
IDL/LISP MAPPING
VERSION 1.0
Franz Inc.

Copyright 1998 by Franz Inc.
August 3, 1998 IDL/Lisp 1

t..

er
Copyright © 1998 by FRANZ INC. All rights reserverd. This is revision 0.6 of this documen

ESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to
restrictions as set forth in subdivision (c) (1) (ii) of the Right in Technical Data and Comput
Software Clause at DFARS 252.227.7013.

CORBA and Object Request Broker are trademarks of Object Management Group.

OMG is a trademark of Object Management Group.

DRAFT PROPRIETARY TO FRANZ INC.
2 IDL/LISP

TableofContents
. 9

 . 9
 . 9
10
0

10
0
10
0

3
3

14
4
14
14
5

15
5

15

17
18
1 Preface .

1.1 Status .
1.2 Scope .
1.3 Intended audience. .
1.4 Missing Items . 1
1.5 Conventions .
1.6 Version of Lisp . 1
1.7 Contact Points .
1.8 Acknowledgments . 1

2 Mapping and IDL . 13

2.1 Introduction to IDL. 1
2.2 How IDL is used. 1
2.3 Mapping constituents .

2.3.1 Mapping the primitive data types. 1
2.3.2 Mapping the constructed data types .
2.3.3 Interfaces .
2.3.4 Mapping the syntax. 1
2.3.5 Mapping the names .
2.3.6 Mapping pseudo-interfaces . 1

2.4 Mapping summary .

3 Mapping IDL to Lisp . 17

3.1 Mapping concepts. .
3.2 Semantics of type mapping .
3/15/98 IDL/Lisp iii

3.3 Mapping for basic types . 18
3.3.1 Overview . 18
3.3.2 boolean . 20
3.3.3 char . 20
3.3.4 octet . 20
3.3.5 wchar, wstring . 21
3.3.6 string . 21
3.3.7 Integer types . 21
3.3.8 Floating point types . 21
3.3.9 fixed . 21

3.4 Introduction to named types . 22
3.4.1 Naming terminology . 22

3.5 Distinguished packages . 23
3.5.1 Nicknames for distinguished packages . 24

3.6 Scoped names and scoped symbols . 24
3.6.1 Definitions . 24

3.7 The package_prefix pragma . 25
3.8 Mapping forinterface . 26

3.8.1 Example . 27
3.9 Mapping foroperation . 27

3.9.1 Parameter passing modes . 27
3.9.2 Return values . 27
3.9.3 one-way . 28
3.9.4 Efficiency optimization: using macros instead of functions 28
3.9.5 exception . 28
3.9.6 context . 28
3.9.7 Example . 29

3.10 Mapping forattribute . 29
3.10.1 readonly attribute . 30
3.10.2 normalattribute. 30
3.10.3 Example . 30

3.11 Mapping ofmodule. 30
3.11.1 Example . 30

3.12 Mapping forenum. 31
3.12.1 Example . 32

3.13 Mapping forstruct . 32
3.13.1 Example . 33

3.14 Mapping forunion. 33
3.14.1 Member accessors . 34
3.14.2 Example . 34

3.15 Mapping forconst. 35
3.15.1 Example . 35

3.16 Mapping for array. 36
iv IDL/Lisp 3/15/98

3.16.1 Example . 36
3.17 Mapping forsequence . 36

3.17.1 Example . 38
3.18 Mapping forexception . 38

3.18.1 Userexception . 39
3.18.2 Systemexception . 39

3.19 Mapping fortypedef . 39
3.19.1 Example . 40

3.20 Mapping forany . 40
3.20.1 Constructors . 40
3.20.2 Typecode accessor . 40
3.20.3 value accessor. 41
3.20.4 Interaction with GIOP . 41
3.20.5 Additional examples ofany usage . 42

3.21 Mapping Overview. 42
3.21.1 Rule 1: How names of types are formed . 43
3.21.2 Rule 2: How names of operations are formed 43
3.21.3 Rule 3: Lisp functions corresponding to IDL types 43

4 Mapping Pseudo-Objects to Lisp. .45

4.1 Introduction . 45
4.2 Certain exceptions . 45
4.3 Environment . 46
4.4 NamedValue . 46
4.5 NVList . 46
4.6 Context . 47
4.7 Request . 47
4.8 ServerRequest . 48
4.9 TypeCode . 48
4.10 ORB . 49

4.10.1 ORB initialization . 49
4.10.2 ORB pseudo-object . 49

4.11 Object . 51
4.12 .Principal51
4.13 DynAny . 51
4.14 The IDL Compiler . 52

5 Server-Side. .53

5.1 Introduction . 53
5.2 Mapping of native types . 53
5.3 Implementation objects . 53
3/15/98 IDL/Lisp v

5.4 Servant classes . 53
5.4.1 Note on proxies . 54

5.5 Defining methods . 54
5.5.1 Syntax ofcorba:define-method . 54
5.5.2 Description . 54

5.6 Examples . 55
5.6.1 Example: A Named Grid . 55

6 Design Decisions .59

6.1 Introduction . 59
6.1.1 Goals. 59
6.1.2 Lisp Version . 60
6.1.3 Reverse mapping . 61
6.1.4 Compiler interface . 61
6.1.5 Type checking . 61

6.2 Overall Design Philosophy. 61
6.2.1 Relationship to other mappings . 62

6.3 Names . 62
6.3.1 Capitalization . 62
6.3.2 Nesting . 62
6.3.3 Character set. 63
6.3.4 Alternative mappings . 63
6.3.5 Prefixes. 63

6.4 Mapping of basic types. 64
6.4.1 boolean . 64
6.4.2 float anddouble . 64

6.5 Mapping forstruct . 64
6.6 Mapping forexception . 64

6.6.1 condition hierarchy . 64
6.6.2 Namingexception classes . 65

6.7 Mapping forenum. 66
6.8 Mapping forunion . 66
6.9 Mapping ofmodule. 66
6.10 Mapping forarray . 66
6.11 Mapping forsequence . 67

6.11.1 Advantages of our proposal . 68
6.11.2 Disadvantages of our proposal . 68
6.11.3 Conclusion . 68

6.12 Mapping forany . 68
6.13 Mapping fortypedef . 69
6.14 Mapping forinterface . 69
6.15 Mapping foroperation : the name . 69
vi IDL/Lisp 3/15/98

6.15.1 Explicitoperation mapping. 70
6.15.2 Use of a designated package . 71
6.15.3 Using a prefix . 72
6.15.4 Using the :keyword package . 72
6.15.5 Conclusion . 73

6.16 operation mapping: signature . 73
6.16.1 Leave the signature of the generic function unspecified 73
6.16.2 Require method definition via a particular macro 73

6.17 operation mapping: parameter passing modes . 74
6.18 Mapping ofattribute . 74
6.19 Compiler mapping . 75
6.20 Pseudo Interface Mapping . 75
6.21 Server side mapping . 75
3/15/98 IDL/Lisp vii

viii IDL/Lisp 3/15/98

Preface 1
ted

nd

g.

us

ing.

the
on
ding
sues
nd

ge
ng
1.1 Status

This document presents a proposed IDL/Lisp language mapping. It is being circula
for review to interested members of the Lisp/CORBA community.

Because this document is in preliminary form, it contains a number of formatting a
editing problems:

• Some mapping features are not illustrated with examples.

• The “rationale” section may not be up-to-date with respect to the actual mappin

• Many of the fonts are not used properly, and the document formatting has vario
errors.

• Some of the examples may be out-of-synch with the current version of the mapp

• Some of the explanations are terse to the point of being elliptical.

If the Lisp community concurs with the main ideas presented in the mapping, the
document will be edited and formatted to professional standards and submitted to
OMG. The problems discussed above will be corrected, the design rationale secti
will be shortened and placed at the beginning (although a separate document inclu
detailed design rationale decisions will be made available) and unclear semantic is
will be clarified. Furthermore, appropriate front matter, such as acknowledgments a
copyright clearances will be included.

1.2 Scope

This document is intended only to deal with matters concerning the IDL/Lisp langua
mapping. In particular, there are few explanatory examples and matters of launchi
and use of the services are not discussed.
3/15/98 IDL/LISP 1-9

1

p.

the

ing

cted

nz
1.3 Intended audience

This document is intended for readers who are familiar with both IDL and with Lis
However, Chapter 2, “Mapping and IDL", contains a brief introduction to certain
mapping concepts, but this chapter will not be included in the version submitted to
OMG.

1.4 Missing Items

The following topics are incompletely specified or not specified at all

• Portable Object Adaptor

• possible new PIDL and other required mappings

• DynAny type management

1.5 Conventions

IDL appears using this font.

Lisp code appears using this font.

(This usage is inconsistent in this version of the document).

1.6 Version of Lisp

This document is based on Common Lisp specified in X3J13 Committee,ANSI
X3.226-1994, American National Standard for Information Technology—Programm
Language—Common Lisp, ANSI (New York) 1994

1.7 Contact Points

Questions and comments about this document are encouraged and should be dire
to:

Lewis Stiller
Franz Inc.
1995 University Avenue
Berkeley, CA 94704
phone: 510-548-3600
fax: 510-548-8253
email: stiller@franz.com or orblink@franz.com

1.8 Acknowledgments

The design of this mapping was influenced by a number of sources outside of Fra
Inc.
1-10 IDL/LISP 3/15/98

1

ing
ess
nk
g

We used the ILU system and its mapping both for design guidance and for assess
practical experience. We thank Bill Janssen of Xerox Parc for providing us with acc
to ILU and for explicating the design decisions in the mapping used by ILU. We tha
Joachim Achtzehnter for his work on the design of ILU and for his help in preparin
this mapping document.

We would like to thank Ken Anderson of BBN for his comments on suggestions on
this mapping.

We would like to thank Greg Whittaker of Mitre Corporation for his comments and
suggestions on this mapping.

We would like to thank Stanley Knutson of Concentra for his comments.

We also used a mapping due to Thomas Mowbray of Mitre Corporation.

We are grateful for the assistance of Harlequin Inc. in preparing this mapping.
March 15, 1998 9:36 pm IDL/LISP 1-11

1

1-12 IDL/LISP 3/15/98

Mappingand IDL 2
age
be

ts
he
h
nd

ting

, and
ct.

me
he
This chapter briefly reviews some concepts of IDL and defines the notion of a langu
mapping. A summary of the IDL/Lisp mapping is presented. [This chapter will not
included in the version of this document that will be submitted to the OMG].

2.1 Introduction to IDL

IDL, or Interface Definition Language, is a language defined by the Object
Management Group.

The key data type in IDL is the interface, which describes the behavior of an objec
that implements that interface. The IDL definition for an interface describes all of t
operations to which an object that implements that interface can respond. For eac
such operation, it describes the allowed types of the parameters to the operation a
the allowed type of the value returned by the operation.

IDL allows the types other than interfaces to be expressed. For example, primitive
types such as boolean, several signed and unsigned integral types, and some floa
point types may be defined.

Constructed types analogous to the C struct or Pascal record type may be defined
some simple type aliasing is possible in a way analogous to the C typedef constru

Arrays and sequences may also be defined.

2.2 How IDL is used

IDL is typically used in the following manner. An server process wishes to make so
of its functionality available for invocation by clients. These clients may not be in t
same process, on the same machine, or even written in the same language.
5/13/98 IDL/LISP 2-13

2

at it
t

the
he
at

of

each

hat
oes.

me

us

se
ed to
s, an
The server publishes the IDL definitions that define the interfaces of the objects th
implements. A client can use those definitions to invoke operations on objects tha
reside within the server process.

The syntax used by the client to invoke a method on an object defined in IDL, and
relationship between the data types specified in IDL and the native data types of t
language in which the client is implemented is defined by the mapping of IDL into th
language.

This document describes a mapping from IDL into Common Lisp.

2.3 Mapping constituents

Informally speaking we can divide a mapping into these categories.

2.3.1 Mapping the primitive data types.

IDL implicitly assumes that there is a universe of primitive data values, certain sets
which may be denoted by IDL types.

The mapping will, for each abstract IDL data value define the associated Lisp data
value. The set of IDL data values corresponding to a particular IDL data type will
correspond to the Lisp type whose elements are the Lisp values that correspond to
IDL value in that set.

For example, IDL has a concept of the integer constant 12. It seems reasonable t
this value would correspond to the Lisp value 12, and indeed, in our mapping, it d

In fact, each IDL integer value corresponds to precisely one Lisp integer of the sa
value.

One of IDL’s predefined types isunsigned short , which comprises the set of values
between 0 and 65535 inclusive. The Lisp type corresponding to this IDL type is th
the set of Lisp integers between 0 and 65535, a set specified in Lisp by the type
specifier(integer 0 65535)or, equivalently,(unsigned-byte 16).

The primitive data types areboolean, double, long double, float, octet, short,
unsigned short, long, unsigned long, long long, unsigned long long, char ,
string , any.

2.3.2 Mapping the constructed data types

The constructed data types are union, struct, array, exception, and sequence. The
correspond to aggregates or collections of other IDL elements. In each case we ne
determine whether such a type maps most naturally to an instance of standard-clas
instance of structure-class, or to some other Lisp construct.

2.3.3 Interfaces

The most important data type to map is the interface data type.
2-14 IDL/LISP 5/13/98

2

n

What

t full
uest

be

ces.

herit.

tion
the

the
e of
2.3.4 Mapping the syntax.

How are methods on objects invoked? How are methods defined?

For example, in Lisp we would ask: does method invocation correspond to functio
invocation, generic function invocation, or macro invocation? Are methods defined
using defun, defmethod, or some other syntax?

2.3.5 Mapping the names

It is necessary to assign a Lisp symbol that represents each named IDL construct.
symbol should corresponds to a given operation, or a given interface? How are
capitalization and package-names handled?

2.3.6 Mapping pseudo-interfaces

IDL has certain constructs that behave like interfaces in some ways but that are no
fledged interlaces. For example, ORB, the interface that describes the Object Req
Broker itself, is a pseudo-interface. These are typically mapped separately.

2.4 Mapping summary

Most of the material in this mapping document concerns fairly esoteric issues that
rarely arise in practice. The main points of our mapping are as follows.

Primitive data types are mapped to corresponding primitive data types in Lisp.

struct and union are mapped to classes. Each member of the struct or union can
accessed using a regular syntax.

Arrays map to arrays.

Sequences can map either to lists or to vectors; that is, sequences map to sequen

Exceptions are mapped to conditions.

Interfaces are mapped to classes, and interfaces that inherit map to classes that in

Operations on interfaces map to methods on a generic function. This generic func
discriminates only on its first argument, which is the interpreted as the receiver of
operation.

The module in which an IDL entity is declared is mapped to the package name of
corresponding symbol. The name of the symbol is formed from the rest of the scop
the module.

A mapping to the IDL compiler is included.
May 13, 1998 4:31 pm IDL/LISP 2-15

2

2-16 IDL/LISP 5/13/98

Mapping IDLtoLisp 3
g

This section describes the mapping of IDL into the Lisp language.

The rationale for design decisions can be found in Chapter 6, “Overall Design
Rationale".

In most cases examples of the mapping are provided. It should be noted that the
examples are code fragments that try to illustrate only the language construct bein
described.

3.1 Mapping concepts

By an IDL entity we mean an element defined in some IDL file.

For example, consider the code fragment

module A {
interface B {

void op1(in long bar);
};

}

The IDL entities are the module named “A”, the interface named “B”, the operation
named “op1 ”, the formal parameter named “bar ”, and the primitive data typesvoid
and long .

Our mapping will associate to each IDL entity declared in a an IDL specification a
corresponding Lisp entity.

The Lisp entity corresponding to a given IDL entity will be said to begeneratedfrom
the IDL entity.
5/12/98 IDL/LISP 3-17

3

e.
by

he

e

pe

s is

this
If the IDL entity has a name then the corresponding Lisp entity will also have a nam
Whereas IDL entities are named by strings (i.e., identifiers), Lisp entities are named
symbols.

It is the goal of this chapter to specify, for each IDL construct, the Lisp entity, and t
name of that entity, that is generated by the mapping.

3.2 Semantics of type mapping

The statement that an IDL typeI is mapped to a Lisp typeL indicates ifV is a Lisp
value whose corresponding IDL typeI , then the consequences are not specified if th
value ofV is not a member of the typeL.

For example, ifV is passed as an parameter to an IDL operation or ifV is returned
from an IDL operation, then a conforming implementation may reasonably perform
any of the following actions ifV is not of the typeL.

• If V may be coerced toL, thenV may be replaced by the result of coercingV to the
type L.

• If V cannot be coerced to L, then an error may be signalled. If the error occurs
during marshalling or unmarshalling,corba:marshal should be signaled.

3.3 Mapping for basic types

3.3.1 Overview

The following table shows the basic mapping.

The first column contains the IDL name of the IDL type to be mapped. Each IDL ty
denotes a set of IDL abstract values.

The set of values denoted by an entry in the first column will be mapped under the
mapping described in this document to a set of Lisp values. That set of Lisp value
described in two ways:

• The entry “Name of Lisp type” is a symbol that names the type represented by
set of Lisp values.
3-18 IDL/LISP 5/12/98

3

• The entry “Lisp type specifier” is a standard Common Lisp type specifier that
denotes this set of Lisp values.

Figure 3-1 BASIC TYPE MAPPINGS

Additional details are described in the sections following.

IDL Type
Name of Lisp
type Lisp type specifier

boolean corba:boolean boolean

char corba:char character

wchar corba:wchar see text

octet corba:octet (unsigned-byte 8)

string corba:string string

wstring corba:wstring see text

short corba:short (signed-byte 16)

unsigned short corba:ushort (unsigned-byte 16)

long corba:long (signed-byte 32)

unsigned long corba:ulong (unsigned-byte 32)

long long corba:longlong (signed-byte 64)

unsigned long long corba:ulonglong (unsigned-byte 64)

float corba:float see text

double corba:double see text

fixed corba:fixed see text
May 12, 1998 2:39 pm IDL/LISP 3-19

3

e

3.3.1.1 Example

(typep -3 ‘corba:short)
> T

(typep -3 ‘corba:ushort)
> nil

(typep “A string” ‘corba:string)
> T

3.3.2 boolean

The IDL boolean constantsTRUE andFALSE are mapped to the corresponding Lisp
boolean literalsT andnil . The type specifiercorba:boolean specifies this type.

3.3.3 char

IDL char maps to the Lisp typecharacter. The type specifiercorba:char specifies this
type.

3.3.3.1 Usage example

(typep #\x ‘corba:char)
> T

(typep “x” ‘corba:char)
> nil

3.3.4 octet

The IDL typeoctet , an 8-bit quantity, is mapped as an unsigned quantity to the typ
corba:octet The type specifiercorba:octet denotes the set of integers between0 and
255 inclusive. This set can also be denoted by the type specifier(unsigned-byte 8).
3-20 IDL/LISP 5/12/98

3

nds.

y

3.3.4.1 Usage example

(typep 255 ‘corba:octet)
> T
(typep -1 ‘corba:octet)
> nil

3.3.5 wchar, wstring

The typeswchar andwstring are mapped to Lisp types namedcorba:wchar and
corba:wstring. The typecorba:wstring must be a subtype ofcorba:sequencewhose
constituents can elements of typecorba:wchar.

3.3.6 string

The IDL string , both bounded and unbounded variants, are mapped tostring. Range
checking for characters in thestring as well as bounds checking of thestring shall be
done at marshal time. The type specifiercorba:string denotes the set of Lispstrings.

3.3.6.1 Usage example

(typep “A string” ‘corba:string)
> T
(typep nil ‘corba:string)
> nil

3.3.7 Integer types

The integer types each map to the Lispinteger type. Each IDL integer type has a
corresponding type specifier that denotes the range of integers to which it correspo
The names of the type specifiers arecorba:long, corba:short, corba:ulong,
corba:ushort, corba:longlong, andcorba:ulonglong.

3.3.8 Floating point types

The floating point typesfloat , double, and long double map to Lisp types named
corba:float, corba:double andcorba:longdouble respectively. These types must be
subtypes of the typereal. They must allow representation of all numbers specified b
the corresponding CORBA types.

3.3.9 fixed

The fixed point type is mapped to the lisp type namedcorba:fixed. This type must be
a subtype of the lisp typerational .
May 12, 1998 2:39 pm IDL/LISP 3-21

3

of

not
at

t

ity.

ay

ge.

inct
3.4 Introduction to named types

We now discuss the mapping of types that are named. We begin with a discussion
terminological issues.

3.4.1 Naming terminology

Notation for naming can be confusing, so some care is needed. Our specification is
formally rigorous, but we have tried to illustrate enough points with examples so th
situations likely to arise in practice can be handled.

3.4.1.1 IDL naming terminology

By the IDL nameof an IDL entity we mean the string that is the simple name of tha
entity.

An IDL entity can be declared at the top-level or nested inside some other IDL ent
We say that the outer IDL entityenclosesthe inner one.

We will sometimes elide the quotation marks in describing the names of IDL (and
other entities) when no confusion is likely to result.

IDL Example

module A{
interface B{

struct c {long foo;};};}

The name of thestruct is the string “c”. The name of theinterface is the string “B”.
The name of themodule is the string “A”. The name of thestruct member is the
string “foo”. The innermost enclosing IDL entity of thestruct is theinterface named
“B”. The innermost enclosingmodule of the struct is themodule named “A”.

3.4.1.2 Lisp naming terminology

The nameof a symbol is a string used to identify the symbol.

Packagesare collections of symbols. A symbol has ahome package, which also has a
name. A package can be named by a symbol or a string. We sometimes loosely s
“the package x” when we mean “the package named by x”. A package may have
nicknames and we will consider that the nicknames of a package name the packa

Unless otherwise stated, we will assume that distinct package names refer to dist
packages.
3-22 IDL/LISP 5/12/98

3

the
is

ese

case

me a

root

he
mes
Symbols are notated by prefixing the name of the home package of the symbol to
character ‘:’ to the name of the symbol. Case is not significant when this notation
used.

Thus, all symbols generated by this mapping are external symbols of their home
package.

A symbol can name a function, a package, a class, a type, a slot, or a variable. Th
namespaces are disjoint.

All alphabetic characters in the names of symbols used in this document are upper-
unless otherwise stated.

Thus, the names notated here are implicitly converted to uppercase when they na
symbol.

For example, when we write

the symbol namedhello-goodbye

or

the symbolhello-goodbye

we actually mean the symbol whose name is the string “HELLO-GOODBYE”.

3.5 Distinguished packages

This document will refer to to kinds of packages:

• The first kind comprises those packages defined explicitly by this specification.

• The second kind of package comprises those packages created as a result of
compiling user IDL code.

The first kind of packages consists of these three distinct packages: theroot package,
the corba package, and theoperation package.

The names of these packages are described below.

The name of the root package is the string “OMG.ORG/ROOT”.

The name of the corba package is “OMG.ORG/CORBA”.

The name of the operation package is the string “OMG.ORG/OPERATION”.

The precise semantics of these three packages is described below. Informally, the
package is the package in which Lisp names corresponding to IDL definitions not
contained in a top-level module are interned. The corba package is the package in
which Lisp names corresponding to IDL definitions and pseudo-IDL definitions in t
CORBA module are interned. The operation package is the package into which na
of Lisp functions corresponding to IDL operations are interned.

In addition, this specification makes use of the standard Common Lisp packages
named “KEYWORD” and “COMMON-LISP”.
May 12, 1998 2:39 pm IDL/LISP 3-23

3

via

.

ing

ol
3.5.1 Nicknames for distinguished packages

An implementation is expected to support the addition of nicknames for a package
the standard common lisp nicknames facility. An ORB should support the following
default nicknames:

• For the package “OMG.ORG/CORBA” the default nickname shall be “CORBA”.

• For the package “OMG.ORG/OPERATION” the default nickname shall be “OP”

This document will use these nicknames without comment.

3.6 Scoped names and scoped symbols

Many of the Lisp entities we consider will be named according to the scoped nam
convention described in this section. In particular, the following entities will be
mapped according to this naming convention:

• interface

• union

• enum

• struct

• exception

• const

• typedef

A scoped symbol will be associated with the IDL entity, and it is this scoped symb
that will name the Lisp value generated by the given IDL entity.

3.6.1 Definitions

For any named IDL entityI there is a Lisp symbolS called thescoped symbolof I .

The scoping separatoris the string “/”.

If I is a top-levelmodule , then the name ofS is the name ofI .

If I is a module nested within anothermodule J, then the name ofS is the
concatenation of the name of the scoped symbol ofJ, the scoping separator, and the
name ofI .

The home package of the scoped symbol of amodule is :keyword.

SupposeI is a named IDL entity that is not amodule . The name of the scoping
symbolS of I is determined as follows.

If the declaration ofI is enclosed inside another IDL entityJ that is not amodule ,
then the name ofS is the concatenation of the name of the scoping symbol forJ, the
scoping separator, and the name ofI . Otherwise the name ofS is the name ofI .
3-24 IDL/LISP 5/12/98

3

e is
If I is enclosed in amodule M then the home package ofS is named by the scoped
symbol forM. Otherwise the home package forS is the root package.

3.6.1.1 Examples of scoping symbols

First we consider a simple example:

IDL

module a {
interface foo {};}

The scoped symbol of the module is:a. Thus, the home package of this symbol is
:keyword and the name of the symbol is the string “A”.

The scoped symbol of the interface is the symbola:foo. Thus, the name of the symbol
is the string “FOO” and the home package of the symbol is the package whose nam
the string “A”.

IDL

module a {
interface outer {

struct inner {
in long member;};};}

Here the scoped symbol for themodule is :a, the scoped symbol for theinterface is
a:outer, and the scoped symbol forstruct is a:outer/inner.

IDL

module a{
module b{

interface c{
struct d{

long foo;};};};}

The scoped symbol for thestruct is a/b:c/d. The scoped symbol for thestruct
member isa/b:c/d/foo.

3.7 The package_prefix pragma

A package_prefixpragma has the form

#pragma package_prefix string

wherestring is an IDL string literal. For example
May 12, 1998 2:39 pm IDL/LISP 3-25

3

y in

e
single

d

#pragma package_prefix “COM.FRANZ-”

A package_prefix pragma affects the mapping of all top-level modules whose
definition textually follows thatpragma in the IDL file: the name of the scoping
symbol for such a top-level module is the concatenation of the givenpackage_prefix
with the name of the module.

All OMG system IDL files, such as the IDL files for CORBA Services and CORBA
facilities, are considered to have been defined with an implicitpackage_prefix of
“OMG.ORG/” . This name and convention was chosen to be consistent with the wa
which system repository ID specifiers are determined. Packages corresponding to
modules within the scope of such an implicitpackage_prefixwill have default
nicknames that are the name of the module without any prefix.

IDL
#pragma package_prefix “COM.FRANZ-”
module a{

module b{
interface c{};};};

The scoped symbol for the interface isCOM.FRANZ-A/B:C.

3.8 Mapping forinterface
An IDL interface is mapped to a Lispclass. The name of thisclassis the scoped
symbol for theinterface .

The direct superclasses of a generated Lisp class are determined as follows. If th
given IDL interface has no declared base interfaces, the generated class has the
direct superclass namedcorba:object.

Otherwise, the generated Lisp class has direct superclasses that are the generate
classes corresponding to the declared base interfaces of the given interface.

The Lisp valuenil can be passed wherever an object reference is expected.

An IDL interface is also mapped into server side classes. The server classes are
described in the chapter on Server Side mapping.
3-26 IDL/LISP 5/12/98

3

the
rver

e

the
ill

lities
ct

g to

e
less

that
in
3.8.1 Example

3.8.1.1 IDL

module example{
interface foo {};
interface bar {};
interface fum : foo,bar {};}

3.8.1.2 generated Lisp

(defclass example:foo(corba:object)())
(defclass example:bar(corba:object)())
(defclass example:fum (example:foo example:bar)())

3.9 Mapping foroperation
This section discusses only how the user is to invoke mapped operations, not how
user is to implement them. The implementation of operations is discussed in the se
chapter.

An IDL operation is mapped to a Lisp function named by the symbol whose print-
name is given by the name of the operation interned in the operation package.

We will assume that all operation names have been appropriately imported into th
current package in the examples.

Thus, when an example is given in which there is a reference to the symbol naming
mapped function corresponding to an IDL operation, the package of that symbol w
be assumed to be the operation package. Common Lisp provides a number of faci
for the implementation of this functionality and for handling name conflicts; we expe
in addition the ORBs will provide various convenience functions for this.

3.9.1 Parameter passing modes

The function defined by the IDL operation expects actual arguments correspondin
each formal argument that is declaredin or inout , in the order in which they are
declared in the IDL definition of the operation.

3.9.2 Return values

The function defined by the IDL operation returns multiple values. The first (i.e., th
zeroth) value returned is that value corresponding to the declared return value, un
the declared return value isvoid . Following the value corresponding to the declared
return value, if any, the succeeding returned values correspond to the parameters
were declaredout and inout , in the order in which those parameters were declared
the IDL declaration.
May 12, 1998 2:39 pm IDL/LISP 3-27

3

ed

e

two
Note that this implies that generated functions corresponding to operations declar
void which have neitherout nor inout formal parameters return zero values.

3.9.3 one-way

Operations declaredoneway are mapped according to the above rules.

3.9.4 Efficiency optimization: using macros instead of functions

A conforming implementation may map an operation to a macro whose name and
invocation syntax are consistent with the above mapping. For the sake of
terminological simplicity, however, this document will continue to refer to mapped
operations as “functions”.

3.9.5 exception

An invocation of a function corresponding to a given IDL operation may result in th
certain conditions being signalled, including the conditions generated by the
exceptions declared in theraises clause of the operation, if any. Such conditions are
signalled in the dynamic environment of the caller.

An invocation of a function may also result in the signalling of conditions
corresponding to system exceptions.

3.9.6 context

For each context name declared by an operation, the mapped function accepts a
corresponding keyword argument whose name is the name of that context name. If
context names differ only in case, then the corresponding keywords have names
identical to the context names, i.e., without case translation. Otherwise, case
translation is performed as usual.
3-28 IDL/LISP 5/12/98

3

3.9.7 Example

3.9.7.1 IDL

module example {
interface face {

long sample_method (in long arg);
void voidmethod();
void voidmethod2(out short arg);
string method3 (out short arg1,inout string arg2,in boolean arg3);

};

3.9.7.2 generated Lisp

(defpackage :example)
(defclass example:face(corba:object)())
;...

3.9.7.3 usage

; Suppose x is bound to a value of class example:face.

(sample_method x 3)
> 24

(voidmethod x)
> ; No values returned

(voidmethod2 x)
> 905 ; This is the value corresponding to theout arg

(method3 x “Argument corresponding to arg2” T)
> “The values returned” -23 “New arg2 value”

; The Lisp construct multiple-value-bind can also be used to recover these values.

(multiple-value-bind (result arg1 arg2)
 (method3 x “Argument corresponding to arg2” T)
(list result arg1 arg2))

> (“The values returned” -23 “New arg2 value”)

3.10 Mapping forattribute
attribute is mapped using a naming convention similar to that for operation.
May 12, 1998 2:39 pm IDL/LISP 3-29

3

the

d

3.10.1 readonly attribute

An attribute that is declared with thereadonly modifier is mapped to methods
whose name is the name of the givenattribute and whose home package is the
operation package.

This method is specialized on the class corresponding to the IDL interface in which
attribute is defined.

3.10.2 normalattribute

attribute s that are not declaredreadonly are mapped to a pair of methods that follow
the convention used for default slot accessors generated bydefclass.

Specifically, a reader-method is defined whose name follows the convention for
readonly attribute s. A writer is defined whose name is(setf name)wherename is
the name of the defined reader-method.

3.10.3 Example

3.10.3.1 IDL

module example{
interface attributes {

attribute string attr1;
readonly attribute long attr2;};}

3.10.3.2 Usage

;; Assume x is bound to an object of class example:attributes
(attr2 x)
> 40001
(attr1 x)
> “Sample”
(setf (attr1 x) “New value”)
(attr1 x)
> “New value”

3.11 Mapping ofmodule
An IDL module is mapped to a Lisppackagewhose name is the name of the scope
symbol for thatmodule .

3.11.1 Example
3-30 IDL/LISP 5/12/98

3

er
3.11.1.1 IDL

interface outer_interface {};

module example {
interface inner_interface {};
module nested_inner_example {...

interface nested_inner_interface{};
module doubly_nested_inner_example{...};

};
}

3.11.1.2 generated Lisp

(defpackage :example)
(defpackage :example/nested_inner_example)
(defpackage :example/nested_inner_example/doubly_nested_inner_example)

(defclass omg.root:outer_interface...)
(defclass example:inner_interface ...)
(defclass example/nested_inner_example:nested_inner_interface ...)

3.12 Mapping forenum
An IDL enum is mapped to a Lisp type whose name is the corresponding scoped
symbol.

Each member of theenum is mapped to a symbol with the same name as that memb
whose home package is the keyword package.
May 12, 1998 2:39 pm IDL/LISP 3-31

3

d

d

name

e of
he
r.
3.12.1 Example

3.12.1.1 IDL

module example{
enum foo {hello, goodbye, farewell};

};

3.12.1.2 generated Lisp

(defpackage :example)

(deftype example:foo ()
‘(member :hello :goodbye :farewell))

3.12.1.3 usage

(typep :goodbye ‘example:foo)
> T
(typep :not-a-member ‘enumexample:foo)
> nil

3.13 Mapping forstruct
An IDL struct is mapped to a Lisp class whose name is the corresponding scope
symbol. Each member of thestruct is mapped to an initialization keyword, a reader,
and a writer.

The initialization keyword is a symbol whose name is the name of the member an
whose package is the keyword package.

The reader is named by a symbol that follows the conventions forattribute accessors.
In the case of a reader its package is the operation package, and its name is the
of the member.

The writer is formed by usingsetf on the generalized place named by the reader.

The typecorba:struct is defined to be the union of all such generated types.

An IDL struct has a corresponding constructor whose name is the same as the nam
mapped Lisp type. This constructor takes keyword arguments whose package is t
keyword package and whose name equals the name of the corresponding membe
3-32 IDL/LISP 5/12/98

3

d

e of
3.13.1 Example

3.13.1.1 IDL

module structmodule{
struct struct_type {

long field1;
string field2;
 };};

3.13.1.2 generated Lisp

(defpackage :structmodule)
(defclass structmodule:struct_type (corba:struct)

((field1 ...)
 (field2 ...)))

3.13.1.3 usage

(setq struct (structmodule:struct_type
:field1 100000
:field2 “The value of field2”))

(field1 struct)
> 100000

(setf (field1 struct) -500)
(field1 struct)
> -500

3.14 Mapping forunion
An IDL union is mapped to a Lispclassnamed by the the corresponding scoped
symbol. This class inherits fromcorba:union

The value of the discriminator can be accessed using the accessor function name
union-discriminator whose home package is the operation package and an
initialization argument named:union-discriminator .

The value can be accessed using the accessor function namedunion-value in the
operation package with initialization argument:union-value.

An IDL union has a corresponding constructor whose name is the same as the nam
the type. This constructor takes two constructors whose names are :union-value and
:union-discriminator .
May 12, 1998 2:39 pm IDL/LISP 3-33

3

ber
r to

ion

e
that

not
ase

abels
n.
3.14.1 Member accessors

Each union member has an associated constructor and accessor.

The symbol-name of the name of the constructor corresponding to a particular mem
is the concatentation of the name of the union constructor to the scoping separato
the name of the member. The home package of the name of the constructor
corresponding to a particular member is the home package of the name of the un
constructor.

A constructor corresponding to a member takes a single argument, the value of th
union. The discriminator is set to the value of the first case label corresponding to
member.

It is an error if a member reader is invoked on a union whose discriminator value is
legal for that member. The member writer sets the discriminator value to the first c
label corresponding to that member.

The default member is treated as if it were a member named default whose case l
include all legal case labels that are not case labels of other members in the unio

3.14.2 Example

3.14.2.1 IDL

module example {
 enum enum_type {first,second,third,fourth,fifth};

union union_type switch (enum_type) {
case first: long win;
case second: short place;
case third:
case fourth: octet show;
default: boolean other;

}; };
3-34 IDL/LISP 5/12/98

3

3.14.2.2 generated Lisp

(defpackage :example)
(defclass example:union_type (corba:union)

(...))

3.14.2.3 Usage

(setq union (example:union_type
:union-discriminator :first
:union-value -100000))

(union-value union)
> -100000
(union-discriminator union)
> :FIRST
(setq same-union (example:union_type/win -100000))
(union-discriminator same-union)
> :FIRST
(setf (show same-union) 3)
(union-discriminator same-union)
> :THIRD
(show same-union)
> 3
(setf (default same-union) nil)
(union-discriminator same-union)
> :FIFTH

3.15 Mapping forconst
An IDL const is mapped to a Lispconstant whose name is the scoped symbol
corresponding to thatconst and whose value is the mapped version of the
corresponding value.

3.15.1 Example

3.15.1.1 IDL

module example {
const long constant = -321;

};
May 12, 1998 2:39 pm IDL/LISP 3-35

3

he

me
3.15.1.2 Generated Lisp

(defpackage :example)
(defconstant example:constant -321)

3.16 Mapping for array

An IDL array is mapped to a Lisp array of the same rank. The element type of the
mappedarray must be a supertype of the Lisp type into which the element type of t
IDL array is mapped.

Multidimensional IDL arrays are mapped to multidimensional Lisp arrays of the sa
dimensions.

3.16.1 Example

3.16.1.1 IDL

module example {
 typedef short array1[2][3];
 interface array_interface{
 array1 op();}}

3.16.1.2 Generated Lisp

 (defpackage :example)
(deftype example:array1 () (array (2 3)))
;; mapping for the interface...
(defclass example:array_interface...)

3.16.1.3 usage

(setq a2 (op x)) ; Get an array
(aref a2 0 1) ; Access an element
> 3 ; Just an example, could be any value that is a short

3.17 Mapping forsequence
An IDL sequence is mapped to a Lispsequence. Bounds checking shall be done on
boundedsequence s when they are marshaled as parameters to IDLoperation s.

An implementation is free to specify the type of the mapped list more specifically.
3-36 IDL/LISP 5/12/98

3

ose

al
f

Supposefoo is an IDL data type and letL be the corresponding Lisp type.

This means that anywhere a parameter of typesequence<foo> is expected, either a
vector all of whose elements are of typeL or a list all of whose elements are of typeL
may be passed.

Conversely, when such asequenceis returned from an operation invocation, this
document specifies no type restriction on the returned value other than that it is a
sequenceall of whose elements are of typeL .

In practice, it is likely that an ORB will marshal and unmarshalsequence as
appropriately specializedvector unless the user provides specific information that
this behavior is not desired.

This specification describes a number of functions created by the IDL mapping wh
name is a symbol in the IDL package: union member accessors, struct member
accessors, attribute accessors, operation mappings, and so on. Whenever such a
function is defined, two auxiliary functions are also defined, alist-coercerand avector-
coercer. The name of the list-coercer is the concatenation of the name of the origin
function to the string “-LIST ”; the name of the vector-coercer is the concatenation o
the name of the original function to the string “-VECTOR ”; each function name has
home package of the operation package.

The effect of invoking the list-coercer corresponding to a particular function on
arguments is equivalent to the effect of coercing the result of invoking the original
function on the given arguments to the typelist; similarly for the effect of invoking the
vector-coercer on arguments.
May 12, 1998 2:39 pm IDL/LISP 3-37

3

bol
3.17.1 Example

3.17.1.1 IDL

module example {
 typedef sequence< long > unbounded_data;
 interface seq{
 boolean param_is_valid(in unbounded_data arg);
};
};}

3.17.1.2 Generated Lisp

(defpackage :example)
(defun unbounded_data_p (sequence)
 (and (typep sequence ‘sequence)
 (every #’(lambda(elt)

 (typep elt ‘corba:long)))

(deftype example:unbounded_data()
 ‘(satisfies unbounded_data-p))

; Let x be an object of type example:seq

(param_is_valid x ‘(-2 3))
> T

(param_is_valid x #(-200 33))
> T

3.18 Mapping forexception
Each IDL exception is mapped to a Lisp condition whose name is the scoped sym
for that exception. User exceptions inherit from a condition named
corba:userexception. exceptionis a subclass ofserious-condition.

Figure 3-1 Condition hierarchy for CORBA exceptions

corba:userexceptioncorba:systemexception

corba:exception

condition

t

serious-condition
3-38 IDL/LISP 5/12/98

3

DL

ype
System exceptions inherit from a condition namedcorba:systemexception.

Both corba:userexceptionandcorba:systemexceptioninherit from the condition
corba:exception.

3.18.1 Userexception

The reader functions and initialization arguments for a condition generated by an I
exception follow the convention for the mapping of IDLstructs .

3.18.1.1 Example

IDL

module example {
exception ex1 { string reason; };

};

; generated Lisp
(defpackage :example)
(define-condition example:ex1 (corba:userexception)
 ((reason :initarg :reason ...))

; Usage example

(error (example:ex1 :reason “Example of condition”))

3.18.2 Systemexception

The standard IDL systemexception s are mapped to Lispconditions that are
subclasses ofcorba:systemexception. Such generatedcondition s have reader-
functions and initargs consistent with the IDL definition of theseexception s.

3.19 Mapping fortypedef
IDL typedef is mapped to a Lisp type whose name is the scoped symbol
corresponding to thattypedef .

This name of this type denotes the set of Lisp values that correspond to the Lisp t
that is generated by the mapping of the IDL type to which thetypedef corresponds.
May 12, 1998 2:39 pm IDL/LISP 3-39

3

It
However, it is not required to perform recursive checking of the contents of
constructed types likearray , sequence , andstruct .

3.19.1 Example

3.19.1.1 IDL

module example{
typedef unsigned long foo;
typedef string bar;

3.19.1.2 generated Lisp

(defpackage :example)
(deftype example:foo () ‘corba:unsigned-long)
(deftype example:bar() ‘string)

3.19.1.3 Usage example

(typep -3 ‘example:foo)
> nil
(typep 6000 ‘example:bar)
> nil
(typep “hello” ‘example:bar)
> T

3.20 Mapping forany
The IDL typeany represents an IDL entity with an associated typecode and value.
is mapped to the typecorba:any, which encompasses all Lisp values with a
corresponding typecode.

3.20.1 Constructors

The constructorcorba:any takes two keyword arguments namedany-value andany-
typecode. If any-typecodeis specified, thenany-valuemust be specified. Ifany-value
andany-typecodeare each specified thenany-value must be a member of the type
denoted byany-typecode.

An any may also be created via the invocation

(corba:any :any-typecode val :any-value type).

3.20.2 Typecode accessor

The actual typecodeof a Lisp valuev is defined as follows.
3-40 IDL/LISP 5/12/98

3

at

ode
If v was created by an invocation ofcorba:any, then the actual typecode ofv is the
any-typecodeargument supplied tocorba:any.

If v is a nonnegative integer than the actual typecode ofv is the the typecode that
describes the first Lisp type among (corba:octet, corba:ushort, corba:ulong,
corba:ulonglong) of which v is a member.

Otherwise ifv is a negative integer then the actual typecode ofv is that typecode that
describes the first Lisp type among (corba:short, corba:long, corba:longlong) of
which v is a member.

Otherwise ifv is a member ofcorba:float or corba:double then the actual typecode of
v is corba:tc_float or corba:double respectively.

Otherwise ifv is a member ofcorba:boolean then the actual typecode ofv is
corba:boolean.

Otherwise ifv is a char then the actual typecode ofv is corba:tc_char.

Otherwise ifv is a string designator then the actual typecode ofv is corba:tc_string.

Otherwise ifv is anarray then then the actual typecode ofv a typecode describing an
array compatible with the contents ofv.

Otherwise ifv is a list then the the actual typecode ofv is a typecode describing a
sequencecompatible with the contents of v.

Otherwisev must be an instance ofcorba:object, corba:struct or corba:union and the
actual typecode is the typecode describing theexception , interface , struct , or
union of which v is an instance. (Such av is said to beself-typing).

(any-typecode v)is defined to resolve to the actual typecode ofv.

3.20.3 value accessor

If v is a number, a string, a sequence, a boolean, or an instance ofcorba:enum,
corba:object, or corba:struct then(any-value v)evaluates to a value that iseql to v.

Otherwise, ifv is anany created via a call to thecorba:any constructor, then(any-
value v) resolves to theany-value specified in that call.

Otherwise the ORB may signal aCORBA:BAD_PARAM exception. This might be
necessary, for example, if the ORB received an any containing an instance of astruct
type for which it does not have enough static information to construct a value of th
type. In this case, the value of theany can be accessed through theDynAny pseudo
interface.

3.20.4 Interaction with GIOP

For the purpose of GIOP marshalling, a Lisp entity is considered to have the typec
and value corresponding to its actual typecode and actual value.
May 12, 1998 2:39 pm IDL/LISP 3-41

3

h
is

h

e

mall
For example, consider the following IDL:
module example{

interface any_example{
void foo (in any val);};}

Now suppose thatx is bound to a proxy for a remote implementation of the
example::any_example interface and suppose requests are forwarded over GIOP
to the remote object.

An invocation

(foo x 3)

will forward to the remote implementation a request to invoke the “foo” method wit
single parameter anany whose typecode is the typecode for octet and whose value
the integer 3.

However, an invocation

(foo x (corba:any :any-typecode corba:tc_longlong :any-value 3))

will forward to the remote implementation a request to invoke the “foo” method wit
single parameter anany whosetypecode is the typecode forlong long and whose
value the integer 3.

Thus, the default coercion rules forany may be overridden as necessary.

Furthermore, theDynAny pseudo interface provides an alternative way to access th
values in anany.

3.20.5 Additional examples ofany usage

(any-typecode 3)
> <octet typecode>
(any-typecode -1)
> <short typecode>
(any-typecode “foo”)
> <string typecode> ; could also be typecode for an array.
(any-value “foo”)
> “foo”
(any-value nil)
> nil
(any-typecode nil)
> <typecode for boolean>

3.21 Mapping Overview

The detailed mapping guidelines for specific types was designed to conform to a s
set of uniform principles.
3-42 IDL/LISP 5/12/98

3

the
me

fined
his

his

its

of

me
of

e
tion
h

ke

ed
3.21.1 Rule 1: How names of types are formed

If an IDL identifier I names a type at the top level of some module named M, then
corresponding Lisp type is named M:I, that is, the symbol in package M whose na
is the string “I”.

Nested types are separated by the character “/”. Thus, if there is another type J de
within the scope of the type named by I, the corresponding Lisp symbol is M:I/J. T
retains consistency with the way in which repository ID’s are formed.

3.21.2 Rule 2: How names of operations are formed

The rule for operation package mapping is simpler: All symbols that correspond to
Lisp functions that correspond to IDL operations are interned in a single package. T
package can be denoted by “OP”. Thus, op:foo denotes the operation named foo.

3.21.3 Rule 3: Lisp functions corresponding to IDL types

IDL defines many kinds of types: unions, structs, interfaces, exceptions.

We can think of each of each of these types, informally, as denoting entities with
“named slots”. For example, the “named slots” of a struct, union, or exception are
members; the “named slots” of an interface are its attributes.

For each IDL type, there is an associated constructor function that creates a value
that type and there are accessors for each member.

3.21.3.1 The constructor function

The constructor function corresponding to a type is identical to the (fully scoped) na
of the type. It takes keyword initialization arguments whose names are the names
the named members of that type; these initialize the given members.

3.21.3.2 Accessing the members

Each “named slot” defines two functions: a reader and a writer. The reader has th
same name as the “named slot”. The writer uses the standard (setf name) conven
familiar to Lisp users. Of course, the home package of the reader is, as for all suc
function names, the package OP.

3.21.3.3 Notes

In applying Rule 3, it is important to note that not all of the associated functions ma
sense for all of the types. For example, there is obviously no constructor function
defined for an interface, nor are there writer functions defined for attributes declar
readonly.
May 12, 1998 2:39 pm IDL/LISP 3-43

3

3-44 IDL/LISP 5/12/98

MappingPseudo-Objects toLisp 4
age

ct.
4.1 Introduction1

Pseudo-objectsare constructs whose definition is usually specified in “IDL”, but
whose mapping is language specified. A pseudo-object is not (usually) a regular
CORBA object.

For each of the standard IDL pseudo-objects we either specify a specific Lisp langu
construct or we specify it as apseudo interface .

We have chosen the option allowed in the IDL specification section 4.1.3 to define
Status asvoid and have eliminated it for the convenience of Lisp programmers.

A Pseudo-object differs from a regular CORBA object in the following ways:

• It is not represented in the Interface Repository.

• It may not be passed as a parameter to an operation expecting a CORBA Obje

• It may not be returned as a CORBA Object.

• It may not be stored in anany.

• It may not be safely subclassed by user code, if it is represented as a class.

4.2 Certain exceptions

The standard CORBA PIDL uses severalexception s, Bounds , BadKind , and
InvalidName .

(define-condition corba:bounds (corba:userexception)...)

1.This chapter has not been fully updated from the 2.1 pseudo IDL to the 2.2 pseudo IDL.
5/13/98 IDL/LISP 4-45

4

.

(define-condition corba:typecode/badkind(corba:userexception)...)
(define-condition corba:typecode/bounds(corba:userexception)...)
(define-condition boa:invalidname (corba:useexception)...)

4.3 Environment
The Environment is used in request operations to makeexception information
available.

Sinceconditions in Lisp are first class objects, we see no reason not to define
Environment simply as anexception :

(deftype corba:environment() ‘corba:exception)

4.4 NamedValue
A NamedValue describes a name, value pair. It is used in the DII to describe
arguments and return values, and in thecontext routines to pass property, value pairs

We map this as if it were a normalstruct as specified by the IDL using the IDL in
module CORBA:
typedef unsigned long Flags;
typedef string Identifier;
const Flags ARG_IN =1;
const Flags ARG_OUT = 2;
const Flags ARG_INOUT = 3;
const FLAGS CTX_RESTRICT_SCOPE = 15;

struct NamedValue{
Identifier name;
any argument;
long len;
Flags arg_modes;}

4.5 NVList
A NVList is used in the DII to describe arguments and in the context routines to
describe context values. AnNVLis t is mapped to an object of classCORBA:NVList
whose pseudo-IDL is given below.
4-46 IDL/LISP 5/13/98

4

L

pseudo interface NVList {
 readonly attribute unsigned long count;
 NamedValue add (in Flags flags);
 NamedValue add_item (in Identifier item_name, in Flags flags);
 NamedValue add_value (in Identifier item_name,

in any val,
in Flags flags);

 NamedValue item (in unsigned long index) raises (CORBA::Bounds);
 void remove (in unsigned long index) raises (CORBA::Bounds);

4.6 Context
A Context is used in the DII to specify acontext in which context strings must be
resolved before being sent along with the request invocation.

It is mapped to a classcorba:context whose operations are as specified in the PID
for this class.

pseudo interface Context {
readonly attribute Identifier context_name;
readonly attribute Context parent;
Context create_child (in Identifier child_ctx_name);
void set_one_value (in Identifier propname, in any propvalue);
void set_values (in NVList values);
void delete_values (in Identifier propname);
NVList get_values (in Identifier start_scope,

in Flags op_flags,
in Identifier pattern);

4.7 Request
A Request is mapped to an instance of classCORBA:request according to the IDL:
May 13, 1998 4:31 pm IDL/LISP 4-47

4

typedef sequence<Exception> ExceptionList;
typedef sequence<Context> ContextList;
pseudo interface Request {

readonly attribute Object target;
readonly attribute Identifier operation;
readonly attribute NVList arguments;
readonly attribute NamedValue result;
readonly attribute Environment env;
readonly attribute ExceptionList exceptions;
reaodnly attribute ContextList contexts;
attribute Context ctx;
any add_in_arg();
any add_named_in_arg (in string name);
any add_inout_arg();
any add_named_inout_arg(in string name);
any add_named_out_arg(in string name);
void set_return_type(in TypeCode tc);
any return_value();

void invoke();
void send_oneway();
void send_deferred();
void get_response();
boolean poll_response();

4.8 ServerRequest
ServerRequest is used in the DSI. It is to be mapped according to the IDL to the
Lisp class namedCORBA:ServerRequest.
pseudo interface ServerRequest{

Identifier op_name();
Context ctx();
void params (in NVList parms);
void result (in any res);
void except (in any ex);

4.9 TypeCode
The deprecatedparameter andparam_count methods are not mapped.

A TypeCode is an instance of the class namedCORBA:TypeCode. It follows the
pseudo IDL below.
4-48 IDL/LISP 5/13/98

4

enum TCKind{
tk_null, tk_void, tk_short, tk_long, tk_ushort, tk_ulong, tk_float, tk_double,
tk_boolean, tk_char, tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref,
tk_struct, tk_union, tk_enum, tk_string, tk_sequence, tk_array, tk_alias,
tk_except, tk_longlong, tk_ulonglong, tk_longdouble, tk_wchar, tk_wstring,
tk_fixed};

pseudo interface TypeCode {
exception Bounds{};
exception BadKind{};

boolean equal (in TypeCode tc);

//for objref, struct, union, enum, alias, and except
TCKind kind();
RepositoryId id() raises (BadKind);
Identifier name() raises (BadKind);

//for struct, union, enum, and except
unsigned long member_count() raises (BadKind);
Identifier member_name(in unsigned long index) raises (BadKind, Bounds);

//for struct, union, and except
TypeCode member_type (in unsigned long index) raises (BadKind, Bounds);

//for union
any member_label(in unsigned long index) raises (BadKind, Bounds);
TypeCode discriminator_type() raises (BadKind);
long default_index() raises (BadKind);

//for string, sequence, and array
unsigned long length() raises (BadKind);
TypeCode content_type() raises (BadKind);

4.10 ORB

4.10.1 ORB initialization

An ORB is initalized via the ORB_init pseudooperation in the CORBA module:

This pseudooperation simply takes as argument various implementation-defined
keywords.

4.10.2 ORB pseudo-object

The ORB is mapped according to its pseudo-IDL definition. This includes the
following IDL:
May 13, 1998 4:31 pm IDL/LISP 4-49

4

pseudo interface ORB {
exception InvalidName{};
typedef string ObjectId;
typedef sequence<ObjectId> ObjectIdList;
ObjectIdList list_initial_services();
Object resolve_initial_references(in ObjectId object_name)

raises(InvalidName);

string object_to_string (in Object obj);
Object string_to_object (in string str);

NVList create_list(in long count);
NVList create_operation_list(in OperationDef oper);
NamedValue create_named_value(in String name, in any value, in Flags

flags);
Context get_default_context();
void send_multiple_requests_oneway(in RequestSeq req);
void send_multiple_requests_deferred(in RequestSeq req);
boolean poll_next_response();
Request get_next_response();

//typecode creation

TypeCode create_struct_tc (
in RepositoryId id,
in Identifier name,
in StructMemberSeq members);

TypeCode create_union_tc(
in RepositoryId id,
in Identifier name,
in Typecode discriminator_type,
in UnionMemberSeq members);

Typecode create_enum_tc(
in RepositoryId id,
in Identiifer name,
in EnumMemberSeq members);

TypeCode create_alias_tc(
in RepositoryId id,
in Identifier name,
in TypeCode original_type);

TypeCode create_exception_tc(
in RepositoryId id,
in Identifier name,
in StructMemberSeq members);

TypeCode create_interface_tc(
in RepositoryId id,
4-50 IDL/LISP 5/13/98

4

g

in Identifier name);

TypeCode create_string_tc (in unsigned long bound);
TypeCode create_wstring_tc (in unsigned long bound);
TypeCode create_recursive_sequence_tc (

in unsigned long bound,
 in unsigned long offset);

TypeCode create_array_tc (
in unsigned long length,
in TypeCode element_type)

4.11 Object
The IDL Object type is mapped to the classcorba:object . It supports the operations
defined in the pseudo-IDL for this type.

The is_nil pseudo operation is mapped to a function namedop:is_nil which may be
applied to the lisp valuenil .

The duplicate andrelease pseudo-operations are unnecessary in the Lisp mappin
and are not mapped.

pseudo interface Object{
void create_request(

in Context ctx,
in Identifier operation,
in NVList arg_list,
inout NamedValue result,
out Request request,
in Flags req_flags);

InterfaceDef get_interace();
boolean is_nil();
boolean is_a (in string logical_type_id);
boolean non_existent();
boolean is_equivalent (in Object other_object);
unsigned long hash (in unsigned long maximum);

4.12 Principal
The Principal interface is deprecated and is not mapped.

4.13 DynAny

The DynAny pseudo interface is mapped according to its pseudo IDL without any
modification. ADynAny is an instance of the classcorba:DynAny.
May 13, 1998 4:31 pm IDL/LISP 4-51

4

p
his

he

a

least

the
4.14 The IDL Compiler

The IDL compiler uses the following top-level pseudo-IDL definition in theCORBA
module:

typedef string pathname_designator;
Repository idl (pathname_designator path);

The Lisp mapping is to the function namedcorba:idl that takes a single argument, a
pathname designator for an IDL source file.

The effect of invokingcorba:idl on a pathname designator is to define within the Lis
world all data types, packages, proxies, and stubs defined by the denoted IDL file. T
may entail redefining classes or types.

If the Lisp mapping requires that package namedP be created, and there is already a
packageQ with P as one of its names or nicknames in the current Lisp world, then t
packageQ is used everywhere the package namedP is required. Previously existing
symbols interned inQ, or other attributes ofQ such as the packages it uses, are not
affected. However, if a symbol is interned in, but not exported by,Q, and if the
mapping requires this symbol be external, its visibility is appropriately modified as
result of thecorba:idl mapping.

The object returned is an object of typecorba:repository and represents an Interface
Repository representing the IDL file given as input. The precise semantics of this
representation is implementation dependent, although it should contain objects at
that represent each definition in the input IDL file, unless it returnsnil.

Implementations may freely add additional keywords tocorba:idl to express additional
functionality. For example, the implementation may augment this specification with
keywords to describe the names of packages into which IDL entities are mapped,
visibility of symbols, and preprocessor directives.
4-52 IDL/LISP 5/13/98

Server-Side 5
RB

uld
.

age.

direct
5.1 Introduction

This chapter discusses how implementations create and register objects with the O
runtime.

5.2 Mapping of native types

Specifically, the native type PortableServer::Servant is mapped to the Lisp class
named. PortableServer:Servant. The native type
PortableServer::ServantLocator::Cookie is mapped to the Lisp type
PortableServer:ServantLocator/Cookie.

5.3 Implementation objects

An implementation of an IDL interface I corresponding to a Lisp class named I sho
inherit, directly or indirectly, from the classes named I and PortableServer:Servant

5.4 Servant classes

An interface corresponding to a class named by a Lisp symbols with packagep and
namen may be implemented by extending the class named by the symbol whose
package isp and whose name is the concatenation ofn to the string “-SERVANT”.

For eachattribute in the interface , the associated servant class has a slot whose
name is the name of the attribute and whose home package is the operation pack

If the interface has no base interfaces, then the associated skeleton class has as
superclasses the class corresponding to the given interface and the class named
corba:servant.
3/14/98 IDL/LISP 5-53

5

rface

for

he

.

n
bol
Otherwise, if the interface has base interfaces namedA, B, C... then its associated
servant class has as direct superclasses the class corresponding to the given inte
and the servant classes corresponding toA, B, C...

5.4.1 Note on proxies

An ORB that supports proxies is encouraged to use a similar inheritance hierarchy
proxies, with “servant” replaced by “proxy” in all generated classes above. This is
intended to help allow more portable auxiliary method definition.

5.5 Defining methods

The only portable way to implement an operation on a servant class is by use of t
corba:define-methodmacro.

The syntax ofcorba:define-methodis intended to follow as closely as possibly the
syntax of the Lispdefmethod macro.

5.5.1 Syntax ofcorba:define-method
corba:define-method function-name {method-qualifier}* corba-specialized-lambda-
list form*

function-name::= {operation-name | (setf operation-name)}
operation-name:: symbol
method-qualifier::={:before | :after | :around}
corba-specialized-lambda-list ::= setf-lambda-list | normal-lambda-list
setf-lambda-list ::= (argument-specifier receiver-specifier)
normal-lambda-list ::= (receiver-specifier {parameter-specifer}* context-list)
context-list ::= {} | {&key {context-identifier}+}
context-identifier ::= symbol
receiver-specifer ::= (receiver-name receiver-class)
receiver-name ::= symbol
receiver-class ::= symbol
parameter-specifier ::= symbol

5.5.2 Description

This corba:define-methodmacro is used to implement an operation on an interface

operation-name is a symbol whose name is the name either of an operation or of a
attribute declared in an IDL interface implemented by the class named by the sym
receiver-class.
5-54 IDL/LISP 3/14/98

5

ding

e to

of
The number ofparameter-specifiers listed in thenormal-lambda-list must equal the
combined number ofin and inout parameters declared in the signature of the
operation denoted by thefunction-name, or 0 if the operation is an attribute. If the
function-name is a list whosecar is setf, the correspondingoperation-nameshould
name an attribute that is notreadonly .

If function-name denotes an operation, then the effect ofcorba:define-methodis to
inform the ORB that requests for the operation on instances of the classreceiver-class
should return the value or values returned by the body forms of thedefine-method
macro, executed in a new lexical environment in which eachparameter-specifier is
bound to the actual parameters and in which eachcontext-identifer is bound to the
value of the correspondingcontext variable.

The operation ofcorba:define-methodin the case in whichfunction-name names an
attribute is analogous.

The behavior of auxiliary specifiers and of dispatch is the same as their correspon
action underdefmethod.

Note that the syntax ofcorba:define-methodis a strict subset of that ofdefmethod:
every legalcorba:define-methodinvocation is also a legaldefmethod invocation. The
main difference between them is thatcorba:define-methodonly allows specialization
on the first argument.

An implementation is free to extend the syntax of corba:define-method, for exampl
allow type-checking, interlocking, or multiple dispatch.

5.6 Examples

5.6.1 Example: A Named Grid

The first example shows how one might encapsulate a “named-grid”, which is a grid
strings.

5.6.1.1 IDL

This is the IDL of the interface to a named grid of strings.
March 14, 1998 10:03 am IDL/LISP 5-55

5

module example{
interface named_grid{

readonly attribute string name;
string get_value (in unsigned short row,

 in unsigned short column);
void set_value (in unsigned short row,

 in unsigned short column,
 in string value);

}

5.6.1.2 Generated Lisp code

The IDL compiler might generate a class corresponding to the
example::named_grid interface using code something like this:

(defpackage :example)
(defclass example:named_grid(corba:object)())

5.6.1.3 Servant class

In order to implement the IDL interface, the user would extend the class
example:named_grid-servant.
5-56 IDL/LISP 3/14/98

5

 of
 cor-

ro-

mote

her
;;Sample implementation of named_grid
(defclass grid-implementation (example:named_grid-servant)
 (

(grid :initarg :grid
 :initform (make-array ‘(2 3) :initial-element “Init”)))

5.6.1.4 Implementation of the IDL operations

Thecorba:define-method macro is used to define the methods that implement each
the operations defined in the IDL interface. Note that the reader method and initarg
responding to theattribute name was already defined by theservant.

These implementations do not perform any argument or range checking, which a p
duction system would, of course, perform.

The implementation is free to define other methods on the class, includingprint-object
methods andauxiliary methods forinitialize-instance.

(corba:define-method get_value ((the-grid grid-implementation)
 row
 column)

(aref (slot-value the-grid ‘grid) row column))

(corba:define-method set_value ((the-grid grid-implementation)
row
column
value))

(setf (aref the-grid row column) value))

5.6.1.5 Usage example

Once the implementation class is defined, it can be instantiated and its instances
treated as a normal CLOS object. In particular, such instances can be passed to re
ORB servers which expect an object implementing the IDLnamed_grid interface.
The invocation of the methods corresponding to IDLoperation s does not depend on
whether the object is an instance of the servant class or is simply a proxy for anot
object (perhaps implemented in another language).

This usage example does not discuss registration of the object with the ORB.
March 14, 1998 10:03 am IDL/LISP 5-57

5

; create a named grid

(setq grid (make-instance ‘example:grid-implementation :name “Example of a
grid”)

(name grid)

> “Example of a grid”

(set_value grid 0 1 “Hello”)
> ; No values returned
(get_value grid 0 1)
> “Hello”
5-58 IDL/LISP 3/14/98

DesignDecisions 6
sign
isions

ved

e

A
p
e

fy

ir
was
ich
e

The purpose of this chapter is to explain and to justify the reasoning behind the de
choices made. For each key design decision, we discuss alternative proposed dec
or alternative considered design decisions.

This chapter is not normative and is not intended to be included in the finally appro
mapping document.

6.1 Introduction

The overall goal of our mapping design was to make a successful Lisp mapping. W
wanted the mapping to be widely used in Lisp applications and to be supported by
multiple vendors.

We began by studying the existing mappings and in particular determining which
mappings appeared to be successful and which did not, and why. We also tried to
identify characteristics of Lisp that make it well-suited or ill-suited to use in a CORB
environment. We tried to make sure that our mapping could exploit the traits of Lis
that were well-suited to a CORBA environment while minimizing the traits that wer
not well-suited to a CORBA environment.

6.1.1 Goals

Within the constraint of faithfully representing IDL semantics, we attempted to satis
a number of design goals.

6.1.1.1 Ease-of-use

CORBA systems are often cross-platform, cross-language, and cross-vendor. The
development presents certain unavoidable difficulties for the programmer. Our aim
to make the Lisp ORB as simple to use as possible. We strove for a system in wh
common idioms could be expressed concisely and in which common defaults wer
3/15/98 IDL/LISP 6-59

6

utes,
nable

even
as

ers
he
ion
r of

-

d.
chosen. For example, the skeleton classes automatically generates slots for attrib
operation invocation syntax can be very concise. The any mapping chooses reaso
defaults for most cases, although means to override the defaults are given.

6.1.1.2 Consistent

A crucial design goal was that our mapping be as easy to learn to use as possible
for users not expert in Lisp or in CORBA. To achieve this, we aimed for a mapping
consistent as possible.

Attributes or attribute-like values are always mapped the same: to keyword initializ
and to accessors with the same name as the attribute. This holds whether or not t
attribute-like value corresponds to a true IDL attribute, to a struct member, to a un
member, or to an exception member. Constructed types always have a constructo
the same name.

6.1.1.3 Flexibility

The mapping should facilitate the production of flexible and dynamically modifiable
code. CLOS auxiliary methods and smart proxies are supported; run-time code
modification based on dynamically computed repositories is supported.

6.1.1.4 Performance

The features described here should not impose undue performance overhead.

6.1.1.5 Adherence to IDL

We adhere to IDL conventions as much as possible, even when specifying pseudo
interfaces.

6.1.2 Lisp Version

The term “Lisp” is often used colloquially to refer to “Lisp-like”
languages—interpreted, high-level, dynamic languages with customizable
syntax—such as Scheme or various variants of Common Lisp.

By “Lisp” we will mean exclusively “Common Lisp” as specified by the in X3J13
Committee,ANSI X3.226-1994, American National Standard for Information
Technology—Programming Language—Common Lisp, ANSI (New York) 1994.

In particular, we do not rely on features that were not present in the ANSI standar
We discuss here three such features that are commonly encountered.
6-60 IDL/LISP 3/15/98

6

Art

ing

r
e

ent

can

y of
type-

on,

n

6.1.2.1 Meta-object protocol

Although production Lisp systems support the meta-object protocol as described in
of the Meta-object Protocol (MOP), this protocol was not standardized by X3J13.
Therefore, we have been careful to insure that implementation or use of the mapp
here in no way relies on portions of the MOP not formally approved by X3J13.

6.1.2.2 Multithreading

The X3J13 group did not standardize multiprocessing or concurrency semantics fo
Lisp, although again all production Lisp systems do include such features. We hav
therefore not specified a specific multi-processing interface.

6.1.2.3 Case-sensitivity

Some vendors of Lisp support “case-sensitive” Lisps of various flavors. This docum
does not address this issue.

6.1.3 Reverse mapping

We have not considered explicitly reverse-mapping issues.

6.1.4 Compiler interface

The interface to the compiler is part of the specification so that portable programs
be written that invoke the compilation process.

6.1.5 Type checking

We did not specify in most cases that a particular exception be raised if incorrectly
typed values are passed to an array, mostly for reasons of simplicity and efficienc
implementation. Of course, an implementation is encouraged to provide as much
checking as feasible.

6.2 Overall Design Philosophy

In evaluating the suitability of committing the standard to a particular design decisi
we considered the following:

• Is the decision natural in light of IDL notation and semantics?

• Is the decision natural in view of other languages’ mappings? How did other
languages’ mapping treat this problem?

• Does the decision allow reasonable performance?

• Is our decision easy to learn and to remember? Is it consistent with other desig
decisions in the Lisp mapping?
March 15, 1998 7:12 pm IDL/LISP 6-61

6

the

ings

.

elt
eral

y

to

er-

d-

ace.
6.2.1 Relationship to other mappings

We relied particularly on three mappings: the C++ mapping, the Java mapping, and
Smalltalk mapping.

The C++ mapping is important because it is one of the most comprehensive mapp
and because IDL is very close to C++ in semantic model.

The Java mapping was one of the most recent, is very popular, and is easy to use

The Smalltalk mapping is one of the most straightforward and consistent of the
mappings.

However, we are aware of and studied the C mapping and the Ada mapping. We f
the C mapping was useful primarily as an example of what to avoid: although gen
and efficient, it is so complicated to use that few ORBs support it.

For example, our any mapping follows the Smalltalk mapping philosophy. Our DII
mapping, however, follows the Java mapping.

On the other hand, our handling of names follows the IDL convention for repositor
ID’s rather than the Java convention (again, the C convention was rejected as
incomplete).

6.3 Names

There are several differences between the IDL and the Lisp namespaces.

6.3.1 Capitalization

IDL identifiers are case-sensitive, but two identifiers differing only in case are not
allowed to occupy the same namespace.

Although Lisp symbols are also case-sensitive, in practise it is often inconvenient
notate in a Lisp program symbols whose names contain lower-case alphabetic
characters, since the Lisp reader by default converts lower-case characters to upp
case characters in symbol names.

Therefore, we have chosen to convert implicitly all IDL identifiers to upper-case.

However, we follow the customary usage of X3J13 in notating symbols using mixe
case—typically lower-case—characters.

6.3.2 Nesting

The IDL namespace is deeply nested, although there is only a single “root” namesp

There are many disjoint Lisp namespaces, each of which is essentially bilevel. We
chose to partition the IDL namespaces into a module portion and a non-module
portion.
6-62 IDL/LISP 3/15/98

6

they

such

ols

ter in

er
e

rtain
hes

e

re
6.3.3 Character set

Lisp symbols typically have names comprising 8-bit characters. However, certain
characters, such as the space character, are difficult to work with in practice since
must be escaped for the default Lisp reader.

The situation for IDL identifier is not as clear for the following reasons:

6.3.3.1 International characters

The CORBA 2.1 specification, as has previous CORBA specs, explicitly allows a
number of ISO-Latin characters that are not standard ASCII alphabetic characters,
as ß, Æ, and È.

However, no other mapping of which we are aware has provision for mapping symb
containing such characters. In order to remain compatible with existing ORBs, we
chose to allow only standard alphanumeric characters and the underscore charac
IDL identifiers.

6.3.3.2 Other special characters

Lisp allows punctuation characters such as “/”, “-” and “.” to be part of the charact
name, while IDL does not. We exploit this fact in a number of instances to avoid th
possibility of name clashes.

6.3.3.3 Keywords

Lisp does not have reserved words in the usual sense (although the bindings of ce
symbols may not be changed). Therefore, we did not require rules for avoiding clas
with reserved keywords. On the other hand, we did not consider here the issue of
generated Lisp package names conflicting with user or system package names. W
expect that options may be provided to the compiler to avoid this problem.

6.3.4 Alternative mappings

It would have been possible to choose a name mapping that produced names mo
familiar to Lisp users. For example, hyphens could have been inserted at case
transitions, or underscores could have been converted to hyphens.

6.3.5 Prefixes

We provided apackage_prefix pragma in order to avoid clashes between IDL
module names and generated Lisp package names.
March 15, 1998 7:12 pm IDL/LISP 6-63

6

er-

for
6.4 Mapping of basic types

The mapping for most of the basic types is fairly straightforward, although charact
set issues are discussed above.

There are questions in certain cases, however:

6.4.1 boolean

We considered mapping this type to the Lisp values defined bygeneralized boolean,
which is easier to use in certain cases, but mapping tobooleanwas simpler.

6.4.2 float anddouble

In practice Lisp vendors use IEEE format to represent floating point numbers, but
because this representation is not required by the ANSI standard, we chose our
mapping to be independent of this.

6.5 Mapping forstruct
An alternative mapping would map an IDLstruct directly into astructure-object, an
object created by the macrodefstruct. Another reasonable mapping would have been
to map astruct into a class whose slot accessors obeyed the naming rules for
defstruct accessors. We chose to maintain consistency with the naming convention
attribute in our mapping.

Furthermore, this makes the format of the accessors forexception more uniform, as it
can simply follow thestruct format.

However, we have chosen our mapping so that astructure-classimplementation would
not be precluded; we do not insist thatcorba:struct be a subclass ofstandard-class,
since for some compilers it could be the case that implementing acorba:struct as a
structure-object would allow a performance improvement.

6.6 Mapping forexception
Clearly IDL exception should be mapped to Common Lispcondition .

Nevertheless, there were several design issues that arose

6.6.1 condition hierarchy

It seemed clear that the Lispcondition corresponding to CORBA userexception and
CORBA systemexception would derive from a common base class named
corba:exception.
6-64 IDL/LISP 3/15/98

6

“a

tain

p

ance

le.
However, it is not clear from which of the standard Lispcondition classes the
corba:exceptionclass would most appropriately derive directly

We considered these options as candidates for the direct superclass of
corba:exception:

• condition, the base class for the Lispcondition system

• error , the base class for errors.

• serious-condition.

We quickly rejectedsimple-error, simple-condition, andwarning as candidates.

The most familiar condition to signal for Lisp programmers would probably beerror ,
but the specification does not support this usage.

In particular, the ANSI spec [p. 9-11] states that “The typeerror consists of all
conditions that represent errors” where an “error” as used in the last word refers to
situation in which the semantics of a program are not specified, and in which the
consequences are undefined.” We felt that this was too strong a usage for the cer
cases of exceptions that are raised.

On the other hand, aserious-condition is one which is “serious enough to require
interactive intervention if not handled [X3J13 p. 9-10].” This seems like a more
appropriate match, and it is the one we chose.

It would certainly be a reasonable mapping for corba:exception to inherit directly
from condition. However, we think that exceptions should be signaled using the Lis
error function and not thesignal function.

The question of the direct superclass ofcorba:exceptionaffects the behavior of
condition handlers in whose scope such a condition is signalled, hence the import
of specifying carefully this class.

6.6.2 Namingexception classes

We chose to name the classes corresponding to system and userexception s
corba:systemexceptionandcorba:userexceptionrespectively. This naming convention
is consistent with the mapping of Java and of C++.

However, the IDL for theenum types corresponding toexception used in the IDL
for the GIOP uses an underscore to separate the words:corba_exceptionand
user_exception, and socorba:system_exceptionandcorba:user_exceptionwould be
an appropriate alternative mappings.

6.6.2.1 Member accessors

We chose a convention for member accessors consistent with that forstruct , except
that of course there were no writer functions defined since conditions are immutab
However, if thestruct mapping were to change we would reconsider this mapping.
March 15, 1998 7:12 pm IDL/LISP 6-65

6

t self-
re a

o

s

the

“/”.
ame

rator
liar
e are

o

g

6.7 Mapping forenum
A Lisp symbol in the :keyword package usually fill the role ofenum in C-like
languages. This mapping has the disadvantage, however, that such values are no
typing in the sense that they do not encode the name of the enum of which they a
member.

We could have chosen a self-typing mapping as well—languages like Java have tw
mappings forenum , for example—but we chose not to do so.

6.8 Mapping forunion
An alternative mapping would map theunion to a base class and each of the branche
to concrete subclasses.

We eventually decided to follow closely the Java union mapping, again to shorten
learning curve.

A simpler alternative would have been to map aunion to a conswhosecar holds the
discriminator and whosecdr holds the value. However, we felt it was reasonable to
maintain the same naming convention for all corba accessor functions.

6.9 Mapping ofmodule
The IDL module is a name-scoping mechanism in IDL whose corresponding Lisp
equivalent is the package. Some separators need to be used between namespace
identifiers, since the Lisp package system is not nested.

We chose not to rely on automatic importing of symbols in apackagecorresponding to
an outermodule into thepackagecorresponding to the innermodule , as we felt the
potential for confusion outweighed the gain in concision.

Because we are using “/” as a separator for names of components of a nested
namespace, we felt the name of the mapping of top-level types should begin with
By default, therefore, top-level modules are in fact mapped to the package whose n
is /, although idl or /idl are reasonable alternatives.

The “/” separator was chosen instead of the “.” separator because that is the sepa
used by IDL as a scoping separator in repository IDs. However, the “.” is more fami
in this context, since it is used as a scoping separator in the Java mapping, and w
considering modifying the mapping to use “.” as the scoping separator character.

6.10 Mapping forarray
An IDL array is mapped to a Lisparray. It would be reasonable to specify formally
the declared :element-typeof the mapped Lisp array, but for simplicity we chose not t
in this document.

There is a potential ambiguity in dealing with nested arrays. Consider the followin
IDL definitions
6-66 IDL/LISP 3/15/98

6

e

s
e

// IDL
typedef short a [2];
typedef a b[3];
typedef short c[2][3];

In the mapping,c would be mapped to a 2-dimensionalarray, but b would be mapped
to a one-dimensionalarray of arrays. These data structures are disjoint in Lisp and ar
not accessed using the same syntax.

The problem is that the definition of ArrayDef in the interface repository only allow
one-dimensional arrays (although the element type can be array). Thus, it might b
necessary to mapb into a Lisp two-dimensionalarray of integers as well, so as to
interoperate unambiguously with other interface repositories.

Because there are known problems with the treatment of interface repositories in
CORBA, we chose not to consider the impact of this problem at this time.

6.11 Mapping forsequence
This draft chooses to map IDLsequence to the Lisp typesequence.

There are several possible alternative mappings.

6.11.0.1 sequence -to-list

The simplest mapping to use and to explain is probably the mapping that maps
sequence to list . Unfortunately, such a mapping has substantial performance
overhead for cases where the element types are small, such as in the ubiquitous
sequence<octet> . More important, thelist data type simply fails to capture
gracefully the intended use ofsequence in certain applications.

6.11.0.2 sequence -to-vector

Another natural mapping is forsequence to go tovector. Although this is an
appropriate mapping in cases where thesequence elements are small and the
sequence size does not change often, it is less appropriate to use when thesequence
is intended to be modified in size or constructed dynamically.

Of course it would be possible in such cases to mapsequence to adjustablearray
with fill pointers. These are a subtype ofarray which permitting run-time size
modification. Although such arrays are useful in certain applications, they are
nevertheless less flexible and are more difficult to use than thelist datatype for many
purposes.

6.11.0.3 Hybrids

Some proposed mappings have generally mappedsequence to list, but have mapped
to array in certain special cases, e.g. when the elements are small.
March 15, 1998 7:12 pm IDL/LISP 6-67

6

ere

is

e a

ce

not

of

ld

d

om
6.11.1 Advantages of our proposal

• Our proposal is the simplest to use of all the proposals in the common case wh
the user is writing a client that passes a parameter for which the corresponding
parameter was declared as asequence . Indeed, the client can simply uselists or
arrays in the application code, whichever is more convenient.

• Our proposal is more efficient than thesequence -to-list in cases where the
element types are small or wherevector is the better data type.

• Our proposal is simpler and more flexible than the hybrid proposal, since there
not artificial demarcation that the user must remember between the mapping
conventions.

6.11.2 Disadvantages of our proposal

• Our proposal is more difficult to use than the other possibilities in the case wher
sequence is a return parameter of anoperation , since the client does not know
the type of thesequence .

• Our proposal is somewhat more complicated to explain than either thesequence -
to-vector or thesequence -to-list proposal, sincesequenceis not used as often as
list or vector alone.

• Our proposal is slightly more complicated for the implementor of a method, sin
the method body must be prepared to expect an arbitrarysequence (or a syntax in
the method definition must allow this conversion to be done automatically).

• Our proposal can lead to problems in verifying the correctness of code that does
correctly handle sequences passed to it; code might fail to work only on certain
types of sequences.

• Our proposal imposes a small run-time overhead associated with type-checking
the passed value.

6.11.3 Conclusion

It is certainly tempting to fix the mapping of sequence either to vector or to list.
However, we believe that the availibility of both vector and list data-types in Lisp is
quite useful; fixing on either one would constrain functions for which the other wou
be better suited.

6.12 Mapping forany
In the case ofany, there are several issues to consider: convenience, generality, an
accessors.

The any mapping was chosen so that Lisp values can be passed back and forth fr
operations expecting an any without undue manual coercions, particularly in the
common cases where a primitive type is passed.
6-68 IDL/LISP 3/15/98

6

ng

, a

es.

the
t in

ier

nd

d

es
ur
The special handling of string designators was chosen to avoid ambiguity in passi
enum values.

The coercions were chosen so that the typecode would denote the “smallest”
containing type in some sense. However, for the sake of implementation simplicity
list can be passed assequence<any> rather thansequence<type> where type is
some smaller superset of the types of the contents of the list.

This semantics was chosen particularly to facilitate passing nested lists of primitiv

6.13 Mapping fortypedef
It seems clear that atypedef should map to a Lisp type that contains at least all the
values that could be in the range of the mapping of the original IDL type aliased by
given typedef. However, whether these sets should coincide—whether a value no
the range mapping should not be in the appropriate type—is problematic for
constructed types: how far should the type specifier peer into the object?

These cases arise particularly in handling the mapping forarray , sequence , struct ,
andunion . It is particularly problematic in the latter two cases since the type specif
is defined automatically from the name of the class defining thestruct or union .

In order to simplify the exposition, we do not mandate special type-checking beyo
checking.

6.14 Mapping forinterface
We chose to map IDLinterface into class.

One alternative would have been to define our own IDL-like object system, for
example using a system like flavors. Although the resulting code would have been
closer to the object model of IDL, we rejected it as being insufficiently Lisp-like.

Another alternative would have been to require that the metaclass of such mappe
classes be a particular metaclass,corba:metaclass. Although this approach would yield
an elegant and flexible mapping, we rejected it because we did not want to rely on
nontrivial features of the MOP in this mapping.

We required implementation classes to inherit from a class namedcorba:servant. It
might be more consistent with the POA to name this classportableserver:servant,
however.

6.15 Mapping foroperation : the name

The proposedoperation mapping is the most unusual of our proposals, and it diverg
from previous mapping proposals. Therefore, it is worth exploring in some detail o
motivation.
March 15, 1998 7:12 pm IDL/LISP 6-69

6

er to

k of

y
per-

ing.

e
sh
First, we decided that sinceinterface was mapped toclassit would be natural to map
operation to method.

We rejected an invocation syntax that relied on macro expansion as these tend eith
fail or to be extremely cumbersome when used withapply, funcall, and related higher-
order functions.

The operation package name was a crucial choice. A short name would run the ris
conflicts with user packages; a longer name would be cumbersome.

We chose to support both: the ORB supports a long name, “OMG.OPERATION” b
default, but it must support, not only the standard nickname, but even a sort of “su
nickname” of keyword.

We rejected an invocation syntax that relied on reader-macros as being baroque.
However, an implementation may, of course, define its own reader macros to
ameliorate some of the syntactic awkwardness associated with parts of our mapp

6.15.1 Explicitoperation mapping

The most obvious mapping was in fact the mapping chosen by previous Lisp
mappings: Simply map theoperation to a function or method whose name is the fully
scoped name of theoperation, and which takes as first argument the receiver, as in th
following example. (Actually the most obvious mapping simply disregards name-cla
and package issues entirely).

//IDL
module example{

interface foo{
long op1(in short arg);};}

generated Lisp
(defmethod example:foo/op1 ((this example:foo) arg)
 ; implementation)

(example:foo/op1 foo-instance 32)

(Of course, the specific naming conventions—whether theoperation was named
example:foo/op1or example/foo:op1 or example.foo:op1, is orthogonal to the
considerations here.)

This mapping has certain clear advantages:

• It is easy to describe and to explain.

• It models the IDL semantics closely.

• It is easy to implement.
6-70 IDL/LISP 3/15/98

6

an

ass
s

mes
ly-

:

itive.
• It does not require special method-definition macros—method implementation c
be done using standard Common Lisp macros.to which it is mapped.

6.15.1.1 Encapsulation violation

It forces an invocation of a method on an object to know in precisely which supercl
the method was declared. This violates the spirit of object-orientation and obviate
certain kinds of polymorphic code.

6.15.1.2 Ease-of-use problems

While class names and type names are used fairly infrequently in code, method na
are used often, particularly during interactive development. To require use of a ful
scoped name in each case would be cumbersome and inflexible.

6.15.2 Use of a designated package

Why not just say

(op1 x 3)

in the above example?

Mostly because it is not clear in what packageop1 should reside.

It cannot be the package namedexamplefor a similar reason to that in the above case
an interface could inherit an operation from two distinct interfaces in different
modules.

Now it seems like we will be OK if we define all operations in the same, fixed,
package. Suppose we choose apackagenamedIDL . Then our example becomes:

(idl:op1 x 3)

This is a workable solution, but there are still some problems:

6.15.2.1 Importing

We cannot simply import theidl package, since the name of an operation may (and
often does) conflict with the name of some symbol in thecommon-lisp package.

To require the user to shadow explicitly each conflict seems unwieldy, as the Lisp
package system interacts with shadowing in ways that are notoriously counterintu

Thus, this solution requires the explicit prefix of a package before each method
invocation. This gets tiresome, particularly in an interactive environment.
March 15, 1998 7:12 pm IDL/LISP 6-71

6

h
ht

re

the

r

ture
ges,

look

fix,
6.15.2.2 Conflict

This would conflict with user usages of the same package.

6.15.3 Using a prefix

The problem of importing, above, can be resolved to some extent by requiring eac
operation to use a specific character prefix, such as “.” or “/”. While in C++ one mig
write
x.op1(3)

in Lisp we would write,

(.op1 x 3)

where the.op1 operation was imported from theidl package.

The problem with this is that importing symbols in an IDL environment is a procedu
fraught with difficulty. The.op1symbol would be interned at read time, and if the IDL
file declaring the operation had not been loaded correctly, or if it failed to declare
op1 operation, subtle bugs could arise. Of course it would be possible to check for
certain of these bugs, but matters could still get confusing.

6.15.4 Using the :keyword package

Since we have seen that dynamic import of symbols generated by the IDL compile
can lead to subtle bugs, why not simply use a simple, well-known package? The
canonical such package in Lisp is :keyword. This would enable us to write:

(:op1 x 3)

This seems concise and unambiguous (although we have still not discussed signa
issues). Indeed, it is a perfectly reasonable solution. It does have three disadvanta
however:

6.15.4.1 Appearance

Some Lisp users have complained that this convention makes a method invocation
too much like a keyword usage.

We also rejected hybrid solutions based on combining keyword mapping with a pre
as the resulting names looked awkward.

6.15.4.2 Name conflict

It could conflict with a user’s usage of thefunction-value of a :keyword symbol.
6-72 IDL/LISP 3/15/98

6

ord

but

se a

oid
he
6.15.5 Conclusion

We thus were led to the solution we proposed, which allows the very concise :keyw
usage without prejudicing other names for the package.

6.16 operation mapping: signature

We have chosen our naming convention for operations by process of elimination,
we are not yet done.

It would be most natural to map the operationop1 into a generic function namedop1
in the operation package.

Thus, we would like to be able to implement the methodop1 on a particular interface
via a syntax such as:

(defmethod op1 ((receiver example:bar) arg)
;...implementation code
)

Unfortunately, CLOS mandates the restriction that the methods of a single generic
function have congruent lambda lists, which obviates this approach, since it would
prevent the implementation of another interface’s operation namedop1 that happened
to take more than a single parameter.

We could skirt this restriction by defining a metaclass forop1 different fromstandard-
generic-function, but we chose not to rely on the MOP, as stated above.

In practice, we chose a two-pronged approach to the problem.

6.16.1 Leave the signature of the generic function unspecified

This specification does not require any specific signature for the generic functionop1,
but it does require that dispatching be done on the first argument.

6.16.2 Require method definition via a particular macro

Since we want to leave unspecified the particular signature of a method, we must u
macro other thandefmethod in order to define portably the implementation of an IDL
operation on the server side.

As a first draft, we chose the syntax to be reasonably close todefmethod.

However, we intend to consider several changes in the final version. In order to av
problems with loading, we designed the macro not to make use of information in t
interface repository at this time.
March 15, 1998 7:12 pm IDL/LISP 6-73

6

ally.

lot

f the

ch

cted

pes
6.16.2.1 any handling

We might want to specify whether any parameters are to be unwrapped automatic

6.16.2.2 Handling ofout andinout parameters

We might want to define a syntax for automatic handling ofout andinout parameters,
although we doubt that this is worth the trouble.

6.16.2.3 Integration with class definition macro

Most ambitiously, we could define a macro that combined the functionality ofdefclass
andcorba:define-methodto allow definition of methods in a way similar to Java or
C++; this is closer to the semantic model of IDL. Here, methods would be defined
within the scope of some class-definition macro. This could lead to simpler local s
or attribute accessors, and a particular variable, such asthis or self, could be bound to
the receiver.

6.17 operation mapping: parameter passing modes

The major issue here was whether to attempt to simulate explicitly the semantics o
IDL call-by-value-result forinout parameters.

For example, we could have taken an approach analogous to theHolder classes of Java
and C++.

In practice, however, these features are rarely used and are adequately—and mu
more simply—handled by using the Lisp multiple values mechanism. Also, the
semantics ofinout parameters are not canonical in the presence of nested constru
types.

We considered also mappingoperation into an auxiliary macro that handled the
multiple-value bookkeeping automatically. We rejected this approach for this draft
because the semantics of inout parameters in their interaction with constructed ty
did not seem clear to us.

6.18 Mapping ofattribute
Many of the considerations for namingattribute are similar to those for naming
operation . We chose a naming convention similar to that foroperation .

We assume as a design parameter that the writer function for anattribute will be
formed by treating the reader form as a generalized place for the purposes ofsetf.
6-74 IDL/LISP 3/15/98

6

the

by

pled
ace

.

out

ly

cases.
6.19 Compiler mapping

Languages which lack first-class access to their compiler typically standardize only
run-time environment and leave the IDL compilation unstandardized. The IDL
compiler is usually implemented as a separate program whose interface is defined
the ORB vendor.

We considered two compiler interfaces: the current one and an interface that decou
the parsing and the compilation. The parse interface would simply build and interf
repository from the source file; the compilation interface would compile from an
interface repository. However, we the current mapping is much simpler.

6.20 Pseudo Interface Mapping

The main question in mapping the pseudo-interfaces was whether to use Lisp
conventions throughout or simply translate the pseudo-IDL in “brute-force” fashion

We chose the latter approach for two reasons:

• It’s easier.

• A high-quality Java pseudo-interface mapping already exists.

The Java pseudo-interface mapping already does much of the work of smoothing
the rough edges of the raw IDL (particularly in the DII) so we stayed very close to
their mapping. We feel this approach will also reduce the learning curve for users
familiar with Java (or C++, upon which the Java mapping in turn was based).

However, our treatment ofany was chosen to simplify use of the DII, since Lisp
values can be used directly.

6.21 Server side mapping

One of the most interesting issues here was whether to allocate slots automatical
based on interface attributes. On the positive side, doing so significantly simplifies
common usages and examples. On the negative side, it is unnecessary in certain
March 15, 1998 7:12 pm IDL/LISP 6-75

6

6-76 IDL/LISP 3/15/98

	VERSION�1.0 Franz Inc.
	Table of Contents
	1 Preface 9
	2 Mapping and IDL 13
	3 Mapping IDL to Lisp 17
	4 Mapping Pseudo-Objects to Lisp 45
	5 Server-Side 53
	6 Design Decisions 59
	Preface

	1
	1.1 Status
	This document presents a proposed IDL/Lisp language mapping. It is being circulated for review to...
	Because this document is in preliminary form, it contains a number of formatting and editing prob...
	If the Lisp community concurs with the main ideas presented in the mapping, the document will be ...

	1.2 Scope
	This document is intended only to deal with matters concerning the IDL/Lisp language mapping. In ...

	1.3 Intended audience
	This document is intended for readers who are familiar with both IDL and with Lisp. However, Chap...

	1.4 Missing Items
	The following topics are incompletely specified or not specified at all

	1.5 Conventions
	IDL appears using this font.
	Lisp code appears using this font.
	(This usage is inconsistent in this version of the document).

	1.6 Version of Lisp
	This document is based on Common Lisp specified in X3J13 Committee, ANSI X3.226-1994, American Na...

	1.7 Contact Points
	Questions and comments about this document are encouraged and should be directed to:

	1.8 Acknowledgments
	The design of this mapping was influenced by a number of sources outside of Franz Inc.
	We used the ILU system and its mapping both for design guidance and for assessing practical exper...
	We would like to thank Ken Anderson of BBN for his comments on suggestions on this mapping.
	We would like to thank Greg Whittaker of Mitre Corporation for his comments and suggestions on th...
	We would like to thank Stanley Knutson of Concentra for his comments.
	We also used a mapping due to Thomas Mowbray of Mitre Corporation.
	We are grateful for the assistance of Harlequin Inc. in preparing this mapping.
	Mapping and IDL

	2
	This chapter briefly reviews some concepts of IDL and defines the notion of a language mapping. A...

	2.1 Introduction to IDL
	IDL, or Interface Definition Language, is a language defined by the Object Management Group.
	The key data type in IDL is the interface, which describes the behavior of an objects that implem...
	IDL allows the types other than interfaces to be expressed. For example, primitive types such as ...
	Constructed types analogous to the C struct or Pascal record type may be defined, and some simple...
	Arrays and sequences may also be defined.

	2.2 How IDL is used
	IDL is typically used in the following manner. An server process wishes to make some of its funct...
	The server publishes the IDL definitions that define the interfaces of the objects that it implem...
	The syntax used by the client to invoke a method on an object defined in IDL, and the relationshi...
	This document describes a mapping from IDL into Common Lisp.

	2.3 Mapping constituents
	Informally speaking we can divide a mapping into these categories.
	2.3.1 Mapping the primitive data types.
	IDL implicitly assumes that there is a universe of primitive data values, certain sets of which m...
	The mapping will, for each abstract IDL data value define the associated Lisp data value. The set...
	For example, IDL has a concept of the integer constant 12. It seems reasonable that this value wo...
	In fact, each IDL integer value corresponds to precisely one Lisp integer of the same value.
	One of IDL’s predefined types is unsigned short, which comprises the set of values between 0 and ...
	The primitive data types are boolean, double, long double, float, octet, short, unsigned short, l...

	2.3.2 Mapping the constructed data types
	The constructed data types are union, struct, array, exception, and sequence. These correspond to...

	2.3.3 Interfaces
	The most important data type to map is the interface data type.

	2.3.4 Mapping the syntax.
	How are methods on objects invoked? How are methods defined?
	For example, in Lisp we would ask: does method invocation correspond to function invocation, gene...

	2.3.5 Mapping the names
	It is necessary to assign a Lisp symbol that represents each named IDL construct. What symbol sho...

	2.3.6 Mapping pseudo-interfaces
	IDL has certain constructs that behave like interfaces in some ways but that are not full fledged...

	2.4 Mapping summary
	Most of the material in this mapping document concerns fairly esoteric issues that rarely arise i...
	Primitive data types are mapped to corresponding primitive data types in Lisp.
	struct and union are mapped to classes. Each member of the struct or union can be accessed using ...
	Arrays map to arrays.
	Sequences can map either to lists or to vectors; that is, sequences map to sequences.
	Exceptions are mapped to conditions.
	Interfaces are mapped to classes, and interfaces that inherit map to classes that inherit.
	Operations on interfaces map to methods on a generic function. This generic function discriminate...
	The module in which an IDL entity is declared is mapped to the package name of the corresponding ...
	A mapping to the IDL compiler is included.
	Mapping IDL to Lisp

	3
	This section describes the mapping of IDL into the Lisp language.
	The rationale for design decisions can be found in Chapter 6, “Overall Design Rationale".
	In most cases examples of the mapping are provided. It should be noted that the examples are code...

	3.1 Mapping concepts
	By an IDL entity we mean an element defined in some IDL file.
	For example, consider the code fragment
	module A {
	interface B {
	void op1(in long bar);
	};
	}
	The IDL entities are the module named “A”, the interface named “B”, the operation named “op1”, th...
	Our mapping will associate to each IDL entity declared in a an IDL specification a corresponding ...
	The Lisp entity corresponding to a given IDL entity will be said to be generated from the IDL ent...
	If the IDL entity has a name then the corresponding Lisp entity will also have a name. Whereas ID...
	It is the goal of this chapter to specify, for each IDL construct, the Lisp entity, and the name ...

	3.2 Semantics of type mapping
	The statement that an IDL type I is mapped to a Lisp type L indicates if V is a Lisp value whose ...
	For example, if V is passed as an parameter to an IDL operation or if V is returned from an IDL o...

	3.3 Mapping for basic types
	3.3.1 Overview
	The following table shows the basic mapping.
	The first column contains the IDL name of the IDL type to be mapped. Each IDL type denotes a set ...
	The set of values denoted by an entry in the first column will be mapped under the mapping descri...
	Figure�3�1 BASIC TYPE MAPPINGS

	Additional details are described in the sections following.
	3.3.1.1 Example
	(typep -3 ‘corba:short)
	> T
	(typep -3 ‘corba:ushort)
	> nil
	(typep “A string” ‘corba:string)
	> T

	3.3.2 boolean
	The IDL boolean constants TRUE and FALSE are mapped to the corresponding Lisp boolean literals T ...

	3.3.3 char
	IDL char maps to the Lisp type character. The type specifier corba:char specifies this type.
	3.3.3.1 Usage example
	(typep #\x ‘corba:char)
	> T
	(typep “x” ‘corba:char)

	3.3.4 octet
	The IDL type octet, an 8-bit quantity, is mapped as an unsigned quantity to the type corba:octet ...
	3.3.4.1 Usage example
	(typep 255 ‘corba:octet)
	> T
	(typep -1 ‘corba:octet)
	> nil

	3.3.5 wchar, wstring
	The types wchar and wstring are mapped to Lisp types named corba:wchar and corba:wstring. The typ...

	3.3.6 string
	The IDL string, both bounded and unbounded variants, are mapped to string. Range checking for cha...
	3.3.6.1 Usage example
	(typep “A string” ‘corba:string)
	> T
	(typep nil ‘corba:string)
	> nil

	3.3.7 Integer types
	The integer types each map to the Lisp integer type. Each IDL integer type has a corresponding ty...

	3.3.8 Floating point types
	The floating point types float, double, and long double map to Lisp types named corba:float, corb...

	3.3.9 fixed
	The fixed point type is mapped to the lisp type named corba:fixed. This type must be a subtype of...

	3.4 Introduction to named types
	We now discuss the mapping of types that are named. We begin with a discussion of terminological ...
	3.4.1 Naming terminology
	Notation for naming can be confusing, so some care is needed. Our specification is not formally r...
	3.4.1.1 IDL naming terminology
	By the IDL name of an IDL entity we mean the string that is the simple name of that entity.
	An IDL entity can be declared at the top-level or nested inside some other IDL entity. We say tha...
	We will sometimes elide the quotation marks in describing the names of IDL (and other entities) w...
	IDL Example
	module A{
	interface B{
	struct c {long foo;};};}
	The name of the struct is the string “c”. The name of the interface is the string “B”. The name o...

	3.4.1.2 Lisp naming terminology
	The name of a symbol is a string used to identify the symbol.
	Packages are collections of symbols. A symbol has a home package, which also has a name. A packag...
	Unless otherwise stated, we will assume that distinct package names refer to distinct packages.
	Symbols are notated by prefixing the name of the home package of the symbol to the character ‘:’ ...
	Thus, all symbols generated by this mapping are external symbols of their home package.
	A symbol can name a function, a package, a class, a type, a slot, or a variable. These namespaces...
	All alphabetic characters in the names of symbols used in this document are upper-case unless oth...
	Thus, the names notated here are implicitly converted to uppercase when they name a symbol.
	For example, when we write
	 the symbol named hello-goodbye
	or
	 the symbol hello-goodbye
	we actually mean the symbol whose name is the string “HELLO-GOODBYE”.

	3.5 Distinguished packages
	This document will refer to to kinds of packages:
	The first kind of packages consists of these three distinct packages: the root package, the corba...
	The names of these packages are described below.
	The name of the root package is the string “OMG.ORG/ROOT”.
	The name of the corba package is “OMG.ORG/CORBA”.
	The name of the operation package is the string “OMG.ORG/OPERATION”.
	The precise semantics of these three packages is described below. Informally, the root package is...
	In addition, this specification makes use of the standard Common Lisp packages named “KEYWORD” an...
	3.5.1 Nicknames for distinguished packages
	An implementation is expected to support the addition of nicknames for a package via the standard...
	This document will use these nicknames without comment.

	3.6 Scoped names and scoped symbols
	Many of the Lisp entities we consider will be named according to the scoped naming convention des...
	A scoped symbol will be associated with the IDL entity, and it is this scoped symbol that will na...
	3.6.1 Definitions
	For any named IDL entity I there is a Lisp symbol S called the scoped symbol of I.
	The scoping separator is the string “/”.
	If I is a top-level module, then the name of S is the name of I.
	If I is a module nested within another module J, then the name of S is the concatenation of the n...
	The home package of the scoped symbol of a module is :keyword.
	Suppose I is a named IDL entity that is not a module. The name of the scoping symbol S of I is de...
	If the declaration of I is enclosed inside another IDL entity J that is not a module, then the na...
	If I is enclosed in a module M then the home package of S is named by the scoped symbol for M. Ot...
	3.6.1.1 Examples of scoping symbols
	First we consider a simple example:
	IDL
	module a {
	interface foo {};}
	The scoped symbol of the module is :a. Thus, the home package of this symbol is :keyword and the ...
	The scoped symbol of the interface is the symbol a:foo. Thus, the name of the symbol is the strin...

	IDL
	module a {
	interface outer {
	struct inner {
	in long member;};};}
	Here the scoped symbol for the module is :a, the scoped symbol for the interface is a:outer, and ...

	IDL
	module a{
	module b{
	interface c{
	struct d{
	long foo;};};};}
	The scoped symbol for the struct is a/b:c/d. The scoped symbol for the struct member is a/b:c/d/foo.

	3.7 The package_prefix pragma
	A package_prefix pragma has the form
	#pragma package_prefix string
	#pragma package_prefix “COM.FRANZ-”
	IDL
	#pragma package_prefix “COM.FRANZ-”
	module a{
	module b{
	interface c{};};};
	The scoped symbol for the interface is COM.FRANZ-A/B:C.

	3.8 Mapping for interface
	An IDL interface is mapped to a Lisp class. The name of this class is the scoped symbol for the i...
	The direct superclasses of a generated Lisp class are determined as follows. If the given IDL int...
	Otherwise, the generated Lisp class has direct superclasses that are the generated classes corres...
	The Lisp value nil can be passed wherever an object reference is expected.
	An IDL interface is also mapped into server side classes. The server classes are described in the...
	3.8.1 Example
	3.8.1.1 IDL
	module example{
	interface foo {};
	interface bar {};
	interface fum : foo,bar {};}

	3.8.1.2 generated Lisp
	(defclass example:foo(corba:object)())
	(defclass example:bar(corba:object)())
	(defclass example:fum (example:foo example:bar)())

	3.9 Mapping for operation
	This section discusses only how the user is to invoke mapped operations, not how the user is to i...
	An IDL operation is mapped to a Lisp function named by the symbol whose print- name is given by t...
	We will assume that all operation names have been appropriately imported into the current package...
	Thus, when an example is given in which there is a reference to the symbol naming the mapped func...
	3.9.1 Parameter passing modes
	The function defined by the IDL operation expects actual arguments corresponding to each formal a...

	3.9.2 Return values
	The function defined by the IDL operation returns multiple values. The first (i.e., the zeroth) v...
	Note that this implies that generated functions corresponding to operations declared void which h...

	3.9.3 one-way
	Operations declared oneway are mapped according to the above rules.

	3.9.4 Efficiency optimization: using macros instead of functions
	A conforming implementation may map an operation to a macro whose name and invocation syntax are ...

	3.9.5 exception
	An invocation of a function corresponding to a given IDL operation may result in the certain cond...
	An invocation of a function may also result in the signalling of conditions corresponding to syst...

	3.9.6 context
	For each context name declared by an operation, the mapped function accepts a corresponding keywo...

	3.9.7 Example
	3.9.7.1 IDL
	module example {
	interface face {
	long sample_method (in long arg);
	void voidmethod();
	void voidmethod2(out short arg);
	string method3 (out short arg1,inout string arg2,in boolean arg3);
	};

	3.9.7.2 generated Lisp
	(defpackage :example)
	(defclass example:face(corba:object)())
	;...

	3.9.7.3 usage
	; Suppose x is bound to a value of class example:face.
	(sample_method x 3)
	> 24
	(voidmethod x)
	> ; No values returned
	(voidmethod2 x)
	> 905 ; This is the value corresponding to the out arg
	(method3 x “Argument corresponding to arg2” T)
	> “The values returned” -23 “New arg2 value”
	; The Lisp construct multiple-value-bind can also be used to recover these values.
	(multiple-value-bind (result arg1 arg2)
	(method3 x “Argument corresponding to arg2” T)
	(list result arg1 arg2))
	> (“The values returned” -23 “New arg2 value”)

	3.10 Mapping for attribute
	attribute is mapped using a naming convention similar to that for operation.
	3.10.1 readonly attribute
	An attribute that is declared with the readonly modifier is mapped to methods whose name is the n...
	This method is specialized on the class corresponding to the IDL interface in which the attribute...

	3.10.2 normal attribute
	attributes that are not declared readonly are mapped to a pair of methods that follow the convent...
	Specifically, a reader-method is defined whose name follows the convention for readonly attribute...

	3.10.3 Example
	3.10.3.1 IDL
	module example{
	interface attributes {
	attribute string attr1;
	readonly attribute long attr2;};}

	3.10.3.2 Usage
	;; Assume x is bound to an object of class example:attributes
	(attr2 x)
	> 40001
	(attr1 x)
	> “Sample”
	(setf (attr1 x) “New value”)
	(attr1 x)
	> “New value”

	3.11 Mapping of module
	An IDL module is mapped to a Lisp package whose name is the name of the scoped symbol for that mo...
	3.11.1 Example
	3.11.1.1 IDL
	interface outer_interface {};
	module example {
	interface inner_interface {};
	module nested_inner_example {...
	interface nested_inner_interface{};
	module doubly_nested_inner_example{...};
	};
	}

	3.11.1.2 generated Lisp
	(defpackage :example)
	(defpackage :example/nested_inner_example)
	(defpackage :example/nested_inner_example/doubly_nested_inner_example)
	(defclass omg.root:outer_interface...)
	(defclass example:inner_interface ...)
	(defclass example/nested_inner_example:nested_inner_interface ...)

	3.12 Mapping for enum
	An IDL enum is mapped to a Lisp type whose name is the corresponding scoped symbol.
	Each member of the enum is mapped to a symbol with the same name as that member whose home packag...
	3.12.1 Example
	3.12.1.1 IDL
	module example{
	enum foo {hello, goodbye, farewell};
	};

	3.12.1.2 generated Lisp
	(defpackage :example)
	(deftype example:foo ()
	‘(member :hello :goodbye :farewell))

	3.12.1.3 usage
	(typep :goodbye ‘example:foo)
	> T
	(typep :not-a-member ‘enumexample:foo)
	> nil

	3.13 Mapping for struct
	An IDL struct is mapped to a Lisp class whose name is the corresponding scoped symbol. Each membe...
	The initialization keyword is a symbol whose name is the name of the member and whose package is ...
	The reader is named by a symbol that follows the conventions for attribute accessors. In the case...
	The writer is formed by using setf on the generalized place named by the reader.
	The type corba:struct is defined to be the union of all such generated types.
	An IDL struct has a corresponding constructor whose name is the same as the name of mapped Lisp t...
	3.13.1 Example
	3.13.1.1 IDL
	module structmodule{
	struct struct_type {
	long field1;
	string field2;

	3.13.1.2 generated Lisp
	(defpackage :structmodule)
	(defclass structmodule:struct_type (corba:struct)
	((field1 ...)
	(field2 ...)))

	3.13.1.3 usage
	(setq struct (structmodule:struct_type
	:field1 100000
	:field2 “The value of field2”))
	(field1 struct)
	> 100000
	(setf (field1 struct) -500)
	(field1 struct)
	> -500

	3.14 Mapping for union
	An IDL union is mapped to a Lisp class named by the the corresponding scoped symbol. This class i...
	The value of the discriminator can be accessed using the accessor function named union-discrimina...
	The value can be accessed using the accessor function named union-value in the operation package ...
	An IDL union has a corresponding constructor whose name is the same as the name of the type. This...
	3.14.1 Member accessors
	Each union member has an associated constructor and accessor.
	The symbol-name of the name of the constructor corresponding to a particular member is the concat...
	A constructor corresponding to a member takes a single argument, the value of the union. The disc...
	It is an error if a member reader is invoked on a union whose discriminator value is not legal fo...
	The default member is treated as if it were a member named default whose case labels include all ...

	3.14.2 Example
	3.14.2.1 IDL
	module example {
	enum enum_type {first,second,third,fourth,fifth};
	union union_type switch (enum_type) {
	case first: long win;
	case second: short place;
	case third:
	case fourth: octet show;
	default: boolean other;

	3.14.2.2 generated Lisp
	(defpackage :example)
	(defclass example:union_type (corba:union)
	(...))

	3.14.2.3 Usage
	(setq union (example:union_type
	:union-discriminator :first
	:union-value -100000))
	(union-value union)
	> -100000
	(union-discriminator union)
	> :FIRST
	(setq same-union (example:union_type/win -100000))
	(union-discriminator same-union)
	> :FIRST
	(setf (show same-union) 3)
	(union-discriminator same-union)
	> :THIRD
	(show same-union)
	> 3
	(setf (default same-union) nil)
	(union-discriminator same-union)
	> :FIFTH

	3.15 Mapping for const
	An IDL const is mapped to a Lisp constant whose name is the scoped symbol corresponding to that c...
	3.15.1 Example
	3.15.1.1 IDL
	module example {
	const long constant = -321;

	3.15.1.2 Generated Lisp
	(defpackage :example)
	(defconstant example:constant -321)

	3.16 Mapping for array
	An IDL array is mapped to a Lisp array of the same rank. The element type of the mapped array mus...
	Multidimensional IDL arrays are mapped to multidimensional Lisp arrays of the same dimensions.
	3.16.1 Example
	3.16.1.1 IDL
	module example {
	typedef short array1[2][3];
	interface array_interface{
	array1 op();}}

	3.16.1.2 Generated Lisp
	(defpackage :example)
	(deftype example:array1 () (array (2 3)))
	;; mapping for the interface...
	(defclass example:array_interface...)

	3.16.1.3 usage
	(setq a2 (op x)) ; Get an array
	(aref a2 0 1) ; Access an element
	> 3 ; Just an example, could be any value that is a short

	3.17 Mapping for sequence
	An IDL sequence is mapped to a Lisp sequence. Bounds checking shall be done on bounded sequences ...
	An implementation is free to specify the type of the mapped list more specifically.
	Suppose foo is an IDL data type and let L be the corresponding Lisp type.
	This means that anywhere a parameter of type sequence<foo> is expected, either a vector all of wh...
	Conversely, when such a sequence is returned from an operation invocation, this document specifie...
	In practice, it is likely that an ORB will marshal and unmarshal sequence as appropriately specia...
	This specification describes a number of functions created by the IDL mapping whose name is a sym...
	The effect of invoking the list-coercer corresponding to a particular function on arguments is eq...
	3.17.1 Example
	3.17.1.1 IDL
	module example {
	typedef sequence< long > unbounded_data;
	interface seq{
	boolean param_is_valid(in unbounded_data arg);
	};
	};}

	3.17.1.2 Generated Lisp
	(defpackage :example)
	(defun unbounded_data_p (sequence)
	(and (typep sequence ‘sequence)
	(every #’(lambda(elt)
	(typep elt ‘corba:long)))
	(deftype example:unbounded_data()
	‘(satisfies unbounded_data-p))
	; Let x be an object of type example:seq
	(param_is_valid x ‘(-2 3))
	> T
	(param_is_valid x #(-200 33))
	> T

	3.18 Mapping for exception
	Each IDL exception is mapped to a Lisp condition whose name is the scoped symbol for that excepti...
	Figure�3�1 Condition hierarchy for CORBA exceptions

	System exceptions inherit from a condition named corba:systemexception.
	Both corba:userexception and corba:systemexception inherit from the condition corba:exception.
	3.18.1 User exception
	The reader functions and initialization arguments for a condition generated by an IDL exception f...
	3.18.1.1 Example
	IDL
	module example {
	exception ex1 { string reason; };

	; generated Lisp
	(defpackage :example)
	(define-condition example:ex1 (corba:userexception)
	((reason :initarg :reason ...))
	; Usage example
	(error (example:ex1 :reason “Example of condition”))

	3.18.2 System exception
	The standard IDL system exceptions are mapped to Lisp conditions that are subclasses of corba:sys...

	3.19 Mapping for typedef
	IDL typedef is mapped to a Lisp type whose name is the scoped symbol corresponding to that typedef.
	This name of this type denotes the set of Lisp values that correspond to the Lisp type that is ge...
	However, it is not required to perform recursive checking of the contents of constructed types li...
	3.19.1 Example
	3.19.1.1 IDL
	module example{
	typedef unsigned long foo;
	typedef string bar;

	3.19.1.2 generated Lisp
	(defpackage :example)
	(deftype example:foo () ‘corba:unsigned-long)
	(deftype example:bar() ‘string)

	3.19.1.3 Usage example
	(typep -3 ‘example:foo)
	> nil
	(typep 6000 ‘example:bar)
	> nil
	(typep “hello” ‘example:bar)
	> T

	3.20 Mapping for any
	The IDL type any represents an IDL entity with an associated typecode and value. It is mapped to ...
	3.20.1 Constructors
	The constructor corba:any takes two keyword arguments named any-value and any- typecode. If any-t...
	An any may also be created via the invocation
	(corba:any :any-typecode val :any-value type).

	3.20.2 Typecode accessor
	The actual typecode of a Lisp value v is defined as follows.
	If v was created by an invocation of corba:any, then the actual typecode of v is the any-typecode...
	If v is a nonnegative integer than the actual typecode of v is the the typecode that describes th...
	Otherwise if v is a negative integer then the actual typecode of v is that typecode that describe...
	Otherwise if v is a member of corba:float or corba:double then the actual typecode of v is corba:...
	Otherwise if v is a member of corba:boolean then the actual typecode of v is corba:boolean.
	Otherwise if v is a char then the actual typecode of v is corba:tc_char.
	Otherwise if v is a string designator then the actual typecode of v is corba:tc_string.
	Otherwise if v is an array then then the actual typecode of v a typecode describing an array comp...
	Otherwise if v is a list then the the actual typecode of v is a typecode describing a sequence co...
	Otherwise v must be an instance of corba:object, corba:struct or corba:union and the actual typec...
	(any-typecode v) is defined to resolve to the actual typecode of v.

	3.20.3 value accessor
	If v is a number, a string, a sequence, a boolean, or an instance of corba:enum, corba:object, or...
	Otherwise, if v is an any�created via a call to the corba:any constructor, then (any- value v) re...
	Otherwise the ORB may signal a CORBA:BAD_PARAM exception. This might be necessary, for example, i...

	3.20.4 Interaction with GIOP
	For the purpose of GIOP marshalling, a Lisp entity is considered to have the typecode and value c...
	For example, consider the following IDL:
	module example{
	interface any_example{
	void foo (in any val);};}
	Now suppose that x is bound to a proxy for a remote implementation of the example::any_example in...
	An invocation

	(foo x 3)
	will forward to the remote implementation a request to invoke the “foo” method with single parame...
	However, an invocation
	(foo x (corba:any :any-typecode corba:tc_longlong :any-value 3))
	will forward to the remote implementation a request to invoke the “foo” method with single parame...
	Thus, the default coercion rules for any may be overridden as necessary.
	Furthermore, the DynAny pseudo interface provides an alternative way to access the values in an any.

	3.20.5 Additional examples of any usage
	(any-typecode 3)
	> <octet typecode>
	(any-typecode -1)
	> <short typecode>
	(any-typecode “foo”)
	> <string typecode> ; could also be typecode for an array.
	(any-value “foo”)
	> “foo”
	(any-value nil)
	> nil
	(any-typecode nil)
	> <typecode for boolean>

	3.21 Mapping Overview
	The detailed mapping guidelines for specific types was designed to conform to a small set of unif...
	3.21.1 Rule 1: How names of types are formed
	If an IDL identifier I names a type at the top level of some module named M, then the correspondi...
	Nested types are separated by the character “/”. Thus, if there is another type J defined within ...

	3.21.2 Rule 2: How names of operations are formed
	The rule for operation package mapping is simpler: All symbols that correspond to Lisp functions ...

	3.21.3 Rule 3: Lisp functions corresponding to IDL types
	IDL defines many kinds of types: unions, structs, interfaces, exceptions.
	We can think of each of each of these types, informally, as denoting entities with “named slots”....
	For each IDL type, there is an associated constructor function that creates a value of that type ...
	3.21.3.1 The constructor function
	The constructor function corresponding to a type is identical to the (fully scoped) name of the t...

	3.21.3.2 Accessing the members
	Each “named slot” defines two functions: a reader and a writer. The reader has the same name as t...

	3.21.3.3 Notes
	In applying Rule 3, it is important to note that not all of the associated functions make sense f...
	Mapping Pseudo-Objects to Lisp

	4

	4.1 Introduction
	Pseudo-objects are constructs whose definition is usually specified in “IDL”, but whose mapping i...
	For each of the standard IDL pseudo-objects we either specify a specific Lisp language construct ...
	We have chosen the option allowed in the IDL specification section 4.1.3 to define Status as void...
	A Pseudo-object differs from a regular CORBA object in the following ways:

	4.2 Certain exceptions
	The standard CORBA PIDL uses several exceptions, Bounds, BadKind, and InvalidName.
	(define-condition corba:bounds (corba:userexception)...)
	(define-condition corba:typecode/badkind(corba:userexception)...)
	(define-condition corba:typecode/bounds(corba:userexception)...)
	(define-condition boa:invalidname (corba:useexception)...)

	4.3 Environment
	The Environment is used in request operations to make exception information available.
	Since conditions in Lisp are first class objects, we see no reason not to define Environment simp...
	(deftype corba:environment() ‘corba:exception)

	4.4 NamedValue
	A NamedValue describes a name, value pair. It is used in the DII to describe arguments and return...
	We map this as if it were a normal struct as specified by the IDL using the IDL in module CORBA:
	typedef unsigned long Flags;
	typedef string Identifier;
	const Flags ARG_IN =1;
	const Flags ARG_OUT = 2;
	const Flags ARG_INOUT = 3;
	const FLAGS CTX_RESTRICT_SCOPE = 15;
	struct NamedValue{
	Identifier name; any argument; long len; Flags arg_modes;}

	4.5 NVList
	A NVList is used in the DII to describe arguments and in the context routines to describe context...
	pseudo interface NVList { readonly attribute unsigned long count; NamedValue add (in Flags flags)...

	4.6 Context
	A Context is used in the DII to specify a context in which context strings must be resolved befor...
	It is mapped to a class corba:context whose operations are as specified in the PIDL for this class.
	pseudo interface Context {
	readonly attribute Identifier context_name;
	readonly attribute Context parent;
	Context create_child (in Identifier child_ctx_name);
	void set_one_value (in Identifier propname, in any propvalue);
	void set_values (in NVList values);
	void delete_values (in Identifier propname);
	NVList get_values (in Identifier start_scope,
	in Flags op_flags,
	in Identifier pattern);

	4.7 Request
	A Request is mapped to an instance of class CORBA:request according to the IDL:
	typedef sequence<Exception> ExceptionList;
	typedef sequence<Context> ContextList;
	pseudo interface Request {
	readonly attribute Object target;
	readonly attribute Identifier operation;
	readonly attribute NVList arguments;
	readonly attribute NamedValue result;
	readonly attribute Environment env;
	readonly attribute ExceptionList exceptions;
	reaodnly attribute ContextList contexts;
	attribute Context ctx;
	any add_in_arg();
	any add_named_in_arg (in string name);
	any add_inout_arg();
	any add_named_inout_arg(in string name);
	any add_named_out_arg(in string name);
	void set_return_type(in TypeCode tc);
	any return_value();
	void invoke();
	void send_oneway();
	void send_deferred();
	void get_response();
	boolean poll_response();

	4.8 ServerRequest
	ServerRequest is used in the DSI. It is to be mapped according to the IDL to the Lisp class named...
	pseudo interface ServerRequest{
	Identifier op_name();
	Context ctx();
	void params (in NVList parms);
	void result (in any res);
	void except (in any ex);

	4.9 TypeCode
	The deprecated parameter and param_count methods are not mapped.
	A TypeCode is an instance of the class named CORBA:TypeCode. It follows the pseudo IDL below.
	enum TCKind{
	tk_null, tk_void, tk_short, tk_long, tk_ushort, tk_ulong, tk_float, tk_double, tk_boolean, tk_cha...
	pseudo interface TypeCode {
	exception Bounds{};
	exception BadKind{};
	boolean equal (in TypeCode tc);
	//for objref, struct, union, enum, alias, and except
	TCKind kind();
	RepositoryId id() raises (BadKind);
	Identifier name() raises (BadKind);
	//for struct, union, enum, and except
	unsigned long member_count() raises (BadKind);
	Identifier member_name(in unsigned long index) raises (BadKind, Bounds);
	//for struct, union, and except
	TypeCode member_type (in unsigned long index) raises (BadKind, Bounds);
	//for union
	any member_label(in unsigned long index) raises (BadKind, Bounds);
	TypeCode discriminator_type() raises (BadKind);
	long default_index() raises (BadKind);
	//for string, sequence, and array
	unsigned long length() raises (BadKind);
	TypeCode content_type() raises (BadKind);

	4.10 ORB
	4.10.1 ORB initialization
	An ORB is initalized via the ORB_init pseudooperation in the CORBA module:
	This pseudooperation simply takes as argument various implementation-defined keywords.

	4.10.2 ORB pseudo-object
	The ORB is mapped according to its pseudo-IDL definition. This includes the following IDL:
	pseudo interface ORB {
	exception InvalidName{};
	typedef string ObjectId;
	typedef sequence<ObjectId> ObjectIdList;
	ObjectIdList list_initial_services();
	Object resolve_initial_references(in ObjectId object_name) raises(InvalidName);
	string object_to_string (in Object obj);
	Object string_to_object (in string str);
	NVList create_list(in long count);
	NVList create_operation_list(in OperationDef oper);
	NamedValue create_named_value(in String name, in any value, in Flags flags);
	Context get_default_context();
	void send_multiple_requests_oneway(in RequestSeq req);
	void send_multiple_requests_deferred(in RequestSeq req);
	boolean poll_next_response();
	Request get_next_response();
	//typecode creation
	TypeCode create_struct_tc (
	in RepositoryId id,
	in Identifier name,
	in StructMemberSeq members);
	TypeCode create_union_tc(
	in RepositoryId id,
	in Identifier name,
	in Typecode discriminator_type,
	in UnionMemberSeq members);
	Typecode create_enum_tc(
	in RepositoryId id,
	in Identiifer name,
	in EnumMemberSeq members);
	TypeCode create_alias_tc(
	in RepositoryId id,
	in Identifier name,
	in TypeCode original_type);
	TypeCode create_exception_tc(
	in RepositoryId id,
	in Identifier name,
	in StructMemberSeq members);
	TypeCode create_interface_tc(
	in RepositoryId id,
	in Identifier name);
	TypeCode create_string_tc (in unsigned long bound);
	TypeCode create_wstring_tc (in unsigned long bound);
	TypeCode create_recursive_sequence_tc (
	in unsigned long bound,
	in unsigned long offset);
	TypeCode create_array_tc (
	in unsigned long length,
	in TypeCode element_type)

	4.11 Object
	The IDL Object type is mapped to the class corba:object. It supports the operations defined in th...
	The is_nil pseudo operation is mapped to a function named op:is_nil which may be applied to the l...
	The duplicate and release pseudo-operations are unnecessary in the Lisp mapping and are not mapped.
	pseudo interface Object{
	void create_request(
	in Context ctx,
	in Identifier operation,
	in NVList arg_list,
	inout NamedValue result,
	out Request request,
	in Flags req_flags);
	InterfaceDef get_interace();
	boolean is_nil();
	boolean is_a (in string logical_type_id);
	boolean non_existent();
	boolean is_equivalent (in Object other_object);
	unsigned long hash (in unsigned long maximum);

	4.12 Principal
	The Principal interface is deprecated and is not mapped.

	4.13 DynAny
	The DynAny pseudo interface is mapped according to its pseudo IDL without any modification. A Dyn...

	4.14 The IDL Compiler
	The IDL compiler uses the following top-level pseudo-IDL definition in the CORBA module:
	typedef string pathname_designator;
	Repository idl (pathname_designator path);
	The Lisp mapping is to the function named corba:idl that takes a single argument, a pathname desi...
	The effect of invoking corba:idl on a pathname designator is to define within the Lisp world all ...
	If the Lisp mapping requires that package named P be created, and there is already a package Q wi...
	The object returned is an object of type corba:repository and represents an Interface Repository ...
	Implementations may freely add additional keywords to corba:idl to express additional functionali...
	Server-Side

	5

	5.1 Introduction
	This chapter discusses how implementations create and register objects with the ORB runtime.

	5.2 Mapping of native types
	Specifically, the native type PortableServer::Servant is mapped to the Lisp class named. Portable...

	5.3 Implementation objects
	An implementation of an IDL interface I corresponding to a Lisp class named I should inherit, dir...

	5.4 Servant classes
	An interface corresponding to a class named by a Lisp symbol s with package p and name n may be i...
	For each attribute in the interface, the associated servant class has a slot whose name is the na...
	If the interface has no base interfaces, then the associated skeleton class has as direct supercl...
	Otherwise, if the interface has base interfaces named A, B, C... then its associated servant clas...
	5.4.1 Note on proxies
	An ORB that supports proxies is encouraged to use a similar inheritance hierarchy for proxies, wi...

	5.5 Defining methods
	The only portable way to implement an operation on a servant class is by use of the corba:define-...
	The syntax of corba:define-method is intended to follow as closely as possibly the syntax of the ...
	5.5.1 Syntax of corba:define-method
	corba:define-method function-name {method-qualifier}* corba-specialized-lambda- list form*
	function-name::= {operation-name | (setf operation-name)}
	operation-name:: symbol
	method-qualifier::={:before | :after | :around}
	corba-specialized-lambda-list ::= setf-lambda-list | normal-lambda-list
	setf-lambda-list ::= (argument-specifier receiver-specifier)
	normal-lambda-list ::= (receiver-specifier {parameter-specifer}* context-list)
	context-list ::= {} | {&key {context-identifier}+}
	context-identifier ::= symbol
	receiver-specifer ::= (receiver-name receiver-class)
	receiver-name ::= symbol
	receiver-class ::= symbol
	parameter-specifier ::= symbol

	5.5.2 Description
	This corba:define-method macro is used to implement an operation on an interface.
	operation-name is a symbol whose name is the name either of an operation or of an attribute decla...
	The number of parameter-specifiers listed in the normal-lambda-list must equal the combined numbe...
	If function-name denotes an operation, then the effect of corba:define-method is to inform the OR...
	The operation of corba:define-method in the case in which function-name names an attribute is ana...
	The behavior of auxiliary specifiers and of dispatch is the same as their corresponding action un...
	Note that the syntax of corba:define-method is a strict subset of that of defmethod: every legal ...
	An implementation is free to extend the syntax of corba:define-method, for example to allow type-...

	5.6 Examples
	5.6.1 Example: A Named Grid
	The first example shows how one might encapsulate a “named-grid”, which is a grid of strings.
	5.6.1.1 IDL
	This is the IDL of the interface to a named grid of strings.
	module example{
	interface named_grid{
	readonly attribute string name;
	string get_value (in unsigned short row,
	in unsigned short column);
	void set_value (in unsigned short row,
	in unsigned short column,
	in string value);
	}

	5.6.1.2 Generated Lisp code
	The IDL compiler might generate a class corresponding to the example::named_grid interface using ...
	(defpackage :example)
	(defclass example:named_grid (corba:object)())

	5.6.1.3 Servant class
	In order to implement the IDL interface, the user would extend the class example:named_grid-servant.
	;;Sample implementation of named_grid
	(defclass grid-implementation (example:named_grid-servant)
	(
	(grid :initarg :grid
	:initform (make-array ‘(2 3) :initial-element “Init”)))

	5.6.1.4 Implementation of the IDL operations
	The corba:define-method macro is used to define the methods that implement each of the operations...
	These implementations do not perform any argument or range checking, which a production system wo...
	The implementation is free to define other methods on the class, including print-object methods a...
	(corba:define-method get_value ((the-grid grid-implementation)
	row
	column)
	(aref (slot-value the-grid ‘grid) row column))
	(corba:define-method set_value ((the-grid grid-implementation)
	row
	column
	value))
	(setf (aref the-grid row column) value))

	5.6.1.5 Usage example
	Once the implementation class is defined, it can be instantiated and its instances treated as a n...
	This usage example does not discuss registration of the object with the ORB.
	; create a named grid
	(setq grid (make-instance ‘example:grid-implementation :name “Example of a
	grid”)
	(name grid)
	> “Example of a grid”
	(set_value grid 0 1 “Hello”)
	> ; No values returned
	(get_value grid 0 1)
	> “Hello”
	Design Decisions
	6
	The purpose of this chapter is to explain and to justify the reasoning behind the design choices ...
	This chapter is not normative and is not intended to be included in the finally approved mapping ...

	6.1 Introduction
	The overall goal of our mapping design was to make a successful Lisp mapping. We wanted the mappi...
	We began by studying the existing mappings and in particular determining which mappings appeared ...
	6.1.1 Goals
	Within the constraint of faithfully representing IDL semantics, we attempted to satisfy a number ...
	6.1.1.1 Ease-of-use
	CORBA systems are often cross-platform, cross-language, and cross-vendor. Their development prese...

	6.1.1.2 Consistent
	A crucial design goal was that our mapping be as easy to learn to use as possible even for users ...
	Attributes or attribute-like values are always mapped the same: to keyword initializers and to ac...

	6.1.1.3 Flexibility
	The mapping should facilitate the production of flexible and dynamically modifiable code. CLOS au...

	6.1.1.4 Performance
	The features described here should not impose undue performance overhead.

	6.1.1.5 Adherence to IDL
	We adhere to IDL conventions as much as possible, even when specifying pseudo- interfaces.

	6.1.2 Lisp Version
	The term “Lisp” is often used colloquially to refer to “Lisp-like” languages—interpreted, high-le...
	By “Lisp” we will mean exclusively “Common Lisp” as specified by the in X3J13 Committee, ANSI X3....
	In particular, we do not rely on features that were not present in the ANSI standard. We discuss ...
	6.1.2.1 Meta-object protocol
	Although production Lisp systems support the meta-object protocol as described in Art of the Meta...

	6.1.2.2 Multithreading
	The X3J13 group did not standardize multiprocessing or concurrency semantics for Lisp, although a...

	6.1.2.3 Case-sensitivity
	Some vendors of Lisp support “case-sensitive” Lisps of various flavors. This document does not ad...

	6.1.3 Reverse mapping
	We have not considered explicitly reverse-mapping issues.

	6.1.4 Compiler interface
	The interface to the compiler is part of the specification so that portable programs can be writt...

	6.1.5 Type checking
	We did not specify in most cases that a particular exception be raised if incorrectly typed value...

	6.2 Overall Design Philosophy
	In evaluating the suitability of committing the standard to a particular design decision, we cons...
	6.2.1 Relationship to other mappings
	We relied particularly on three mappings: the C++ mapping, the Java mapping, and the Smalltalk ma...
	The C++ mapping is important because it is one of the most comprehensive mappings and because IDL...
	The Java mapping was one of the most recent, is very popular, and is easy to use.
	The Smalltalk mapping is one of the most straightforward and consistent of the mappings.
	However, we are aware of and studied the C mapping and the Ada mapping. We felt the C mapping was...
	For example, our any mapping follows the Smalltalk mapping philosophy. Our DII mapping, however, ...
	On the other hand, our handling of names follows the IDL convention for repository ID’s rather th...

	6.3 Names
	There are several differences between the IDL and the Lisp namespaces.
	6.3.1 Capitalization
	IDL identifiers are case-sensitive, but two identifiers differing only in case are not allowed to...
	Although Lisp symbols are also case-sensitive, in practise it is often inconvenient to notate in ...
	Therefore, we have chosen to convert implicitly all IDL identifiers to upper-case.
	However, we follow the customary usage of X3J13 in notating symbols using mixed- case—typically l...

	6.3.2 Nesting
	The IDL namespace is deeply nested, although there is only a single “root” namespace.
	There are many disjoint Lisp namespaces, each of which is essentially bilevel. We chose to partit...

	6.3.3 Character set
	Lisp symbols typically have names comprising 8-bit characters. However, certain characters, such ...
	The situation for IDL identifier is not as clear for the following reasons:
	6.3.3.1 International characters
	The CORBA 2.1 specification, as has previous CORBA specs, explicitly allows a number of ISO-Latin...
	However, no other mapping of which we are aware has provision for mapping symbols containing such...

	6.3.3.2 Other special characters
	Lisp allows punctuation characters such as “/”, “-” and “.” to be part of the character name, whi...

	6.3.3.3 Keywords
	Lisp does not have reserved words in the usual sense (although the bindings of certain symbols ma...

	6.3.4 Alternative mappings
	It would have been possible to choose a name mapping that produced names more familiar to Lisp us...

	6.3.5 Prefixes
	We provided a package_prefix pragma in order to avoid clashes between IDL module names and genera...

	6.4 Mapping of basic types
	The mapping for most of the basic types is fairly straightforward, although character- set issues...
	There are questions in certain cases, however:
	6.4.1 boolean
	We considered mapping this type to the Lisp values defined by generalized boolean, which is easie...

	6.4.2 float and double
	In practice Lisp vendors use IEEE format to represent floating point numbers, but because this re...

	6.5 Mapping for struct
	An alternative mapping would map an IDL struct directly into a structure-object, an object create...
	Furthermore, this makes the format of the accessors for exception more uniform, as it can simply ...
	However, we have chosen our mapping so that a structure-class implementation would not be preclud...

	6.6 Mapping for exception
	Clearly IDL exception should be mapped to Common Lisp condition.
	Nevertheless, there were several design issues that arose
	6.6.1 condition hierarchy
	It seemed clear that the Lisp condition corresponding to CORBA user exception and CORBA system ex...
	However, it is not clear from which of the standard Lisp condition classes the corba:exception cl...
	We considered these options as candidates for the direct superclass of corba:exception:
	We quickly rejected simple-error, simple-condition, and warning as candidates.
	The most familiar condition to signal for Lisp programmers would probably be error, but the speci...
	In particular, the ANSI spec [p. 9-11] states that “The type error consists of all conditions tha...
	On the other hand, a serious-condition is one which is “serious enough to require interactive int...
	It would certainly be a reasonable mapping for corba:exception to inherit directly from condition...
	The question of the direct superclass of corba:exception affects the behavior of condition handle...

	6.6.2 Naming exception classes
	We chose to name the classes corresponding to system and user exceptions corba:systemexception an...
	However, the IDL for the enum types corresponding to exception used in the IDL for the GIOP uses ...
	6.6.2.1 Member accessors
	We chose a convention for member accessors consistent with that for struct, except that of course...

	6.7 Mapping for enum
	A Lisp symbol in the :keyword package usually fill the role of enum in C-like languages. This map...
	We could have chosen a self-typing mapping as well—languages like Java have two mappings for enum...

	6.8 Mapping for union
	An alternative mapping would map the union to a base class and each of the branches to concrete s...
	We eventually decided to follow closely the Java union mapping, again to shorten the learning curve.
	A simpler alternative would have been to map a union to a cons whose car holds the discriminator ...

	6.9 Mapping of module
	The IDL module is a name-scoping mechanism in IDL whose corresponding Lisp equivalent is the pack...
	We chose not to rely on automatic importing of symbols in a package corresponding to an outer mod...
	Because we are using “/” as a separator for names of components of a nested namespace, we felt th...
	The “/” separator was chosen instead of the “.” separator because that is the separator used by I...

	6.10 Mapping for array
	An IDL array is mapped to a Lisp array. It would be reasonable to specify formally the declared :...
	There is a potential ambiguity in dealing with nested arrays. Consider the following IDL definitions
	// IDL
	typedef short a [2];
	typedef a b[3];
	typedef short c[2][3];
	In the mapping, c would be mapped to a 2-dimensional array, but b would be mapped to a one-dimens...
	The problem is that the definition of ArrayDef in the interface repository only allows one-dimens...
	Because there are known problems with the treatment of interface repositories in CORBA, we chose ...

	6.11 Mapping for sequence
	This draft chooses to map IDL sequence to the Lisp type sequence.
	There are several possible alternative mappings.
	6.11.0.1 sequence-to-list
	The simplest mapping to use and to explain is probably the mapping that maps sequence to list. Un...

	6.11.0.2 sequence-to-vector
	Another natural mapping is for sequence to go to vector. Although this is an appropriate mapping ...
	Of course it would be possible in such cases to map sequence to adjustable array with fill pointe...

	6.11.0.3 Hybrids
	Some proposed mappings have generally mapped sequence to list, but have mapped to array in certai...

	6.11.1 Advantages of our proposal
	6.11.2 Disadvantages of our proposal
	6.11.3 Conclusion
	It is certainly tempting to fix the mapping of sequence either to vector or to list. However, we ...

	6.12 Mapping for any
	In the case of any, there are several issues to consider: convenience, generality, and accessors.
	The any mapping was chosen so that Lisp values can be passed back and forth from operations expec...
	The special handling of string designators was chosen to avoid ambiguity in passing enum values.
	The coercions were chosen so that the typecode would denote the “smallest” containing type in som...
	This semantics was chosen particularly to facilitate passing nested lists of primitives.

	6.13 Mapping for typedef
	It seems clear that a typedef should map to a Lisp type that contains at least all the values tha...
	These cases arise particularly in handling the mapping for array, sequence, struct, and union. It...
	In order to simplify the exposition, we do not mandate special type-checking beyond checking.

	6.14 Mapping for interface
	We chose to map IDL interface into class.
	One alternative would have been to define our own IDL-like object system, for example using a sys...
	Another alternative would have been to require that the metaclass of such mapped classes be a par...
	We required implementation classes to inherit from a class named corba:servant. It might be more ...

	6.15 Mapping for operation: the name
	The proposed operation mapping is the most unusual of our proposals, and it diverges from previou...
	First, we decided that since interface was mapped to class it would be natural to map operation t...
	We rejected an invocation syntax that relied on macro expansion as these tend either to fail or t...
	The operation package name was a crucial choice. A short name would run the risk of conflicts wit...
	We chose to support both: the ORB supports a long name, “OMG.OPERATION” by default, but it must s...
	We rejected an invocation syntax that relied on reader-macros as being baroque. However, an imple...
	6.15.1 Explicit operation mapping
	The most obvious mapping was in fact the mapping chosen by previous Lisp mappings: Simply map the...
	//IDL
	module example{
	interface foo{
	long op1(in short arg);};}

	generated Lisp
	(defmethod example:foo/op1 ((this example:foo) arg)
 ; implementation)
	(example:foo/op1 foo-instance 32)
	(Of course, the specific naming conventions—whether the operation was named example:foo/op1 or ex...
	This mapping has certain clear advantages:

	6.15.1.1 Encapsulation violation
	It forces an invocation of a method on an object to know in precisely which superclass the method...

	6.15.1.2 Ease-of-use problems
	While class names and type names are used fairly infrequently in code, method names are used ofte...

	6.15.2 Use of a designated package
	Why not just say
	(op1 x 3)
	in the above example?
	Mostly because it is not clear in what package op1 should reside.
	It cannot be the package named example for a similar reason to that in the above case: an interfa...
	Now it seems like we will be OK if we define all operations in the same, fixed, package. Suppose ...
	(idl:op1 x 3)
	This is a workable solution, but there are still some problems:
	6.15.2.1 Importing
	We cannot simply import the idl package, since the name of an operation may (and often does) conf...
	To require the user to shadow explicitly each conflict seems unwieldy, as the Lisp package system...
	Thus, this solution requires the explicit prefix of a package before each method invocation. This...

	6.15.2.2 Conflict
	This would conflict with user usages of the same package.

	6.15.3 Using a prefix
	The problem of importing, above, can be resolved to some extent by requiring each operation to us...
	x.op1(3)
	in Lisp we would write,
	(.op1 x 3)
	where the .op1 operation was imported from the idl package.
	The problem with this is that importing symbols in an IDL environment is a procedure fraught with...

	6.15.4 Using the :keyword package
	Since we have seen that dynamic import of symbols generated by the IDL compiler can lead to subtl...
	(:op1 x 3)
	This seems concise and unambiguous (although we have still not discussed signature issues). Indee...
	6.15.4.1 Appearance
	Some Lisp users have complained that this convention makes a method invocation look too much like...
	We also rejected hybrid solutions based on combining keyword mapping with a prefix, as the result...

	6.15.4.2 Name conflict
	It could conflict with a user’s usage of the function-value of a :keyword symbol.

	6.15.5 Conclusion
	We thus were led to the solution we proposed, which allows the very concise :keyword usage withou...

	6.16 operation mapping: signature
	We have chosen our naming convention for operations by process of elimination, but we are not yet...
	It would be most natural to map the operation op1 into a generic function named op1 in the operat...
	Thus, we would like to be able to implement the method op1 on a particular interface via a syntax...
	(defmethod op1 ((receiver example:bar) arg)
	;...implementation code
)
	Unfortunately, CLOS mandates the restriction that the methods of a single generic function have c...
	We could skirt this restriction by defining a metaclass for op1 different from standard- generic-...
	In practice, we chose a two-pronged approach to the problem.

	6.16.1 Leave the signature of the generic function unspecified
	This specification does not require any specific signature for the generic function op1, but it d...

	6.16.2 Require method definition via a particular macro
	Since we want to leave unspecified the particular signature of a method, we must use a macro othe...
	As a first draft, we chose the syntax to be reasonably close to defmethod.
	However, we intend to consider several changes in the final version. In order to avoid problems w...
	6.16.2.1 any handling
	We might want to specify whether any parameters are to be unwrapped automatically.

	6.16.2.2 Handling of out and inout parameters
	We might want to define a syntax for automatic handling of out and inout parameters, although we ...

	6.16.2.3 Integration with class definition macro
	Most ambitiously, we could define a macro that combined the functionality of defclass and corba:d...

	6.17 operation mapping: parameter passing modes
	The major issue here was whether to attempt to simulate explicitly the semantics of the IDL call-...
	For example, we could have taken an approach analogous to the Holder classes of Java and C++.
	In practice, however, these features are rarely used and are adequately—and much more simply—hand...
	We considered also mapping operation into an auxiliary macro that handled the multiple-value book...

	6.18 Mapping of attribute
	Many of the considerations for naming attribute are similar to those for naming operation. We cho...
	We assume as a design parameter that the writer function for an attribute will be formed by treat...

	6.19 Compiler mapping
	Languages which lack first-class access to their compiler typically standardize only the run-time...
	We considered two compiler interfaces: the current one and an interface that decoupled the parsin...

	6.20 Pseudo Interface Mapping
	The main question in mapping the pseudo-interfaces was whether to use Lisp conventions throughout...
	We chose the latter approach for two reasons:
	The Java pseudo-interface mapping already does much of the work of smoothing out the rough edges ...
	However, our treatment of any was chosen to simplify use of the DII, since Lisp values can be use...

	6.21 Server side mapping
	One of the most interesting issues here was whether to allocate slots automatically based on inte...

