Dspecs. Tools for Handling Definitions' in the LispWorks User Guide and Refer-
ence Manual for more information about definition recording and tags databases.

16.2.1.5 Grep searches

A Grep search isused to run an external program to search files and show the results
in thetool. Enter the working directory for the external program in the Root Directory

16.2 Performing searches

box and the complete command line of the external program in the Grep Command
box.

Figure 16.4 A Grep search

Search Files 1

Works File Edit History Help
‘\l." w %@ w Grep w &) :
Search Specifications

Root Directory: spWorks/lib/6-0-0-0/examples/capiflayouts/| &

2

Grep Command: | grep -n -i defmethod *.lisp /dev/null

Filter v > Matches: 9 [] Hide edited

= B bufferlayout.lisp {3} Jusi/libb4/LispWorks/lib/6-0-0-0/exam,|
=P 47 : (defmethod capi:interpret-description ((self bufferlayol
= 60 : (defmethod capi:calculate-constraints ((self bufferdayc
= 120 : (defmethod capi:calculate-layout ((self bufferlayout) |
[+ B switchablelisp {1} Jusr/libB4/LispWorks/lib/6-0-0-0/exampl
I> B wrappinglayout.lisp {5} /usr/lib64/LispW orks/lib/6-0-0-0/ex

Finished: 9 matches in 3 files

The externa program istypically grep, but other programs can be used as long as
they print the matched lines in this format:
filename:line-number line-text

When using grep You generally need to pass the -n option and the filename argument
/dev/null to forceit to print the file and line number in all cases. Thisis done auto-
matically when you invoke the Search Filestool by the Editor command crep.

231

16 The Search Files tool

232

16.2.2 Using context-dependent searches

Context dependent searches take some information from the current window and
invoke the Search Files tool to perform the search. There are various Editor
commands and menu commands that start a context-dependent search, as described

bel ow.

16.2.2.1 Context-dependent searches using Editor

commands

Search Files

Prompts for a search string and directory pattern and then
performsaPlain Directory or Root and Patterns search. If an
existing Search Filestool is reused by this command and was
last doing a Root and Patterns search, then the directory
pattern is split to fill the boxes. Otherwise, a Plain Directory
search is performed using the directory pattern. If the direc-
tory pattern endsin a slash, then the default pattern is added
to the end (see “ Search Parameters’ on page 236).

Search Files Matching Patterns

Search System

Grep

Prompts for a search string, root directory and set of filename
patterns and then performs a Root and Patterns search.

Prompts for a search string and system name and then per-
forms a System Search.

Prompts for command line arguments to pass to grep and
then performs a Grep search. The grep command is created
from these arguments, with a -n option and the filename
argument /dev/null as mentioned in “ Grep searches’ on
page 230.

16.2.2.2 Context-dependent searches using menu

commands

Edit > Search Files...

16.3 Viewing the results

Opens a Search Filestool in for aPlain Directory or Root
and Patterns search, using the directory associated with the
current tool (in particular, the directory of the buffer
displayed in an Editor toal).

If an existing Search Filestool is reused by this command
and was last doing aRoot and Patterns search, then the
directory is placed in the Root Directory box. Otherwise, the
directory is placed in the Filename Patterns box for aPlain
Directory search with the default pattern added to the end
(see“ Search Parameters’ on page 236).

Systems > Search Files...

Prompts for aregexp and performs a System Search in the
currently selected system.

16.2.2.3 Search History

The Search Files tool keeps a history of previous searches and their results. You can
revisit these searches using the <= and =p buttons as described in “The history list”
on page 43.

16.3 Viewing the results

The results of asearch are displayed in the main area of the tool, grouped by file. The
file name, the number of matchesin that file and the directory are shown. Select afile
and expand it to see the line number and text of each line of that file that matches. You
can configure the tool to expand the items as they are added as shown in “Display” on
page 238.

16.3.1 Displaying in an Editor

Double-click on the filename to open an Editor tool showing that file and show
the first match in that file. Similarly, double-click on the line number to show
that line in the Editor. Items that have been edited are shown with a different
icon. You can change an item to show as edited or not edited using the Mark
Edited and Mark Not Edited commands on the context menu.

233

16 The Search Files tool

234

The Editor command Next Search Match can be used to move to the next item in
the last Search Files tool that you used.

16.3.2 Linking to an Editor

You can arrange for an Editor tool to immediately display one of the search matches
when you select it. To do this, choose Link to Editor from the context menu in the
main area of the Search Filestool. To remove the link, choose Link to Editor from the
context menu again.

Note: thisis equivaent to using Edit > Link from > Search Files 1 in the Editor tool.

16.3.3 Filtering the results

Use the Filter areato restrict the displayed results by a plain string match or aregular
expression match, as described in “Filtering information” on page 55.

Thefilter applies to the text in the match, not to the line number or file names.

16.3.4 Hiding certain results

When there are many results it can be useful to hide some which you know to be
uninteresting. Select the lines you wish to hide, raise the context menu and choose
Hide (or pressthe pelete key).

To restore hidden lines to the display, choose Unhide Others from the context menu.

16.4 Modifying the matched lines

After asearch you might want to perform a replace operation within the matches, for
example to rename afunction or add a missing package prefix throughout your source
code.

16.5 Configuring the Search Files tool

To do this, press & or choose Query Replace... from the context menu in the results
areato raise the Query replace in matched lines dialog.

Figure 16.5 The Query replace in matched lines dialog

Search Files 1

Query replace in matched lines
Regexp to replace: | prompt-for

Replace by: capi: prompt-for

® Cancel o OK

Enter aregular expression to replace in the Regexp to replace: box. Enter the
replacment text in the Replace by: box, and press OK.

For each of the matched lines that also matches the regular expression, an Editor tool
displays the file with a prompt in the Echo Area. Type'y’ or 'n’ to make the
replacement or not, for each match in turn.

Save the modified the editor buffers (see “ Opening, saving and printing files’ on page
181) to commit your replacementsto disk.

16.5 Configuring the Search Files tool

Various aspects of the Search Files tool's behavior and display can be configured. To
do this, select Works > Tools > Preferences... and then select Search Files in the list
on the left side of the Preferences dialog.

235

16 The Search Files tool

16.5.1 Search Parameters

In the Search Parameters view of the Search Files preferences you can configure
some aspects of searching operations.

Figure 16.6 Setting Search Parameter Preferences

General | Search Parameters |Display |File Types

Pattern
Pattern to add when no file name is specified:
"lisp; "lsp

[_] Match flat file-namestring
Limits

Maximum file size to search:

1000000 A

Maximum number of matches:

1000 b

Enter a file name pattern to add when invoking the tool from an Editor command in
the Pattern to add when no file name is specified box.

Check Match flat file-namestring if you want the tool to match filename component of
patterns as aflat string, rather than aname and type. If this option is not selected, then
any text after thefinal . in thefilenameis treated as the type and is only matched by
similar text after the . in the pattern. For example, when Match flat file-namestring is
not selected, the pattern dir/*p matches interp. exe, Wherethe name interp ends
with p but does not match £ile.1lisp, wherethe name £ile endswith e. Con-

236

16.5 Configuring the Search Files tool

versely, when Match flat file-namestring is selected, dir/*p matches £ile.lisp,
where the file-namestring £ile.1isp endswith p, but does not match interp. exe,
where the file-namestring interp. exe endswith e.

You can specify alimit on the size of filesto search in the Maximum file size to
search box. Thislimit represents the maximum file size in bytes, and typical values
can be selected from the dropdown list.

You can specify alimit on the number of matches displayed by the tool in the Maxi-
mum number of matches box. Typical values can be selected from the dropdown list.
If more matches are found, you are asked whether to stop searching.

237

16 The Search Files tool

238

16.5.2 Display
You can configure the display of search results using the Display view.

Figure 16.7 Setting Display Preferences

General | Search Parameters | Display |File Types

Match Line Color

Match lines are displayed in this color

Choose...

Edited Line Color
Edited lines are displayed in this color

Choose...

Results

Display a filter

Files shown: | With separate filename and directory | *

Choose a color to display the text of unedited lines that show a match in afile.
Choose a color to display the text of edited lines that show amatch in afile.

Check Display a filter to display a box that can be used to restrict which results are
displayed. This shown by default.

16.5 Configuring the Search Files tool

Check Expand items to list the matches as they are found to cause the items grouped
under each file to be expanded while the search is running. The default isto leave
them collapsed, allowing you to expand them yourself.

Under Files shown: you can choose how the name of each matching fileis displayed
in the main results area. The values are:

With separate filename and directory

Displays the filename at the start and the complete directory
name at the end.

As complete names
Displays the full name of thefile.

Relative to the search root

Displays the name of the file relative to the root directory
specified in the search parameters.

239

16 The Search Files tool

240

16.5.3 File Types
You can add specify which file typesto search in the File Types view.

Figure 16.8 Setting File Types Preferences

General | Search Parameters | Display | File Types

Exclude or Include Files by Mame
(0 Use exclude list ® Use include list

Exclude files that match these patterns:

Include only files that match these patterns:
“lisp ".cl *.Isp *.txt *.html ".htm|

Check Use exclude list if you want to exclude certain file types even though they
match the pattern in the Search Specifications boxes. Enter the patternsto excludein
the Exclude box, with multiple patterns separated by whitespace.

Check Use include list if you want to only include certain file types, even if the pat-
tern in the Search Specifications should allow other types. Enter the patterns to
include in the Include box, with multiple patterns separated by whitespace.

16.5 Configuring the Search Files tool

You cannot choose both of these options simultaneously.

16.5.4 The External Grep Program

By default, for Grep searches the tool runs grep on Unix/Linux/FreeBSD/Mac OS X
and a specific supplied grep . exe 0N Microsoft Windows. The actual searching utility
used can be configured with the variable 1w: *grep- command*.

The arguments passed to the searching utility are constructed using the val ues of
lw:*grep-fixed-args* and lw: *grep-command- format*. |t iS not be necessary
to ater the default values unless you use a non-default value of 1w: *grep-command*
or have anon-standard grep installed.

See the LispWorks User Guide and Reference Manual for details of these Search Files
tool configuration variables.

241

16 The Search Files tool

242

17

The Inspector

The Inspector isatool for examining objectsin your Lisp image. You can also use the
Inspector to modify the contents of objects, where thisis possible.

To raise an | nspector window, choose Works > Tools > Inspector or click & inthe
Podium.

17.1 Inspecting the current object

It is sometimes more natural to invoke an Inspector on some object you are analysing.
You can do thisin several ways, including using the Inspect menu command.

1. To create an example object, in the Listener, eva uate:
(make-instance 'capi:list-panel :items '(1 2 3 4))

2. Choose values > Inspect from the Listener’s menu bar to see the Inspector tool
window illustrated in Figure 17.1.

Note that you have not displayed the 1ist-panel 0On screen yet. You will do that in a
few minutes.

Another way to inspect the current object (that is, the value of c1:*) in the Listener is
the keystroke ctrl+c ctrl+I.

243

17 The Inspector

244

Figure 17.1 Inspector

Inspector 1

Works Fle Edit View Object

History Help

A general way to inspect the current object in most of the LispWorks toolsisto click
the f& button.

D% % 5 & v
List Panel | Local Slots
Filter v X Matches 58
Attribute Value [+]
CAPI:IMAGE-LISTS NIL
CAPI:INITIAL-FOCUS-ITEM NIL
CAPI-INTERNALS:INTERACTION 'SINGLE-SELECTION
CAPIIINTERFACE NIL |:
CAPI:INTERMAL-BORDER NIL
CAPI:ITEMS-CALLBACK NIL
CAPI-INTERNALS:ITEMS-COUNT-FUNCTION LENGTH
CAPI-INTERNALS:ITEMS-GET-FUNCTION SVREF [+]
<] | 2]

Ready.

LIST-PANEL: #<CAPI:LIST-PANEL [4 items] 42002A5513>

» Atthetop of the Inspector, the tab of the main view shows the type of the

17.2 Description of the Inspector tool

The Inspector has the following areas:

object being inspected. There may be other views depending on the type of this
object. For classinstances, thereisaLlocal Slots view.

« A Filter area provides away of filtering out those parts of an object that you

are not interested in.

17.3 Filtering the display

« Alist of attributes and values shows the contents of the object.

17.2.1 Adding a Listener to the Inspector

A small listener pane can be added to the Inspector tool, allowing you to evaluate
Common Lisp formsin context, without having to switch back to the main Listener
tool itself. To add the listener pane to the Inspector, choose Show Listener from the
context menu in the attributes and values area.

17.3 Filtering the display

Sometimes an object may contain so many items that the list is confusing. If this hap-
pens, use the Filter box to limit the display to only those items you are interested in.

This continued example below shows you how to filter the attributes list so that the
only slots displayed are those you are interested in.

3. Typerep inthe Filter box.

Figure 17.2 Using filtersto limit the display in the Inspector

Inspector 1

Works File Edit View Object 5Slots History Help

D% %Y % & 7
List Panel [Local Slots

Filter+ |rep > Matches 2
Attribute Value

CAPI-INTERNALS: ITEMS-EEPRESENTATION #1 2 3 4)
CAPI-INTERNALS:REPRESENTATION MIL

Ready.

LIST-PANEL: #<CAPI:LIST-PANEL [4 items] 42002A5513>

245

17 The Inspector

You can immediately see the slots with names that include "rep”. The names of the
dots, together with their slot values for the object being inspected, are displayed in the
attributes list. For example, the representation slot currently containsnil.

17.3.1 Updating the display

In some circumstances your object might get modified while you are inspecting it, so
you should be aware that the inspector display might need to be refreshed. To seethis:

4. IntheListener tool call (capi:contain *), wherethevalue of * should bethe
list-panel instance that you areinspecting.

5. Inthe Inspector choose the command Works > Refresh or press the button.
The Inspector should now appear asin Figure 17.3 below.

Figure 17.3 Thefiltered inspector display, refreshed

Inspector 1

Works File Edit View Object Slots History Help

DD %R g & v
List Panel [Local Slots

Filter~ |rep > Matches 2
Attribute Value

CAPI-INTERNALS: ITEMS-REPRESENTATION #1234
CAPI-INTERNALSREPRESENTATION #<CAPI-CTK-LIBRARY: LIST
1| | »
Ready.
LIST-PANEL: #<CAPI:LIST-PANEL [4 items] 42002A5513>

Notice that the representation slot no longer hasvaluenil. Thelist-panel instance
has been modified by calling capi:contain, and the Inspector has been updated to
show the new slot value.

246

17.4 Examining objects

17.4 Examining objects

The attributes and values list is the most interesting part of the Inspector. Each itemin
this list describes an attribute of the inspected object by displaying its name (the first
field in each entry) and the printed representation of its value (the second field). For
example, theinspection of a CLOS abject yieldsalist of itsslots and their values. The
description is called an inspection.

When inspecting instances of CLOS classes, you can choose to display only those
dotswhich arelocal to the class. By default, all dots are displayed, including those
inherited from superclasses of the class of the inspected object.

6. Press toremove thefilter
7. Sedlect theLocal Slots tab
Several slots defined locally for alist-panel arelisted.

Figure 17.4 Inspector showing local slots of a CLOS instance

Inspector 1

Works Fle Edit View Object Slots History Help

DD %Y Y & v
List Panel | Local Slots

Filter « 2{ Matches 4
Attribute Value
CAPI:RIGHT-CLICK-SELECTION-BEHAVIOR NO-CHANGE
CAPI.:SEARCH-CASE-SENSITIVE-P NIL
CAPI::SEARCH-STRING-FUNCTION NIL
CAPI.SEARCH-STRING-5TART NIL
Ready.
LIST-PANEL {local slots only): #<CAPI:LIST-PANEL [4 items] 42002A5513>

247

17 The Inspector

248

Aswell as CLOS instances, other objects including lists and hashtables have multiple
views availablein the Inspector. For example, alist can be viewed asaplist, alist, cons
or list if it hasthe appropriate structure.

17.5 Operating upon objects and items

The Object and Slots submenus allow you to perform the standard action commands
on either the object being inspected, or the slot values selected in the main list. The
commands available are largely identical in both menus, and so are described together
in this section.

17.5.1 Examination operations

The standard action commands are available in both the Object and Slots menus,
alowing you to perform a variety of operations on the current object or any items
selected in the list. For full details of the standard action commands, see “ Performing
operations on selected objects’ on page 48.

17.5.1.1 Example
Consider the following example, where a closure is defined:

(let ((test-button (make-instance 'capi:button)))
(defun is-button-enabled ()
(capi:button-enabled test-button)))

This has defined the function is-button-enabled, Which is aclosure over the vari-
able test-button, Wherethevalue of test-button isan instance of the capi :but-
ton class.

1. Enter the definition of the closure shown aboveinto a Listener.

2. Choose Values > Inspect.

The Inspector examines the symbol is-button-enabled.
3. Click on the FuncTION SOt to Select the closure.
4. Choose Slots > Inspect to inspect the value in the selected dot.

The closure isinspected.

17.5 Operating upon objects and items

17.5.1.2 Recursive inspection

You can also double-click on an item in the attributes list to inspect its value. Most
users find this the most convenient way to recursively inspect objects.

To return to the previous inspection, choose History > Previous or click = inthe
toolbar.

17.5.2 Examining attributes

The Slots > Attributes submenu alows you to apply the standard action commands
(described in “ Operations available” on page 49) to the attributes rather than the val-
ues of those attributes.

For example, the Slots > Attributes > Inspect command causes the Inspector to view
the attributes, rather than the values, of the selected slots. Thisis useful when inspect-
ing hash tables or lists, since the attributes (keys) might be composite objects them-
selves.

17.5.3 Tracing slot access

The Slots > Trace submenu provides four commands. When inspecting a CLOS
object, code which accesses the selected slot may be traced using these commands.

Break on Access causes a break to the debugger if the slot is accessed for read
or write, either by a defined accessor or by slot-value.

Break on Read causes a break to the debugger if the slot is accessed for read,
either by adefined accessor or by slot-value.

Break on Write causes a break to the debugger if the slot is accessed for write,
either by a defined accessor or by slot-value.

Untrace turns off tracing on the selected slot.

The Object > Trace submenu provides the same four options, but these commands
control the tracing of all the slotsin the object.

17.5.4 Manipulation operations

Aswell as examining objects in the Inspector, you can destructively modify the con-
tents of any composite object.

249

17 The Inspector

250

This sort of activity is particularly useful when debugging; you might inspect an
object and see that it containsincorrect values. Using the options available you can
modify the values in the dots, before continuing execution of a program.

Choose Slots > Set to change the value of any selected dots. A dialog appears into
which you can type a new value for the items you have selected. Previously entered
values are available viaa dropdown in this dia og.

Choose Slots > Paste to paste the contents of the clipboard into the currently selected

items.

17.5.4.1 Example

This example takes you through the process of creating an object, examining its con-
tents, and then modifying the object.

1

Create a button as follows:
(setqg buttonl (make-instance 'capi:button))
Choose Values > Inspect in the Listener to inspect the button in the Inspector.

In the Listener, use the CAPI accessor button-enabled to find out whether
buttonl iS enabled.

(capi:button-enabled buttonl)

Thisreturns t. So we see buttons are enabled by default. The next stepisto
destructively modify buttoni1 so that it isnot enabled, but first we will make
the Inspector display alittle simpler.

Choose Works > Tools > Preferences... and select Inspector in thelist on the
left side of the Preferences dialog. You can now change the current package of
Inspector tools.

In the Package box, replace the default package name with capz and click OK.

This changes the process package of the Inspector to the carz package, and the
package name disappears from all the slots listed. This makes the display alot
easier to read.

In the Inspector, type enabled into the Filter box.

17.5 Operating upon objects and items

Button objects have alarge number of dots, and so it is easier to filter out the
dots that you do not want to see than to search through the whole list. After
applying the filter, only one dot is listed.

Select the Slot enabled.

Choose Slots > Set...
A dialog appearsinto which you can type a new value for the slot enabled.

Figure 17.5 Entering anew slot value

Inspector 1

Enter form (to be evaluated) for selected items:

Al -

® Cancel o OK

10.

Notethat previously entered forms are available viaa dropdown in this dia og.
Enter nil (or select it from the history) and click on OK.

The attributes and val ues area shows the new value of the enabled dot.

Click on the }(button. This removes the filter and displays al the slots once
again.

. To confirm that the change happened, type the following in the Listener. You

should be able to recall the last command using a1t +P or History > Previous.
(capi:button-enabled buttonl)

Thisnow returnsnil, as expected.

The next part of this example shows you how you can modify the dots of an object by
pasting in the contents of the clipboard. This example shows you how to modify the
text and font Of buttonl.

12. Typethefollowing into the Listener and then press Return:

"Hello World!™"™

13. Choose Values > Copy to copy the string to the clipboard.

251

17 The Inspector

252

14.
15.

16.

17.
18.
19.
20.

21.

Select the TEXT Slot of buttonl in the Inspector.

Choose Slots > Paste to pastethe "Hello World!™" stringinto the text slot of
buttonl.

This setsthe text slot of buttoni to the string.
Enter the following into the Listener and press Return:

(let ((font (capi:simple-pane-font buttonl)))
(if font

(gp:find-best-font

buttonl

(apply 'gp:make-font-description

(append (list :size 30)
(gp:font-description-attributes
(gp:font-description
(capi:simple-pane-font buttonl))))))
(gp:make-font-description :size 30)))

Thisform simply calculates alarge font object suitable for the button object.
Choose Values > Copy to copy the font to the clipboard.

Select the FoNT slot of buttonl in the Inspector.

Choose Slots > Paste to paste the font into the font Slot of buttoni.

Confirm the effect of these changes by displaying the button object. To do this,
choose Object > Listen.

Thistransfers the button object back into the Listener. As feedback, the string
representation of the object is printed in the Listener above the current prompt.
The object is automatically transferred to the * variable so that it can be oper-
ated on.

In the Listener, type the following:

(capi:contain *)

This displays awindow containing the button object. Note that the text now reads
“Hello World!”, as you would expect, and that the font size is larger than the default
size sizefor buttons. Note further that you cannot click on the button; it is not enabled.
Thisis because you modified the setting of the enabled dot in the earlier part of this
example.

17.6 Configuring the Inspector

17.5.5 Copying in the Inspector

You can easily copy objects in the inspector, ready for pasting into other tools.
To copy the inspected object itself use Object > Copy

To copy adlot value use Slots > Copy.

To copy an attribute use Slots > Attributes > Copy.

Similarly you can use Object > ClipSlots > Clip or Slots > Attributes > Clipto place
the object itself, adot vaue or an attribute on the Object Clipboard, so that you can
conveniently retrieve them later. See Chapter 9, “ The Object Clipboard” for details.

17.6 Configuring the Inspector

The Inspector Preferences allows you to set different display options including the

standard options for sorting itemsin the main list, displaying package information and
controlling display of the Inspector toolbar, together with some additional options spe-
cific to the Inspector. To do this, raise the Preferences dialog using one of the methods

253

17 The Inspector

254

described in “ Setting preferences’ on page 28 and select Inspector inthelist on the
left side of the dialog.

Figure 17.6 The General tab of the Inspector Preferences

General |Listener

Sort Package
O Unsorted EDITOR v
() By Item

Show Package Names
(@ By Name

() By Package Toolbar
Show Toolbar

Maximum
ltems 500 hd
Attribute Length| 100 A

Choose the sort option that you require from those listed in the Sort panel:

By Item Sorts items alphabetically according to the printed represen-
tation of the item.

By Name Sorts items alphabetically according to their names. Thisis
the default setting.

By Package Sorts items alphabetically according to the packages of the
name field.

17.6 Configuring the Inspector

Unsorted L eaves items unsorted. This displays them in the order they
were originally defined.

In the Package box, specify the name of the process package for the Inspector. Select
Show Package Names if you want package names to be displayed in the Inspector.
See “ Displaying packages’ on page 45 for more details.

The Maximum panel contains optionsto let you configure the amount of information
displayed in the Inspector.

Choose avalue from the Attribute Length drop-down list box to limit the length of
any attributes displayed in the main list (that is, the contents of the first columnin the
list). The default value is 100 characters, and the minimum allowable valueis 20 char-
acters.

Choose a value from the Iitems drop-down list box to limit the number of items dis-
played in the main list. By default, 500 items are shown.

If you inspect an object that has more than the maximum number of items, then the
excessitems are grouped together in alist which itself becomesthe last item displayed
in the main list. Double-clicking on this inspects the remaining items for the object.

If necessary, the Inspector splits any remaining itemsinto several lists, all linked
together in thisfashion. For instance, if you limit the maximum number of itemsto 10,
and inspect an object with 24 items, the Inspector displays the first 10, together with
an 11th entry, which is alist containing the next ten items. Double-clicking on this

255

17 The Inspector

shows the next ten items, together with an 11th entry, which isalist containing the last
four items. Thisisillustrated in Figure 17.7 below.

Figure 17.7 Displaying an object with more items than can be displayed

CAPI:ACCEPTS-FOCUS-F NIL

CAPI::BACEGROUND NIL

CAPI::COLOR-REQUIREMENTS NIL

CAPI::CURSOR NIL

CAPI::DECORATION NIL

CAPI-INTERNALS:ENABLED T

CAPI::FONT NIL

CAPI:: FOREGROUND NIL

CAPI::GEOMETEY-CACHE #<CAPI::PANE-GEOMETEY [NILxNIL at NIL,NIL] ZOFSD0O:
CAPI::HELP-CALLEACE NIL

ol [[CAPI::HINT-TAELE (:MAX-HEIGHT T :MIN-HEIGHT :TEX

| 0 {CAPT::HINT-TAELE (:M&X-HEIGHT T :MIN-HEIGHT :TEXT-HEIGHT :MAX-WIDTH T
1 {CAPI-INTERNALS:HORIZONTAL-SCROLL NIL)
2 {CAPI:INTERFACE NIL)
3 {CAPI::INTERNAL-EORDER NIL)
4 (CAPT::NAME NIL)
5 {CAPT::PARENT NILj
€ {CAPT::PLIST NIL)
7 {CAPI-INTERNALS:REPRESENTATION NIL)
& {CAPI::RESOURCE-NAME NIL)
9 {CAPT::SCROLL-CALLEACK NIL)
{({10 {CAPI-INTERNALS:TEXT "My Display Pane”j) (11 (CAPI::UPDATES NIL)j
{
|
|
0 {10 {CAPI-INTERNALS:TEXT "My Display Pane”))
1 {11 (CAPI::UPDATES NIL))
2 {12 (CAPI-INTERNALS:VERTICAL-SCROLL NIL))
3 {13 (CAPI::VISIBELE-EORDER :DEFAULT))

256

17.7 Customizing the Inspector

17.7 Customizing the Inspector

The Inspector Preferences provides two additional optionsin the listener view.

Figure 17.8 The Listener tab of the Inspector Preferences

General | Listener

[«] Automatically inspect listener values.:

Bind % to the current inspector object.

These options control the interaction between the listener pane of the Inspector, if it
has one, and the Inspector itself.

See “Adding a Listener to the Inspector” on page 245 for details of how to add alis-
tener panein the Inspector.

Check Bind $ to the current inspector object to bind the variable ¢ to the current
object in the Inspector in the listener.

Check Automatically inspect listener values to inspect listener values automatically.

Both these options are checked by defauilt.

17.8 Creating new inspection formats
There is a default inspection format for each Lisp abject.

The Inspector tool can be customized by adding new inspection formats. To do this,
you need to define new methods on the generic function get-inspector-values.
See the LispWorks User Guide and Reference Manual for afull description.

get-inspector-values takestwo arguments: object and mode, and returns 5 values:
names, values, getter, setter and type.

object The object to be inspected.

257

17 The Inspector

mode

names

values

getter

setter

type

17.8.1 Example

This argument should be either nil or eql to some other
symbol. The default format for inspecting any object isits nil
format. The nil format is defined for al Lisp objects, but it
might not be sufficiently informative for your classes and it
may be overridden.

The slot-names of object.

The values of the dlots corresponding to names. The Inspec-
tor displays the names and values in two columnsin the
scrollable pane.

Thisiscurrently ignored. Usenil.

Thisisafunction that takes four arguments: an object (of the
same class as object), a dot-name, an index (the position of
the slot-name in names, counting from 0), and finally a new-
value. (It isusual to ignore either the slot-name or the index.)
This function should be able to change the value of the appro-
priate slot of the given object to the new-value.

Thisisthe message to be displayed in the message area of the
Inspector. Thisistypicaly either mode or—if mode is nil—
then the name of the class of object.

Consider the following implementation of doubly-linked lists.

(in-package "DLL")

(defstruct (dll (:constructor construct-d4dll)

previous-cell
value
next-cell)

258

(:print-function print-d4dll))

17.8 Creating new inspection formats

(defun make-dll (&rest list)
(loop with first-cell
for element in list
for previous = nil then cell
for cell = (construct-dll :previous-cell cell
:value element)
doing
(if previous
(setf (dll-next-cell previous) cell)
(setqg first-cell cell))

finally
(return first-cell)))

(defun print-dll (dll stream depth)
(declare (ignore depth))
(format stream "#<dll-cell ~A>" (dll-value dl1l)))

You can inspect a single cell by inspecting the following object:
(dll: :make-dll "mary" "had" "a" "little" "lamb")

The resulting Inspector shows three Slots: d11: :previous-cell with valuenii,
value With value "mary" and d1l: :next-cell withvalue #<dll-cell hads.

In practice, you are more likely to want to inspect the whole doubly-linked list in one
window. To do this, define the following method on get - inspector-values.

(in-package "DLL")

(defun dll-root (object)
(loop for try = object then next
for next = (dll-previous-cell try)
while next
finally
(return try)))

(defun dll-cell (object number)
(loop for count to number
for cell = object then (dll-next-cell cell)
finally
(return cell)))

259

17 The Inspector

(defmethod 1lw:get-inspector-values ((object dl1l)
(mode (eql 'follow-1links)))
(let ((root (dll-root object)))
(values
(loop for cell = root then (dll-next-cell cell)
for count from 0
while cell
collecting count)
(loop for cell = root then (dll-next-cell cell)
while cell
collecting (dll-value cell))
nil
#' (lambda (object key index new-value)
(declare (ignore key))
(setf (dll-value (dll-cell (dll-root object) index)) new-

value))
"FOLLOW-LINKS")))
Inspecting the same object with the new method defined displays anew tab in the
Inspector "Follow Links". This shows five slots, numbered from o to 4 with values
Ilmaryll n hadll Ilall n 1itt1ell and n larnb n .

The following example adds another method to get - inspector-values Which
inspects cells rather than their value slots. The cells are displayed in a"Fllow Cells"
tab of Inspector. The setter updates the next-cel1. Use this new mode to inspect the
vlamb" cell - that is, double-clink on the "1amb" cell in the "Follow Cells' tab - and
then set itSnext-cell Slot tO (make-d1l "with" "mint" "sauce")

(in-package "DLL")

260

17.8 Creating new inspection formats

(defmethod 1lw:get-inspector-values
((object dll) (mode (eql 'follow-cells)))
(let ((root (dll-root object)))
(values
(loop for cell = root then (dll-next-cell cell)
for count from 0
while cell
collecting count)
(loop for cell = root then (dll-next-cell cell)
while cell
collecting cell)
nil
#' (lambda (object key index new-value)
(declare (ignore key))
(setf (dll-next-cell (dll-cell (dll-root object) index)) new-
value))
"FOLLOW-CELLS")))

The extended sentence can now be inspected in the follow-1inks mode.

261

17 The Inspector

262

18

The Symbol Browser

18.1 Introduction

The Symbol Browser allows you to view symbolsin your LispWorks image found by
amatch on symbol names, in amanner analogous to the Common Lisp function
apropos but with additional functionality.

You can restrict the search to specified packages. You can then filter the list of found
symbols based on their symbol name, restrict it to those symbols with function or vari-
able definitions and so on, and restrict it based on the symbols' accessibility.

The Symbol Browser also displays information about each selected symbol and
alows you to perform operations on the symbol or objects associated with it,
including transferring these to other tools in the LispWorks IDE by using standard
commands.

To raise a Symbol Browser, choose Works > Tools > Symbol Browser or click 3{ in
the Podium.

Also the editor command Meta+X Apropos raisesa Symbol Browser tool using the
supplied substring to match symbol names.

Also the standard action command Browse Symbols Like is available in Context
menus and also in the Expression menu of editor-based tools. This command raisesa
Symbol Browser using the current symbol to match symbol names.

263

18 The Symbol Browser

18.2 Description of the Symbol Browser

264

18.2 Description of the Symbol Browser

Figure 18.1 The Symbol Browser

hol Bro e -— D X
Works File Edit Description Symbols History Help

; = L
; U/ DR €
Search Settings
Regexp: | OPEN v X

Show

Type: | Al v | Accessibility: | Al ||| [Select Packages...
Filter + 2 Matches 130
Home Package Name =
DEG "PRINT-OPEMN-FRAMES™ -
DEG COPY-OPEMN-FRAME i
DEG MAKE-OPEMN-FRAME
DEG OPEMN-FRAME-
DEG OPEN-FRAME-P v
Description:
Home Package: DBG [Internal] ad

MName: DBG::GET-OPEN-FRAME
Definitions: DEFUN 7
Function: #<Function DBEG::GET-OPEN-FRAME 41103B8D0C>

Lambda List: (SP LIMIT) -

Documentation:

Build an open frame and skip until we encounter the end of the stack or the
beginning of the frame

Readyv.

265

18 The Symbol Browser

266

The Symbol Browser has five main areas.

18.2.1 Search Settings
The main search setting is the Regexp: box.

Enter a string or regular expression in the Regexp: box and press Return or click the
& button. Thiswill match symbol names of interned symbolsin asimilar way to
apropos, except that it is a case-insensitive regular expression match.

The remainder of this section describes the other search settings.

18.2.1.1 Packages

By default symbolsin all packages are listed, but you can restrict the search to certain
packages by clicking the Select Packages... button. This raises adialog which you
usein just the same way as the Profiler’s Selected Packages dialog - see “ Choosing
packages’ on page 351 for instructions.

When you have selected packages only those symbols whose home packageis
amongst the selected packages are shown, unless Accessibility (see“ Accessibility” on
page 266) is set to All, in which case symbols inherited by the selected packages are
also shown.

18.2.1.2 Type

By default all symbols found are displayed but you can restrict this to functions,
classes, structures, variables, constants, keywords or others (meaning the complement
of all these subsets). If you wish to see, for instance, only those symbolswith a
function or macro definition then select Functions in the Type option pane.

18.2.1.3 Accessibility

You can aso restrict the display to just those symbols which are present, external or
internal in their home package. Select the appropriate item in the Accessibility option
pane:

All Show all accessible symbols in the selected packages

Present Show all present symbolsin the selected packages

18.2 Description of the Symbol Browser

Externals Only Show only external symbols in the selected packages

Internals Only Show only internal symbolsin the selected packages

18.2.2 Filter area

Thefilter areaallows you to filter the display of the symbolslist in the same way as
other tools. See “Filtering information” on page 55 for details.

18.2.3 Symbols list

The symbols list displays the matched symbol nhames alongside the name of their
home package. You can sort thelist by clicking on the Home Package or Name header
at the top of each column.

On GTK+ the foreground text of unselected itemsin the symbolslist is colored
according to definitions on the symbol, as follows:

Green fbound, and also declared specia
Purple fbound, and also a class

Red fbound

Blue declared specia

White declared special, and aclass
Orange aclass

Black no definition

Select an item in the symbolslist to display information about the symbol in the
Description and Documentation areas, or to perform an operation on it. You may
select multiple symbols, but in this case only the description and documentation for
the first selected symbol is displayed.

You can transfer the selected symbol or symbolsto other tools, for example by Sym-
bol > Listen or Symbol > Inspect.

To unintern the selected symbol or symbols, choose Symbol > Unintern....

267

18 The Symbol Browser

268

18.2.4 Description area
When you select an item in the Symbols list, various properties of that symbol are dis-
played in the Description area as appropriate. These can include:

Home Package: The name of the symbol’s home package and an indication of
whether it is external or internal

Name: The symbol name

Definitions: The dspec class names for any definitions known to the
system

VisibleIn: The names of the packages (other than the home package)

that the symbol isvisiblein

Function: The function or macro function

Lambda List: The lambdalist of the function or macro, if known to the sys-
tem

Mlist: The symbol plist, if non-nil

Value: The value of avariable or constant

Class: The class name, representing the class object

Select anitem in the Description list to perform an operation on it. For example, if the
symbol has a class definition, you can select the Class: item and do Description > Lis-
ten to transfer the class object to the Listener toal.

18.2.5 Documentation area

When you select anitem in the Symbols list, documentation known to the system is
displayed in the Documentation area.

Note: the documentation shown is that returned by the Common Lisp function docu-

mentation.

18.3 Configuring the Symbol Browser

18.3 Configuring the Symbol Browser

Using the Symbol Browser Preferences, shown in Figure 18.2 below, you can config-
ure some properties of the tool. Choose Works > Tools > Preferences.... or click <&
and select Symbol Browser in thelist on the |eft side of the Preferences dial og.

Figure 18.2 Symbol Browser Preferences

General

Sort Package

(0 Unsorted COMMON-LISP-USER v %
(C) By Name

Show Package Names
(@ By Package

Toolbar
Show Toolbar

To configure the default sort order for the Symbols list, select Unsorted, By Name or
By Package under Sort.

To configure the display of package namesin the Description area, alter the Package
settings as described in “ Displaying packages’ on page 45.

You can control whether the Symbol Browser displays the history toolbar by the
option Show Toolbar, as described in “ Toolbar configurations’” on page 26.

Press OK in the Preferences dialog to see your changes in the Symbol Browser tool
and save them for future use.

269

18 The Symbol Browser

270

19

The Interface Builder

The Interface Builder helps you to construct graphical user interfaces (GUIs) for your
applications. You design and test each window or dialog in your application, and the
Interface Builder generates the necessary source code to create the windows you have
designed.

You then need to add callbacks to the generated code to connect each window to your
application routines.

Asyou create each window, it is automatically displayed and updated on-screen, so
that you can see what you are designing without having to type in, evaluate, or com-
pile large sections of source code.

Aswell as making code devel opment significantly faster, the Interface Builder allows
you to try out different GUI designs, making it easier to ensure that the final design
best suits your users' needs.

Note: the Interface Builder isintended for testing interface designs and for generation
of theinitial versions of the source code that implements your design. It isnot suitable
for the compl ete development of complex interfaces. Eventually you should work on
the source code directly using the Editor tool (see Chapter 13, “ The Editor”).

Note: the Interface Builder is available on Windows, Linux, x86/x64 Solaris and
FreeBSD platforms only.

271

19 The Interface Builder

272

19.1 Description of the Interface Builder

The Interface Builder has three views that help you to design a window.

* Thelayoutsview is used to specify the elementsin each window or dialog of an
application.

« Themenusview isused to create menus and menu items for each window of an
application.

« The code view lets you examine the source code that is automatically generated
asyou create an interface.

The Interface Builder has its own menu bar, containing commands that et you work
with aloaded interface, or any of its components.

To create an Interface Builder, choose Tools > Interface Builder from the podium.

Figure 19.1 The Interface Builder

Interface Builder 1

Works File Edit View Interface Object History Help

CDE OB LR &9 -

Interface: INTERFACE-|

Layouts |ﬂenu5 |C0de |

Interface-1

Layouts | Basic Panes |Text Input Panes |Craph Panes | Editor Panes |Range Panes | Buttons | Pinboard Objects |Ir|terface5 |

Column || Filtering ||Einboard || Simple || Static |

Docking || Grid || Row || Simple Pinboard || Switchable|

Ready.

Because the Interface Builder generates source code which uses the CAPI library, this
chapter assumes at |east aminimum knowledge of the CAPI. See the LispWorks CAPI
User Guide and the LispWorks CAPI Reference Manual for details.

A complete example showing you how to use the Interface Builder to design an inter-
face, and how to integrate the design with your own code, is given in Chapter 20,
“Example: Using The Interface Builder”. You are strongly advised to work through
this example after reading this chapter, or in conjunction with it.

19.2 Creating or loading interfaces

19.2 Creating or loading interfaces

In the context of this chapter, an interface refersto any singlewindow whichisusedin
an application. Thus, an editor, an Open File dialog, or aconfirmer containing an error
message are all examples of interfaces. The GUI for acomplete applicationisliableto
comprise many interfaces. You can load as many different interfaces into the Interface
Builder as you like, although you can only work on one interface at once. More for-
mally, the class capi:interface isthe superclass of all CAPI interface classes,
which isthe set of classes used to create elements for on-screen display. You can load
any code which defines instances of this class and its subclasses into the Interface
Builder.

Once you have invoked the Interface Builder, you can create new interfaces, or load
any that have already been saved in a previous session. You must load or create at
least one interface before you can proceed.

19.2.1 Creating a new interface

When you first start the Interface Builder, a new interfaceis created for you automati-
cally. You can also choose File > New or click on |__"|‘ to create a new interface. A

273

19 The Interface Builder

274

blank window, known as the interface skeleton, appears on-screen, as shown in Figure
19.2. Theinterface skeleton contains no layouts or panes, or menus.

Figure 19.2 Skeleton window

Works

You can use File > New to create as many interfaces asyou want; they are all displayed
as soon as you create them. Since you can only work on one interface at atime, usethe
History > Items submenu or the &= and =} toolbar buttonsto switch between differ-
ent interfaces that are currently loaded in the Interface Builder.

Asan aternative, type the name of an interface directly into the Interface text box and
press Return tO create a new interface, or to switch to an interface which is already
loaded.

19.2.2 Loading existing interfaces

In the Interface Builder, choose File > Open... or click |j.". to load an existing inter-
face. You can load any CAPI interface, whether it is one that you have designed using
the Interface Builder, or one that has been hand-coded using the CAPI. You can load
as many interfaces as you want, and then use the History > Items submenu to swap
between the loaded interfaces when working on them.

To load one or more existing interfaces:

19.2 Creating or loading interfaces

1. Ensurethe Interface Builder isthe active window, and choose File > Open....
A file prompter dialog appears.

2. Choose afile of Common Lisp source code.

You should choose afile that contains the source code for at |east one CAPI interface.
If the file does not contain any such definitions, a dialog appears informing you of
this.

Once you have chosen a suitable file, for example the LispWorks library file exam-
ples/capi/buttons/buttons.lisp, adialog appearslisting all the interface defi-
nitions that have been found in the file, as shown in Figure 19.3. Thislets you choose
which interface definitions to load into the I nterface Builder. By default, all the defini-
tions are selected. You can select as many or asfew of thelisted interfaces as you like;
the All or None buttons can help to speed your selection. Click Cancel to cancel load-
ing the interfaces altogether.

Figure 19.3 Choosing which interfaces to load into the Interface Builder

Interface Builder 1

Load interfaces from file:

Button-Test

Image-Button-Example

Image-Button-Example-2

MNone All 8 Cancel o« oK

3. Select just the Button-Test interface and click OK to load it into the Interface
Builder.

275

19 The Interface Builder

276

Note: the File > Open... command in other tools does not display this dialog. To load
an interface definition, ensure the Interface Builder window is active.

19.3 Creating an interface layout

The default view in the Interface Builder is the layouts view, as shown in Figure 19.4.
You use thisview to specify the entire GUI, with the exception of the menus. Click the
Layouts tab to swap to this view from any other in the Interface Builder.

Figure 19.4 Displaying the layouts in the Interface Builder

Interface Builder 1

Works File Edit View Interfface Object History Help

o e/ € -9

Interface: | BUTTON-TEST]|

Layouts | Menus |Code|

Push-Button
Rmv'<Radio—Butmn
Check-Button
Push-Button-Panel
eIy — Default-L L)
SRR Check-Button-Panel
Radio-Button-Panel

Op

Layouts |Ea5ic Panes |Text Input Panes |Craph Panes | Editor Panes |Rar|ge Panes |Butt0r|5 |Pir|b0ard Objects |InterFace5 |

Column || Filtering ||Einboard || Simple || Static |

Docking || Grid || Row || Simple Pinboard || Switchable|

Ready.

The Interface Builder has three sections in the layouts view.

19.3.1 Interface box

The interface text box displays the name of the current interface; the interface that you
are currently working on. Note that there may be several other interfaces loaded into
the Interface Builder, but only one can be current.

To switch to another loaded interface, or to create a new interface, type the name of
the interface into this area and press Return. Theinterface you specify appearsand its
layouts are shown in the Interface Builder.

19.3 Creating an interface layout

19.3.2 Graph area
Thisarea displays, in graph form, the CAPI elements of the current interface.

By default, the graph islaid out from left to right. The main interface nameis shown at
the extreme left, and the layouts and elements defined for that interface are shown to

the right. The hierarchy of the layouts (that is, which elements are contained in which
layouts, and so on) isimmediately apparent in the graph.

Anitem selected in the graph can be operated on by commandsin the Object menu in
the Interface Builder’s menu bar. This menu contains the standard action commands
described in Section 3.8 on page 48, aswell asanumber of other commands described
throughout this chapter.

To remove a layout or pane from your interface definition, select it in the graph area
and choose Edit > Cut or press the .:Ii'E toolbar button.

19.3.3 Button panels

At the bottom of the Interface Builder is atab layouts, each tab of which contains a
number of buttons. These tabs list the classes of CAPI elementsthat can be used in the
design of your interface.

e Click the Layouts tab to see the different types of layout that you can use in an
interface. Thisisthe default tab and is displayed when you first switch to the
layouts view.All other elements must be contained in layouts in order for them
to be displayed.

« Therearefive different types of Panes tab: Basic, Text Input, Graph, Editor and
Range. Click on each tab to see the different types of pane that you can usein
an interface.

e Click the Buttons tab to see the different types of button that you can usein an
interface.

e Click the Pinboard Objects tab to see the different types of pinboard object
that you can use in an interface.

e Click the Interfaces tab to see a number of types of pre-defined interface
objects that you can usein an interface. These are interfaces which are already
used in the LispWorks IDE, and which may be useful in your own applications.

e Click on the Dividers tab to select between Column and Row layout dividers.

277

19 The Interface Builder

278

The precise list of items available depends on the package of the current interface. To
change this package, choose Interface > Package... and specify a package namein the
dialog that appears. You must specify a package which already existsin the Lisp
image.

Note: The package of the current interface is not necessarily the same as the current
package of the Interface Builder. Like al other tools, the Interface Builder hasits own
current package, which affects the display of symbol names throughout the tool; see
“Specifying a package’ on page 46 for details. By contrast, the package of the current
interface is the package in which the interface is actually defined. The window ele-
mentswhich are available for the current interface depend on the visibility of symbols
in that package. By default, both the package of the current interface and the current
package of the Interface Builder are set to cL-usER by default.

An element chosen from any of these areas can be operated on by commands in the
Object menu. This menu contains the standard action commands described in “ Per-
forming operations on selected objects’ on page 48.

19.3.4 Adding new elements to the layout

To add anew element to the layout, click the relevant button in any of the tabsin the
button panel. The element is added as the child of the currently selected graph node. I
nothing is currently selected, the element is added as the child of the last selected
node.

Because congtruction of the interface layout is performed by selecting CAPI elements
directly, you must be familiar with the way that these elements are used in the con-
struction of an interface.

For instance, the first element to add to an interface islikely to be a CAPI layout ele-
ment, such as an instance of the row-1layout €lass Or column-layout class. Not sur-
prisingly, these types of element can be found in the Layouts tab of the button panel.
Elements such as buttons or panes (or other layouts) are then added to thislayout. In
order to generate CAPI interfaces, it isimportant to understand that all window ele-
ments must be arranged inside alayout element in this way.

When you add an element to the design, two windows are updated:

e Thegraphin the layout view is updated to reflect the position of the new ele-
ment in the hierarchy.

19.3 Creating an interface layout

« Theinterface skeleton is updated; the element that has been added appears.

When you add an item, an instance of that classis created. By default, the values of
certain attributes are set so that the element can be displayed and the hierarchy layout
updated in a sensible way. Thistypically means that name and title attributes are ini-
tialized with the name of the element that has been added, together with anumeric suf-
fix. For instance, the first output pane that is added to an interfaceis called output-
Pane-1. You should normally change these attribute values to something more sensi-
ble, aswell as set the values of other attributes. See Section 19.6 for details about this.

For a practical introduction to the process of creating an interface using the Interface
Builder, see Chapter 20, “Example: Using The Interface Builder”.

19.3.5 Removing elements from a layout

To remove an element from alayout, select it in the graph area of the Layouts view
and choose Edit > Cut or press the cli'r:- toolbar button.

279

19 The Interface Builder

19.4 Creating a menu system

The menus view of the Interface Builder can be used to define a menu system for the
current interface. Click the Menus tab to switch to the menus view from any other
view in the Interface Builder. The Interface Builder appears as shown in Figure 19.5.

Figure 19.5 Displaying the menu structure of an interface

Interface Builder 1

Works File Edit View |Interfface Object History Help

Dod DD EE® & -

Interface: BUTTOMN-TEST

Layouts | Menus |Cude|

Menu-Bar

Button-Test®

Menu Bar Menu [tem
Component || Radio Component || Check Component
Ready.

The menus view has two areas, together with six buttons which are used to create dif-
ferent menu elements. Aswith layouts, it isimportant to understand how CAPI menus
are constructed. See the LispWorks CAPI User Guide for details.

19.4.1 Interface box

Thisbox isidentical to the Interface box in the layouts view. See Section 19.3.1 for
details.

280

19.4 Creating a menu system

19.4.2 Graph area

The graph areain the menus view is similar to the graph areain the layouts view. It
displays, in graph form, the menu system that has been defined for the current inter-
face. Menu items are displayed as the children of menus or menu components, which
in turn are displayed as the children of other menus, or of the entire menu bar.

Like the layouts view, a new menu element is added as the child of the currently
selected item in the graph, or the last selected element if nothing is currently selected.

19.4.3 Adding menu bars

A single menu bar is created in any new interface by default. This appearsinthe graph
areaasachild of the entire interface.

If you decide to delete the menu bar for any reason, use the Menu Bar button to create
anew one.

19.4.4 Adding menus

To add amenu, click Menu on the button bar at the bottom of the Interface Builder.
Each menu must be added as the child of the menu bar, or as the child of another menu
or menu component. In the first case, the new menuisvisible on the main menu bar of
the interface. Otherwise, it appears as a submenu of the relevant menu.

Newly created menus cannot be selected in the interface skeleton until menu items or
components are added to them.

By default, new menus are called MENU -1, MENU-2 and so on, and appear in the inter-
face skeleton as Menu-1, Menu -2 and so on, as relevant. See Section 19.6 for details
on how to change these default names.

19.4.5 Adding menu items

To add amenu item to the current interface, click Item on the button bar. Each menu
item must be added as the child of either amenu or amenu component. If added as the
child of amenu component, new items have atype appropriate to that component; see
Section 19.4.6 for details.

281

19 The Interface Builder

282

By default, new menu items are named 1TEM-1, ITEM-2, and so on, and are displayed
in the interface skeleton as Item-1, Item-2 and so on, as relevant. See Section 19.6 for
details on how to change these default names.

19.4.6 Adding menu components

Menu components are an intermediate layer in the menu hierarchy between menus
and menu items, and are used to organize groups of related menu items, so as to pro-
vide a better structure in a menu system.

There are three types of menu component which can be defined using CAPI classes:
» Standard menu components.
* Radio components.

e Check components.

19.4.6.1 Standard menu components

A standard menu component can be used to group related menu commands that would
otherwise be placed as direct children of the menu bar they populate. This offers sev-
eral advantages.

* Related menu items (such as Cut, Copy, and Paste) are grouped with respect to
their code definitions, as well astheir physical location in an interface. This
encourages alogical structure which makes for a good design.

e Using standard menu components to group related itemsis particularly useful
when re-arranging a menu system. Groups of items may be moved in one
action, rather than moving each item individually.

« Grouping items together using standard menu components adds a separator
which improves the physical appearance of any menu.

Click Component in the button bar to add a standard menu component to the current
interface. Menu components must be added as the children of a menu. Menu compo-
nents are not visible in the interface skeleton until at least one item or submenu has
been added, using the item or Menu buttons.

Menu items added to a standard menu component appear as standard menu itemsin
that component.

19.4 Creating a menu system

19.4.6.2 Radio components

A radio component is a special type of menu component, in which one, and only one,
menu item is active at any time. For any radio component, capi:item-selected
aways returns t for oneitem, and ni1 for all the others. The menu item that was
selected last is the one that returns t.

Radio components are used to group together items, only one of which may be chosen
a atime.

Click Radio Component in the button bar of the Interface Builder to add a radio com-
ponent to the current interface. Radio components must be added as the children of a
menu, and, like standard menu components, are not visible in the interface skeleton
until items have been added. To add an item to aradio component, click item. New
items are automatically of the correct type for radio components. Note that you cannot
add a submenu as an item in aradio component.

The way that a selected radio component isindicated on-screen depends on the operat-
ing system or window manager you are running; for example it may be adot or tick to
theleft of the selected item. On some systems, adiamond button is placed to the | eft of
every item, and thisis depressed for the item which is currently selected.

Like standard menu components, separators divide radio components from other items
or components in a given menu.

19.4.6.3 Check components

Like radio components, check components place constraints on the behavior of their
child items when selected. For each item in a check component, capi : item-
selected €ither returns t or nil, and repeatedly selecting a given item toggles the
value that is returned. Thus, check components allow you to define groups of menu
items which can be turned on and off independently.

An example of acheck component in the LispWorks IDE are the commandsin the
Tools > Customize menu, available from any window in the environment.

Click Check Component in the button bar of the Interface Builder to add a check
component to the current interface. Like other components, check components must
be added as the children of amenu, and are not visible until items have been added.
Usethe Item button to add an item to a check component; it is automatically given the

283

19 The Interface Builder

284

correct menu type. Note that you cannot add a submenu as an item in aradio compo-
nent.

Like radio components, the way that check components are indicated on-screen
depend on the window manager or operating system being used. A tick to the left of
any itemswhich are “switched on” istypical. Alternatively, a square button to the left
of check component items (depressed for items which are on) may be used.

19.4.7 Removing menu objects

To remove a menu object from your interface definition, select it in the Graph area of
the Menus view and choose Edit > Cut or pressthe .:Ii'E toolbar button.

19.5 Editing and saving code

Asyou create an interface in the Interface Builder, source code for the interface is gen-
erated. You can use the code view to examine and, if you want, edit this code. You can
also save the source code to disk for usein your application. This section discusses
how to edit and save the code generated by the Interface Builder, and discusses tech-
niques which let you use the Interface Builder in the most effective way.

19.5.1 Integrating the design with your own code

Asyour GUI evolves from design into the implementation phase, you will need to
integrate code generated by the Interface Builder with your own code to produce a
working application.

At one extreme, you can attempt to specify the entire GUI for an application using the
Interface Builder: even callbacks, keyboard accelerators for menu items, and so on.
Thisway the source code for the entire GUI would be generated automatically. How-
ever, thisis not the recommended approach.

Instead you should use the Interface Builder for the basic design and initial code gen-
eration only. Once you have created an interface skeleton for your window or dialog
that you are happy with, augment the automatically-generated source code with hand-
written code. At this stage, you will use the Editor tool, rather than the Interface
Builder, to develop that window or dialog.

19.5 Editing and saving code

19.5.2 Editing code

Click the Code tab to switch to the code view. You can use this view to display and
edit the code that is generated by the Interface Builder. The Interface Builder appears
as shown in Figure 19.6.

Figure 19.6 Displaying source code in the Interface Builder

Interface Builder 1

Works File Edit Miew Interface Object History Help

0D E R D E€ &~

Interface: BUTTON-TEST

Layouts | Menus | Code

Icapi:define—interface button-test () E
()

(push-button
capi:push-button

'button-selection-callback

Ready.

Like the other views in the Interface Builder, an Interface: box at the top of the code
view displays the name of the current interface. See Section 19.3.1 for details.

Therest of thisview is dedicated to an editor window that displays the code generated
for the interface. Like other editor windows in the LispWorks IDE, all the keyboard
commands available in the built-in editor are available in the Code area.

285

19 The Interface Builder

286

19.5.3 Saving code

There are several waysto save the code generated by the Interface Builder into files of
source code. Any filesthat you save are also displayed as buffers in the editor.

Choose File > Save or click E to save the current interface. If it has already been
saved to afile, the new version is saved to the samefile. If the interface has not been
saved before, you are prompted for afilename. After saving, thefileisdisplayedinthe
editor.

Choose File > Save As... to save the current interface to a specific file. This command
always prompts you for afilename; if the interface has not been saved before, this
command isidentical to File > Save, and if the interface has already been saved, this
command saves a copy into the file you specify, regardless of the fileit was originally
saved in. After saving, the fileis displayed in the editor.

Choose File > Save All to save all of the interfaces that have been modified. A dialog
allows you to specify precisely which interfaces to save. Choosing this command is
analogous to choosing File > Save individually for each of the interfaces you want to
save. If there are any interfaces which have not been saved previoudly, you are
prompted for filenames for each one.

Choose File > Revert to Saved to revert the current interface to the last version saved.

Choose File > Close to close the current interface. You are prompted to save any
changesif you have not aready done so. The interface name is removed from the His-
tory > Items submenu.

Individual interface definitions are saved in an intelligent fashion. You can specify the
same filename for any number of interfaces without fear of overwriting existing data.
Interface definitions which have not already been saved in agiven file are added to the
end of that file, and existing interface definitions are replaced by their new versions.
Source code which does not relate directly to the definition of an interfaceisignored.
In thisway, you can safely combine the definitions for several interfacesin onefile,
together with other source code which might be unrelated to the user interface for your
application.

Conversely, when loading interfaces into the environment (using File > Open or),
you do not have to specify filenames which only contain definitions of interfaces. The
Interface Builder scans agiven file for interface definitions, loads the definitions that
you request, and ignores any other code that isin the file. See Section 19.2.2 for
details on loading interfaces into the Interface Builder.

19.6 Performing operations on objects

This approach to saving and loading interface definitions ensures that your working
practices are not restricted in any way when you use the Interface Builder to design a
GUI. You have complete control over the management of your source files, and are
free to place the source code definitions for different parts of the GUI wherever you
want; the Interface Builder can load and saveto the files of your choice without failing
to load interface definitions and without overwriting parts of the source code which do
not relate directly to the GUI.

19.6 Performing operations on objects

There are alarge number of operations you can perform on any object selected in the
graph of either the layouts view or the menus view. These operations allow you to
refine the design of the current interface.

The technigues described in this section apply to an object selected in either the lay-
outs view or the menus view. Any changes made are automatically reflected in both
the Interface Builder and the interface skeleton.

19.6.1 Editing the selected object

Asin any other tool in the LispWorks IDE , you can use the commands in the Edit
menu to edit the object currently selected in any graph of the Interface Builder. See
Section 3.3 on page 39 for full details on the commands available.

19.6.2 Browsing the selected object

Asin other tools, you can transfer any object selected in the graph into a number of
different browsersfor further examination. The standard action commandsthat let you
do this are available in the Object menu. See Section 3.8 on page 48 for details.

19.6.3 Rearranging components in an interface

Rearranging the components of an interface in the most appropriate way is an impor-
tant part of interface design. This might involve rearranging the layouts and window
elementsin an interface, or it might involve rearranging the menu system.

The main way to rearrange the components of an interface (either the layouts or the
menu components) is to use the cut, copy and paste functions available, as described
bel ow.

287

19 The Interface Builder

288

To move any object (together with its children, if there are any):

1. Select the object in agraph in the Interface Builder (either the layouts view or
the menus view, depending on the type of objects you are rearranging).

2. Choose Edit > Cut or press #, ‘

The selected object, and any children, are transferred to the clipboard. The
objects are removed from the graph in the Interface Builder, and the interface
skeleton.

3. Select the object that you want to be the parent of the object you just cut.

You must make sure you select an appropriate object. For instance, in the Lay-
outs view you must make sure you do not select awindow element such as a
button panel or output window, since window el ements cannot have children.
Instead, you should probably select alayout.

4. Choose Edit > Paste Or press E

The objects that you transferred to the clipboard are pasted back into the interface
design as the children of the newly selected object. The change isimmediately visible
in both the graph and the interface skeleton.

Note: You can copy whole areas of the design, rather than moving them, by selecting
Edit > Copy oOr press ‘ instead of Edit > Paste. Thisisuseful if you have a number
of similar areasin your design.

The menu commands Object > Raise and Object > Lower can be used to raise or
lower the position of an element in the interface. This effects the position of the ele-
ment in the interface skeleton, the layout or menu hierarchy, and the source code defi-
nition of the interface. Note that these commands are available from the menu bar in
the Interface Builder, rather than from the podium.

19.6.4 Setting the attributes for the selected object

Choose Object > Attributes from the Interface Builder’s menu bar to display the
Attributes dialog for the selected object. Thisis shown in Figure 19.7. You can also
double-click on an object to display this dialog.

19.6 Performing operations on objects

The Attributes dialog lets you set any of the attributes available to the selected object,
such as symbol names, titles, and callbacks. This gives you a high degree of control
over the appearance of any object in the interface.

Figure 19.7 Setting the attributes of the selected object

Interface Builder 1
Attributes for Check-Button-Panel:

ic | Advanced |Title | Callbacks Geometry | Style
Force Window Handle: had

Help Key:

Help Keys:

Images:

Indicator:]

ltems: ["check 1" "check 2" "check 3")

Key Function:

i

Layout Args:

Layout Class:
Mame: CHECK-BUTTON-PANEL

Names:

Pane Menu:

Print Function:

Reader:

Scroll If Not Visible P: ™

8 Cancel o oK

The precise list of attributes displayed in the dialog depends on the class of the object
that you selected in the graph of the Interface Builder.

289

19 The Interface Builder

290

To set an attribute, type its value into the appropriate text box in the Attributes dial og.
Click OK to dismiss the Attributes dialog when you have finished setting attribute val-
ues.

Because of the large number of attributes which can be set for any class of object, the
Attributes dialog shows the attributes in six general categories, as follows:

» Badic attributes.

» Advanced attributes.
» Titleattributes.

» Callbacks attributes.
e Geometry attributes.
e Styleattributes.

19.6.4.1 Basic attributes

These are the attributes that you are most likely to want to specify new valuesfor. This
includes the following information, depending on the class of the selected object:

e The name of the object.
e Theitemsavailable (for list panels).
e The orientation and borders (for layouts).

e Thetext representation (for menu items).

19.6.4.2 Advanced attributes

This category lets you specify more advanced attributes of the selected object, such as
its property list.

19.6.4.3 Title attributes

This category lets you specify the title attributes of the selected object. These
attributes affect the way an object is titled on-screen.

19.7 Performing operations on the current interface

19.6.4.4 Callbacks attributes

This category lets you specify any of the callback types available for the sel ected
object. Many objects do not require any callbacks, and many require several.

19.6.4.5 Geometry attributes

This category lets you control the geometry of the selected object, by specifying any
of the available height and width attributes. Geometry attributes are not available for
menu objects.

19.6.4.6 Style attributes

This category lets you specify advanced style settings for the selected object. This
includes the following attributes:

e Thefont used to display itemsin alist.
* The background and foreground colors of an object.

e The mnemonic used for amenu item.

19.7 Performing operations on the current
interface

You can perform anumber of operations on the current interface, using the commands
in the Interface menu in the Interface Builder.

19.7.1 Setting attributes for the current interface

Choose Interface > Attributes to set any of the attributes for the current interface. An
Attributes dialog similar to that shown in Figure 19.7 appears. You set attributes for
the current interface in exactly the same way as you do for any selected object in the
interface. See Section 19.6.4 for details.

19.7.2 Displaying the current interface

As already mentioned, an interface skeleton is automatically displayed when you load
an interface into the Interface Builder, and any changes you make to the design are
immediately reflected in the skeleton. There are also a number of commands which

291

19 The Interface Builder

292

give you more control over the way that the interface appears on-screen as you work
on its design.

Choose Interface > Raise to bring the interface skeleton to the front of the display.
Thiscommand is very useful if you have alarge number of windows on-screen, and
want to locate the interface skeleton quickly.

Choose Interface > Regenerate to force a new interface skeleton to be created. The
existing interface skeleton is removed from the screen and a new one appears. This
command is useful if you have changed the size of the window, and want to see what
the default sizeis; thisis especially applicableif you have altered the geometry of any
part of the interface while specifying attribute values.

Regenerating the interface is also useful if you set an interface attribute which does
not cause the interface skeleton to be updated automatically. This can happen, for
instance, if you change the default layout of the interface, which you might want to
specify if an interface has several views.

Many interfacesin a GUI are used in the final application as dialogs or confirmers.
For such interfaces, the interface skeleton is not necessarily be the most accurate
method of display. Choose Interface > Display as Dialog or Interface > Confirmer to
display the current interface as a dialog or as a confirmer, as appropriate. Dialogs are
displayed without a menu bar, and with minimal window decoration, so that the win-
dow cannot be resized. Confirmers are similar to dialogs, but have OK and Cancel
buttons added to the bottom of the interface. To remove adiaog, click in its Close
box.

19.7.3 Arranging objects in a pinboard layout

Most types of layout automatically place their children, so that you do not have to be
concerned about the precise arrangement of different objectsin an interface. Pinboard
land static ayouts, however, allow you to place objects anywhere within the layout.

Objectswhich are added to a pinboard layout using the Interface Builder have borders
drawn around them in the interface skeleton. You can interactively resize and place
such objects by selecting and dragging these borders with the mouse.

When you have rearranged the objects in a pinboard layout to your satisfaction,
choose Interface > Display Borders. Thisturns off the border display, allowing you to
see the appearance of the final interface.

19.8 Performing operations on elements

Note: You can only move and resize objects in a pinboard layout when borders are
displayed in the interface skeleton. Choosing Interface > Display Borders toggles the
border display.

19.8 Performing operations on elements

You can transfer any element selected in either the Layouts or Menus viewsinto a
number of different browsers for further examination. Thisis done using the standard
actions commands that are available in the Object menu. See “Performing operations
on selected objects’ on page 48 for details. These commands are a useful way of find-
ing out more information about the CAPI objects you use in an interface.

293

19 The Interface Builder

294

20

Example: Using The Interface
Builder

This example shows you how to use the Interface Builder to design asimpleinterface.
It explains how to create the layout and the menu system, and demonstrates some of
the attributes that you can set. Finally, the interface is saved to afile, and combined
with some other simple code to produce aworking example. You are strongly advised
to read Chapter 19, “The Interface Builder”, before (or in conjunction with) this chap-
ter. It isalso useful, though not essential, if you are familiar with the editor (Chapter
13), the listener (Chapter 21), and Common Lisp systems.

295

20 Example: Using The Interface Builder

Thefinal interface created is shown in Figure 20.1. It consists of acolumn layout
which contains a graph pane, adisplay pane, and alist panel.

Figure 20.1 Example interface

HE . . I =] B
Works Selection
8
4.
2-< <g
S0 10
1e 11
E <12
=
7e
<15
Selection:
(]
One —
Two
Three
Four ﬁ
Five
Six
Seven
Eight M

Any select action performed in either the graph pane or the list panel is described in
the display pane. Thisincludes the following actions:

e Sdlecting any item
e Deselecting any item

« Extending the selection (by selecting more than one item)

296

20.1 Creating the basic layout

Double-clicking any item in either the graph pane or the list panel displays adiaog
which shows which item you double-clicked.

Lastly, there are menu commands available which display, in adialog, the current
selection in either pane. Choose Selection > Graph to see the currently selected items
in the graph pane, and choose Selection > List Panel to see the currently selected
itemsin the list panel.

20.1 Creating the basic layout

This section shows you how to create the basic layout for your interface, without spec-
ifying any attributes. Normally, this stage would take you only afew seconds. The
process is described in detail here, to illustrate the way that the Interface Builder
ensures that the most appropriate item is selected in the graphs of both the layouts and
menus views, so as to minimize the steps you need to take when creating an interface.

1. Create an Interface Builder, if you do not already have one.

2. ChooseFile > New or click on the D‘ toolbar button.
A new, empty, interface skeleton appears.

3. If thelayouts view is not displayed, click the Layouts tab in the Interface
Builder.

To begin, you need to add the main column layout to the interface using the but-
tons panels at the bottom of the Interface Builder. The Layouts tab at the bottom
of the Interface Builder (as distinct from the Layouts tab you use to switch to
the layouts view), lists the different types of layout that you can add to an inter-
face.

4. Click Column in the button panel.

A column layout object is added as a child of the interface object. Nothing
appearsin the interface skeleton yet, since a column layout is a container for
other window objects, and cannot itself be displayed. Note that the column lay-
out remains selected in the layout graph. This is because column layouts are
objects which can themselves have children, and the Interface Builder assumes
that you are going to add some children next.

5. Inthe button panel, click the Graph Panes tab, and then click Graph to add a
graph pane to the interface.

297

20 Example: Using The Interface Builder

298

The graph pane object is added as the child of the column layout, and a graph
pane appears in the interface skeleton.

Next, click the Basic Panes tab and then click Display.

Next, click List Panel.

The objects that you specify are added to the interface, and the interface skele-
ton is updated accordingly. Note that the column layout object remains selected
throughout. You have now created the basic layout for the interface.

Next, suppose that you decide to add atitle to the left of the display pane. You might
want to do this make it clear what information is being shown in the display pane.

To do this, you can create a new row layout, add atitle pane to it, and then move the
existing display pane into this new row-layout. In addition, you must reorganize some
of the elementsin the interface.

1

Ensure that column-Layout-1 is gill selected in the Layout hierarchy area.
The new row layout needs to be added as a child of the column layout.

In the button panel at the bottom of the Interface Builder, click the Layouts tab
to display the available layouts once more.
Click on Row.

Notice that the new row layout remains selected, ready for you to add objectsto
it.

Click the Basic Panes tab again, and click Title.

Next, you must move the display pane you have already created, so that it is
contained in the new row layout.

In the Layout hierarchy area, select pisplay-Pane-1 and choose Edit > Cut.

Select Row-Layout-1 and choose Edit > Paste.

The items have already been placed in the row layout in the positions you want
them. However, the row layout itself has been added to the bottom of the inter-

face; you want it to be in the same position as the display pane you initially cre-
ated. To do this, movethe list panel to the bottom of the interface.

Sdlect List-Panel-1 and choose Object > Lower from the menu bar on the
Interface Builder itself.

20.2 Specifying attribute values

You have now finished creating the layout for the example interface. The next step is
to name the elements of the interface in a sensible fashion.

20.2 Specifying attribute values

Asyou have already seen, the Interface Builder assigns default names such as row-
Layout -1 to the elements you add to an interface; you usually want to replace these
with your own names. In addition, there are probably titles that you want to add to the
interface; you can see the default titles that have been created by looking at the inter-
face skeleton. The next stage of the example shows you how to change these default
names and titles.

Changing the name or title of an element is actually just a case of changing the value
assigned to an attribute of that element, as described in Section 19.6.4 on page 288.
You would normally assign values to a number of different attributes at once, rather
than concentrating on the names and titles of elements. The exampleis structured in
thisway to give you an idea of the sort of working practicesyou might find it useful to
adopt when generating interface code.

To recap, the layout hierarchy of the example interfaceis shown in Figure 20.2. To
ensure that you can understand this layout easily in the future, it isimportant to assign
meaningful names and titles to the elements it contains now.

Figure 20.2 Layout hierarchy of the example interface

Graph-Pane-1

Column-Layout-1® Row-Lay aur—1-<-|[;'_ﬂehlp anlfl .
IS play-Hane-

Interface-1®

List-Panel-1

1. Selectthe 1nterface-1 object and then use the Interface > Attributes menu
item to show the attributes dial og.

299

20 Example: Using The Interface Builder

The Attributes dialog appears as shown in Figure 20.3.

Figure 20.3 Attributes dialog for the example interface

Interface Builder 1

Attributes for Interface-1:
[EAdvanced Title |Callbacks | Geometry | Style

External Border: L

Force Window Handle;

Help Key:
Layout: |'"COLUMN-LAYOUT-1

Message Area:
Mame: INTERFACE-1

Override Cursor:
Owner:

Pane Menu:
Scroll If Mot Visible P:

Title: | "Interface-1"

R

Title Font:

Toolbar ltems:

Toolbar Name:

Toolbar States: -

38 Cancel « oK

Notice that the Name attribute of the interface has the value INTERFACE-1, and
the Title attribute hasthe value "Interface-1m".

Note: If thisis not the first interface you have created in the current session, the
number is different.

2. Deletethevaluein the Name: text box, and type ib-example.

300

10.

20.2 Specifying attribute values

Delete the value in the Title: text box, and type "Example Interface".

Click OK to dismiss the Attributes dialog and update the interface.

The name of the interfaceisnow displayed as 1b-Example in the Layout hierar-
chy area, and the title of the interface skeleton changes to Example Inter-

face.

Note: Caseisnot significant in the Name attribute, because it isa Common Lisp
symbol, but it is significant in the Title attribute, which is a string.

Select the column-Layout-1 element. Double-click to display its Attributes
dialog (you will now find this more convenient than using the Object >
Attributes menu item). Change the value of its Name attribute tO main-layout
and click OK.

Now change the names of the other objects in the interface.

Select the graph pane and change its Name attribute to graph, and its Interac-
tion attribute to : extended-selection. Click OK.

Select the list panel and change its Name attribute to 1ist, and its Interaction
attribute to : extended-selection. DO Not click OK yet.

The vaue of the Interaction attribute allows you to select several items from the
list panel and the graph pane, using the appropriate method for your platform.

Change the Items attribute of the list panel to the following list of strings:
1 (Ilonell "Two" "Three" "Four" llFivell Ilsixll "Seven" llEightll)

Click oK.

The row layout you created contains objects which are used solely to display
information.

Select the row layout object and change its Name attribute to display-layout.

. Change the Adjust attribute of display-layout tO :center. Click OK.

Thisvaue of the Adjust attribute centers the title pane and the display pane ver-
tically in the row layout, which ensures their texts line up aong the same base-
line.

In the working example, the display-layout object is going to show informa
tion about the current selection, so you need to change the names and titles of
the objects it contains accordingly.

301

20 Example: Using The Interface Builder

302

12. Select thetitle pane and change its Name attribute to selection-title andits
Text attribute to "selection: . Click OK.

13. Select the display pane and change its Name attribute to selection-text, and
its Text attribute to "pisplays current selection". Click OK.
This specifies atext string that is displayed when the interface isinitially cre-
ated. This string disappears as soon as you perform any action in the interface.

The layout hierarchy is now as shown in Figure 20.4. The names that you have
assigned to the different objects in the interface make the purpose of each element
more obvious.

Figure 20.4 Layout hierarchy with names specified
Graph

Selection-Title
Selection-Text

Ib-Example® Main-Layout® Display-Layout® <

List

20.3 Creating the menu system

Next, you need to create amenu system for the example interface. This section shows
you how to create the basic objects which compriseiit.

1. Click the Menus tab in the Interface Builder to switch to the menus view.

A menu bar is created automatically when you create a new interface. To create
the menu system for the example interface, you need to add a menu which con-
tains two items.

2. Select the Menu-Bar object in the Menu hierarchy area.

3. Click the Menu button (near the bottom of the Interface Builder) to create the
menu, then click Item twice to create the two items in the menu.

Noticethat, asin the layouts view, an object remains selected if it can itself have
children. This means that creating the basic menu structureisa very quick pro-
Cess.

Next, you need to name the objects you have created. As with the layouts, thisis
achieved by specifying attribute values.

20.3 Creating the menu system

4, Make sure that the Menu-1 menu is still selected, and use the Object >
Attributes menu command to display its Attributes dialog.

5. Changeits Name attribute to selection-menu. Do not click OK yet.

Aswell as specifying the Name attribute for the menu you created, you need to
change the Title attribute of each object you created. To do this, you must ensure
that the appropriate attribute categories are displayed in the Attributes dialog.

6. Click on theTitle tab in the Attributes dialog.

303

20 Example: Using The Interface Builder

The Attributes dialog changes to appear as shown in Figure 20.5.
Figure 20.5 Displaying title attributes for a menu

Interface Builder 1

Attributes for Menu-1:
Basic | Advanced | Title | Callbacks | Geometry | Style

Mnemonic Title:

Title: | "Menu-1"

® Cancel|| o 0K

.................................

7. Inthe Titletab view of the Attributes dialog, change the Title attribute to
ngelection". Click OK.

The Title attribute is used to specify the title of the menu that appearsin the
interface itself; note the change in the interface skeleton.

Next, you need to change the attributes of the two menu items.

8. Selectthe "item-1" Object and press Return.

304

20.4 Specifying callbacks in the interface definition

9. Inthe Attributes dialog, change the Title attribute to "eraph" and the Name
attribute to graph - command. Click OK.

10. Double-click onthe »1tem-2" object to display its Attributes dialog and change
the Title attribute to "List Panel® and the Name attributeto 1ist-panel-
command. Click OK.

You have now finished the basic definition of the menu system for your exampleinter-
face.

20.4 Specifying callbacks in the interface
definition

The interface that you have designed contains a compl ete description of the layouts
and menus that are available, but does not yet specify what any of the various ele-
ments do. To do this, you need to specify callbacksin the interface definition. As you
might expect, thisis done by setting attribute values for the appropriate elementsin
the interface.

In this example, the callbacks that you supply are calls to other functions, the defini-
tions for which are assumed to be available in a separate source code file, and are dis-
cussed in Section 20.6. Note that you do not have to take this approach; you can just as
easily specify callback functions within the interface definition itself, using lambda
notation. It is up to you whether you do this within the Interface Builder, or by loading
the code in the editor. If you choose the former, note that it may be easier to use the
code view, rather than typing lambda functions into the Attributes dial og.

20.4.1 Specifying layout callbacks and other callback
information

This section shows you how to specify all the callbacks necessary for each element in
the example interface, together with other attributes that are required for correct oper-
ation of the callback functions. You need to specify attribute values for the display
pane, the list panel and the graph pane.

1. If necessary, click the Layouts tab at the top of the Interface Builder to display
the layouts view.

2. Seect selection-Text inthelayout hierarchy and display the Attributes dia-
log.

305

20 Example: Using The Interface Builder

306

3. Set the Reader attribute to selection-reader and click OK.

Thisreader allows the display pane to be identified by the callback code.
For the list panel, you need to specify four callbacks and a reader.
Sdect List inthelayout hierarchy and display its Attributes dialog.

Set the Reader attribute to 1ist-reader. Do not click OK yet.

Like the display pane, this reader is necessary so that the list panel can be iden-
tified by the callback code.

Next, you need to specify the following four types of callback (make sure you click
the Callbacks tab):

Sdlection callback. The function that is called when you select alist item.

Extend callback. The function that is called when you extend the current selec-
tion.

Retract callback. The function that is called when you deselect alist item.

Action callback. The function that is called when you double-click on alist
item.
Now set the following attributes of the list panel.

Selection-Callback to 'update-selection-select
Extend-Callback to 'update-selection-extend
Retract-Callback to 'update-selection-retract
Action-Callback t0 *display-selection-in-dialog

Click Ok when done.
Select the craph graph pane and display its Attributes dial og.

For the graph pane, you need to set the same four callbacks, as well as areader,
and two other attributes that are important for the callback code to run correctly.

Set the following attributes of the graph pane.

Selection-Callback to 'update-selection-select
Extend-Callback to 'update-selection-extend
Retract-Callback to 'update-selection-retract
Action-Callback t0 *display-selection-in-dialog

Set the Reader attribute to graph-reader.

20.5 Saving the interface

10. Before you set the next callback, evaluate this form:

(defun children-function (x)
(when (< x 8)
(list (* x 2) (1+ (* x 2)))))

Now set the Children-Function attributeto *children-function.

The children function defineswhat is drawn in the graph, and so is vital for any
graph pane. It is called when displaying the prototype interface, so it is best to
define it before setting this attribute.

11. Click OK to dismiss the Attributes dialog..

20.4.2 Specifying menu callbacks

The callbacks that are necessary for the menu system are much simpler than for the
layouts; the exampleinterface only contains two menu commands, and they only
require one callback each.

1. Click the Menus tab to switch to the menus view.

2. Choosethe "eraph™ menu item, display its Attributes dialog and change the
Callback attributeto 'display-graph-selection. Click OK.

3. Choosethe "List Panel™ menu item, display its Attributes dialog and change
the Cdllback attributeto 'display-list-selection. Click OK.

20.5 Saving the interface

If you have followed this example from the beginning, the interface is now completely
specified. You can now save the source code definition in afile.

1. ChooseFile > Save or click E to save the interface definition. Choose adirec-
tory in the dialog that appears, and specify the filename ib-example.lisp in
the “File name” text box.

Thefile ib-example.lisp isdisplayed in an Editor tool.

20.6 Defining the callbacks

This section shows you how to create the callback functions you need to definein
order to complete the working example.

307

20 Example: Using The Interface Builder

1. Inan Editor tool, choose File > New or click |__"|‘ to create anew file.

2. Choose File > Save or click [to save thefile. Saveit in the same directory
you saved ib-example.lisp, and cal thisnew file ib-callbacks.lisp.

3. Inthe editor, specify the package for the callback definitions by typing the fol-
lowing into the ib-callbacks.lisp file

(in-package "COMMON-LISP-USER")
4. Enter the function definitions given in the rest of this section.

5. ChooseFile > Save or click E to save the file when you have entered al the
function definitions.

The functions that you need to definein thisfile are divided into the following catego-
ries:

» Cdllbacks to update the display pane.
e Cadlbacksto display datain adiaog.
» Callbacks for menu items.

¢ Other miscellaneous functions.

20.6.1 Callbacks to update the display pane

One main function, update-selection, Servesto update the display pane whenever
selections are made in the graph pane or the list panel.

(defun update-selection (type data interface)
(setf (capi:display-pane-text (selection-reader interface))
(format nil "~A ~A" data type)))

The following three functions are the callbacks specified whenever a select, retract or
extend action is performed in either the list panel or the graph pane. Each function is
named according to the type of callback it is used for, and it simply callsupdate-
selection With an additional argument denoting the callback type.

(defun update-selection-select (&rest args)
(apply 'update-selection "selected" args))

(defun update-selection-retract (&rest args)
(apply 'update-selection "deselected" args))

308

20.6 Defining the callbacks

(defun update-selection-extend (&rest args)
(apply 'update-selection "extended" args))

20.6.2 Callbacks to display data in a dialog

Aswith update-selection, One main function servesto display the data from any
actionin adiaog.

(defun display-in-dialog (type data interface)
(capi:display-message
"~S: _,A "‘S"
(capi:interface-title interface) type data))

Thefunction display-selection-in-dialog iSthe action callback for both the
graph pane and the list pandl. It callsdisplay-in-dialog, Specifying one of the
required arguments.

(defun display-selection-in-dialog (&rest args)
(apply 'display-in-dialog "selected" args))

Note: Although only one action callback is specified in the example interface, the rel-
evant functions have been defined in this modular way to allow for the possibility of
extending the interface. For instance, you may decide at a later date that you want to
display the information for an extended selection in adiaog, rather than in the display
pane. You could do this by defining anew callback which callsdisplay-in-dialog,
passing it an appropriate argument.

20.6.3 Callbacks for menu items

Both menu itemsin the interface need a callback function. Aswith other callback
functions, these are specified by defining agenera callback, display-pane-selec-
tion, Which displays, in adialog, the current selection of any pane.

(defun display-pane-selection (reader data interface)
(declare (ignore data))
(capi:display-message "~S: ~S selected"
(capi:capi-object-name
(funcall reader interface))
(capi:choice-selected-items
(funcall reader interface))))

309

20 Example: Using The Interface Builder

310

The following two functions call display-pane-selection, passing thereader of a
pane as an argument. These functions are specified as the callbacks for the two menu
items.

(defun display-graph-selection (&rest args)
(apply 'display-pane-selection 'graph-reader args))

(defun display-list-selection (&rest args)
(apply 'display-pane-selection 'list-reader args))

Aswith the other callback functions, specifying the callbacks in thisway allows for
easy extension of the example.

20.6.4 Other miscellaneous functions

Graph panes require a function which is used to plot information, called the children
function. The value of the ROOTS attribute of agraph is passed as an argument to the
children function in order to start the plot. The example interface uses the following
simple children function. You already defined thisif you have followed the example,
but add it alsoin ib-callbacks.lisp:

(defun children-function (x)
(when (< x 8)
(list (* x 2) (1+ (* x 2)))))

Note: The ROOTS attribute of a graph pane has a default value of (1). Thisis gener-
ated automatically by the Interface Builder.

Finally, the function test-ib-example IS used to create an instance of the example
interface.

(defun test-ib-example ()
(capi:display (make-instance 'ib-example
:best-height 300
:best-width 200)))

20.7 Creating a system

If you have followed this example from the beginning, the interface and its callbacks
are now completely specified. Next, you can create a Common Lisp system which
integrates the interface definition with the callback code.

1. Choose File > New or click |__“| ‘ This creates anew, unnamed file in the editor.

20.8 Testing the example interface

2. Typethefollowing form into this new file:
(defsystem ib-test
(:package "CL-USER")

:members ("ib-callbacks" "ib-example"))

Thisform creates a system called ib-test that contains two members; ib-
example.lisp (the file containing the interface definition) and ib-call-
backs.lisp (thefile containing the callback code).

3. ChooseFile > Save or click [to save the new file. Save it in the same direc-
tory that you saved the ib-example.lisp and ib-callbacks.lisp files, and
cal thisfile defsys.1lisp.

20.8 Testing the example interface

You have now finished specifying the example interface and its callback functions, so
you can test it.

1. ChooseFile > Save or click [to save ib-example.lisp, ib-call-
backs.lisp, and defsys.1lisp if you have not already done so.

Next, you need to load the ib-test System into the environment.

2. Inthe editor, make sure that thefile defsys.1isp isvisible, and choose File >
Load to load it and define the system.

3. IntheListener, type the following form.
(load-system 'ib-test)
The ib-test System, together with its members, is |oaded.
4. To test the interface, type the following form into the listener.
(cl-user::test-ib-example)

A fully functional instance of the example interface is created for you to experiment
with, as shown in Figure 20.1, page 296.

311

20 Example: Using The Interface Builder

312

21

The Listener

The Listener isatool that lets you evaluate Common Lisp expressions interactively
and immediately see the results. It is useful for executing short pieces of Common

Lisp, and extensive use is made of it in the examples given in this manual. This chap-
ter describes all the facilities of the Listener.

313

21 The Listener

314

21.1 The basic features of a Listener

A Listener is created automatically when you start the LispWorks IDE. You can also
create a Listener yourself by choosing Works > Tools > Listener or press " inthe
Podium.

Figure 21.1 Listener

Tabs. Main area. Break Continue Abort Backtrace GUI debugger
=
Works File Edit Expression Valyés Debug |History Help
5 o q ﬁ el el : H_ % e
R AN A e @@ 2 ¥ OIETE @

Listener | Output

CL-USER 1 > (break\"test™)

test
1 {(continue) Return from break.
2 (abort) Return to level 0.
3 Return to top loop level 0.

Type :b for backtrace or :c <option number> to proceeds

Type :bug-form "<subject>" for a bug| report template o»
r :? for other options.

CL-USER 2 : 1 =

Ready.
Debugger Echo area Previous Next Print Find
prompt frame frame bindings source

21.2 Evaluating simple forms

Inthe Listener view, the main area of the Listener contains a prompt at the left side of
the window.

Rather like the command line prompt in a Unix shell, this prompt helps you identify
the point in the Listener at which anything you type is evaluated. It may also contain
other useful information, by default thisisthe current package and the current number
in the command history list. If your Listener isin the debugger, as Figure 21.1, the
prompt also contains a colon followed by an integer indicating how many debugger
levels have been entered.

Throughout this chapter, the prompt is shown in pieces of example code as pProMPT .

You can click the Output tab to display the output view of the Listener; thisview dis-
plays any output that is created by the Listener, or any child processes created from
the Listener..

To familiarize yourself with the Listener, follow the instructions in the rest of this
chapter, which forms a short lesson. Note that, depending on the nature of the image
you are using, and the configuration that the image has been saved with, the messages
displayed by Lisp may be different to those shown here.

21.2 Evaluating simple forms
1. Typethe number 12 at the prompt, and press Return.

In general, assumethat you should press Return after typing something at the prompt,
and that you should type at the current prompt (that is, the one at the bottom of the
screen). In fact, the latter is not always necessary; “ Execute mode” on page 320
describes how to move the cursor to different places, and thus you may not always be
on the current prompt.

Any Common Lisp form entered at the prompt is evaluated and its results are printed
immediately below in the Listener.

When Common Lisp evaluates a number, the result is the number itself, and so 12 is
printed out:

PROMPT > 12
12

PROMPT >

315

21 The Listener

316

When results are printed in the Listener, they start on the line following the last line of
input. The 12 has been printed immediately below the first prompt, and below that,
another prompt has been printed.

2.

Type * at the current prompt.

PROMPT > *
12

PROMPT >

The variable * always has as its value the result of the previous expression; in this
case, 12, which was the result of the expression typed at the first prompt. For afull
description, see the Common Lisp Hyperspec. Thisisan HTML version of the ANSI
Common Lisp standard which is supplied with LispWorks.

3.

Type (setq val 12) at the current prompt.

PROMPT > (setq val 12)
12

PROMPT >

The expression sets the variable val to 12. The result of evaluating the form is
the value to which val has been set, and thus the Listener prints 12 below the
form typed at the prompt.

Thisis exactly the same behavior as before, when you typed a number it was
evaluated and the result printed in the Listener. What is different thistime, of
course, isthat Lisp has been told to “remember” that 12 is associated with val.

Typeval.
Theformisevaluated and 12 is printed below it.

Type (+ val val val).

The form, which computes the sum of three vals, isevaluated, and 36 is printed
below it.

21.3 Re-evaluating forms

If you change val to some other number, and want to know the sum of three vais

again, you can avoid re-typing the form which computes it. To see how thisis done,
follow the instructions bel ow.

http://www.lispworks.com/reference/Hyperspec/
http://www.lispworks.com/reference/Hyperspec/

21.4 Interrupting evaluation

1. Type (setq val 1).
Thevariable val isnow set to 1.

2. PressMeta+P or choose History > Previous or click = .
PROMPT > (setq wval 1)

The form you previously typed appears at the prompt. At this point, you could
edit thisform and press Return to evaluate the edited form. For the moment,
just carry on with the next instruction.

3. PressMeta+P again, and then press Return.

PROMPT > (+ val wval val)
3

PROMPT >

Pressing Mmeta+P a second time displayed the second to last form that you eval uated.
Thistime, pressing Return immediately afterwards simply re-evaluates the form.
Note that you could have edited the recalled form before evaluating it. You can use
Meta+P repeatedly, recalling any form that you have evaluated in the current session.

This time the form evaluates to the number 3, because the value of val was changed
in the interim.

21.4 Interrupting evaluation

The button =4 interrupts evaluation in the Listener. The break gesture key stroke
alt+ctrl+c (and the Interrupt Lisp button, in the GC Monitor window in the Motif
IDE only) can also be used.

Thisisuseful for stopping execution in the middle of aloop, or for debugging. When
the interrupt is processed, the debugger is entered, with a continue restart available.

21.5 The History menu

The forms and commands typed at previous prompts are stored in the history list of
the Listener. It is so named because it records all the forms and commands you have
typed into the Listener. Many other command line systems have a similar concept of a
history. Each form or command in the history is known as an event.

317

21 The Listener

318

You can abtain alist of up to thelast ten eventsin the history by displaying the History
> ltems menu. To bring a previous event to the prompt, choose it from this menu.

For more information about history listsin the LispWorks IDE, see “The history list”
on page 43.

21.6 The Expression menu

The Expression menu lets you perform operations on the current expression, that is,
the symbol in which the cursor currently lies. It behavesin exactly the same way as
the Expression menu in the Editor tool. See “Current buffers, definitions and expres-
sion” on page 195 for details.

Choose Expression > Class to look at the class of the current expression in a Class
Browser. See Chapter 8, “ The Class Browser” for full details about thistool.

Choose Expression > Find Source to search for the source code definition of the cur-
rent expression. If the definition isfound, thefileis displayed in the editor and the def-
inition is highlighted. See Chapter 13, “ The Editor” for an introduction to the editor.
Note that you can find only the definitions of symbols you have defined yourself —
those for which you have evaluated or compiled the source code — not those provided
by the system.

Choose Expression > Documentation to display the Common Lisp documentation
(that is, the result of the function documentation) for the current expression. If such
documentation exists, it is printed in a help window.

Choose Expression > Arguments to print the lambdal list of the current expressionin
the echo areg, if it isafunction, generic function or method. Thisis similar to using
the keystroke Meta+=, except that the current expression is automatically used.

Choose Expression > Value to display the value of the current expression in the echo
area.

Choose Expression > Inspect Value to inspect the value of the current expression in
the Inspector tool. If the valueisnil, amessageis printed in the echo area.

Choose Expression > Toggle Breakpoint to add or remove a stepper breakpoint on the
current expression. See for information about using the Stepper tool.

Choose Expression > Evaluate Region to evaluate the Lisp code in the current region.
You must make sure you have marked a region before choosing this command; see

21.7 The Values menu

“Marking the region” on page 188. Whether you use the mouse or keyboard com-
mands to mark aregion does not matter.

Choose Expression > Compile Region to compile the Lisp code in the current region.

Choose Expression > Macroexpand to macroexpand the current form. The macroex-
pansion is printed in the output view, which is displayed automatically. Click the Out-
put tab to redisplay the output at any time.

Choose Expression > Walk to walk the current form. This performs a recursive mac-
roexpansion on the form. The macroexpansion is printed in the output view, which is
displayed automatically. Click the Output tab to redisplay the output at any time.

Choose Expression > Trace to display a menu of trace commands which can be
applied to the current expression. See “ Tracing symbols from tools’ on page 54 for
full details.

Choose Expression > Function Calls to browse the current expression in a Function
Call Browser. See Chapter 14, “The Function Call Browser” for more details.

Choose Expression > Generic Function to browse the current expression in a Generic
Function Browser. This command is only available if the current expressionisa
generic function. See Chapter 15, “ The Generic Function Browser” for more details.

Choose Expression > Browse Symbols Like to view symbols containing the current
expression in a Symbol Browser. This command is analogousto c1:apropos. See
“The Symbol Browser” on page 263for more details.

21.7 The Values menu

The values menu lets you perform operations on the results of the last expression
entered at the Listener prompt. The values returned from this expression are referred
to as the current values.

The menu is not available if the most recent input was not a Common Lisp form. This
is because the evaluation of the last expression entered must have produced at |east
one value to work on.

The Values menu gives you access to the standard action commands described in
“Performing operations on selected objects’ on page 48.

Note that the most commonly used of the standard action commands are available
from the toolbar. For instance, to inspect the current values, click the ‘& button.

319

21 The Listener

320

21.8 The Debug menu

This menu allows you to perform command line debugger operations upon the current
stack frame. The menu isonly available when the debugger has been invoked by some
activity within the Listener.

Some of the most commonly-used command line debugger commands are available
from the Debug menu. You can aso invoke the debugger tool from this menu.

Choose Debug > Restarts to display a submenu containing all the possible restarts for
the debugger, including the abort and continue restarts. Choose any of the commands
on this submenu to invoke the appropriate restart. Note that the continue and abort
restarts are also available on the toolbar.

Choose Debug > Listener > Backtrace to produce a backtrace of the error.

Choose Debug > Listener > Bindings to display information about the current stack
frame.

Choose Debug > Frame > Find Source to find the source code definition of the func-
tion at the current call frame and display it in an editor.

Choose Debug > Listener > Next to moveto the next call frame in the stack.
Choose Debug > Listener > Previous to move to the previous cal framein the stack.

Choose Debug > Start GUI Debugger to invoke a debugger tool on the current error.
See Chapter 11, “The Debugger Tool”, for full details about using this tool.

Choose Debug > Report Bug to report abug in LispWorks.

You can aso invoke any of the commands from this menu by typing keyboard com-
mands into the Listener itself. See the LispWorks User Guide and Reference Manual
for more details.

21.9 Execute mode

The Listener isactually aspecial type of editor window, whichisrunin amode known
as execute mode. Thismeansthat, aswell asthe normal keyboard commands available
to the editor, a number of additional commands are available which are especially use-
ful when working interactively.

21.9 Execute mode

21.9.1 History commands

These commands are useful in the common situation where you need to repeat a
previously entered command, or enter a variant of it.

History First Editor Command

Emacs Key Sequence: ctrl+C <

Replaces the current command by the first command.

History Kill Current Editor Command

Emacs Key Sequence: ctrl+C Ctrl+K

Kills the current command when in alistener.

History Last Editor Command

Emacs Key Sequence: ctrl+C >

Replaces the current command by the last command.

History Next Editor Command

Emacs Key Sequence: Meta+N Of Ctrl+C Ctrl+N

Displays the next event on the history list. That is, it replaces the current com-
mand by the next one. Thisis not available if you are at the end of the history
list. In KDE/Gnome editor emulation, thisHistory Next command is bound
1o ctrl+Down.

History Previous Editor Command

Emacs Key Sequence: Meta+P Of Ctrl+C Ctrl+P

Displaysthe previous event on the history list: that is, it replaces the current
command by the previous one. In KDE/Gnome editor emulation, thisaistory
Previous command is bound to ctri+Up.

321

21 The Listener

322

History Search Editor Command

Emacs Key Sequence: Meta+R Of Ctrl+C Ctrl+R

Searches for a previous command containing a given string, which it prompts
for, and replaces the current command with it.

History Search From Input Editor Command

Emacs Key Sequence: None

Searches the history list using current input. That is, it searches for a previous
command containing the string entered so far, and replaces the current com-
mand with it.

Repeated uses step back to previous matches.

History Select Editor Command

Emacs Key Sequence: ctrl+C Ctrl+F

Presents alist of items in the command history, and replaces the current com-
mand with the selection.

History Yank Editor Command

Emacs Key Sequence: ctrl+C Ctrl+Y

Inserts the previous command into the current one, when in alistener.

21.9.2 Debugger commands

These commands are useful when in the debugger in the Listener:

Debugger Backtrace Editor Command
Emacs Key Sequence: Meta+Shift+B

Gets a backtrace when in the debugger.

Debugger Abort
Emacs Key Sequence: Meta+Shift+a

Aborts in the debugger.

Debugger Continue

Emacs Key Sequence: Meta+Shift+C

Continues in the debugger.

Debugger Previous

Emacs Key Sequence: Meta+Shift+P

Displays the previous frame in the debugger.

Debugger Next
Emacs Key Sequence: Meta+Shift+N

Displays the next frame in the debugger.

Debugger Edit
Emacs Key Sequence: Meta+Shift+E

Edits the current frame in the debugger.

Debugger Print

Emacs Key Sequence: Meta+Shift+V

Prints the variables of the current frame in the debugger.

21.9.3 Miscellaneous Listener commands

21.9 Execute mode

Editor Command

Editor Command

Editor Command

Editor Command

Editor Command

Editor Command

Here are more commands, with their Execute mode key bindings, which are useful in

the Listener

323

21 The Listener

324

Inspect Star Editor Command

Emacs Key Sequence: ctrl+C Ctrl+I

Inspects the current value (that is, the value of the Common Lisp variable *).

Inspect Variable Editor Command

Emacs Key Sequence: None

Inspects the value of an editor variable, which is prompted for.

Throw To Top Level Editor Command
Emacs Key Sequence: Meta+K
Abandons the current input.

For more details about other keyboard commands available in the editor, see Chapter
13, “The Editor”, and the LispWorks Editor User Guide.

21.10 Setting Listener preferences

21.10 Setting Listener preferences

To set optionsfor the Listener tool choose Works > Tools > Preferences... or click
& , and select Listener in thelist on the |l eft side of the Preferences dial og.

Figure 21.2 The Listener tab of the Listener Preferences

General

Listener

Initial Stack Size

Default

16000

64000

Default

‘ 32000

The Listener tab allows you to set the size of the stack used in the Listener’s
evaluation process. By default, this process has a stack of size determined by the value
of the variable system: *sg-default-size*. If you find you are getting stack over-
flow errorsin correct code that you enter at the Listener prompt, then increase the
stack size. This setting takes effect for subsequently created Listener windows and
LispWorks sessions.

The other configurable aspects of the Listener are shared with the Editor and other
tools, including:

e emulation, including key input and cursor styles

e font

« thetext styles used to highlight selected text, color code and input, and so on

325

21 The Listener

326

To alter these, raise the Preferences dialog, select Environment in the list on the left
side, and choose the Emulation or Styles tab. See* Setting preferences’ on page 28 for
a description of these options.

21.11 Running Editor forms in the Listener

Suppose that you have code displayed in an Editor tool and you want a convenient
way to run it in the Listener. Perhaps you need to capture the return value, or perhaps
ou want to test several variants by evaluating edited versions of that code. The editor
command Evaluate Last Form in Listener iSuseful in these cases.

21.12 Help with editing in the Listener

Two help commands are availabl e to provide you with more information about editor
commands which can be used in the Listener.

Choose Help > Editing > Key to Command and type a key sequence to display a
description of the extended editor command it is bound to, if any.

Choose Help > Editing > Command to Key and supply an extended editor command to
see the key sequence it is bound to, if any.

For more details about the keyboard commands and extended editor commands avail-
able, see Chapter 13, “The Editor”.

22

The Output Browser

The Output Browser isa simple tool that displays the output generated by your pro-
grams, and by operations such as macroexpansion, compilation and tracing. You can
create one by choosing Works > Tools > Output Browser or clicking =4 inthe

327

22 The Output Browser

328

Podium or as described in “Displaying tools using the keyboard” on page 23. Figure

22.1 shows the Output Browser.
Figure 22.1 The Output Browser

Output Browser 1

Works File Edit Help

ChDD B R

; [(TOP-LEVEL-FOEM 1)

; [SUBFUNCTION (DEFCLASS TEXT-INFUT-CHOICE-TEST) (CAFI=»
:DEFINE-INTERFACE TEXT-INPUT-CHOICE-TEST))

; [CAPI:DEFINE-INTERFACE TEXT-INPUT-CHOICE-TEST)

; (CAPI:DEFINE-INTERFACE TEXT-INPUT-CHOICE-TEST)

; (SUBFUNCTION (METHOD CAPI::INITTIALIZE-INTERFACE :AFT»
ER (TEXT-INPUT-CHOICE-TEST)) (CAPI:DEFINE-INTERFACE TE=
XT-INPUT-CHOICE-TEST))

; [CAPI:DEFINE-INTERFACE TEXT-INFUT-CHOICE-TEST)

; TEXT-INPUT-CHOICE-SHOW-STRING

; TEXT-INPUT-CHOICE-NEW-STRING

; TEXT-INPUT-CHOICE-INVERT

; TEXT-INFUT-CHOICE-POPPING-UF

; TEST-TEXT-INPUT-CHOICE

--—- Press S5Space to continue ----

Ready.

=

The Output Browser has one main area that displays the output from the environment.
Output usually consists mostly of compilation, trace and macroexpansions, but can
also include compiler explanations and output from other tools, such as the Profiler.
The main areais actually an editor window, so all the usual editor keyboard com-
mands can be used in it. See Chapter 13, “The Editor” for more details about these

operations.

The Output Browser isinvaluable when you are devel oping code, because it collects
any output generated by your code. An example of how to do thisisgivenin“Viewing

output” on page 12.

22.1 Interactive compilation messages

Many other toolsin the LispWorks | DE contain an output view, which you can display
by clicking their Output tab. The Output tab collects all the output generated by that
tool. For instance, the System Browser has an Output tab that displays compilation
messages. The Editor tool’s Output tab additionally displays macroexpansions. Note
that the Output Browser is the only tool which displays any output from your own
code without any need for further action on your part.

Note: The Output Browser (and the Output tab of sometools) displaysonly the output
from . By default, processes not associated with the tools write their output to the ter-
minal stream.

22.1 Interactive compilation messages

Compilation messages are highlighted in the output, with errors, warnings and optimi-
zation hints each displayed in a unique style. When the editor's cursor is within a com-

329

22 The Output Browser

pilation message, choose Find Source in the context menu to display the source code
where the condition occurred, in an Editor tool.

Figure 22.2 Compilation messages and the use of the context menu

Dutput Browse = |0 X
Works File Edit Help

SolEp B R

;:77% Warning in (TOP-LEVEL-FORM 2): *GRAPH-NAME* ass» |[=
umed special in SETQ

; (TOP-LEVEL-FOEM 2}

: * Warning in FACTORP: 0 is bound but not referencs

NN

ed
i:— Calling FLOOR

;37— Implementation level calling SYSTEM::ZEROPS0OTHER =
with 1 argumenf’
: FACTORP B Cut
: FACTORS Copy
: FRIMEF
1;:%%* Warning [Paste RAPH*): *GRAPH-NAME* assumm
ed special
: (DEFVAR *GRA! Find Source

**444+4+ Error in (TOP-LEVEL-FOEM 7):

More than three arguments in IF: (IF (CAPI:CGEAPH-PAN=
E-DIRECTION *GRAFH*) :BACKWARDS (CAPI:SIMPLE-PANE-BACE:
GROUND *GRAPH*) :YELLOW).

i ¥** 1 error detected, no fasl file produced.
;5 Compilation finished with 3 warnings, 1 error, 2 n»
otes.

R

--—- Press Space to continue, or press Return to view =»
errors and warnings ---—-

Ready.

You can also raise a Compilation Conditions Browser tool to view the errors and
warnings directly from the output view, by pressing Return as mentioned in the out-
put shown above.

330

22.1 Interactive compilation messages

Another way to visit the source code where the condition occurred isthe editor'sedit
Recognized Source command whichisboundto ctri+x , (comma) in Emacs
emulation.

22.1.1 Compilation message styles

The text styles used to highlight compilation messages in the output have these mean-
ings and default appearance:

Table 22.1 Compilation message styles

Style Name Use Default appearance
Compiler Note Optimization hints smagenta
foreground
. . Warnin n her :
Compiler Warning a gs and othe orange3
messages foreground
Compiler Error Errors :red foreground

Compiler explanations are optimization hints generated by compiling code with the
:explain declaration. See the LispWorks User Guide and Reference Manual for a
description of the : explain declaration.

Note: You can changes the styles used to display compilation messages via Prefer-
ences... > Environment > Styles > Colors And Attributes.

331

22 The Output Browser

332

23

The Process Browser

The Process Browser allows you to view and control the processes in the LispWorks
multiprocessing model. See the LispWorks User Guide and Reference Manual for
more information about multi processing.

Note: Each individual window in the LispWorks IDE runs as a distinct process in the
LispWorks multiprocessing model. The whole of LispWorks runsin asingle system
process. On Linux, x86/x64 Solaris and FreeBSD each LispWorks process corre-
sponds to a single system thread.

333

23 The Process Browser

To create a Process Browser, choose Works > Tools > Process Browser or click #*
in the Podium.

Figure 23.1 The Process Browser

Process Browser 1

Works File Edit Processes Help

O eaC&E2SL™

St

Filter v X Matches 12
Mame Priority | Status

GTK Event Loop 90000000 Waiting for GTK ing
default listener process 60000000 W aiting for input fro
Listener 1 60000000 Waiting for events
LispWorks 6.0.0 on higson 60000000 Waiting for events
Editor 1 60000000 Waiting for events
Shell 1 60000000 Waiting for input
Subprocess Output Copier 60000000 waiting for subproc
Process Browser 1 60000000 Running

CAPI Execution Listener 1 20000000 Waiting for istream
Background execute 2 0 Waiting for job to e
Background execute 1 0 Waiting for job to e
The idle process -1152921504606846976 Waiting

4| e | [»
Ready.

The Process Browser consists of amain areain which all the current processesin the
environment are listed, and a Filter area which you can use to restrict the information
displayed in the main area.

Like other filter areas, you can enter astring or aregular expression in the Filter to
limit the display to only those items which match your input, or the complement of

334

this. See “Filtering information” on page 55 for more information about using the Fil-
ter area.

Figure 23.2 Process browser

Stop Kill processes Inspect
processes
Debug
Break Unstop process |
processes Listen

Process Browser |

Works File Edit\ Processes| Help

CE® valé 2 &%

B

Filter v X Matches 12
Mame Priority | Status

GTK Event Loop S0000000 Waiting for GTK ing
default listener process 60000000 W aiting for input fro
Listener 1 60000000 W aiting for events
LispWorks 6.0.0 on higson 60000000 W aiting for events
Editor 1 60000000 W aiting for events
Shell 1 60000000 W aiting for input
Subprocess Output Copier 60000000 waiting for subproc
Process Browser 1 60000000 Running

CAPI Execution Listener 1 20000000 Waiting for istream
Background execute 2 0 Waiting for job to e
Background execute 1 0 Waiting for job to e
The idle process -1152921504606846976 W aiting

< S | E
Ready.

Thetool bar buttons are labelled in Figure 23.2. These buttons provide the same
actions asthe Process context menu: Break, Stop, Unstop, Kill, Debug, Inspect and
Listen.

335

23 The Process Browser

336

23.1 The process list

The main areacontains alist of al the current processesin the Lisp image. Properties
of each process are shown in the columns Name, Priority and Status.

If you have many processes running, you can use the filter areato only list processes
containing a given string. For example, if you enter “Running” in the filter area, and
click on 4 then only processes that have the word “Running” in their description
will be shown.

The processes displayed in the main area can be sorted by clicking the relevant button
above each column. For example, to sort all listed processes by process priority, click
on the Priority title button.

23.2 Process control

The Processes menu contains commands that et you control the execution of pro-
cesses in the Lisp image. These same commands are available using the toolbar but-
tons at the top of the Process Browser window or by using the context menu. (Usethe
left mouse button or the arrow keys to select a process; the context menu is usually
accessed by the right mouse button.) Process commands act on the process that has
been selected in the processlist. You can select aprocess by clicking on thelinein the
process list that contains the process name and status information or by using Tab and
the arrow keysto navigate to that line.

Choose Processes > Break to break the selected process. This breaks Lisp and gives
you the opportunity to follow any of the normal debugger restarts.

Choose Processes > Kill to kill the selected process.

Choose Processes > Stop to stop the selected process. The process can be started
again by choosing Processes > Unstop, and thusis similar to the use of ctri+z ina
UNIX session.

Choose Processes > Unstop to restart a process which has been stopped using Pro-
cesses > Stop. Thisissimilar to the use of the UNIX command £g.

Choose Process > Inspect to call up an Inspector tool to inspect the selected process.
See Chapter 17, “The Inspector” for more information on inspecting objects and pro-
Cesses.

23.3 Other ways of breaking processes

Choose Process > Listen to make the selected process be the value of * in aListener
tool. See Chapter 21, “The Listener” for more information on using the Listener tool.

Choose Processes > Remote Debug to debug the current processin a Debugger
tool.See Chapter 11, “The Debugger Tool” for more information on using the
Debugger tool.

Note: do not attempt to break, kill, stop or debug system processes. This may make
your environment unusable.

Note: you cannot control the GC monitor (available in the Motif IDE only) from the
Process Browser, since this runs as a separate UNIX process.

23.3 Other ways of breaking processes

In the Listener tool, you can break the evaluation process as described in “ I nterrupting
evaluation” on page 317.

You can break a process by calling the function mp : process-break.

Alternatively, click the Interrupt Lisp button on the GC Monitor window (availablein
the Motif IDE only).

23.4 Updating the Process Browser

The Process Browser updates itself automatically when a new processis created and
when a process terminates.

Intheinitial configuration the Process Browser does not automatically update on any
other event, so changes such as processes sleeping and waking are not noticed imme-
diately. There are two ways to ensure such changes are visible in the Process Browser:

e You can do Works > Refresh to view the latest status displayed for each pro-
Cess, or

e The Process Browser can be made to update automatically, as described in
“Process Browser Preferences’ on page 338.

337

23 The Process Browser

338

23.5 Process Browser Preferences

To display the Process Browser preferences, choose Works > Tools > Preferences...
or click & , and select Process Browser in thelist on the left side of the Preferences
dialog.

You can control whether the Process Browser displays the process operations tool bar
by the option Show Toolbar on the General tab, as described in “ Toolbar configura-
tions’ on page 26.

You can make the Process Browser update automatically at a predetermined frequency
by setting the option Update Frequency, asillustrated in Figure 23.3. The update peri-
ods are in seconds.

Figure 23.3 Configuring the Process Browser to update automatically

General | Updating

Update Frequency

Mever
I
| 2

5

10

The option Automatic Update Delay determines adelay period (in seconds) after each
automatic update of the Process Browser. Any automatic update during thistimeis
delayed until the end of the delay period.

Automatic updates occur when process are created, die or stop and when the schedul er
affects the status of aprocess. That is quite often too frequent to be useful. Automatic
Update Delay limits the update to a reasonabl e frequency. To see the effect, make sure

23.5 Process Browser Preferences

the Process Browser isvisible and run the following form with different settings of the
delay:

(dotimes (x 1000)
(mp:process-run-£function
(format nil "Process ~d" x)
0
'sleep
(/ x 200)))

339

23 The Process Browser

340

24

The Profiler

24.1 Introduction

The Profiler provides away of monitoring Lisp functions during the execution of your
code. It islikely that you can make your code more efficient using the data that the
Profiler displays.

The Profiler helps you to identify functions which are called frequently or are
particularly slow. You should concentrate your optimization efforts on these routines.

The Profiler gives you an easy way of choosing which functions you wish to profile,
which code you want to run while profiling, and provides you with a straightforward
display of the results of each profile.

To create a Profiler, choose Works > Tools > Profiler or click ¥ in the Podium.

In the next two sections we assume you are profiling a call to the function £oo defined
asfollows:

341

24 The Profiler

342

(in-package "CL-USER")

(defun baz (1)

(dotimes (i 1)))

(defun quux (1)

(dotimes (i 1)))

(defun bar (n 1)
(dotimes (i n)
(baz 1))
(dotimes (i n)
(quux (floor

(defun foo (n 1)
(bar n 1))

1 2))))

241

Figure 24.1 The Profiler

Profiler 1

Works File Edit View Description Function Expression History Help

LR R & v
Code To Profile
;7 Insert code to profile. Symbaols...
ffoo 1000 100000)[] y
Packages...

Results

Call Tree | Cumulative

[] Collapse singletons Hide calls below (%5) | 5.0 Showing whole tree

64% —BAZ
Profiling for Profiler 1#—100%—EVAL®—100%—BAR®-=_
36%.___ QUUX

Description >=>

Ready.

Stack called 22 times. Monitored 100% of the time.

The Profiler has five areas:

The Code To Profile panel lets you set up and profile any amount of Lisp source code.

» Usethelargetext box to enter the Lisp source code that you wish to profile.
Thistext areais actually an editor window, similar to those described in “Basic
Editor commands’ on page 181.

e TheSymbols... and Packages... buttons let you choose which symbols and
packages you want to profile.

e TheProfile button runs and profiles the source code you entered.

Introduction

24 The Profiler

The Results areais used to display the results of a profile, described in detail in “Dis-
play of Profiler Data’ on page 344.

The Description area optionally shows a description of afunction in the profile data.
You can show the description by clicking on the Description >> button. The name,
function object, lambda list, documentation string and source files of the selected
function are displayed. The context menu in the description area allows further
operations. Hide the description area if you wish by clicking on the Description <<
button.

The Echo area allows interaction with editor commands, as in other tools.

The bottom pane of the Profiler displays a summary of the last profile performed.

24.2 Display of Profiler Data

There are two tabs in the results area of the Profiler. These tabs display two sorts of
data collected during profiling.

24.2.1 Call Tree

The Call Tree tab shows a graph of functions called by the top level function call that
was profiled. Each node represents afunction call. The graph edges are labelled
according to the proportion of time spent in each function call. For example in Figure
24.1, of al the time spent in function bar, most was spent in baz and the rest in quux.
Thisallows you to see which branches of the code dominate the total time spent.

When optimizing your code you will want to concentrate on the calls which take a
large proportion of the time. The least significant parts of the graph are removed from
the display according to the percentage in the Hide calls below (%) box. You can
adjust this percentage simply by entering an integer and pressing Return.

When analysing the call tree to find the most significant branches, single callees (that
is, functions which account for all of the time spent by their caller) are not interesting.

24.2 Display of Profiler Data

You can adjust the call tree to omit these functions from the displayed graph by check-
ing the Collapse singletons box.

Figure 24.2 The Profiler’s Call Tree adjusted

Code To Profile

;; Insert code to profile. Symbols...
ffoo 1000 100000)[]
Packages...
Profile
Results
Call Tree | Cumulative
Collapse singletons Hide calls below (%) 40{ Showing whole tree

Profiling for Profiler 1*—64%—BAZ

Description >>

Ready.
Stack called 22 times. Monitored 100% of the time.

You can also change the root of the graph displayed. This option is useful when you
have alarge call tree. To do this, select the node that you wish to make the root, and
raise the context menu, and choose the Set As Root command. To display the entire
call tree again, choose the Show Whole Tree command from the graph’s context
menul.

345

24 The Profiler

346

24.2.2 Cumulative Results

Figure 24.3 The Profiler’s Cumulative Results view

Ly Profiler 1 ! E

Works File Edit View Description Function Expression History Help

Lt D€ & -

T

W
Code To Profile
;; Insert code to profile. Symbals...
ffoo 1000 100000
Packages...
Profile
Results
Call Tree | Cumulative
Filter 2 Matches 4

Call# | « Stack#(%) | Top#(%a) | Name
0 22 (100%) 0 EVAL
0 22 (100%) 0 BAR
0 14 (p4%5) 14 (64%) BAZ
0 B(36%) B8(36%) QUUX

Description ==

Ready.
Stack called 22 times. Monitored 100% of the time.

* Themain list displays the functions called during the last profile. For each
function, the list displays the number of timesit was found on the stack and the
number of times it was found at the top of the stack.

« TheFilter box lets you restrict the display of information in the Results area.

24.3 A description of profiling

24.3 A description of profiling

When code is being profiled, the Lisp process running that code is interrupted regu-
larly at aspecified timeinterval. At each interruption, the Profiler scans the execution
stack and records the name of every function found, including a note of the function at
the top of the stack. Moreover, a snapshot of the stack is recorded at each interruption,
so we know not merely how many times we reach a function call, but also how we
reached that call.

When profiling stops (that is, when the code being profiled has stopped execution) the
Profiler presents the datain two tabs.

Note: The Profiler tool only shows the thread running code in the Code To Profile
box. It does not profile other threads. To profile multiple threads in the Listener, see
"Running the profiler" in the LispWorks User Guide and Reference Manual.

24.3.1 Description of call tree data

The Call Tree is collated from all the stack snapshots taken during profiling. The Call
Tree tab shows a graph in which:

» The graph nodes represent function calls
« The graph edges show the proportion of time spent in each call.

Each parent node represents the caller function, so that the ancestors of each leaf node
represent the entire stack. The graph edges are |abelled with the time spent in the child
call as a percentage of the time spent in the parent call, these times averaged over all
the profile data collected.

24.3.2 Description of cumulative data

The Cumulative tab shows aggregated information about each function that includes
the following information:

* Thenumber of times each function was found on the stack by the profiler, both
in absolute terms and as a percentage of the total number of scans of the stack.

* The number of times each function was found on the top of the stack, both in
absolute terms and as a percentage of the total number of scans of the stack.

With a suitable profiler setup it also shows:

347

24 The Profiler

348

« Thenumber of times each function being profiled was called.

Note: by default the Profiler does not count function calls, because this can distort
results significantly in SMP LispWorks. Therefore the Call# column shows O for each
function. To make the Profiler count calls, evaluate this:

(set-up-profiler :call-counter t)

24.4 Steps involved in profiling code

Each time you profile code, you first need to set up the profiler to ensure that you find
out the sort of information you are interested in. This section gives you details about
how to go about this.

The steps that you need to take when profiling code are as follows:
1. Choose which functions you want to profile.
2. Specify the code that you want to run while profiling.
3. Perform the profile.

Note: You do not have to adhere strictly to the sequence shown above, but thisis the
order that you should usually follow.

See the chapter on the Profiler in the LispWorks User Guide and Reference Manual for
information on advanced configuration of the profiler.

24.4.1 Choosing the functions to profile

It is possible to keep track of every function called when running code, but this
involves significant effort in determining which functions are suitable for profiling
and in keeping track of the results. To minimize this effort you should specify which
functions you want to profile. The profiler checks that these functions have indeed got
function definitions and are therefore suitable for profiling. For more information on
the types of function that can be profiled, see “Profiling pitfalls’ on page 355.

There are two ways of specifying functions that you want to profile:
e Choose which individual functions you want to profile.

» Choose whole packages, al of whose functions are profiled.

24.4.1.1 Choosing individual functions

24.4 Steps involved in profiling code

Click Symbols... to specify alist of Lisp functionsthat you want to profile. The dialog

shown in Figure 24.4 appears.

Figure 24.4 Select Symbolsto Profile dialog

Profiler 1
Select Symbeols to Profile:

Mew Symbol:

Selected symbols:

v X3

QuUUX

BAZ
BAR
FOO

= Bemove

% Cancel

Thisdiaog displaysthe list of functions to be profiled.

349

24 The Profiler

350

* Toadd afunction to the list, enter its name in the New Symbol text box and
click 4.
« Toremoveafunction from the list, select it from the list and click Remove.
« Toremove severa functions, select them all before clicking Remove.
Click OK when you have finished choosing symbols.

Note: whilst entering the function name in the New Symbol text box you can click
click f’_":!;. to use completion. This allows you to select from alist of al symbol names
whi chrbegin with the partial input you have entered. See“ Completion” on page 59 for
detailed instructions.

24.4 Steps involved in profiling code

24.4.1.2 Choosing packages

You may often want to profile every function in a package. Click Packages... to spec-
ify alist of packages whose functions you want to profile. The dialog shown in Figure
24.5 appears.

Figure 24.5 Select Packagesto Profile dialog

W Profiler 1 ! E

Select Packages to Profile:

Package: v User Only

Unselected Packages: Selected Packages: =z e L
EDITOR COMMOM-LISP =
ENVIRONMENT COMMON-LISP-USER
ENVIRONMENT-INTERM HARLEQUIN-COMMON-LIS MNone
EXTERNAL-FORMAT LISPWORKS
FLI
FLI-INTERNALS 3 Cancel
FOREIGN

GRAPHICS-PORTS B < oK
HARP

HON-WEB Ciaod
INS <<
KEYWORD
LISPWORKS-TOOLS
LOOP

LOWGE4

LW-XP

LWGTK

MP

PARSERGEN

RAW]

(I A B [BE

[+]

User and Standard

All

T,

The main part of this dialog consists of two lists:

351

24 The Profiler

The Unselected Packages list shows packagesin the Lisp image whose
functions are not to be profiled.

The Selected Packages list shows packagesin the Lisp image whose functions
are to be profiled.

A global function will be profiled if its symbol isvisible in one of the selected
packages.

To modify the Selected Packages list:

1. Consider whether one of these buttons offers what you need, or close to it:

352

All Adds all packages.

Note: There are significant processing overheads when pro-
filing all functionsin all packages, and the results you get
may include much unwanted information.

User Only Adds the CL-USER package.

User and CL Addsthe CL-USER and CL packages.

User and Standard
Adds the CL-USER package along with those packages that
you have defined.

Note: The Profiler tool assumes that packages not named in
thevalueof *packages-£for-warn-on-redefinition* are
user-defined.

Add to your Selected Packages list if necessary. You can add a single package
in one of three ways:

Type the package name in the Select Package box and press Return or click
W, Or

Select the package in the Unselected Packages list and click on the >>> but-
ton, or

Double-click on the package in the Unselected Packages list.

Remove packages from the Selected Packages list if necessary. You can
remove a single package in one of two ways:

24.4 Steps involved in profiling code

« Select the package in the Selected Packages list and click on the <<< button,
or

« Double-click on the package in the Selected Packages list.

Also you can click the None button to clear the list of selected packages. Thisis
useful isyou only want to profile afew functions, which you can specify easily
using the Symbols... button on the Profiler tool itself.

4. Finaly, click OK to dismiss the dialog when you have finished selecting the
packages whose functions you want to profile, or click Cancel to cancel the
operation. This also dismisses the dialog.

24.4.2 Choosing the time interval

See the chapter on the profiler in the LispWorks User Guide and Reference Manual for
information on how to set the timeinterval at which you want the Lisp processto be
interrupted.

24.4.3 Specifying the code to run while profiling

Code which isto be executed during profiling should be entered in the Code to Profile
area. Thisis actually an editor window, and so you can use all the keyboard com-
mands which can be used in the editor.

Code may be placed in this window in three ways:
« Typeit directly into the window
» Pasteit in from other editor windows in the environment
e Pasteit in from other applications

Specify the package in which you want to run the code to be profiled using the Pack-
age box in the General tab of the Profiler Preferences. To see this, choose Works >
Tools > Preferences... or click & , and select Profiler in the list on the left side of the
dialog. If you are unsure, full details on how to do this can be found in “ Specifying a
package” on page 46. Like al other toolsin the LispWorks IDE, the Profiler can have
aparticular package associated with it; the default package is cL-USER.

353

24 The Profiler

354

24.4.4 Performing the profile

Once you have set up the profile as described above, perform the profile itself by
clicking on the Profile button in the Profiler.

24.5 Format of the cumulative results

After you have run the profile, afour column table is printed in the largelist in the
Cumulative tab of the Results area. These columns are laid out as follows:

Call#

Stack#(%)

Top#(%)

Name

The call count of each function, that is, the number of timesit
was called during execution of the code.

The number of times the function was found on the stack
when the Lisp process was interrupted. The parenthesized
figure shows the percentage of time the function was found
on the stack.

The number of times the function was found on the top of the
stack when the Lisp process was interrupted. Again, the fig-
ure in brackets shows the percentage of time the function was
found on top of the stack.

The name of the function.

You can order the itemsin the list by clicking on the relevant heading button.

Selecting any item in the list displays a description of that function in the Description
area. In addition, an item selected in the main list can be acted upon by any relevant
commands in the Function menu. For instance, if you select a generic function in the
main list and choose Function > Generic Function, you can view the generic function
in a Generic Function Browser. Thisis consistent with many of the other toolsin the

environment.

Double-clicking on an item in the Description list invokes an Inspector on the sel ected
item. In addition, an item selected in this area may be acted on by any relevant com-
mands in the Description menu, asis the case with many other tools in the environ-
ment. For instance, choose Description > Copy to copy the item selected in the
Description list to the clipboard. See “Performing operations on selected objects’ on
page 48 for details on the commands available.

24.6 Interpreting the cumulative results

24.6 Interpreting the cumulative results

The most important columnsin the Cumulative tab are those showing call count
(Call#) and number of times on the top of the stack (Stack#). Looking solely at the
number of times a function isfound on the stack (Stack#) can be mideading, because
functions which are on the stack are not necessarily using up much processing time.
However, functions which are consistently found on the top of the stack are likely to
have a significant execution time. Similarly the functionsthat are called most often are
likely to have the most significant effect on the program as a whole.

24.7 Profiling pitfalls

It is generaly only worth profiling code which has been compiled. If you profile
interpreted code, the interpreter itself is profiled, and this skews the results for the
actual Lisp program.

Macros cannot be profiled because they are expanded during the compilation process.

24.7.1 Effects of random sampling

Always bear in mind that the numbers produced are from random samples, so you
should be careful when interpreting their meaning. The rate of sampling is aways
coarse in comparison to the function call rate, so it is possible for strange effects to
occur and significant events to be missed. For example, resonance may occur when an
event always occurs between regular sampling times. In practice, however, thisis not
usually a problem.

24.7.2 Recursive functions

Recursive functions need special attention. A recursive function may well be found on
the stack in more than one place during one interrupt. The profiler counts each
occurrence of the function, and so the total number of times afunction is found on the
stack may be greater than the number of times the stack is examined.

24.7.3 Structure accessors

You must take care when profiling structure accessors. These compile down into acall
to aclosure, of which thereisone for al structure setters and one for all structure get-

355

24 The Profiler

356

ters. Therefore it is not possible to profileindividua structure setters or getters by
name.

24.7.4 Consequences of restricted profiling

Even if you configure the Profiler to profile all the known functions of an application,
it ispossible that less than 100% of the time is spent monitoring the top function. This
is because an internal system function could be on the top of the stack at the time of
the interrupt.

If you configure the Profiler to omit certain functions then these will not be displayed
in the Results area, and so the display may not match what you expect from your
source code.

24.7.5 Effect of compiler optimizations

With certain compiler settings code can be optimized such that the Profiler data does
not appear to match your source code. For example when atail call is optimized, the
tail-called function appears in the call tree as a child of the parent of the caller, rather
than asachild of its caller (just asin the debugger stack). Similarly code using
funcall Of apply may Yield confusing results. To prevent tail-call optimization, use
compiler setting debug 3.

24.7.6 Effect of compiler transforms

The compiler may transform some functions such that they are present in the source
code but not in the compiled code.

For example, the compiler transforms this source expression:
(member 'x '(x y z) :test #'eq)
into this compiled expression:
(memg 'x '(x y z))
Therefore function memg Will appear instead of member in the profile results.

Similarly, you cannot profile inlined functions.

24.8 Some examples

24.8 Some examples

The examples below demonstrate different ways in which the profiler can be config-
ured and code profiled so as to produce different sets of results. In each example, the
following piece of code is profiled:

(dotimes (x 1000)
(capi:make-container
(make-instance 'capi:title-pane
:text "Title")))

Thisisasimple piece of code which makes some CAPI objects.
1. Create aProfiler tool if you have not already done so.
2. Copy the code above into the box in the Code to Profile panel.

3. ChooseWorks > Tools > Preferences... or click & , select Profiler inthelist on
the left side of the dialog, and then select the General tab. Now you can change
the package of the Profiler.

Figure 24.6 Profiler Preferences

General
Package
COMMON-LISP-USER v

Show Package Names

Toolbar
Show Toolbar

4. Inthe Profiler Preferences, replace the default package in the Package text box
with capz and click .

5. Click OK to dismiss the Preferences dialog and apply the change you have
made.

357

24 The Profiler

6.

Click on Profile.

This profiles the functionsin the coMMoN-LISP, CL-USER and LISPWORKS packages.

Next, add the cap1 package to thelist of packages whaose functions are profiled.

7.
8.

10.

12.

13.
14.
15.

Click Packages.

In the dialog, double-click on carz inthe Unselected Packages list, and click
on OK.

Click on Profile to profile the code again.

Notice that this time there are many more functions which appear in the profile
results.

Select afew of the functions listed at the top of the Results area, and look at
their function descriptions.

Add the Description area by clicking the Description >> button if you have not
dready done so.

Notice that most of the functions appearing on the stack arein the capz
package. It isworth profiling afew functions explicitly, and removing unwanted
packages from the list of packages to profile.

Click Symbols..., and add the following four functionsto thelist in the dia og:
merge find-class make-char functionp

Type the name of each function and press Return or click 4"to add it to the
list.

Click OK when you have finished adding to this list.

Now remove the unwanted packages from the list of packagesto profile, asfol-
lows:

Click Packages....
In the dialog click on None to remove al itemsin the Selected Packages list

Click on OK, and profile the code again by clicking on Profile.

Notice that the four functionsin the commMon-L1sP package are still being profiled,
even though you are no longer profiling all functions from that package by defauilt.

358

25

The Shell and Remote Shdll
Tools

25.1 Introduction

You can run a UNIX command line session from within the LispWorks IDE by using
the Shell tool. The Shell tool automatically runs on your current host.

Also available is a Remote Shell tool which runs a session on another UNIX machine
on your network.

25.2 The Shell tool

You can create a Shell tool in one of two ways.

e Choose Works > Tools > Shell or click 4% in the Podium.

359

25 The Shell and Remote Shell Tools

360

« Typethe extended command Meta+X shell inany Editor window (or any
other window based on an editor, such asthe Listener).

Figure 25.1 The Shell tool

Works File Edit Operations Help

higson:/tmp$ pwd
/tmp o
higson:/tmpf 1s -1 *.lisp

-rw-rw-rw- 1 dubya users 7142 Nov 24 19:09 chat.lisp
-rw-Tw-rw- 1 dubya users 26419 Nov 24 19:09 maze.lisp
-rw-rw-rw- 1 dubya wusers 25611 Nowv 24 19:09 othello.lisp
-rw-rw-rw- 1 dubya wusers 8913 Nov 24 19:09 pong.lisp
higson:/tmp$ [—

The Operations menu contains the following commands which send UNIX signalsto
the shell process. These only work on UNIX and UNIX-based systems, including Mac
OSX.

Choose Operations > Interrupt to send a break signal to the shell process. This stops
the current task and returns control to the UNIX command line in the Shell toal, if
necessary.

Choose Operations > Suspend to send a suspend signal to the shell process. This sus-
pends the current task so that you can continue entering commands at the UNIX com-
mand line. To resume the task, type £g at the UNIX command line in the Shell toal.
Alternatively, type bg at the command line to force atask to run in the background.

Choose Operations > Eof to send an EOF signal to the process.

25.3 Command history in the shell

The Shell tool isanother example of atool which is based on an editor, and thus many
of the keys available in the editor are also available in the Shell tool.

25.4 Configuring the shell to run

Like the Listener, the Shell tool is run in execute mode, which means that several
additional keystrokes are available in Emacs emulation, as follows.

PressMeta+P Or ctrl+C ctrl+P to display the previous command entered in
the shell.

PressMeta+N Or ctrl+C Ctrl+N to display the next command in the history.

PressMeta+R Or ctrl+C Ctrl+R to perform asearch of the command history.

25.4 Configuring the shell to run
This section applies only on UNIX and UNIX-based systems, including Mac OS X.

By default, the Shell tool runsthe UNIX command shell known asbash. If you would
rather use a different shell (such as csh, tesh, ksh, etc.), or if you do not have bash
available on your UNIX system, then change the value of the variable
editor:*shell-shell*, wWhich hasthevaluenil by default. This meansthat the
Shell tool will use the value of the variable EsHELL or sEELL if set, or one of "/bin/sh"
(system V) and "/bin/csh" (otherwise).

25.5 The Remote Shell tool

Thislooks similar to the Shell Tool, but you must specify which host to run the remote
shell on when you start it up.

To start a Remote Shell tool, enter Meta+X Remote Shell inthe Editor or Listener
tool, and supply the hostname of the remote machine when prompted.

The tool runs an appropriate UNIX command (rsh oOr remsh) with the hostname
which you specify.

361

25 The Shell and Remote Shell Tools

362

26

The Stepper

26.1 Introduction

The Stepper tool allows you to follow the execution of your program, displaying the
source code as it executes. While stepping, you can see the evaluation of each sub-
form, function call and the arguments and return values in each call. At every call to
one of your functions, you have the option of stepping into that function, that is step-
ping the source code definition of the function.

Where a macro appearsin stepped code, the Stepper can macroexpand the form and
step the resulting expansion, or simply step the visible inner forms of the macro form.
Where aspecial form such as i £ appears in stepped code, the Stepper processes it
according to the execution order in that special form.

The system creates a Stepper tool automatically when your code reaches a breakpoint
Other ways to start a Stepper tool are:

» Choose Works > Tools > Stepper or press A in the Podium and enter asingle
form

363

26 The Stepper

364

e Choose Frame > Restart Frame Stepping in a Debugger tool

Figure 26.1 The Stepper

Stepper 1
Works File Edit Frame Variables Restarts Stepper Help

B P e ohteg = @ v 0O &

SOUrCe:

Backtrace | Listener

= Enter a form to step in the pane above.

Ready.

The Stepper has four areas:

26.1.1 Stepper toolbar

The commands on the stepper toolbar alow you to step to various points in the code,
set breakpoints and perform macroexpansions.

26.1.2 Source area
Thisisan editor window where you should enter the initial form to step.

When you step into a function, aread-only copy of its definition is shown in the
Source: area

Notice that the editor cursor is an underline in the Source: area. Thisis because the
normal cursor styles are not visible where the Stepper is highlighting aform.

26.2 Simple examples

26.1.3 Backtrace area

The Backtrace tab displays the function calls on the execution stack in the code being
stepped.

The topmost item in the backtrace area shows the next step, known as the status.
When calling a function, the status item contains the arguments and when returning
from any form, the status item containsits return values. You can see the contents of
the status item by expanding it. You can make the status item expand automatically if
you wish, as described in “Backtrace preferences’ on page 383.

The second topmost item in the backtrace area is the active frame. This shows the
function executing when the breakpoint was reached, and its arguments.

For function calls, arguments and local variables can be seen by expanding the item.
You can make the active frame expand automatically if you wish, as described in
“Backtrace preferences’ on page 383. Just as in the Backtrace area of the Debugger
tool, these stack frames and variables can be operated on using the Frame and Vari-
ables menus. For details, see “Backtrace area’ on page 142.

26.1.4 Listener area

The Listener tab provides a Listener in which the execution steps are indicated. Com-
mands can be entered here as an alternative to using the buttons on the “ Stepper tool-
bar” on page 364.

Any form entered here is evaluated on the dynamic environment of the function being
stepped.

Moreover, you can use the debugger commands such as : v, which prints the local
variablesin the current frame. You can use the value of alocal variable simply by
entering its name as shown. See the LispWorks User Guide and Reference Manual for
more details about the debugger commands.

See “Listener area’ on page 380 for more details.

26.2 Simple examples

There are two ways to enter the Stepper tool:

365

26 The Stepper

366

26.2.1 Standalone use of the stepper

1

Compile and load the demo system defined in the LispWorks library file exam-
ples/tools/demo-defsys.1lisp. First, load thisfile to define the system.
Then evaluate in the Listener:

(compile-system "demo" :load t)

Note: for another way to compile and load a system, see Chapter 27, “The Sys-
tem Browser”.

Create a Stepper tool by choosing Works > Tools > Stepper or pressing A in
the Podium.

Enter thisform in the Source area of the Stepper tool:

(my-function 3)

Choose the menu command Stepper > Step. The open parenthesisis highlighted
orange, indicating that the next step isto evaluate the form.

Choose Stepper > Step again. The symbol my - function isnow highlighted
orange, indicating that the next step isto call this function. Notice how the
current stepping position is always highlighted orange.

26.2 Simple examples

6. Notice how the topmost item in the Backtrace area always indicates the next
step. Expand this item to show the arguments.

Figure 26.2 Stepper backtrace showing the next step

Stepper 1

Works File Edit Frame Varables Restarts Stepper Help
¥ R ¥ ¥ = W== b |
A o ed oh o ey = @ v " 50 0 &

Buffer: Stepper Tool Stepper 1
(fy-function 3)

SR

Backtrace | Listener

= 4t Calling MY-FUNCTION with arguments

® ARGD 3

A Form

Ready.

7. Atthispoint we have the option to step my - function itself, but for the moment
simply choose Stepper > Step again, which steps to the point where the
function call returns. The Backtrace area shows the return value, 12, when you

expand the status item.

Note how the Step command always steps only inside the current form, and does not
step into other functions.

26.2.2 Invoking the Stepper via a breakpoint

1. Compile and load the code in the system demo defined in the LispWorks library
file examples/tools/demo-defsys.lisp

2. Openthefile examples/tools/demo-utils.lisp inan Editor and set a
breakpoint at the call to + as described in “ Setting breakpoints’ on page 198.

367

26 The Stepper

3. Evaluaté (my-useful-function 42) inalistener.
4. A Stepper tool appears, with the current stepping position at the breakpoint.
Figure 26.3 Stepper invoked by reaching a breakpoint

eppe or CAF : 0 ene o] 4
Works File Edit Frame Varables Restarts Stepper Help

Y o owd oh o e = @ v 60 OF @

ource file: /tmp/demo-utils.lisp

(in-package "CL-USER")

{defun my-useful-function (x)
(print ({ x x)))

B

Backtrace | Listener

~ 4 Breakpoint: Calling + with arguments

7 ARG-0 42
7 ARG-1 42 Z
8
DX 42
I N EVAL -
Ready.

5. You can how step this code, just asin standal one mode.

6. When you choose Stepper > Continue, or otherwise finish stepping, my-use-
ful-function returns, the Stepper is hidden and the Listener tool becomes
active again.

368

26.3 The implementation of the Stepper

26.3 The implementation of the Stepper

It isimportant to understand the following points about the implementation of the
Stepper.

26.3.1 Requirements for stepping
The code you step must have been compiled, evaluated or loaded in the Lisp image.

26.3.2 Editing source code

While the Stepper isrunning, it displays aread-only copy of the source in the source
area. Therefore, you cannot edit the code in the source area, other than when the status
is "Enter aform to step in the pane above.".

If you step afunction for which the source has been edited since it was compiled, then
the Stepper uses a copy of the compile-time source, not the edited source.

This copy isstepped in anew editor buffer created specialy for it and thisis displayed
in the source area.

26.3.3 Side-effects of stepping
When the Stepper steps a definition for the first time, it evaluatesiit.

Thiswill not normally alter the behavior of your program, but there are three
situations where thiswill cause unexpected behavior:

e Thecodeisloaded from afasl file which is not compatible with the
corresponding sourcefile.

e The source relies on compile-time side-effects of forms preceding it in the file.

e Thedefining form has other side effects. Thisis unlikely to matter for simple
definers such as defun and defmethod.

26.3.4 Atomic and constant forms

It is not possible to step to atomic forms or constant forms.

369

26 The Stepper

370

26.4 Stepper controls

The Stepper menu offers fine control over the next step.

It also includes commands for setting breakpoints, displaying the source code,
macroexpansion, and aborting from the current step.

All these commands are also available on the Stepper toolbar as shown in Figure 26.4.

Figure 26.4 The Stepper controls

Step Step To Step To Show Current Source
Value Cursor Abort
Step Macro-
Through Next Continue expand
Call Undo
Step To Step To Breakpoint Macro-
Call

File |Edit

Hdbdoed oh ey = | @ v " 50 O0F &
Buffer. Stepper Tool Stepper 1
(py-function 3)

NN

Backtrace | Listener

= 4t Calling MY-FUNCTION with arguments

® ARG-0 3

A Form

Breakpoint Options

26.4 Stepper controls

The Stepper controls operate as described below. Recall that the current position is
aways highlighted in orange:

Step
Steps once, remaining inside the current form. At the start of
the current form, this steps the first inner form. At afunction
call, it stepsto the value. At the form value, it steps the next
form or value.

Step Through Call
Steps once. Thisis the same as Step above, except that at a
function call, it steps that function if the source is known.

Step To Call
At the start of aform, stepsto the function call of that form
after evaluation of the arguments. At afunction call or at the
end of aform, stepsto the function call of the enclosing form.

Step To Value
At the start or function call of aform, stepsto the value of
that form. At the end of aform, steps to the value of the
enclosing form.

Next
Steps to the start of the next form, or behaves like Step if
thereis no next form.

Step To End
Steps to the value of the current function.

Step To Cursor
Stepsto the cursor position, or displays a message if that
position is not steppable.

Continue

Runs the code until a breakpoint is reached.

371

26 The Stepper

372

Breakpoint

Sets a breakpoint at the position of the cursor if thereisno
breakpoint there already and the position is steppable. If there
is abreakpoint under the cursor, this command removesit.
Note that breakpoints are highlighted red, though the orange
highlight on the current stepping position overrides any
breakpoint highlight..

Show Current Source
Moves the editor buffer in the source area so that the defini-
tion at the top of the backtrace area, and the active form
within it, isvisible.

Macroexpand
Macroexpands the form under the cursor.

Undo Macroexpand
Collapses the macroexpansion under the cursor.

Abort
Aborts the execution and returns to the form which you first
stepped, allowing you to repeat the execution or edit the
form. This command is available only when using the
Stepper in standalone mode.

Breakpoint Options

The Breakpoint Options menu allows you to set properties of
a breakpoint as described in “Breakpoints’ on page 373.

26.4.1 Shortcut keys for the Stepper

The following Editor commands run the corresponding Stepper command in the
current stepper:

Stepper Breakpoint
Stepper Continue
Stepper Macroexpand
Stepper Next

26.5 Stepper restarts

Stepper Restart

Stepper Show Current Source
Stepper Step

Stepper Step Through Call
Stepper Step To Call
Stepper Step To Cursor
Stepper Step To End

Stepper Step To Value
Stepper Undo Macroexpand

These commands can be bound to keys in the LispWorks editor, which makes those
keys invoke the command in a Stepper tool. For example:

(editor:bind-key "Stepper Step" #("Control-S" Control-s"))

Note: the editor key binding only takes effect when the input focusisin the Source or
Listener panes of the Stepper tool.

For more information about Editor key bindings, see the LispWorks Editor User
Guide.

26.5 Stepper restarts

The Restarts menu lists anumber of restart options, which offer waysto continue exe-
cution.

This works the same as described for the Debugger tool in “ Simple use of the Debug-
ger tool” on page 146.

26.6 Breakpoints

You can set a breakpoint in any form that might be evaluated, except for atomic and
constant forms. The breakpoint can be at the start, function call or return point of the
form.

When not at the current stepping position, a breakpoint is highlighted red in the
Stepper source area. When the same source codeis also visible in an Editor tool, the
breakpoint is visible there too.

373

26 The Stepper

374

26.6.1 Setting breakpoints

To set a breakpoint from the Stepper, position the cursor where you want the break-
point and choose Stepper > Breakpoint or click @ in the Stepper toolbar.

Figure 26.5 A breakpoint on the function call +

Stepper 2

Works Fle Edit Frame Varables Restads Stepper Help

P o el oh @ ey @ @ G0 O &

Source file: /ftmp/demo-utils.lisp
i; See the LispWorks IDE User Guide. had

(in-package "CL-UZER")

(defun my-useful-function (x)

Cprint (@ x x)))

i

<]

Backtrace |Listener

= Breakpoint: Evaluating PRINT form had

/

X 3]

I X MY-FUNCTION o

£ S »]
Ready.

When you run code, or choose Stepper > Continue, execution stops if a breakpoint is
reached. The Stepper will show the form in the source area with the breakpoint high-
lighted in yellow.

In the picture above, execution has stopped at the start of the print form and we have
just set abreakpoint on the call to +. Continuing from this point will cause execution
to stop just beforeit calls +, and the Stepper will display the arguments that are about
to be passed to +.

26.6

If you set a breakpoint on the closing parenthesis of aform, then it will cause execu-
tion to stop when the form returns and the top backtrace frame will display the values
of that form.

To set abreakpoint from the Editor, see “Breakpoints’ on page 198.

26.6.2 Conditional breakpoints
A breakpoint can be modified to make it effective only when a condition is true.

Suppose that you have reached a breakpoint on the call to + as set in the example
above. To make this breakpoint conditional on avariable *use-my-breakpoints*
(which you should define with defvar), choose Conditional... from the Breakpoint
Options menu:

Figure 26.6 The Breakpoint Options menu

eppe o |)4
Works Fle Edit Frame Varables Restads Stepper Help

T H P e ohol ey @ v 60 08 &

Source file: /ftmpfdemo-utils.lisp Conditional
3

i3 See the LispWorks IDE User Guide. o
Printing...

(in-package "CL-USER") Edit...

T

(defun my-useful-function (x)

(print (f x x)»

Backtrace |Listener

= Breakpoint: Evaluating PRINT form
8

R

X3
> X MY-FUNCTION =

4 A ¥

Ready.

Breakpoints

375

26 The Stepper

Select the Condition radio button in the Conditional tab of the Edit Breakpoint dialog,
then enter *use-my-breakpoints* in the condition area and click OK.

Figure 26.7 The Edit Breakpoint dialog

Edit breakpoint

Location | Conditional | Printing

) Unconditional
(®) Condition

Package: COMMON-LISP-USER
*use—my—breakpuints*l

8 Cancel o oK

The form defining the breakpoint condition is evaluated in the package where the
stepped function was defined. Note that this package is displayed in the Conditional
tab of the Edit Breakpoint dialog. Therefore, after confirming the dialog shown above,
your code breaks at the breakpoint depending on the value of

common-lisp-user: :*use-my-breakpoints*.
To make a breakpoint unconditional, select Unconditional in the dialog shown above.

Note: you cannot currently access the values of local variablesin the condition
expression.

26.6.3 Printing breakpoints

A breakpoint can be modified to make it print an expression and itsvalue when it is
reached.

376

26.6

Again suppose that you have reached a breakpoint on the call to + as set in the exam-
ple above. To make this breakpoint print, choose Printing... from the Breakpoint
Options menu, and enter avalid Lisp expression in the Printing tab of the Edit Break-
point dialog, and click OK.

When the breakpoint is reached, the expression and its value are printed like this:
Stepper value (+ 4 4 4 4): 16

The Lisp expression is evaluated in the package where the stepped function was
defined. Note that this package is displayed in the Printing tab of the Edit Breakpoint
dialog.

If you check the Print without stopping option, then the above line is printed but the
code continues to execute and does not stop at the breakpoint.

Note: you cannot currently access the values of local variablesin the printed expres-
sion.

26.6.4 Editing breakpoints

To edit the Conditional or Printing properties of a breakpoint visible in the source,
position the cursor on the breakpoint and proceed as described in “Conditional break-
points’ on page 375 or “Printing breakpoints’ on page 376.

Where you wish to change the Conditional or Printing properties of a breakpoint with-
out finding it in the source, choose Edit... from the Breakpoint Options menu or the
menu command Stepper > Edit Breakpoints.... Select abreakpoint in the Breakpoints
list and click the Edit... button. Choose the Conditional or Printing tab as appropriate
and proceed as described in “Conditional breakpoints’ on page 375 and “Printing
breakpoints’ on page 376.

To visit the source code where a breakpoint was set, choose Edit... from the Break-
point Options menu or the menu command Stepper > Edit Breakpoints.... Select a
breakpoint in the Breakpoints list and press the Goto Source button. This cancels the
dialog and then displays the source containing the breakpoint.

26.6.5 Removing breakpoints

To remove a breakpoint under the cursor, click @ in the toolbar. Equivalently you
can choose Stepper > Breakpoint.

Breakpoints

377

26 The Stepper

Where you wish to remove one or more breakpoints without finding them in the
source, choose Edit... from the Breakpoint Options menu or the menu command Step-
per > Edit Breakpoints..., select a breakpoint or breakpoints in the Breakpoints list,
and click Remove.

If you remove al breakpoints, then the breakpoints dialog is closed.

26.7 Stepping macro forms

Where your code contains a macro, you can step the macroexpansion or simply step
the macro form as-is.

26.7.1 Interactive macroexpansion

When the Stepper reaches code for which the source contains an unexpanded macro
form, by default it offers you the option of macroexpanding that form.

To seerthis, follow the example in “ Standal one use of the stepper” on page 366 and
when your reach my - function choose Stepper > Step Through Call or click &% in
the Stepper toolbar.

The source code for my - function iSshown in the Source area of the Stepper. Choose
Stepper > Step or click " in the Stepper toolbar.

378

26.7 Stepping macro forms

Click Yes on the dialog asking "Expand MY-MACRO form?'. The macroexpansion
replaces the macro form:

Figure 26.8 Stepping a macroexpansion

Stepper 1

Works File Edit Frame Varables Restarts Stepper Help

PR T + 3 ¥, ¥ = e b |

Y do e oh ©f ey = @ v G0 OF @

Source file: ftmp/demo-functions.lisp

(defun my-function (x) ad
ﬂLET'-'-‘ ((#:X664 X) (#:ARGS665 NIL))

(APPLY 'MY-USEFUL-FUNCTION]
(APPLY 'MY-USEFUL-FUNCTION #:X664 #:ARGS665) e
#:ARGS665))) [

b
Backtrace |Listener
5> Evaluating LET* form fad
-
> MY-FUNCTION]
X3 ~]
+ L »

Now you can Step into the macroexpansion of my-macro.

26.7.2 Macroexpansion in the stepper

To macroexpand a macro form before reaching it in the Stepper, position the cursor at
the start of the macro form and choose the menu command Stepper > Macroexpand or
click &) in the Stepper toolbar. You can only this when the Stepper has already

stepped the function.

Sometimesiit is useful to expand macros in outer forms, to allow the more detailed
stepping of their expansions. For example, for a definition such as

(defstruct foo (x (print 10)) vy)

when stepping

379

26 The Stepper

380

(make-£foo)

expanding the de£struct form allows you to step more of the constructor.

26.7.3 Collapsing macroexpansions

To collapse a macroexpansion in the Stepper, position the cursor at the start of the
macroexpansion and choose the menu command Stepper > Undo Macroexpand oOf
click (¥ in the Stepper toolbar.

26.7.4 Controlling macroexpansion

You can alter the way the Stepper handles macro forms on a per-symbol or per-
package basis. For instance, you can specify that the Stepper always expands your
macros automatically, without prompting. For details, see “ Operator preferences’ on
page 382.

26.8 Listener area
Select the Listener tab of the Stepper tool to display a Listener.

This area offers al the usual Listener and Debugger commands. M oreover, the execu-
tion environment is that of the function currently being stepped, and contains the vari-
ables of each frame on the stack.

The Stepper listener also offers the following listener commands to control stepping.
:s, :step Step

:st, :step-through-call
Step Through Call

:sc, :step-to-call

Step To Call

:sv, :step-to-value

Step To Value

:sn, :next Next

26.9 Configuring the Stepper

:se, :step-to-end

Step To End
:c, :continue Continue

:sm, :macroexpand

M acroexpand

:restart Abort

See “ Stepper controls’ on page 370 for afull description of these controls.

26.9 Configuring the Stepper

To configure the Stepper tool, raise the Preferences dialog, by choosing Works >
Tools > Preferences... or clicking & Then select Stepper in the list on the Ieft side
of the Preferences dia og.

The Stepper Preferences have three tabs:

e The General tab controls display of the Stepper toolbar, as described in “ Tool-
bar configurations’ on page 26.

e The Operators tab contains options controlling the behavior when the stepper
sees functions or macros in the source.

e TheBacktrace tab controls the amount of information shown automatically in
the Backtrace area.

381

26 The Stepper

382

26.9.1 Operator preferences
Figure 26.9 Stepper Preferences

General | Operators | Backtrace

Mame Step Through |Macroexpand Add...
Package COMMON-LISP Mever Never Remove
Package SYSTEM Never Query Edit.
Default Always Query —

When reaching a function call you can use the Step Through Call command to step
through the call into its definition. You can configure the Stepper to do this
automatically, never do this or ask you which action to take.

Similarly when reaching a macro form you can macroexpand it (or not). You can
configure the Stepper to macroexpand automatically, never macroexpand or ask you
whether to macroexpand..

For agiven symbol naming a function or macro, the action is determined by the
preferencesin the Operators tab. If the symbol islisted, then the corresponding action
istaken. Otherwise, if the symbol’s package is listed, then the corresponding action is
taken. If neither the symbol nor its package are shown,. then the default action is
taken.

For example, the default behavior on reaching your macro formsisto prompt for
whether to macroexpand. To configure the Stepper such that macros defined in the
CL-USER package are macroexpanded automatically, click the Add... button, enter cL-
USER in the Name pane of the dialog, select Always inthe Expand macros panel, click
OK and click OK to dismiss the Preferences dialog.

To configure the Stepper such that it never steps through my - function, raise the
Stepper preferences again, click the Add... button and select the Symbol radio button.
Enter c1-user: :my-function in the Name pane of the dialog, select Never in the
Step through calls pand, click OK and click OK to dismiss the Preferences dialog.

26.9 Configuring the Stepper

26.9.2 Backtrace preferences

To control the amount of information displayed automatically in the Backtrace area,
select the Backtrace tab of the Stepper Preferences:

Figure 26.10 Stepper Preferences Backtrace tab

General | Operators | Backtrace

Expand status automatically: @®Yes () No

Expand active frame automatically: @ Yes () No

By default the status item in the Backtrace area automatically expandsto show the
arguments or return values. To change this behavior, select No against Expand status
automatically.

By default the active frame in the Backtrace area automatically expands to show the
local variables and arguments. To change this behavior, select No against Expand
active frame automatically.

Compatibility Note: in LispWorks 5.0 these Backtrace options have the opposite
default values. Thisis changed in LispWorks 5.1 and later versions.

383

26 The Stepper

384

27

The System Browser

27.1 Introduction

When an application becomes large, it is usually prudent to divide its source into
separate files. Thismakesthe individual parts of the program easier to find and speeds
up editing and compiling. When you make a small change to onefile, just recompiling
that file may be all that is hecessary to bring the whole program up to date.

The drawback of thisapproachisthat it isdifficult to keep track of many separate files
of source code. If you want to load the whole program from scratch, you need to load
severd files, which is tedious to do manually, as well as proneto error. Similarly, if
you wish to recompile the whol e program, you must check every filein the program to
seeif the source file is out of date with respect to the object file, and if so re-compile
it.

To make matters more complicated, files often have interdependencies; files
containing macros must be loaded before files that use them are compiled. Similarly,
compilation of one file may necessitate the compilation of ancther file eveniif its
object fileis not out of date. Furthermore, one application may consist of files of more
than one source code language, for example Lisp filesand C files. This means that
different compilation and loading mechanisms are required.

The System Browser tool is designed to take care of these problems, allowing consis-
tent devel opment and maintenance of large programs spread over many files. A sys-
tem is basically a collection of files that together constitute a program (or a part of a

385

27 The System Browser

386

program), plus rules expressing any interdependencies which exist between these
files.

You can define asystem in your source code using the defsystem macro. See the
LispWorks User Guide and Reference Manual for more on the use of defsystem.
Once defined, operations such as loading, compiling and printing can be performed on
the system as awhole. The system tool ensures that these operations are carried out
completely and consistently, without doing unnecessary work, by providing you with
aGUI front end for defsystem.

A system may itself have other systems as members, allowing a program to consist of
ahierarchy of systems. Each system can have compilation and load interdependencies
with other systems, and can be used to collect related pieces of code within the overall
program. Operations on higher-level systems are invoked recursively on member
systems.

27.2 A brief introduction to systems

A system isdefined with adefsystem form in an ordinary Lisp sourcefile. Thisform
must be evaluated in the Lisp image in order to use the system.

Once defined, operations can be carried out on the system by invoking Lisp functions.
For example, the expression:

CL-USER 5 > (compile-system 'debug-app :force t)
would compile every filein asystem called debug-app.

Note: When defining a hierarchy of systems, the leaf systems must be defined first—
that is, asystem must be defined before any systems that include it.

By convention, system definitions are placed in afile called de£sys . 1isp which usu-
aly residesin the same directory as the members of the system.

27.2 A brief introduction to systems

27.2.1 Examples
Consider an example system, demo, defined as follows:

(defsystem demo (:package "USER")
:members ("macros"
"demo-utils"
"demo-functions™")
:rules ((:in-order-to :compile ("demo-utils" "demo-functions")
(:caused-by (:compile "macros"))
(:requires (:load "macros")))))

This system compiles and loads members in the user package if the members them-
selves do not specify packages. The system contains three members—macros, demo-
utils, and demo- functions—Wwhich may themselves be either files or other
systems. Thereisonly one explicit rule in the example. If macros needsto be
compiled (for instance, if it has been changed), then this causes demo-utils and
demo- functions t0 be compiled aswell, irrespective of whether they have
themselves changed. In order for them to be compiled, macros must first be loaded.

Implicitly, it is always the case that if any member changes, it needs to be compiled
when you compile the system. The explicit rule above means that if the changed
member happens to bemacros, then every member gets compiled. If the changed
member is not macros, then macros Must at |east be loaded before compiling takes
place.

The next example shows a system consisting of three files:

(defsystem my-system
(:default-pathname "~/junk/")
:members (Ilall npn Ilcll)
:rules ((:in-order-to :compile ("c")
(:requires (:load "a"))
(:caused-by (:compile "b")))))

What plan is produced when all three files have aready been compiled, but thefile
b.lisp hassince been changed?

Firg, filea.1isp isconsidered. Thisfile has already been compiled, so no
instructions are added to the plan.

Second, fileb. 1isp isconsidered. Since thisfile has changed, the instruction compile
b is added to the plan.

Finaly file c. 1isp isconsidered. Although this has already been compiled, the clause

387

27 The System Browser

388

(:caused-by (:compile "b"))

causes the instruction compile ¢ to be added to the plan. The compilation of c¢.1isp
also requiresthat a.1isp isloaded, so the instruction load a is added to the plan first.
This gives us the following plan:

1. Compileb.1isp.
2. Loada.1lisp.

3. Compilec.1lisp.

27.3 The System Browser

The System Browser provides an intuitive graphical way to examine and operate on
systems and their members.

For example, the operation outlined in “A brief introduction to systems’ on page 386
would be performed by the System Browser menu commands Systems > Compilation
options > Force followed by Systems > Compile.

To create a System Browser, choose Works > Tools > System Browser or press (% in
the Podium. Alternatively, choose File > Browse Parent System from any appropriate
tool in the environment or execute Meta+X Describe System inan editor, to display
the parent system for the selected or current file in the System Browser. See “Operat-
ing on files’ on page 44 for details.

In order to browse a system, first ensure it is defined. To define asystem, load the Lisp
source cade containing the de£system form into the Lisp image. For instance, open
the filein an Editor and choose File > Load. Alternatively, choose File > Load... from
the System Browser and choose afile to load in the dial og that appears.

27.4 A description of the System Browser

The System Browser has four views:

« TheTree view displays atree of all the systems defined in the image, together
with their members.

e TheText view liststhe systems defined in the image together with the members
of the current system.

27.5 Examining the system tree

« ThePreview view provides a powerful way of generating and executing
systems plans.

e TheOutput view is used to display any output messages which have been cre-
ated by the System Browser as a result of executing plans.

27.5 Examining the system tree

When you first invoke the System Browser, the Tree view isthe default view. You can
also switch to it from another view by choosing the relevant tab above the main view.
The Tree view isshown in Figure 27.1 below.

Figure 27.1 Displaying loaded systems using the Tree view

System Erowser 1

Works File Edit View Description Systems History Help

G, P 0 Ly 1
LSRR FIRTIEAT I VR
System: | DEMO)| v X %

Tree | Text | Preview | Output

~ I DEMO
demu—macrus.lisp
demn—utils.lisp
dEH’ID—fur‘ICTiGr‘IS.“Sp

e T

|Description:
Mame: DEMO
Pathname: /tmp/

Flags:

389

27 The System Browser

390

The System Browser window has four areas, described below.

27.5.1 System area
The System area is used to enter and display in the name of the system.

You can browse a system by entering its nameinto the System: area. Whilst doing this
yOu Can press Up, Down OF click f’_":!;- to complete a partialy specified name. This
allowsyou to select from alist of all system names which begin with the partial input
you have entered. See “ Completion” on page 59 for detailed instructions.

The members of the system are displayed in the tree area.

27.5.2 Tree area

The Tree area produces atree of the current system, together with al its membersThe
generic facilities available to all tree views throughout the environment are available
here; see Chapter 6, “Manipulating Graphs’ for details.

« Double-click on afilenameto display the file in the editor.
e Click on an unfilled circle alongside a system name to display its members.
e Click on afilled circle alongside a system name to hide its members.

* Select either asystem name or afile name to display detailsin the Description
area.

You can operate on systems and files via the context menu, which offers commands
such as Concatenate... and Search Files... for systems, and Compile and Print... for
files. The system commands are also available in the Systems menu. If no items are
selected, the commands apply to the current system, whose nameis printed in the Sys-
tem area.

To traverse the system hierarchy, expand a system node in the tree. If the destired par-
ent nodeis not inthetree, choose Systems > Parent. The parent of al systems defined
in the image at any timeis called the RooT-SYSTEM.

To see the souce code definition of a system, double-click its node in the tree or do
Systems > Find Source or click #=).

27.5 Examining the system tree

27.5.3 Description area

The Description area shows details about any system member selected in the Tree
area. The following items of information are shown:

Module The name of the selected member. Thisis either the filename
(if the member is afile of source code) or the system name (if
the member is a subsystem).

Pathname The directory pathname of the selected member. Thisisthe
full pathname of thefile, if the selected member is afile of
source code, or the default directory of the system, if the
selected member is a subsystem.

Flags Thislists any keyword flags which have been set for the
selected member in the system definition, such asthe

:source-only flag.

To operate on any of the items displayed in this area, select them and choose a com-
mand from the Description menu, which contains the standard actions described in

“Performing operations on selected objects’ on page 48. By making multiple selec-
tions, you can operate on as many of the items asyou like.

27.5.4 Performing operations on system members

A variety of operations can be performed on any number of nodes selected in the Tree
area. If no system nodes are selected, or if you are in another view, the commands are
performed on the current system, whose nameis printed in the System area.

The Systems menu gives you access to the standard actions described in “ Performing
operations on selected objects’ on page 48.

¢ Choose Systems > Parent to browse the parent system. This takes you up one
level in the hierarchy.

e Systems > Browse All Systems causes the System Browser to display the root
node, whose children include all loaded systems.

e Systems > Browse Systems For Directory causes the System Browser to dis-
play al systems that have filesin a given directory or one of its subdirectories.

391

27 The System Browser

392

Choose Systems > Compile and Load, Systems > Compile, or Systems >
Load to compile or load the selected systems.

Choose Systems > Concatenate... to produce a single fasl file from a system.
You will need to supply the name of the fad file, when prompted.

Choose Systems > Search Files... to search the files of the selected systems
(and any subsystems) for agiven regular expression. A dialog prompts for the
regular expression, and then a Search Filestool israised in System Search
mode, displaying the results of the search. The Search Filestool is described in
“The Search Filestool” on page 223.

Choose Systems > Hide Files, to remove system member files from the tree
and display only systems. Choose Systems > Show Files to reverse this effect.

Choose Systems > Replace to search al the filesin the selected members (and
any subsystems) for a given string and replace it with another string. You are
prompted for both stringsin the echo area.

You need to save the buffers to actually save the changes on disk, thisis easily
done using the Editor tool - see “Buffers area” on page 173 for details.

27.6 Examining systems in the text view

The text view allows you to list the parent system, subsystems and files in the current
system in one view, and gives you an easy way of changing the current system.

27.6 Examining systems in the text view

Choose the Text tab to display this view. The System Browser appears as shownin
Figure 27.2 below.

Figure 27.2 Displaying loaded systems using the text view

System Browser 1

Works File Edit Mew Description Systems History Help

BRRE ¢ - 9e e

System: | DEMO v X %

e

Tree | Text | Preview | Cutput
|Parent System: Subsystems:

|Files:

demo-macros.lisp

demo-utils.lisp

demo-functions.lisp

|Description:
Mame: DEMO
Pathname: ftmp/

Flags:

Ready.

The System Browser contains the areas described below when in the text view.

27.6.1 System area

Aswith the tree view, the current system is shown here. See “ System area’ on page
390 for details about this area.

393

27 The System Browser

394

27.6.2 Parent system area

This arealists any parent systems of the current system. Note that every system apart
from the rooT-sYsTEM must have at least one parent.

Double-click on any item in this list to make it the current system. Its name is printed
in the System area.

27.6.3 Subsystems area
This arealists any systems which are subsystems of the current system.

Double-click on any item in thislist to make it the current system. Its name is shown
in the System area.

27.6.4 Files area

Thisarealists any files which are members of the current system. Source files
containing either Lisp or non-Lisp code (such as C code which isloaded viathe
Foreign Language Interface) are listed in this area.

» Sdect afileto display its description in the Description area.

« Double-click on afileto display it in the editor.

27.6.5 File description area

The Description: area displays information about any system member selected in the
Files area. If no such member is selected, information about the current system (the
one named in the System area) is shown instead. The same pieces of information are
shown as in the tree view. See “Description area’ on page 391 for details. Aswith
other views, items selected in this area can be operated on using commands in the
Description menu.

27.7 Generating and executing plans in the
preview view

The preview view allows you to generate different system plans automatically based
on three things:

* The current compilation and load status of each member of a system.

27.7 Generating and executing plans in the preview

view

e Therules specified in the system definition.

e The specific actions that you wish to perform.

You can use this view to browse the plan and to execute all or any part of it, aswell as
generateit.
Click on the Preview tab to switch to the preview view in the System Browser. The
System Browser appears.

Figure 27.3 Previewing system plans using the Preview view

System Erowser 1

Works File Edit View Description Systems History Help

..............

System:

= [Compile system DEMO into COMMON-LISP-USER
Compile demo-macros.lisp
Compile demo-utils.lisp
£ Load demo-macros.ufasl
Compile demo-functions.lisp

= [Load system DEMO into COMMON-LISP-USER
£ Load demo-utils.ufasl

£ Load demo-functions.ufasl

- | 89 @ g

v X

Tree | Text | Preview | Output
v B8 Plan for DEMO

Recompute Events || Execute plans | Actions: | Compile Load [| Force

Ready.

Click Recompute Events or the menu command Works > Refresh and expand nodes

in the tree to make the plan fully visible asin Figure 27.3.

The System Browser has the areas described below.

395

27 The System Browser

396

27.7.1 System area

Aswith the tree view, the current system is shown here. See “ System area’ on page
390 for details about this area.

27.7.2 Actions area

The Actions area contains a number of options allowing you to choose which actions
you want to perform, thereby allowing you to create system plans.

The Compile, Load and Force check buttons can be selected or deselected as desired.
Note that at least one of Compile and Load must always be selected.

e Select Compile to create a plan for system compilation. The plan displays what
actions need to be performed in order to update the fad s for the entire system.

» Select Load to create a plan for loading the system. The plan displays alist of
the actions required to load the system.

e Select Force if you want to force compilation or loading of al system
members, whether it is necessary or not.

Click Recompute Events to create a new plan for the specified options. You should
click this button whenever you change the Compile, Load, or Force options, or
whenever you change any of the filesin the system or any of its subsystems.

Click Execute Events is used to execute the events currently selected in the main area.
Notice that this button is only enabled.when some event is selected in the plan. See
“Executing plans in the preview view” below for details.

27.7.3 Filter area

Aswith other tools, you can use the Filter areato restrict the output in the plan areato
just those actions you areinterested in. This may be useful, for instance, if you want to
see only compile actions, or only load actions, or if you are only interested in the
actions that need to be performed for a particular file.

27.7.4 Plan area

The Plan arealiststhe actionsin the current plan. Items are indented to indicate groups
of related actions. Thus, if a subsystem needs to be loaded, the individual files or sub-
systems that comprise it are listed underneath, and are indented with respect to it.

27.8 Examining output in the output view

27.7.5 File description area

The File Description area displays information about any system member selected in
the Plan area. If no such member is selected, information about the current system (the
one named in the System area) is shown instead. The same pieces of information are
shown asin the tree view. See Section 27.5.3 on page 391 for details. As with other
views, items selected in this area can be operated on using commands in the Descrip-
tion menu.

27.7.6 Executing plans in the preview view

Onceyou have created aplan in the preview view, there are anumber of ways that you
can execute either the whole plan, or individual actions within that plan.

As aready mentioned, to execute individual actionsin the plan, select them in the
main area and then click the Execute Events button.

To execute the whole plan, just choose the relevant command:

» Choose the menu command Systems > Load or click the 2 button to execute
aplan for loading the system.

« Choose the menu command Systems > Compile or click the £ button to exe-
cute a plan for compiling the system.

« Choose the menu command Systems > Compile and Load or click the £ but-
ton to execute a plan for both compiling and loading the system.

Note that you can also execute the whole plan by choosing Edit > Select All and then
clicking Execute Events.

27.8 Examining output in the output view

The output view can be used to view and interact with messages that have been gener-
ated as aresult of actions performed in the System Browser. This largely consists of
compilation and load messages that are generated when system plans or individual
actionsin a plan are executed.

397

27 The System Browser

398

Click on the Output tab to switch to the output view. The System Browser appears as
in Figure 27.4.

Figure 27.4 Viewing output in the System Browser

System Erowser 1

Works File Edit View Description Systems History Help

L RD R PR I v | ¥ B @Y

System: | DEMO v X %
Tree | Text | Preview | Output

; (TOP-LEVEL-FOEM 0) &
; (TOP-LEVEL-FOEM 1)

; MY-FUNCTION

;3 Processing (Cross Reference Information
; Loading fasl file /tmp/demo-utils.B4ufasl
; Loading fasl file /tmp/demo-functions.64ufasl

--—- Press Space to continue ————I l:
L

Ready.

The output view has the areas described below.

27.8.1 System area

Aswith the tree view, the current system is shown here. See “ System area’ on page
390 for details about this area.

27.8.2 Output area

The largest areaiin thisview is used to display all the output messages which have
been generated by the System Browser. This area has the same properties as the Out-
put Browser described in Chapter 22, “The Output Browser”. In particular you can
interact with highlighted compiler warnings and notes in the same way asin any out-
put tab in the IDE.

27.9 ASDF Integration

27.9 ASDF Integration
The System Browser tool allows integration of source code managers.
Thereis an example for integrating ASDF in

(lw:example-file "misc/asdf-integration.lisp")

The interface is described in some detail in the remainder of this section, but the
example aboveis sufficient to alow you to use ASDF in the LispWorks IDE.

27.9.1 Interface to source code managers

The interface comprises afunction scm: add- system-namespace Which must be
called, and a set of generic functions for which methods need to be defined.

scm:add-system-namespace adds a namespace of "systems', which:
e are objects that may have children
e themselves may be "systems"
e are associated with pathnames
* haveoperations : 1oad and : compile defined for them

LispWorks has its own built-in source code manager (1w:defsystem, 1w: compile-
system, 1w: load-system, 1lw:concatenate-system and related functions). A
widely-used source code manager is ASDF.

In the LispWorks IDE tools, a system name that contains a colon isinterpreted as
namespace : systemname

To find the system LispWorks applies the finder specified in scm: add-system-
namespace t0 the string systemname. A system name without a colon is searched
(using the finder) in al the known namespaces. Note that this means that a system
name without a colon may match several systemsin different namespaces.

In addition to the integration interface, there are new functions which look at the
namespaces and systems.

The most important symbolsin the integration interface are described in the remainder
of this section. "module” means one of the objects that is returned by the finder in
scm:add-system-namespace OfF by the system-lister in scm:add-system-

399

27 The System Browser

400

namespace Of by scm:module-children. A "system" isamodule for which
scm:module-is-system-p returnstrue.

scm:add-system-namespace Function
add-system-namespace hame &key finder system-lister name-lister

The function scm: add- system-namespace tells LispWorks about another system
namespace.

name must be a string. It is compared case-insensitively. The name must be different
from »Lw», which is the namespace for the LispWorks built-in 1w: defsystem Sys-
tems.

finder must be supplied as afunction or symbol which takes one argument, a string. If
there is an exact match (case-insensitive) it returns a module object or alist of module
objects. The finder needs to be error-free when called with a string.

system-lister must be adesignator for afunction which takes no argument, and returns
alist of the known systemsin the namespace.

name-lister is optional. If supplied, it must be a designator for a function which takes
no argument and returns alist of the names of the systemsin the namespace. If itisnot
supplied, the system uses system-lister and maps scm:module-name ON the result.

scm:module-name Generic Function
module module => name

Thefunction sem:module-name Must be defined for any module. It takes a module
and returns its name.

scm:module-is-system-p Generic Function
scm:module-is-system-p module => boolean

The generic function sem:module-is-system-p returnstrueif the moduleisa"sys
tem". That is, it has children. The default method returns false.

27.10 Configuring the display

scm:module-children Generic Function
scm:module-children module => list-of-modules

The generic function sem:module-children returnsthe children of the module, if
any. The default method returnsnil. This generic function is called only on "sys-
tems", that is after checking that scm:module-is-system-p returned true.

27.10 Configuring the display

The System Browser allows you to configure the display so that it best suits your
needs. The commands available for this are described below.

27.10.1 Sorting entries

Entriesin the System Browser can be sorted in a number of ways. To change the sort-
ing, choose Works > Tools > Preferences... or click #& to display the Preferences
dialog, and then select System Browser in the list on the left side of the dialog. Click
on the General tab to view the sorting options.

By Name Sorts entries in the main area of the current view (thetreein
the tree view and the Files areain the text view) according to
the symbol name.

By Package Sorts entries in the main area according to their package.
Unsorted Leave entries in the main area unsorted. Thisisthe default
setting.

27.10.2 Displaying package information

As with other tools, you can configure the way package names are displayed in the
System Browser, using the Package box. See “ Displaying packages’ on page 45 for
full details.

401

27 The System Browser

402

27.10.3 Display of the toolbar

You can control whether the System Browser displays the compile/load and history
toolbars by the option Show Toolbar, as described in “ Toolbar configurations” on

page 26.

27.11 Setting options in the system browser

The Systems > Compilation Options menu allows you to set options which apply
whenever you compile or load system members. Each of the commands described
bel ow toggles the respective option.

Choose Systems > Compilation Options > Force to force the compile or load opera-
tion to be performed. If you are operating on a whole system (as opposed to system
members which are files) this means that actions for all the members are added to the
plan.

Choose Systems > Compilation Options > Source to force the use of Lisp source
rather than fadlsin operations on the system.

Choose Systems > Compilation Options > Preview to automatically preview the plan
prior to execution of acompile or load instruction chosen from the Systems menu.
This switches the System Browser to the preview view and allows you to see what
operations are going to be performed, and to change them if you want. See “ Generat-
ing and executing plansin the preview view” on page 394 for full details about pre-
viewing plans.

Choose Systems > Concatenate... to concatenate the selected system into asinglefasl
after compiling it. You will need to supply the name of the single fad file, when
prompted.

28

The Window Browser

28.1 Introduction

The Window Browser lets you examine any windows that have been created in the
environment. You can examine not only the environment windows themselves, but
also more discrete components of those windows, such menus and menu commands.
To create a Window Browser, choose Works > Tools > Window Browser or click

in the Podium.

403

28 The Window Browser

The Window Browser only has one view, shown in Figure 28.1.

Figure 28.1 The Window Browser

Window Browser 1

Works File Edit View Description Windows History Help

IR AR R I =K IK.
Graph: l#-:Ll SPWORKS-TOOLS::APPLICATION NIL 40F01DCCZ2B=

"Window Browser 1"c
"System Browser 1"©
"Symbol Browser 1"©

e T

LispWorks=>® i:color- -
<Hspivarks> {capi:color-screen} "Editor 1 - demo-defsys.lisp"®
"Listener 1"©
"LispWorks 6.0.0 on higson.cam.lisp
< e | E
Description:

Window: #<LISPWORKS5-TOOLS:EDITOR "Editor 1 - demo-defsys.lisp'
Class: LISPWORKS-TOOLS.EDITOR
NMame:
Representation: #<CAPI-GTK-LIERARY: . TOP-LEVEL-INTERFACE-REPRESE
Interface:
Geometry: #<CAPI::PANE-RECORDING-GEOMETRY NIL [688x591 at N
Screen: #<CAPI:COLOR-SCREEN 0 GTK=

q | [

Ready.

The Window Browser has three sections.

28.1.1 Graph box

The Graph: text box shows the window object that is being examined; that is, the the
window at the root of the graph.

28.1 Introduction

28.1.2 Window graph

The window graph displays the current window and all its subwindows. The generic
facilities available to al graphs throughout the LispWorks IDE are available here; see
Chapter 6, “Manipulating Graphs’ for details.

When you first create a Window Browser, it automatically browses the parent window
of the whole environment. A graph of the parent window together with its children—
each individual window that has been created—is drawn in the main area.

Select any item in the graph to display its description in the Description: area.

To see the children of an unexpanded node in the graph, click on the unfilled circle to
itsright. To make one of the child windows be the root of the graph, select it and
choose Windows > Browse - Window.

Any items selected in the graph can be operated on using commands in the Windows
menu. If no items are selected, the commands in this menu apply to the root window
of the graph. See Section 28.3 on page 409 for details.

28.1.3 Description list

The Description: are gives a description of the item selected in the Graph: area. If
nothing is selected, a description of the window at the root of the graph is shown. The
following information is listed:

Window The object which represents the selected window
Class The class of the window object.
Name The name of the selected window.

Representation The CAPI representation of the selected window.

Interface The underlying native window system object which repre-
sents the selected window.

Screen The name of the screen on which the selected window isdis-
played.

405

28 The Window Browser

406

Any item selected in the Description list can be operated on by using commands under
the Description menu. This menu gives you access to the standard actions commands
described in Section 3.8 on page 48.

28.2 Configuring the Window Browser

You can configure the Window Browser using the Preferences dialog. To do this,
choose Works > Tools > Preferences.... or click # to display this dialog, and then
select Window Browser in thelist on the | eft side of the dialog.

Figure 28.2 Window Browser Preferences

General | Graph Layout | Components

Display Component

Layouts Panes
Pinboard Objects [«] Menus
Menu ltems Toolbar Items

Graph Objects

Print Using
(® Short Names () Long Names

The Window Browser Preferences has three tabs:

e The General tab contains options for configuring general properties of the Win-
dow Browser.

e TheGraph Layout tab contains options for configuring options specific to the
graph. See Section 6.6 on page 87 for a description of these options.

* The Components tab contains options for configuring properties unigue to the
Window Browser.

28.2 Configuring the Window Browser

28.2.1 Sorting entries

Entries in the Window Browser can be sorted using the Sort panel in the General tab

in the Preferences dialog. Choose the sort option you require from the list available.
By Name Sorts items alphabetically by name.

By Package Sorts items alphabetically by package name.

Unsorted Displaysitemsin the order they are defined in. Thisisthe
default setting.

28.2.2 Displaying package information

Aswith other tools, you can configure the way package names are displayed in the
Window Browser using options available in the General tab.

Check or un-check Show Package Names to turn the display of package namesin the
Window Browser on and off.

Specify the process package of the Window Browser in the Package text box.

28.2.3 Displaying the toolbar

You can control whether the Window Browser displays its history toolbar by the
option Show Toolbar in the General tab of the Preferences, as described in “ Toolbar
configurations’ on page 26.

28.2.4 Displaying different types of window

There are several types of window object which can be displayed in the Window
Browser, and you can configure which types are displayed using the Display Compo-
nent panel of the Components tab inthe Preferencesdialog. Six options are available;
select whichever ones you want to display.

Below, the current window means the window that is at the root of the graph.

407

28 The Window Browser

408

Layouts Displays the mgjor layouts available to the current window.
For the parent window of the environment, this means all the
windows that have been created. For an individual window,
this means the configuration of the different panes in that
window.

Panes Displays CAPI panesin the current window.

Pinboard Objects Displays any pinboard objects in the current window. See the
CAPI User Guide for afull description of pinboard objects.

Menus Displays any menus available to the current window.

Menu Items Displays any menu items available to the current window.
This option only takes effect if Menus is selected as well.

Graph Objects Displays any graph objects in the current window. See the
CAPI User Guide for afull description of graph objects.
Toolbar Items ~ Displays any toolbar items availabl e to the current window.

By default, al these options are selected in the Window Browser.

28.2.5 Displaying short or long names

By default, the Window Browser gives each item in the graph a short name. You can
also display the complete symbol name for each item if you wish, as displayed in the
Window line of the Description list. You can configure this option from the Compo-

nents tab of the Preferences.

Select Long Names in the Print Using panel to display the complete symbol name of
each item in the graph.

Select Short Names inthe Print Using panel to display the short name for eachitemin
the graph. Thisisthe default setting.

Bear in mind that graphs are larger when you display them using long names, and can
therefore be more difficult to examine.

28.3 Performing operations on windows

28.3 Performing operations on windows

You can perform anumber of operations on any windows selected in the Graph area
using the commands in the Windows menu. If no items are selected in the Graph area,
the commands in this menu apply to the root window of the graph.

The Windows menu gives you access to the standard actions commands described in
Section 3.8 on page 48.

28.3.1 Navigating the window hierarchy

Choose Windows > Browse Parent to display the parent of the current window. This
takes you back up one level in the window hierarchy.

Choose Windows > Browse Screens to examine the parent window of the environ-
ment once again—this takes you back up to the root of the window hierarchy.

28.3.2 Window control
There are several commands which give you control over the current window.

Choose Windows > Lower to push the current window to the bottom of the pile of
windows on-screen.

Choose Windows > Raise to bring the current window to the front of your screen.
Choose Windows > Quit to quit any windows selected in the graph.

Choose Windows > Destroy to destroy any windows which are selected in the graph.
You are prompted before the windows are destroyed.

409

28 The Window Browser

410

29

The Application Builder

29.1 Introduction

The Application Builder makes it easier to create applications, typically by calling
deliver. Thistool helpsyou to control and debug the delivery process. On Intel Mac-
intosh computers, it also eases the building of universal binaries.

To create an Application Builder, choose Works > Tools > Application Builder or
click @ in the Podium.

Note: the Application Builder needs deliver (Of save-image) functionality and
thereforeit is not available in LispWorks Personal Edition.

411

29 The Application Builder This chapter does not apply to the Personal Edition

On first use the Application Builder appears all set to build the CAPI example Hello
World, as shown in Figure 29.1 below.

Figure 29.1 The Application Builder with the Hello World example

Application Builder 1
Works File Edit Build Help

QEUESLEFFRE

Build script: ;pwurksfliI:w’E-D-D-Da’exampleﬂdelivem’helIﬂa’deliver.liSd =3

State: Size: || Ahort

Saved image:
Application Build output:

[

Ready.

Choose Build > Build or click % to build the Hello World example.

Then choose Build > Run or click % to run the Hello World example that you just
built.

Note that these Application Builder commands are also available on the Build menu.

29.1.1 What the Application Builder does
Thistool helps to control and debug the delivery process.

To usethe Application Builder, you need to configureit to know about it your delivery
script, and then invoke the Build command. This runs LispWorks in a subprocess with

412

This chapter does not apply to the Personal Edition 29.2 Preparing to build your application

the script. The Application Builder displays the output, and reports on the progress of
Delivery. It aso alows you to edit the script, and to run the built application.

Note: the Application Builder runs the build in a subprocess. It does not save the Lisp-
Works I DE image containing the Application Builder tool. The built application con-
tains code loaded by the delivery script, but does not inherit any settings you have
made in the LispWorks IDE image.

Note: The Application Builder does not help you in writing your application.

Note: In LispWorks 4.4 and previous versions, you would generaly need to write a
shell script which runs LispWorks with the appropriate command arguments for deliv-
ery. The Application Builder obviates the need for such a script, allowing you to com-
plete the delivery process entirely within the LispWorks IDE.

29.2 Preparing to build your application

First you will need a script which loads your application code and then callsdeliver.
Delivery scripts are described in detail in the LispWorks Delivery User Guide. If you
do not already have a delivery script, the Application Builder can help you to create a
simple script, which you can modify as needed.

It is aso possible to use the Application Builder with a script that calls save - image
rather than deliver.

29.2.1 The script

The delivery script isa Lisp source file, which at a minimum loads patches and your
application code, and then calls deliver. The script may do other things, such as con-
figuring your application, though in general you should try to keep it assimple as
possible.

29.2.1.1 Using your existing delivery script

If you already have an appropriate delivery script (because you already delivered your
application before), click the li_r_ button to the right of the Build script pane and select
your script file. The Application Builder now displays the path to your script in its
Build script pane.

413

29 The Application Builder This chapter does not apply to the Personal Edition

414

29.2.1.2 Creating a new delivery script

Suppose that you aready have afile compile-and-load-my-app.1lisp that you use
to compile and load your application. Then you can create a suitable delivery script
with the help of the Application Builder.

To create the new delivery script:

1. Choose Build > Make a New Script or click [in the Application Builder tool-
bar.
Thisdisplays adialog as shown in Figure 29.2, page 415.

2. Enter the pathto compile-and-load-my-app.1lisp inthe Loading script
pane. You can use the |i button to locate the file.

3. Enter thedeliver arguments.

Note: Level defaultsto O, which isagood choice the first time you deliver your
application. You will probably want to increase the Delivery level |ater, for
reasons explained in the LispWorks Delivery User Guide.

This chapter does not apply to the Personal Edition

4. Check the calculated Script Name (and modify it if desired), and click OK.
Figure 29.2 The New Delivery script dialog

MNew Delivery script

Delivery script details

System name:
Deliver Arguments
Target Path | ftmp/my-app
Start Up Function | my-star-function

Level Features

Script Name
jtmp/delivery-script.lisp

29.2 Preparing to build your application

Loading script: | ftmp/compile-and-load-my-app.lisp

0|~ | @ CAPI O Multi Threaded O Single Threaded

8 Cancel

The Application Builder now displays the path to the new script inits Build script
pane. The new script will load patches, load your file, and then call deliver, SOme-

thing likethis:

(in-package "CL-USER")
(load-all-patches)
(load "compile-and-load-my-app")

(deliver 'my-start-function "my-app" 0)

415

29 The Application Builder This chapter does not apply to the Personal Edition

416

29.3 Building your application

Once you have a script name in the Build script pane, build your application by choos-
ing Build > Build or clicking the \a toolbar button. The Application Builder invokes
LispWorks in a subprocess, with the script asits -build argument.

If desired, you can abort the build process by pressing the Abort button.

The State pane displays the status of the building operation. After a successful build,
the status changes to "Done" and the tool displays the name and size of the saved
image in the Saved Image and Size panes, as shown in Figure 29.3 below.

Figure 29.3 The Application Builder after a successful build

Application Builder 1
Works File Edit Build Help

=] T &

[ER Ly ¥ eg-&

Build script: | ftmp/delivery-script.lisp =
State: |Done Size: | 404 MB Abort

Saved image: /tmp/my-app
Application Build output:

Total allocation 44259592 (0x2A35908), total sizex [*]
60780544 (0x39F7000)

Shaking stage : Saving image
Build saving image: /tmp/my-app
Build saved image: /tmp/my-app

Delivery successful - ,ftmp,fm‘y—appl l:
L

This chapter does not apply to the Personal Edition 29.4 Editing the script

29.4 Editing the script

The Application Builder makesit easy to find the script. Choose Build > Edit Script or
click the gL toolbar button. Edit the script using the Editor tool that this displays. See
“The Editor” on page 165 for more information about using the Editor tool.

Before it starts a build, the Application Builder saves the editor buffer displaying the
script if you have modified that buffer. This behavior can be switched off - for the
details, see “ Configuring the Application Builder” on page 419.

29.5 Troubleshooting

During the build, the output is displayed in the Application Build output pane. Thisis
anormal editor text box which you can search and edit in the usual way.

If thereis an error during the build, a backtrace is generated and the subprocessimage
exits.

29.5.1 Viewing errors

To view the error message choose Build > Display Error or click the €3 toolbar but-
ton.

To view the error message and the backtrace in an Editor tool choose Build > Display
Backtrace or click the 1= toolbar button. Most errors can be resolved after checking
the backtrace.

29.5.2 Clearing the output

To clear the Application Build output pane choose Build > Clear Output or click the
2% toolbar button.

You can set the tool to do this automatically - for the details see “ Configuring the
Application Builder” on page 419.

29.6 Running the saved application

Once you have successfully built your application, you can run it from the Application
Builder.

417

29 The Application Builder

418

If the application can run without arguments you can run it by choosing Build > Run

or clickingthe # toolbar button.

29.6.1 Passing arguments and redirecting output

If the application requires command line arguments, or you want to see what it writes
to the standard output, or you need some other setups, choose Build > Run With Argu-

This chapter does not apply to the Personal Edition

ments or click the & toolbar button. This raises adialog, shown in Figure 29.4

bel ow.
Figure 29.4 The Run With Arguments dialog

Application Builder 1

Running specification:

Execute

Arguments

42|

Output:

Qutput File: | my-app-output.txt

(O Application Builder Output) Background () System Default @ File

#® Cancel

«? OK

To pass one or more command line arguments to your application, enter these in the

Arguments pane.

To redirect the output of your application, select an option in the Output area.

Click OK to run your application with the settings you specified. The State pane

shows when the application is running and reports when it has finished.

This chapter does not apply to the Personal Edition 29.7 Configuring the Application Builder

29.6.2 Executing a different file

The Run With Arguments dialog also allows you to set a different file to execute,
rather than the saved image. Thisisuseful if your application needs some setups, or if
it needs to be invoked by some other program (for example, when it is a dynamic
library).

To execute a different file from the one you built, enter the path in the Execute pane.

29.6.3 Killing application processes

Application processes that were invoked by the Application Builder can conveniently
be killed if needed.

To kill all such processes, choose Build > Kill All or click the & button.

To kill just one such process choose Build > Kill Application or click the dropdown to
theright of the £ button. This raises amenu listing the invoked applications that are
till running in the chronological order in which they wereinvoked. Select one item
from the menu to kill that process.

29.7 Configuring the Application Builder

You can configure the tool to suit your needs using the Preferences dialog. To do this,
choose Works > Tools > Preferences.... or click % , and then select Application
Builder in thelist on the | eft side of the Preferences dial og.

Figure 29.5 Application Builder Preferences

General | Build
[] Clear output before doing build

E&ave the build script before doing I:buildé

[] Move to the end of the output when start building

To make the Application Builder clear the output before each build, select the Clear
output before doing build option.

419

29 The Application Builder This chapter does not apply to the Personal Edition

420

To prevent automatic saving of your edited script before abuild, deselect the Save the
build script before doing build option.

To make the Application Builder ensure that the cursor is at the end of the current out-
put before each build, select the Move to the end of the output when start building
option.

You can control whether the Application Builder displays itstoolbar by the option
Show Toolbar on the General tab, as described in “ Toolbar configurations’ on page
26.

Click OK in the Preferences dialog to confirm your options and save them for future
use.

| ndex

Symbols

$ variable 257

* variable 13, 18, 252, 316
** variable 13

*** variable 13
package variable 200
.lispworks file 31

A

aborting commands in the editor 186
accelerators

for tools 23
action callbacks 306
Actions menu 48-50
active-finders variable 230
add- system-namespace function 400
Alt key

use of 169
application builder 411420
Arguments command 202, 318
ASDF 229, 399
Attributes command 288, 291
Attributes menu 249

Clip 253

Copy 253

Inspect 249

B

Backtrace command 320
backtraces 148

binding $ to the current inspector object 257
binding frames 153
Bindings button 153
Bindings command 320
Break command 336
Break on Access command 249
Break on Read command 249
Break On Return from Frame command 151
Break on Write command 249
breaking a process 336
breaking processes 42
breakpoints
inthe editor 198
Browse All Systems command 391
Browse command 49, 63, 405
variationsin name 49
Browse Metaclass command 105, 108, 110,
114, 117, 119
Browse Parent command 409
Browse Parent System command 45, 201, 388
Browse Screens command 409
Browse Symbols Like command 50, 319
Browse Systems For Directory command 391
browser-location variable 69
browsers 65
browsing
Common Lisp classes 95-119
compilation conditions 131-137
errors 131
function calls 203-212
generic functions 213-222
HTML documentation 65
online manuals 65
output 12, 327-331
selected object, class of the 49, 318
symbols 263-269

421

422

systems 45, 388402

window definitions 403-409
Buffer Changed Definitions editor

command 177

buffers

closing 185

swapping between 185
Buffersmenu 173, 195

Compile 197

Evaluate 196

Trace. See Trace menu

Undefine 202
bugs, reporting 320
Build command 412, 416
Build menu

Build 412, 416

Clear Output 417

Display Backtrace 417

Display Error 417

Edit Script 417

Kill All 419

Kill Application 419

Make aNew Script 414

Run 418

Run With Arguments 418
building

applications 411-420
By Name option 53
By Package option 53

C
call frames 147, 152
callbacks

action 306

extend 306

retract 306

selection 306

specifying 305-307
catch frames 153
Catchers button 153
:center keyword 301
check components 283

choosing menu commands Xiii

class browser 95-119
Classarea 104

current class, operations specific to
the 105, 108, 110, 114, 117, 119

description 3

Description area 107, 110, 116

examining aclass 101
Filter area 104
filtering information 99

Function description area 113

functionslist 113

functionsview 112-114

generic functions, operating on 114

Graph area 110

graph view 108-111

hierarchy view 101

Include Accessors button 113

Include Inherited button 113

inherited dots 98

Initargs area 116

initargsview 115

invoking on the current expression 318

invoking on the selected object 49

menu commands, see menu or command
name

methodslist 113

overview of the 95

Precedence area 119

precedence view 117

Slot description area 105

dlot information 98-100

Slotsarea 104

dotsview 98-100

sorting information 102

tracing classes from the 114

undefining functions and methods 114

See also classes

Class command 16, 49, 96, 99, 104, 318
classes 95-119

changing slot values in the inspector 250—
252

column-layout 278

displaying graphs of 108-111

examining 101

examining functions and methods defined
on 112-114

inherited dotsin 98

initargs 115

inspecting local dlots 247

interface 273

list-panel 99

operations specific to the current class 105,
108, 110, 114, 117, 119

precedencelist 117

push-button-panel 101

row-layout 278

tracing 114

See also class browser

Classes menu

Browse Metaclass 105, 108, 110, 114, 117,
119

objects operated on by the 105, 107, 110,
114,117, 119
Clear Output command 417
Clip command 124
clipboard
generd use 40-41
interaction with UNIX clipboard 41
usagein editor 187
See also clipboard, kill ring, UNIX clipboard
Clone command 27, 55, 186
Close command 185
interface builder 286
closing
editor buffers 185
Collapse Nodes command 84
collapsing graphs 83
colors
of codein Lisp mode 36
column-layout class 278
command line arguments
-build 78
-eval 78
-init 78
-load 78
-lw-no-redirection 78
-siteinit 78
Command to Key command 202, 326
commands
completion of 169
repeating 43
common features in the environment 21-63
common featuresin the IDE
See also under graphs
Common Lisp
classes. See classes
debugging 139-155
displaying documentation for
expressions 318
displaying documentation for selected
object 50, 150
evaluating forms 315-316
file extension 182
indentation of formsin source code 201
prompt 315
systems. See system
Common Lisp symbols 35
Common LispWorks podium 93-94
compilation conditions browser 131-137
pathnames 135
preference dialog 133
typesto display 135
Compilation Options menu

Force 402
Preview 402
Source 402
Compileand Load command 44, 148,198, 392,
397
Compile and Load... command 198
Compile command 44, 197, 392, 397
Compile Region command 319
in editor 197
Compile... command 197
compiler output 197
compile-system function 386
compiling code
editor 197-198
compiling filesin the listener 44
completion 59, 169
in class browser 101, 153
dynamic 36
in generic function browser 215
in-place 30, 36
using Tab 60
Concatenate... command 392, 402
Condition menu
Actions. See Actions menu
Report Bug 150
confirmer
description 292
consistency inthe | DE. See common featuresin
the IDE
contain function 14, 99, 252
Contents radio button 68
Control key, use of xiv, 169
controls
choosing xiii
conventions used in the manual Xi—xv
Copy command 50, 187, 189, 251, 252
in Actionsmenu 354
interface builder 288
standard action command 49
Copy Object command 4041
copying windows 27
creating new files 44, 182
current
object. See selected object
package of any tool 46
prompt 315
value, operating on 319
current buffer 195
current class, operations specific to the 105,
108, 110, 114, 117, 119
current definition 195
current expression 195

displaying lambdal list for 202, 318
displaying value 202, 318
stepper breakpoint 318
toggling stepper breakpoint 318
tracing 318
current form
macroexpanding 319
walking 319
Customize menu
Reusable 26
Cut command 187, 189
interface builder 277, 279, 284, 288, 298
Cut Object command 40-41

D

Debug command 337
Debug menu
Debugger 10, 139, 140, 146, 148, 149
Listener 10
Restarts 320
debugger 139-155
abort restart 146
backtrace tree 143
binding frames 153
cal frames 147, 152
catch frames 153
colors of variables 143
continue restart 146
controlling from the listener 320
debugger tool 320
description 145
displaying documentation for object in
current frame 150
example session 147-150
finding source code for object in current
frame 150
handler frames 153
invisible frames 153
invoking 141
invoking from the process browser 337
invoking from the tracer 54
menu commands in the listener 320
restart frames 153
restart options 146-147
stack 147
stack frames 147
See also debugger tool

Debugger command 10, 139, 140, 146, 148,

320
debugger tool 139-155
Backtrace area 142

buttons 145

Condition area 142
invoking 139
invoking from notifier 141
package information 153
types of frame, displaying 152
See also debugger
debugging a process 337
defclass macro 113
Definitions menu 175, 176, 195
Compile 197
Evaluate 196
Generic Function 202
Trace. See Trace menu
Undefine 202
defsystem macro 228, 388
examples of use 387
deleting text in the editor 184-185
See also kill ring
Describe Generic Function editor
command 213
Describe System editor command 388
description
of compilation conditions 133
Description menu 133, 208, 216
Listen 268
Deselect All command 41, 158, 187
Destroy command 409
Display as Confirmer command 292
Display as Dialog command 292
Display Backtrace command 417
Display Borders command 292, 293
Display Error command 417
display function 310
pispLay UNIX environment variable 5
displaying
package information 4547
windows 22
display-message function 309
Documentation command 50, 150, 318
documentation, online. See online help
$ variable 257
dynamic library 419

E
Edit > Object menu
Copy Object 40
Cut Object 40
Paste Object 40
Edit menu 39
Copy 39, 50, 187, 189, 288

Cut 39, 187, 189, 277, 279, 284, 288, 298

Deselect All 41, 158, 187

Find 191, 194
Find Next 42, 193
Find Next, for graph view 82
Find, for graph view 82
Find... 42
interface builder 287
Link. SeeLink Menu
Paste 39, 104, 187, 215, 288, 298
Replace 194
Replace... 42
Search Files... 223
Select All 41, 158, 187, 397
Undo 39, 187

Edit Script command 417

Editing menu
Command to Key 202, 326
Key to Command 202, 326

editing the history list 44

editor
aborting commands 186
breakpoints 198
buffersview 171, 185
buffers. See buffers
changed definitionslist 175
closing buffers 185
compiling source code 197-198
creating anew window 186
creating files 44, 182
current expression, displaying value 202
current package and displayed package 181
definitionslist 174
definitions, operating on 201-202
deleting text 184-185
Emacs, comparison with 165
evaluating source code 196-197
expressions, operating on 201-202
History menu 185, 186
indenting forms 201
inserting files into the current buffer 185
inserting text 184-185
invoking 166
keyboard commands, use of 169
kill ring. Seekill ring
Lisp-specific commands 195-202
macroexpanding formsin the 202
menu and keyboard commands,

digtinctions 182
menu commands. See menu or command
name

moving around in the buffer 183-184
new files 44, 182
online help 202, 326

opening files 44, 166, 181
opening recent files 45
output view 170
overview 3
package information 181
package usage 200
repeating commands 187
replacing text 194
reverting to last saved version 182
saving files 181, 185
saving text regions 182
scrolling text 184
searching 191-194
sorting entries 180
swapping between buffers 185
tracing 200
undefining symbols 202
undoing commands 187
using the clipboard 187
viewing two sections of the samefile 186
views available 166
walking forms 202
editor commands
Buffer Changed Definitiomns 177
Describe Generic Function 213
Describe System 388
finding keyboard command for 326
Indent Selection or Complete
Symbol 60
Search Files 223
shell 360
View Source Search 178
Visit Tags File 170
Emacs 32
comparison with built-in editor 165
encoding 38
Enter Search String dialog 67
environment
common features 21-63
quitting 30
EOF command 360
error conditions 133
Escape key, use of xiv, 169
Evaluate command
in editor 196
Evaluate Last Form in Listener editor
command 326
Evaluate Region command
in editor 196
in listener 318
evaluating
codein the editor 196-197

425

426

forms 315-316
event
next 321
previous 321
repeating 44
examining objects 247
execute mode 320
Exit command 7, 30
Expand Nodes command 84
expanding graphs 83
Expression menu 195
Arguments 202, 318
Browse Symbols Like 319
Class 318
Compile Region 197, 319
Documentation 318
Evaluate Region 196, 318
Find Source 31, 318
Function Calls 319
Generic Function 319
Inspect Value 318
Macroexpand 202
Macroexpand Form 319
Toggle Breakpoint 318
Trace. See Trace menu
Vaue 202, 318
Walk 202
Walk Form 319
expressions
browsing the class of 318
displaying documentation 318
finding source code 318
extend callbacks 306
extended editor commands, finding keyboard
command for 326
:extended-selection keyword 301
external format 38

F

£g UNIX command 360
Filemenu 7, 94, 173, 174
Browse Parent System 45, 201, 388
Close 171, 185, 286
Compile 44, 197
Compileand Load 44, 148, 198, 199
description 44-45
Insert 185
Load 44, 197, 198, 199, 388
New 44, 182, 273, 297, 310
Open 44, 166, 170, 182
Open... 274
Print 45, 183

Recent Files 45, 166
Revert to Saved 182, 286
Save 170, 174, 182, 286, 307, 311
Save All 185, 286
Save As 182
Save As... 286
Save Region As 182
filenames
completion of 169
extensions for CL files 182
files
compiling in listener 44
creating new 44, 182
inserting one into another 185
loading 44
navigating in the editor 183-184
opening 44, 166, 181
opening recent 45
printing 45
reverting to last saved version 182
saving 181
saving all 185
filtering information 55-58, 99, 396
ininspector 245
filtering results 55
filters 55
Find command 42
in editor 194
in graph view 82
Find Next command 42, 193
in graph view 82
Find Source command 31, 50, 150, 166, 318
in Debug menu 320
displaying list of results 31
shortcut in debugger tool 149
Find... command 42
in editor 191
Force command 402
forms
compiling in editor 197-198
evaluating 315-316
evaluating in editor 196-197
indentation of 201
re-evaluating 316-318
Frame menu
Break On Return From Frame 151
Documentation 150
Find Source 149, 150, 166
Inspect Function 151
Method Combination 151, 217
Restart Frame 151, 153
Restart Frame Stepping 151, 364

Return from Frame 151
Trace. See Trace menu
function call browser 203-212
By Name command 210
By Package command 210
Callees area 209
Cdlersarea 210
description 203
Documentation area 208
Function area 205
Function description area 208
Function menu 212
Trace submenu 212
Graph area 205
graphing callers and callees 205
invoking on selected object 50, 319
menu commands, see menu or command
name
operating on functions 212
package information 211
Show Package Names command 211
sorting entries 210
text view 208
tracing from 212
Unsorted command 210
views available 203
Function Calls command 50
Function menu 215
in the profiler 354
Trace. See Trace menu
functions
apropos 263
compile-system 386
contain 14, 99, 252
deliver 411
display 310
display-message 309
save-image 411, 413
undefining 114
Functions menu
in the class browser 114
in the function call browser 212

G

generic function browser 213-222
Argumentstypes area 220
description 213
Description area 216
displaying signatures 220
Filter area 215
Function area 215
invoking on selected object 50, 202

menu commands. See menu or command
name

Method combination list 220

method combinations, viewing 217

methodslist 216

operating on signatures 220

Signatures area 219

Generic Function command 50, 202, 263, 319,

354

generic functions

browsing from listener 319

in class browser 114

defined on selected object 50, 202
get-inspector-values 257
global preferences

When modified buffers 30
graph layout menu 81

Collapse Nodes 84

Expand Nodes 84

Preferences 87

Reset Graph Layout 85
graph view

system browser 389-391
graphical user interface. See interfaces
graphs 71-7?, 81-91

altering breadth 88

altering depth 88

children function 307, 310

different layouts 89-91

expanding and collapsing nodes 83

menu commands. See menu or command

name

searching 82

sorting items 51
GUI. Seeinterfaces

H

handler frames 153
Handlers button 153
Help menu 65, 94
Editing. See Editing menu
Lisp Knowledgebase 69
LispWorks Patches 69
Manuals 65
On Symbol 69
OnTool 68
Search 67
help. See online help
Hidden Symbols button 153
hierarchy view
in class browser 101
highlight

427

428

compiler messages 35
interactive input 35
matching parentheses 35, 195
selected text 35

history list 43
editing the 44
inthe listener 317-318
repeating next event 44, 321
repeating previous event 43, 321
searching the 322

History menu 43
in editor 185, 186
inthe listener 318
interface builder 274
inlistener 317-318
Modify 44
Next 44
Previous 43

Include Inherited Slots button 98, 104
Include Inherited Slots checkbox 17
incremental search 193
Indent Selection or Complete Sym-
bo1l editor command 60
Index radio button 68
initargs of dlot, displaying 105
initform of dot, displaying 105
initidlization file 31
in-package 200
in-place completion 30
Insert... command 185
inserting filesin editor 185
inserting text in editor 184-185
Inspect command 14, 27, 50, 243, 248, 250,
267, 336
Inspect Function command 151
Inspect Value command 318
inspecting listener values automatically 257
inspector 243-261
changing values 249-252
description 244
display options 253-256
filtering display 245
inspecting selected object 50
menu commands. See menu or command
name
overview 3
simpleuse 247
sorting entries 254
tracing 249
tracing in the 249

viewing local classdlots 247

Inspector command 243

interface builder 271293
adding your own code 284
attribute categories 290-291
Attributes dialog box 289, 300, 303
button panels 277
Check Component button 283
code area 285
codeview 285, 305
Component button 282
current interface 276
current package 278
default names of elements 279, 299
default names of menus 281
Edit menu 287
editing code 285
example of use 295-311
interface area 276
Interface menu 291-293
interfaces, creating 273-274, 297
interfaces, loading 274-276, 286
introduction 271
invoking 272
Item button 281, 302
layout hierarchy area 277, 297
layouts view 276-279, 297-299
Menu Bar button 281
Menu button 281, 302
menu hierarchy area 281, 297
menus view 280-284, 302-305
methods of use 284
operating on elements 293
Radio Component button 283

rearranging components 287-288, 298—299

saving code 286-287, 307, 310
setting attributes 288-291, 299-302
switching between interfaces 274
views, description 272
See also interfaces

interface class 273

Interface menu 63
Attributes 291
Display as Confirmer 292
Display as Dialog 292
Display Borders 292, 293
interface builder 291-293
Raise 292
Regenerate 292

interface skeleton
default menusin 274
description 274

interfaces
calbacks 291, 305-307
confirmers 292
constructing 297-299
creating menus for 280-284
creating new 273-274, 297
default package 278
definition 273
development strategy 284
dialog boxes 292
geometry of elements 291
graph area 277
layout elements, adding 278
layout elements, removing 279
layout hierarchy 277
loading 274-276, 286
menu hierarchy 281
menu objects, removing 284
operating on the current 291293
rearranging components 287—288, 298-299
regenerating 292
setting attributes 288-291, 299-302
titles 290, 299-301
types of attribute 290-291
interrupting evalution 317
invisible frames 153
Invisible Functions button 153
:items keyword 99

K

KDE/Gnome emulation 32, 179
key input 32
Key to Command command 202, 326
keyboard commands
comparison with menu commands 182
finding editor command for 326
in the editor 169
keyboard conventions xiv—xv
keywords
:center 301
:extended-selection 301
:items 99
Kill All command 419
Kill Application menu 419
Kill command 336
kill ring 188-191
copying text from 189-191
marking the region 188
putting text into 189
rotating 190
summary of use 191
killing a process 336

L
lambdalist, displaying 202, 318
layouts
adding to an interface 297-299
pinboard 292
rearranging 287-288, 298299
specifying callbacks 305-307
See also interfaces
layouts, displaying in window browser 407
Link from command 55
linking tools together 54
.1lisp files 182
Lisp Knowledgebase command 69
LispWorks I DE tools
Process Browser 42
LispWorks Patches command 69
Listen command 50, 252, 267, 268, 337
listener
basic tutorial 315-318
browsing generic functions from 319
compiling filesin 44
current expression, displaying value 318
current expression, stepper breakpoint 318
current expression, toggling stepper
breakpoint 318
debugger commands 322
debugging in the 320
description 314-315
evaluating forms 315-316
execute mode 320
Expression menu. See Expression menu
history commands 321
history list 317-318
History menu 318
loading filesin 44
macroexpanding forms 319
miscellaneous commands 323
next event 321
online help 326
operating on expressions 318
overview 3
pasting selected object into 50
previous event 321
prompt 315
re-evaluating forms 9, 316-318
searching history list 322
size of the stack 325
stack size 325
+ variable 13
** variable 13
* variable 13, 18, 252, 316
tracing current expression 318

430

Vaues submenu. See Vaues menu
walking forms 319
Listener Bind $ command 257
Listener command 314
list-panel class 99
Load command 44, 197, 388, 392, 397
Load... command 197, 388
loading files 44
loading tools into the environment 23
local slots, inspecting 247
Long Names button 408
Lower command 288, 409

M

Macroexpand command 202
Macroexpand Form command 319
macros
defclass 113
defsystem 228, 388
trace 54, 157
major tools, overview 2—4
Make a New Script command 414
manipulating values with inspector 249-252
Manuals command 65
manuals, online. See online help
menu commands
check components 283
choosing xiii
comparison with keyboard commandsin
editor 182
creating with the interface builder 280—
284
debugger commands 320
names, specifying 304
radio components 283
rearranging 287-288
specifying callbacks 307
See also interface
menu components 282—-284
check 283
radio 283
menus
creating with the interface builder 280—
284, 302-305
rearranging 287-288
See also interface
Meta key
use of xiv
Meta+Ctrl+C, break gesture 42
Method Combination command 151, 217
methods
displaying signatures 220

operating on signatures 220

undefining 114

viewing method combinations 217
Methods menu 113, 216

Trace. See Trace menu

Trace submenu. See Trace menu

Undefine 114
Modify command 44
module-children generic function 401
module-is-system-p generic function 400
module-name generic function 400

N

navigating within filesin the editor 183-184
New command 44, 182, 310
interface builder 273, 297
new files, creating 44, 182
New in LispWorks 6.0
ASDF integration 229, 399
Automatic Update Delay in Process
Browser 338
Browse All Systems 391
Browse Systems For Directory 391
Consolidated Preferences 28
Controlling parenthesis coloring 37
Files shown option in Search Filestool 239
in-place completion in the Tracer 160
Inspect Function 151
Known definitions searches 229
Query Replace on matched linesin Search
Filestool 234
Session saving 71
Use recent directory for opening files
option 30
Next command
command line debugger 320
history list 44
next event
repeating 44, 321

O

object clipboard
menu commands, see menu or command
name
Object menu 48
Actions. See Actions menu
Attributes 288
Clip 253
Copy 253
interface builder 277, 278, 293
Lower 288

Raise 288
objects

inspecting 247

operating on 48-50

searching for 42

selecting 41

See also selected object
On Symbol command 69
On Tool command 68
online help 65-70

browsing manuals 65

current symbol 69

current tool 68

packages, searching 68

searching 67-68
Open command 44, 166, 182, 185
Open... command

interface builder 274
opening files 44, 166, 181
opening recent files 45
operating on objects 48-50

See also objects
Operations menu

Break 360

EOF 360

Suspend 360
output

compiler 197

editor 170

standard 327-331
output browser 12, 327-331

menu commands. See menu or command

name

overview 3
overview of major tools 24
overview of profiling 347

P

Package command

interface builder 278
packages

current package 46

display of 45-47

in editor 200

searching for documentation 68
Packages button 358
Packages... button 351, 358
Page Down key 184
Page Up key 184
Parent command 390, 391
Partial Search radio button 68
Paste command 187

in class browser 104
in generic function browser 215
ininspector 250, 252
interface builder 288, 298
Paste Object command 4041
pinboard objects
moving and resizing 292
podium. See Common LispWorks podium
preferences
Setting 28

Preferences command 63, 179, 180, 235, 325

Preferences... command 87, 222, 250, 269,
338, 353, 357, 381, 401, 406, 419
Preview command 402
previewing a system plan 394-397, 402
Previous command
command line debugger 320
history list 43
previous event
repeating 43, 321
primary package in editor 200
Print command 45
Print... command 183
printing files 45
process
breaking 42
process browser 333-339
menu commands. See menu or command
name
sorting processes 336
Process Browser tool 42
process-break function 337
processes
breaking 42
inspecting 336
killing 336
sorting 336
Processes menu 336
profiler 341-358
choosing packages 351-353
choosing symbols 348-353
description 343-344
example of use 357-358
information returned 347, 354
interpreting results 355
menu commands. See menu or command
name
overview of profiling 347
pitfalls 355
running aprofile 354
sorting results 354
specifying code to run 353

431

432

symbols that can be profiled 355
prompt in the listener 315
push-button-panel class 101

Q
Quit command 409
quitting the environment 30

R

radio components 283

Raise command 288, 292, 409
readers of adot, displaying 105
Recent Files command 45, 166
Recompute Events button 396
recursive macroexpansion 319

re-evaluating formsin listener 9, 316-318

Refresh command 15, 27
Regenerate command 292
regexp 58

syntax 58
regular expressions 58

syntax 58
Remote Shell tool 361
repeating commands 43

in the editor 187
repeating the next event 44
repeating the previous event 43
Replace command 42, 194, 392
Replace... command 42, 194
replacing text 194
Report Bug command 150, 320
reporting bugs 150, 320
Restart Frame command 151, 153

Restart Frame Stepping command 151, 364

restart frames 153

Restarts button 153

Restarts menu 146, 373

Restarts submenu 320

retract callbacks 306

Return from Frame command 151

re-using windows 25

Revert to Saved command 182
interface builder 286

reverting afile to the version stored on

disk 182

row-1layout class 278

Run command 418

Run With Arguments command 418

S

Save All command

interface builder 286
Save All... command 185
Save As... command 182
interface builder 286
Save command 182, 311
interface builder 286, 307
Save Region As... command 182
saving all files 185
saving files 181
interface builder 286-287
saving regions of text 182
scrolling text in editor 184
Search command 67
Search Files editor command 223
Search Files... command 392
searching
for objects 42
for text 42, 191-194
history list 322
online manuals 67
Select All command 41, 158, 187, 397
selected object
browsing 49
browsing the class of 49
copying 49
displaying documentation 50
finding source code 50
inspecting 50
pasting into listener 50
placing on object clipboard 49
showing function calls 50, 319
showing generic functions 50, 202
showing similar symbols 50
selection callbacks 306
sessions
saving 71-79
Set command 250, 251
debugger 152
set-interactive-break-gestures
function 42
shell editor command 360
Shell tool 359
shell tool 359-361
break signal, sending 360
creating 359
EOF signal, sending 360

menu commands. See menu or command

name
recalling commands 361
suspend signal, sending 360
type of shell 361
shell-shell variable 361

Shift key, use of xiv, 169
Short Names button 408
Show in Tracer command 54, 157
Show Package Names button 46, 153, 255, 407
Show Toolbar button 26
Signature menu 220-222
signatures

displaying 220

operating on 220
simple-pane-foreground reader 18
Slotsmenu 48, 104, 116

Clip 253

Copy 253

Inspect 248

Paste 250, 252

Set 250, 251
snapshot Debugger 155
sort options

By Name 53

By Package 53

Unsorted 53
sorting

in class browser 102

ineditor 180

in inspector 254

in process browser 336

views 51

in window browser 407
source code

debugging 139-155

for current expression 318

for object in current frame of debugger 150

for selected object 50
Source command 402
stack framesin the debugger 147
stack overflow 325
standard action command

Browse 49

Browse Symbols Like 263, 319

Class 49

Copy 49

Documentation 50

Find Source 50

Function Calls 319

Generic Function 50, 202, 319

Inspect 50

Listen 50
standard output 327-331
standard-output variable 12
**% variable 13
** variable 13
* variable 13, 18, 252, 316

stepping through code 363-383
Stop command 336
stopping a process 336
Suspend command 360
swapping editor buffers 185
Symbol Browser 263-269
symbol browser
invoking on selected object 50
Symbol menu
Inspect 267
Listen 267
Unintern... 267
symbols
interface builder 293
online help for 69
tracing 200
undefining 202
Symbols... button 349, 358
syntax coloring 35, 36, 195
syntax styles 36
system
browsing 388
compiling and loading 391
concatenating 392
creating plansfor 396
defining 311, 386-388
executing plansfor 396
forcing compilation and loading of
members 402
introduction to 385-386
parent system, browsing 390
plan 394
previewing aplan 394-397, 402
ROOT-SYSTEM 390
searching 392
using source files 402
system browser 385-402
Actions area 396
compiling and loading systems 391
creating plans 396
description 388
executing plans 396
File description area 391
Filter area 396
forcing compilation and loading 402
Graph area 390
graph view 389-391
menu commands. See menu or command
name
output view 397-398
package information 401
parent system, browsing 390

433

Plan area 396

previewing the plan 394-397
sorting information 401
System area 390

system plan, previewing 394-397, 402

text view 392-394

using 388-391

using source files 402

views available 388
Systems menu 391

Browse All Systems 391

Browse Systems For Directory 391

Compile 392, 397
Compileand Load 392, 397
Concatenate... 392

Hide Files 392

Load 392, 397

Parent 390, 391

Replace 392

Search Files 392

Show Files 392

T
Tab completion 60
tabs
choosing xiii
text
deleting 184-185
inserting 184-185
replacing 194
saving regions of 182

scrolling in editor 184
searching for 42, 191-194
selecting 41

See also under editor
text view

in editor 167

in function call browser 208

in system browser 392-394
The Bresk gesture 42, 317
Toggle Breakpoint command 318
Toggle Tracing command 54
toolbar

customizing 26

hiding 26
toolbar buttons

size 26

text labels 26
toolbars

hiding 26

removing 26
tools

current package of 46

linking together 54

loading into the environment 23
online help for 68

overview of major 24

reusing 29

tracing from 54

Toolsmenu 2, 7, 23, 94

accelerators 23
Application Builder 411
Class Browser 96, 122, 131, 166, 213
Editor 166
Inspector 243
Interface Builder 272
Listener 314
Object Clipboard 122, 131, 203
Output Browser 327
Preferences 25, 28, 30, 60, 63, 179, 180, 235,
325
Preferences... 222, 250, 269, 338, 353, 357,
381, 401, 406, 419
Process Browser 334
Profiler 341
Saved Sessions... 73
Search Files 223
Shell 359
Stepper 363, 366
Symbol Browser 263
System Browser 388
Tracer 157
Window Browser 403
Trace command 54, 200, 319
Trace Inside command 54
trace macro 54, 157
Trace menu
Break on Access 249
Break on Read 249
Break on Write 249
Show in Tracer 54, 157
Trace 54
Trace Inside 54
Trace Read 249
Trace with Break 54
Tracing 54
Untrace 54, 249
Untrace All 54

Trace with Break command 54
Tracer 157-163

Function menu 158

tracing 157-163

classes 114
in function call browser 212

in the inspector 249 redefinition* 352

ininspector 249 *shell-shell* 361
standard-output 12
U *trace-verbose* 161
Undefine command 114, 202 Variables menu
Undefine... command 202, 217 Set 152 _
undefining View Source Search editor command 178
current definition 202 views
functions 114 in class browser 95
generic functions 217 description 77-53
methods 114 in editor 166
Undo command 39 in function call browser 203
editor 187 in generic function browser 213
Unintern... command 267 graph 81-91, 389-391
UNIX clipboard 104, 215 hierarchy 101
interaction with Common LispWorks ininspector 253
clipboard 41 output 170, 327-331, 397-398
usagein editor 189 slots 98-100
Unsorted option 53 sorting itemsin 51
Unstop command 336 in system browser 388
unstopping a process 336 text 208, 392-394
Untrace All command 54 Visit Tags File editor command 170
Untrace command 54, 249
updating windows 27 W
using the clipboard 4041 Wak command 202
Seealsokill ring Wak Form command 319
using the keyboard xiv—xv web browsers 65
using the mouse Xi—xiii Whole Word radio button 68
window browser 403-409
V changing root of graph 405
Value command 202, 318 complete window names, displaying 408
Value menu destroying awindow 409
Listen 252 different types of window 407
values lowering awindow 409
changing in inspector 249-252 menu commands. See menu or command
Values menu ‘name _ _
Class 16, 96, 99 moving around different windows 409
Copy 251,252 package information 407
Inspect 27, 243, 248, 250 quitting awindow 409
variables raising awindow 409
* 324 sorting entries 407
$ 257 using 405
* 13,18, 252, 316 whole environment 409
** 13 window colors 36
**x 13 windows
active-finders 230 displaying 22
browser-location 69 makl_ng copiesof 27
grep-command 241 re-using 25
grep-command-format 241 Updating 27

Windows menu 15, 22, 94, 409
Actions. See Actions menu
Browse 405

grep-fixed-args 241
*packages-for-warn-on-

Browse Parent 409
Browse Screen 409
Destroy 409
Lower 409
Quit 409
Raise 409
in window browser 409
Works menu 94
Clone 27,55
Exit 7,30
Exit Window 171
Object submenu. See Object menu
Packages submenu. See Packages menu
Symbols submenu. See Symbols menu
See also individua entries for each sub-
menu
writersfor adot, displaying 105

	LispWorks® IDE User Guide
	Copyright and Trademarks
	Contents
	Preface
	1 Introduction
	1.1 Major tools
	1.1.1 The Listener
	1.1.2 The Editor
	1.1.3 The Class Browser
	1.1.4 The Output Browser
	1.1.5 The Inspector
	1.1.6 The Object Clipboard

	2 A Short Tutorial
	2.1 Starting the environment
	2.1.1 The Lisp Monitor

	2.2 Creating a Listener
	2.3 Using the Debugger
	2.4 Viewing output
	2.5 Inspecting objects using the Inspector
	2.6 Examining classes in the Class Browser
	2.7 Summary

	3 Common Features
	3.1 Displaying tool windows
	3.1.1 Displaying existing windows
	3.1.2 Iconifying existing windows
	3.1.3 Displaying tools using the mouse
	3.1.4 Displaying tools using the keyboard
	3.1.5 Re-using tool windows
	3.1.6 Toolbar configurations
	3.1.7 Copying windows
	3.1.8 Closing windows
	3.1.9 Updating windows

	3.2 Setting preferences
	3.2.1 General options
	3.2.2 Configuring the editor emulation
	3.2.3 Setting the editor font, color and other style attributes
	3.2.4 Setting the default encodings

	3.3 Performing editing functions
	3.3.1 Undoing changes
	3.3.2 Using the clipboard
	3.3.3 Using the Object operations with the clipboard
	3.3.4 Selecting text and objects
	3.3.5 Searching for text and objects

	3.4 The Break gesture
	3.5 The history list
	3.5.1 Repeating events from the history list
	3.5.2 Editing the history list

	3.6 Operating on files
	3.7 Displaying packages
	3.7.1 Specifying a package

	3.8 Performing operations on selected objects
	3.8.1 Operations available

	3.9 Using different views
	3.9.1 Sorting items in views

	3.10 Tracing symbols from tools
	3.11 Linking tools together
	3.12 Filtering information
	3.12.1 Plain Filtering
	3.12.2 Advanced Filtering

	3.13 Regexp matching
	3.13.1 Regular expression syntax
	3.13.2 Regexp and plain string matching

	3.14 Completion
	3.14.1 Invoking completion
	3.14.2 Selecting the completed input
	3.14.3 Completion dialog

	3.15 Examining a window

	4 Getting Help
	4.1 Online manuals in HTML format
	4.1.1 Browsing manuals online
	4.1.2 Searching the online manuals
	4.1.3 Getting help on the current tool
	4.1.4 Getting help on the current symbol
	4.1.5 Getting help from the LispWorks website
	4.1.6 Getting patches from the LispWorks website
	4.1.7 Configuring the browser used

	4.2 Online help for editor commands
	4.3 Browsing manuals online using Adobe Reader
	4.4 Reporting bugs

	5 Session Saving
	5.1 What session saving does
	5.2 The default session
	5.3 What is saved and what is not saved
	5.4 Saving sessions
	5.4.1 Scheduling automatic session saving
	5.4.2 The Save Session dialog and actual saving
	5.4.3 Saving a session interactively

	5.5 Redirecting images to a Saved Session image
	5.6 Non-IDE interfaces and session saving

	6 Manipulating Graphs
	6.1 An overview of graphs
	6.2 Searching graphs
	6.3 Expanding and collapsing graphs
	6.3.1 Expanding and collapsing by clicking
	6.3.2 Expanding and collapsing by menu commands

	6.4 Moving nodes in graphs
	6.5 Displaying plans of graphs
	6.6 Preferences for graphs
	6.6.1 Altering the depth and breadth of graphs
	6.6.2 Displaying different graph layouts

	6.7 Using graphs in your programs

	7 The Podium
	7.1 The podium window
	7.2 Specifying the initial tools

	8 The Class Browser
	8.1 Simple use of the Class Browser
	8.1.1 Examining slots
	8.1.2 Examining inherited slots
	8.1.3 Filtering slot information
	8.1.4 Examining other classes
	8.1.5 Sorting information

	8.2 Examining slot information
	8.2.1 Class box
	8.2.2 Filter area
	8.2.3 Slots list
	8.2.4 Description list
	8.2.5 Performing operations on the current class

	8.3 Examining superclasses and subclasses
	8.3.1 Class box
	8.3.2 Superclasses list
	8.3.3 Subclasses list
	8.3.4 Description list
	8.3.5 Performing operations on the selected classes or the current class

	8.4 Examining classes graphically
	8.4.1 Class box
	8.4.2 Subclasses and superclasses graphs
	8.4.3 Description list
	8.4.4 Performing operations on the selected classes or the current class
	8.4.5 An example

	8.5 Examining generic functions and methods
	8.5.1 Class box
	8.5.2 Filter box
	8.5.3 List of functions or methods
	8.5.4 Description list
	8.5.5 Performing operations on the current class
	8.5.6 Operations specific to the current function or method

	8.6 Examining initargs
	8.6.1 Class box
	8.6.2 Filter box
	8.6.3 List of initargs
	8.6.4 Description list
	8.6.5 Performing operations on the current class

	8.7 Examining class precedences
	8.7.1 Class box
	8.7.2 Filter box
	8.7.3 List of precedences
	8.7.4 Description list
	8.7.5 Performing operations on the selected classes or the current class

	9 The Object Clipboard
	9.1 Placing objects on the Object Clipboard
	9.1.1 The Listener
	9.1.2 The Class Browser
	9.1.3 The Inspector
	9.1.4 The Function Call Browser
	9.1.5 The Generic Function Browser
	9.1.6 The Debugger
	9.1.7 The Stepper
	9.1.8 The System Browser
	9.1.9 General clipping

	9.2 Browsing clipped objects
	9.2.1 The Inspector
	9.2.2 The Class Browser
	9.2.3 The Listener
	9.2.4 General browsing
	9.2.5 Pasting of clipped objects

	9.3 Removing objects
	9.4 Filtering
	9.5 Using the Object Clipboard with a Listener

	10 The Compilation Conditions Browser
	10.1 Introduction
	10.2 Examining error conditions
	10.3 Configuring the display
	10.3.1 Display preferences
	10.3.2 Condition type preferences

	10.4 Access to other tools

	11 The Debugger Tool
	11.1 Description of the Debugger
	11.1.1 Condition box
	11.1.2 Backtrace area
	11.1.3 Toolbar buttons

	11.2 What the Debugger tool does
	11.3 Simple use of the Debugger tool
	11.4 The stack in the Debugger
	11.5 An example debugging session
	11.6 Performing operations on the error condition
	11.7 Performing operations on stack frames
	11.7.1 Source location, documentation, inspect and method combination for the current frame
	11.7.2 Restarts and returning from the frame
	11.7.3 Tracing the function in the frame

	11.8 Performing operations on frame variables
	11.9 Configuring the debugger tool
	11.9.1 Configuring the call frames displayed
	11.9.2 Displaying package information
	11.9.3 Behavior on closing the Debugger
	11.9.4 Frames and variables display

	11.10 The Notifier window

	12 The Tracer
	12.1 Introduction
	12.2 Tracing and Untracing functions
	12.2.1 Tracing methods

	12.3 Examining the output of tracing
	12.3.1 The Output Data view
	12.3.2 The Output Text view

	12.4 Example

	13 The Editor
	13.1 Displaying and editing files
	13.1.1 The toolbar
	13.1.2 The editor window
	13.1.3 The echo area
	13.1.4 Using keyboard commands

	13.2 Displaying output messages in the Editor
	13.3 Displaying and swapping between buffers
	13.3.1 Filter area
	13.3.2 Buffers area

	13.4 Displaying Common Lisp definitions
	13.4.1 Filter box
	13.4.2 Definitions area

	13.5 Changed definitions
	13.5.1 Setting the reference point for changed definitions

	13.6 Finding definitions
	13.7 Setting Editor preferences
	13.7.1 Controlling other aspects of the Editor
	13.7.2 Controlling options specific to the Editor

	13.8 Basic Editor commands
	13.8.1 Opening, saving and printing files
	13.8.2 Moving around files
	13.8.3 Inserting and deleting text
	13.8.4 Using several buffers

	13.9 Other essential commands
	13.9.1 Aborting commands
	13.9.2 Undoing commands
	13.9.3 Repeating commands

	13.10 Cutting, copying and pasting using the clipboard
	13.11 Cutting, copying and pasting using the kill ring
	13.11.1 Marking the region
	13.11.2 Cutting or copying text
	13.11.3 Pasting text

	13.12 Searching and replacing text
	13.12.1 Searching for text
	13.12.2 Incremental searches
	13.12.3 Replacing text

	13.13 Using Lisp-specific commands
	13.13.1 Lisp mode
	13.13.2 Current buffers, definitions and expression
	13.13.3 Evaluating code
	13.13.4 Compiling code
	13.13.5 Argument list information
	13.13.6 Breakpoints
	13.13.7 Tracing symbols and functions
	13.13.8 Packages
	13.13.9 Indentation of forms
	13.13.10 Other facilities

	13.14 Help with editing

	14 The Function Call Browser
	14.1 Introduction
	14.2 Examining functions using the graph views
	14.2.1 Function area
	14.2.2 Show functions control
	14.2.3 Graph area
	14.2.4 Echo area
	14.2.5 The function description button

	14.3 Examining functions using the text view
	14.3.1 Called By area
	14.3.2 Calls Into area

	14.4 Configuring the function call browser
	14.4.1 Sorting entries
	14.4.2 Displaying package information

	14.5 Configuring graph displays
	14.5.1 Graph layout settings
	14.5.2 Graph expansion settings
	14.5.3 Plan mode settings

	14.6 Performing operations on functions

	15 The Generic Function Browser
	15.1 Examining information about methods
	15.1.1 Function area
	15.1.2 Filter area
	15.1.3 Methods list
	15.1.4 Description list
	15.1.5 Performing operations on the current function or selected methods

	15.2 Examining information about combined methods
	15.2.1 Function box
	15.2.2 Signatures button
	15.2.3 Arguments types box
	15.2.4 List of method combinations
	15.2.5 Description list
	15.2.6 Restricting displayed signatures by class

	15.3 Configuring the Generic Function Browser

	16 The Search Files tool
	16.1 Introduction
	16.2 Performing searches
	16.2.1 Entering Search Specifications directly
	16.2.2 Using context-dependent searches

	16.3 Viewing the results
	16.3.1 Displaying in an Editor
	16.3.2 Linking to an Editor
	16.3.3 Filtering the results
	16.3.4 Hiding certain results

	16.4 Modifying the matched lines
	16.5 Configuring the Search Files tool
	16.5.1 Search Parameters
	16.5.2 Display
	16.5.3 File Types
	16.5.4 The External Grep Program

	17 The Inspector
	17.1 Inspecting the current object
	17.2 Description of the Inspector tool
	17.2.1 Adding a Listener to the Inspector

	17.3 Filtering the display
	17.3.1 Updating the display

	17.4 Examining objects
	17.5 Operating upon objects and items
	17.5.1 Examination operations
	17.5.2 Examining attributes
	17.5.3 Tracing slot access
	17.5.4 Manipulation operations
	17.5.5 Copying in the Inspector

	17.6 Configuring the Inspector
	17.7 Customizing the Inspector
	17.8 Creating new inspection formats
	17.8.1 Example

	18 The Symbol Browser
	18.1 Introduction
	18.2 Description of the Symbol Browser
	18.2.1 Search Settings
	18.2.2 Filter area
	18.2.3 Symbols list
	18.2.4 Description area
	18.2.5 Documentation area

	18.3 Configuring the Symbol Browser

	19 The Interface Builder
	19.1 Description of the Interface Builder
	19.2 Creating or loading interfaces
	19.2.1 Creating a new interface
	19.2.2 Loading existing interfaces

	19.3 Creating an interface layout
	19.3.1 Interface box
	19.3.2 Graph area
	19.3.3 Button panels
	19.3.4 Adding new elements to the layout
	19.3.5 Removing elements from a layout

	19.4 Creating a menu system
	19.4.1 Interface box
	19.4.2 Graph area
	19.4.3 Adding menu bars
	19.4.4 Adding menus
	19.4.5 Adding menu items
	19.4.6 Adding menu components
	19.4.7 Removing menu objects

	19.5 Editing and saving code
	19.5.1 Integrating the design with your own code
	19.5.2 Editing code
	19.5.3 Saving code

	19.6 Performing operations on objects
	19.6.1 Editing the selected object
	19.6.2 Browsing the selected object
	19.6.3 Rearranging components in an interface
	19.6.4 Setting the attributes for the selected object

	19.7 Performing operations on the current interface
	19.7.1 Setting attributes for the current interface
	19.7.2 Displaying the current interface
	19.7.3 Arranging objects in a pinboard layout

	19.8 Performing operations on elements

	20 Example: Using The Interface Builder
	20.1 Creating the basic layout
	20.2 Specifying attribute values
	20.3 Creating the menu system
	20.4 Specifying callbacks in the interface definition
	20.4.1 Specifying layout callbacks and other callback information
	20.4.2 Specifying menu callbacks

	20.5 Saving the interface
	20.6 Defining the callbacks
	20.6.1 Callbacks to update the display pane
	20.6.2 Callbacks to display data in a dialog
	20.6.3 Callbacks for menu items
	20.6.4 Other miscellaneous functions

	20.7 Creating a system
	20.8 Testing the example interface

	21 The Listener
	21.1 The basic features of a Listener
	21.2 Evaluating simple forms
	21.3 Re-evaluating forms
	21.4 Interrupting evaluation
	21.5 The History menu
	21.6 The Expression menu
	21.7 The Values menu
	21.8 The Debug menu
	21.9 Execute mode
	21.9.1 History commands
	21.9.2 Debugger commands
	21.9.3 Miscellaneous Listener commands

	21.10 Setting Listener preferences
	21.11 Running Editor forms in the Listener
	21.12 Help with editing in the Listener

	22 The Output Browser
	22.1 Interactive compilation messages
	22.1.1 Compilation message styles

	23 The Process Browser
	23.1 The process list
	23.2 Process control
	23.3 Other ways of breaking processes
	23.4 Updating the Process Browser
	23.5 Process Browser Preferences

	24 The Profiler
	24.1 Introduction
	24.2 Display of Profiler Data
	24.2.1 Call Tree
	24.2.2 Cumulative Results

	24.3 A description of profiling
	24.3.1 Description of call tree data
	24.3.2 Description of cumulative data

	24.4 Steps involved in profiling code
	24.4.1 Choosing the functions to profile
	24.4.2 Choosing the time interval
	24.4.3 Specifying the code to run while profiling
	24.4.4 Performing the profile

	24.5 Format of the cumulative results
	24.6 Interpreting the cumulative results
	24.7 Profiling pitfalls
	24.7.1 Effects of random sampling
	24.7.2 Recursive functions
	24.7.3 Structure accessors
	24.7.4 Consequences of restricted profiling
	24.7.5 Effect of compiler optimizations
	24.7.6 Effect of compiler transforms

	24.8 Some examples

	25 The Shell and Remote Shell Tools
	25.1 Introduction
	25.2 The Shell tool
	25.3 Command history in the shell
	25.4 Configuring the shell to run
	25.5 The Remote Shell tool

	26 The Stepper
	26.1 Introduction
	26.1.1 Stepper toolbar
	26.1.2 Source area
	26.1.3 Backtrace area
	26.1.4 Listener area

	26.2 Simple examples
	26.2.1 Standalone use of the stepper
	26.2.2 Invoking the Stepper via a breakpoint

	26.3 The implementation of the Stepper
	26.3.1 Requirements for stepping
	26.3.2 Editing source code
	26.3.3 Side-effects of stepping
	26.3.4 Atomic and constant forms

	26.4 Stepper controls
	26.4.1 Shortcut keys for the Stepper

	26.5 Stepper restarts
	26.6 Breakpoints
	26.6.1 Setting breakpoints
	26.6.2 Conditional breakpoints
	26.6.3 Printing breakpoints
	26.6.4 Editing breakpoints
	26.6.5 Removing breakpoints

	26.7 Stepping macro forms
	26.7.1 Interactive macroexpansion
	26.7.2 Macroexpansion in the stepper
	26.7.3 Collapsing macroexpansions
	26.7.4 Controlling macroexpansion

	26.8 Listener area
	26.9 Configuring the Stepper
	26.9.1 Operator preferences
	26.9.2 Backtrace preferences

	27 The System Browser
	27.1 Introduction
	27.2 A brief introduction to systems
	27.2.1 Examples

	27.3 The System Browser
	27.4 A description of the System Browser
	27.5 Examining the system tree
	27.5.1 System area
	27.5.2 Tree area
	27.5.3 Description area
	27.5.4 Performing operations on system members

	27.6 Examining systems in the text view
	27.6.1 System area
	27.6.2 Parent system area
	27.6.3 Subsystems area
	27.6.4 Files area
	27.6.5 File description area

	27.7 Generating and executing plans in the preview view
	27.7.1 System area
	27.7.2 Actions area
	27.7.3 Filter area
	27.7.4 Plan area
	27.7.5 File description area
	27.7.6 Executing plans in the preview view

	27.8 Examining output in the output view
	27.8.1 System area
	27.8.2 Output area

	27.9 ASDF Integration
	27.9.1 Interface to source code managers

	27.10 Configuring the display
	27.10.1 Sorting entries
	27.10.2 Displaying package information
	27.10.3 Display of the toolbar

	27.11 Setting options in the system browser

	28 The Window Browser
	28.1 Introduction
	28.1.1 Graph box
	28.1.2 Window graph
	28.1.3 Description list

	28.2 Configuring the Window Browser
	28.2.1 Sorting entries
	28.2.2 Displaying package information
	28.2.3 Displaying the toolbar
	28.2.4 Displaying different types of window
	28.2.5 Displaying short or long names

	28.3 Performing operations on windows
	28.3.1 Navigating the window hierarchy
	28.3.2 Window control

	29 The Application Builder
	29.1 Introduction
	29.1.1 What the Application Builder does

	29.2 Preparing to build your application
	29.2.1 The script

	29.3 Building your application
	29.4 Editing the script
	29.5 Troubleshooting
	29.5.1 Viewing errors
	29.5.2 Clearing the output

	29.6 Running the saved application
	29.6.1 Passing arguments and redirecting output
	29.6.2 Executing a different file
	29.6.3 Killing application processes

	29.7 Configuring the Application Builder

	Index

