
Introduction to ORBLink

ORBLink is a CORBA Object Request Broker (ORB) for Allegro Common Lisp. ORBLink allows a Lisp
program to communicate with programs written in other languages, possibly running on other machines.

CORBA stands for Common Object Request Broker Architecture. CORBA is a set of protocols that
enable distributed applications, potentially running in multiple languages, to communicate with one
another. The CORBA specification is managed by the Object Management Group, at
http://www.omg.org, a consortium of hundreds of industry, government, and academic institutions.
Another good set of links is available from Cetus.

CORBA data types are specified in a simple description language called IDL , the Interface Description
Language.

ORBLink provides functionality that converts IDL into native Lisp types, and that allows a Lisp program
to invoke operations on objects, possibly remote specified in IDL.

There are numerous books and references on CORBA. In addition, here is another high-level,
non-technical overview of ORBLink based on a cover story on the Franz Inc. Web site.

Because CORBA applications typically involve multiple distributed components, they can become
somewhat complicated. Feel free to ask questions of orblink@franz.com.

1

http://www.omg.org/
http://www.cetus-links.org/cetus/oo_corba.html

CORBA-Enabling Allegro CL Applications

This document is a slightly edited version of an introductory article on Allegro ORBLink that first
appeared as a cover story on the Franz Inc. Web site in June, 1998. It is intended as non-technical
overview of CORBA and ORBLink. For specific technical information, see the main documentation
supplied with ORBLink itself. With Allegro ORBLink, Allegro CL applications can:

Invoke methods on objects on remote machines
Receive remote invocation requests from other processes
Interoperate with objects written in Java, C++, C, COBOL, Smalltalk and other CORBA-compliant
languages
Access common CORBA services
Interoperate with other commercial ORBs such as ORBIX and Visibroker

So what is CORBA and How Does it Work?
The Common Object Request Broker Architecture (CORBA) is a standards-based distributed computing
model for object-oriented applications developed by the Object Management Group (OMG), a group of
700 vendor and user members including HP, Novell, Sun, IBM, and Digital. Franz Inc. is also a member
of the OMG, and, using Allegro ORBLink, fully supports the CORBA architecture for distributed objects.

CORBA allows objects executing on one system to call methods on objects executing on another system.
Finding the objects, transmitting the method call and returning any results are mediated using an Object
Request Broker (ORB) that the application doesn’t have to know about. The ORB allows objects to
interact in a heterogeneous, distributed environment, independent of the computer platforms on which the
various objects reside and the languages used to implement them. For example, a C++ object running on
one machine can communicate with an object on another machine that is implemented in Lisp.

CORBA-compliant applications typically comprise a client and a server. The client invokes operations on
objects that are managed by the server, and the server receives invocations on the objects it manages and
replies to these requests. For example, a Lisp object can either use CORBA services available over the
network (as a client), or it can publish services to other components in the application (as a server). The
ORB manages the communications between client and server using the Internet Inter-ORB Protocol
(IIOP), which is a protocol layer above TCP/IP.

The objects in a distributed CORBA application, regardless of the language in which they are
implemented, can communicate with the ORB through an interface written in the CORBA Interface
Definition Language (IDL). The CORBA IDL is a language included in the CORBA 2.0 specification that
is designed to describe the interfaces of objects, including the operations that may be performed on the
objects and the parameters of those operations. The behavior of an object is thus captured in the interface
independently of the object’s implementation. Clients need only know an object’s interface in order to
make requests. Servers respond to requests made on those interfaces, and clients do not need to know the
actual details of the server’s implementation.

To implement an interface, CORBA IDL is compiled into the source code language with which the client
or server is implemented. On the client side, this code is called a stub. On the server-side, this IDL code is
called a servant.

2

http://www.franz.com/

In order to request a service from the server, the client application calls the methods in the stub (moving
down the protocol stack from the client to the stub to the ORB). Requests are then handled by the ORB,
and enter the server via the servant (moving up the protocol stack: i.e. an upcall). The server object then
services the request and returns the result to the client.

CORBA Illustration 1

Third-party ORBs such as ORBIX from IONA Technologies and Visibroker from Visigenic/Borland
provide common CORBA services such as name services and transaction services. A name service allows
a client to initiate contact with a remote object. The client asks the name service for a connection to the
remote object by name. The name service works with the stub code to return a connection, permitting the
client to call methods on the remote object. This work by the name server might include actually starting
up the server that implements the remote object.

Writing IDL stubs and servants for Allegro CL applications enabling them to communicate with other
distributed CORBA-compliant objects is made possible by Allegro ORBLink. Users do not need to know
low-level details such as the IIOP protocol; Allegro ORBLink handles the mapping for them so that they
can write regular CLOS code to make their applications fully CORBA-ready and interoperable with other
third-party ORBs.

Allegro ORBLink: Adding CORBA-Compliance to Allegro CL
Allegro ORBLink is an add-on product for Allegro CL that comprises an automatic mapping of the
CORBA IDL into Allegro CL. This mapping is fully IIOP-compliant, and it permits Allegro CL users to
write CLOS code that takes advantage of CORBA services or that publishes CLOS services to other
application components as described above. Fully compatible with other third-party ORBs, Allegro
ORBLink enables Allegro CL applications to take advantage of common CORBA services such as name
and transaction services.

Features of Allegro ORBLink include:

Complete IIOP compliance
Automatic exception handling
Support for all IDL data types
Open support for industry standards on a variety of hardware and operating system platforms
Integration with existing systems written in any other CORBA-compliant programming language
Interoperability with other CORBA-compliant objects and services
Full compatibility with common object services defined in CORBA, including naming, events, and
transaction services available through third-party ORBs such as Orbix from Iona and Visibroker from
Inprise.

An Example CORBA-Compliant Distributed Application
The following diagram illustrates a simple client-server banking application with a server component
written in Common Lisp and a client (say an ATM terminal) written in Java. The file containing the
CORBA interface definitions is in this example called "bank.idl". Here is the IDL source code in this file:

3

module Bank(
interface Account {
 float Balance();
};
interface AccountManager{
 Account open (in string name);
};
};

The "bank.idl" file is compiled into two pieces: it is compiled by a Java CORBA compiler into a Java stub
on the client side, and it is compiled by Allegro ORBLink into a CL servant on the server side.

CORBA Illustration 2

The classes Bank:Account and Bank:AccountManager constitute the CL servant. The servant also includes
methods on these classes which deal with marshalling, events, IIOP, etc.

The user code for the servant extends the servant classes and implements the methods using
define-method.

(defclass Account (Bank:Account)
 (balance :accessor get-balance))

(corba:define-method balance ((account Account))
 (get-balance account))

(defclass AccountManager (Bank:AccountManager)
((accounts :accessor get-accounts
 :initform (make-hash-table :test #’ equal))))

(corba:define-method open ((mgr AccountManager) name)
 (gethash name (get-accounts mgr)))

The AccountManager class has an open method that takes an account holder’s name and returns the
account for that account holder. The Account class has a balance method that takes an Account object and
returns a balance.

corba:Define-method uses all of the "hidden" servant methods automatically where needed (for
marshalling, IIOP, etc.). The programmer does not need to manually invoke them. As such, Allegro
ORBLink makes it easy to write servants and stubs with no requirement to manually handle details of the
underlying protocols.

To use an account as a client, one would write code such as:

(setq JS (op:open Manager "John Smith")) => obtains the account in the name of John Smith
(op:balance JS) => returns the balance in the JS account

CORBA References
For more information about CORBA, visit the OMG website at http://www.omg.org, which includes all of
the official CORBA standards. This site, particularly the page http://www.omg.org/news/begin.htm,
contains a wealth of information on learning about CORBA. Another excellent site is Cetus. There are
also a number of books on CORBA. . If you are interfacing with Java - and to some extent even if you are

4

http://www.omg.org/
http://www.omg.org/news/begin.htm
http://www.cetus-links.org/oo_corba.html

not - we recommend books such as:

Programming with Visibroker. Doug Pedrick, Jonathan Weedon, Jon Goldberg, and Erik Bliefield.
Wiley, 1998
Java Programming with CORBA by Andreas Vogel and Keith Duddy, 2nd edition, John Wiley &
Sons, February 1998.
Client/Server Programming with Java and CORBA, Robert Orfali and Dan Harkey, 2nd edition ,
John Wiley & Sons, February 1998.
Programming with Java IDL Geoffrey Lewis, Steven Barber, and Ellen Siegel. John Wiley & Sons,
November 1997.

There are also a number of books available on CORBA without reference to any language. All
of these books are easily accessible and may be ordered from http://www.amazon.com.
However, the most important CORBA document is always the latest OMG core CORBA
specification.

5

Installing ORBLink

In order to install configure ORBLink, it is necessary to modify one file:

orblink-configure.cl

This file is located in the code subdirectory of the ACL home directory - the same directory in which
orblink.fasl is located. ORBLink will run out-of-the box with no installation steps. However, in order to
generate object references that can be used by programs in other internet domains, you need to apprise
ORBLink of the internet domain to use in these object references. In most cases, it is sufficient to
complete the installation by modifying the string indicating the domain in orblink-configure.cl :

(setf
 (op:domain corba:orb)
 "" ; This may be modified to the actual domain,
 ; for example, "franz.com"
)

However, sometimes the default rules used by ORBLink to generate a fully-qualified hostname from a
domain name do not work. In this case, you should set the IP of the host on which ORBLink is to be run
directly as described in orblink-configure.cl :

 (setf (op:host corba;orb)
 "" ; Replace with, e.g., "192.0.0.2"
 ; for the Internet address or fully-qualified
 ; IP address of the given host
)

By default these lines are commented out. A natural question is: how can I be sure if the default method
suffices? The simplest way: from a Lisp listener evaluate:

 (require :orblink)
 corba:orb

This should print a description of the ORB, for example:

ORBLINK:ORB Allegro ORBLink :version 1.0 :host "corba.franz.com" :user "stiller"

The "host" field here should denote the fully qualified hostname of the host on which ORBLink is to be
run. If it does not so denote, then you should set the host explicitly. This method also provides a simple
check that the installation is successful.

6

Mapping IDL to Common Lisp
The Common Lisp to IDL mapping document defines the official proposed mapping of Common Lisp to
CORBA. Franz Inc. is working with OMG to standardize this mapping. The mapping document is
currently provided in .pdf format. If you are unable to read a .pdf file, you should do one of the following:

1. Download and install the Acrobat Portable Document Format reader:

[IMAGE]

2. Contact Franz Inc. for a hardcopy of the documentation.

The mapping document is located in the file mapping.pdf of the doc subdirectory of the ORBLink root
directory.

7

http://www.adobe.com/prodindex/acrobat/readstep.html

Summary of the IDL/Common Lisp Mapping

This document summarizes highlights and key features of the IDL to Common Lisp mapping for the
ORBLink programmer. Each IDL type is mapped to a corresponding Lisp type:

Primitive types
Sequences
Interfaces
Operations
Structs
Unions
Exceptions
Typedefs and const definitions
Understanding the type rules

Mapping for primitive types
The mapping for primitive types is straightforward:

IDL boolean maps to Lisp boolean
IDL short, long, octet, unsigned short and unsigned long map to Lisp sub-types of integer containing
the appropriate integers. For example, the lisp type corba:short describes 16-bit Lisp integers.
string maps to Lisp string; char maps to Lisp character.
arrays maps to Lisp array of the same rank.

As a practical matter, this means that you can pass a value of the expected Lisp primitive type as a
parameter to any IDL operation declared to accept that type. We will see some more examples below.

Mapping for sequences
An IDL sequence is mapped to a Lisp sequence, that is, to a vector or to a list.

This can cause confusion: when is a vector allowed or required? when is a list allowed or required?

The general rule is: if an IDL operation expects a parameter that is a sequence, either a vector or a list may
be passed to that operation.

If an IDL operation returns a sequence parameter, it may be either a vector or a list. ORBLink guarantees
that if the invocation was remote then the returned sequence value will be a vector, not a list.

8

Mapping for interfaces
The most important mapping to know is that of interfaces.

Consider the following interface named I defined in module M:

module M {
 interface I { attribute long a1;
 readonly attribute string a2;}
 }

When compiled via corba:idl three classes are created in the Lisp:

1. A Lisp class named M:I (that is, the symbol named "I" in package M).
2. A Lisp class named M:I-servant, inheriting from M:I and from corba:servant
3. A Lisp class named M:I-proxy, inheriting from M:I and from corba:proxy.

Instances of M:I-proxy are proxies: methods invoked on them are marshalled and forwarded to remote
implementations. Instances of M:I-servant are servants: these are normal Lisp classes that implement
various methods. They can receive remote invocations. When a method is invoked on a servant no
marshalling is done: the servant implementation code is invoked directly. Now suppose an interface
named J extends I:

module M { //We are reopening the module M
 interface K {;};
 interface J (I, K) {;};
 }

When compiled, the Lisp classes corresponding to J will have the following inheritance structure:

1. M:J inherits from M:I and M:K
2. M:J-servant inherits from M:I-servant and M:J-servant
3. M:J-proxy inherits from M:I-proxy and M:K-proxy

Attributes are mapped to slots in the generated -servant class. For an attribute a:

1. The slotname is op:a
2. The reader name is op:a
3. The writer name is (setf op:a) - unless the attribute is readonly, in which case no writer is generated.
4. The initarg is :a

For example, M:J-servant inherits a slot named op:a1 from M:I-servant. An instance of M:J-servant can be
created via

(setq j-serv (make-instance ’M:J-servant :a1 3958810))

The value of the attribute a1 of j-serv can be retrieved via:

9

(op:a1 j-serv)
----> 3958810

The value of the attribute can be changed via:

(setf (op:a1 j-serv) -3)
(op:a1 j-serv)
---> -3

The readers and writers can also be invoked on proxies. However, the initarg cannot be used for a proxy.

Mapping for operations
The mapping for operations is quite simple: if foo is an operation defined in some interface, then there is a
corresponding Lisp method named op:foo. If foo is declared to return void and has no out arguments, then
op:foo returns no values.

If foo is not declared to return void and has no out arguments, it returns a single value.

If foo is declared to return out arguments then they are returned as multiple values after whatever values
foo would have returned without those out arguments.

The first argument to op:foo is the object on which it is invoked. The remaining arguments are the
parameters of the operation. Consider the following IDL:

module M {
 interface optest {
 void testvoid (in long a);
 long testlong (in string b);
 long testmultiple (in string b, out char c);
 void testvoidmultiple (out char c1, out string s, out float f3);
};
};

Suppose that m is an object of type M:optest. Then an invocation sequence might look like:

(op:testvoid m -100000)
--->[No values returned]

(op:testlong m "hello")
--->599934

(op:testmultiple m "goodbye")
---> 3000 #\G

(multiple-value-bind (a b c) ;Get the returned values
 (op:testvoidmultiple m)
 (list "The values returned are:" a b c))
---> ("The values returned are" #\Y "hurdle" 1.87)

Everything that "looks like a method" in Lisp is mapped to the op package, notably struct member
accessors, union member accessors, attribute accessors, and so on.

10

structs
A struct follows the same naming rules as an interface. A struct named S defined in module M maps to a
Lisp class named M:S. If S has a member named mem, then the Lisp class has a slot named op:mem with
initarg :mem and accessor op:mem. The constructor for a struct has the same name as the struct. For
example from the IDL:

module M {
 struct S {long foo; string fum;};};

You can create a new instance of the class M:S via

(setq struct (m:s :foo 300 :fum "test"))
---> #< M:S :FOO 300 :FUM "TEST">

(op:foo struct)
---> 300

(setf (op:fum struct) "passed")
---> "passed"

(op:fum struct)
---> "passed"

unions
A union follows the same naming rules as interfaces and structs. The member accessors and member
initargs follow the usual pattern, except that of course only one initarg can be used in the initialization
(since only one member can have a value). A union has two slots named op:union-value and
op:union-discriminator. The name of the constructor for the union is the name of the union. Consider for
example the following IDL:

module M { interface IU
 { union V switch (long) {
 case 3: string foo;
 case 5: long fum;};};};

The name of the corresponding Lisp class is M:IU/V. (The "/" is a scoping separator). You can create a
union with label 3 and value "echo" in the foo member via:

(setq u (M:IU/V :foo "echo"))

The value can be retrieved via:

(op:foo u)
----> "echo"

(op:union-value u)
---->"echo"

(op:union-discriminator u)
---->3

11

Exceptions
The mapping for exceptions is exactly like the mapping for structs, except that an IDL user-defined
exception is a subclass of the Lisp condition class CORBA:userexception, which inherits from
CORBA:exception, which inherits from condition.

Typedef and const definitions
You can define a named type or a named constant in IDL. As would be expected, these are mapped to
Lisp types and constants respectively, following the usual naming rules:

module M {
 typedef string foo;
 const long r = 1 + 3;
 };

From the above IDL, we get:

(typep "hello" ’M:foo)
---->T
(typep 3 ’M:foo)
---->nil
M:r
---->4

Understanding the rules for constructed types
The mapping rules were constructed with the primary goal of uniformity and ease of learning.

The fundamental abstraction used is that of a "type" with some kind of "named members". Insofar as
possible, in each case such a type maps to a Lisp type of the same name, with a keyword initarg
corresponding to each named member, and readers and writers for each named member. Each reader is in
the op: package; the writer is formed via (setf reader). The constructor is simply the name of the type.

12

Lexical conventions

The ORBLink documentation necessarily involves simultaneous discussion of IDL datatypes and their
associated Lisp types. These types typically have names that are quite similar.

IDL is also case-sensitive, whereas ANSI Common Lisp is not.

Unfortunately it is the case that in the current version of this documentation there is no standard font or
case distinction that would allow the reader to distinguish lexically the name of an IDL type from the
name of the corresponding Lisp type.

In most cases the context should make the distinction clear. When it does not, please contact
orblink@franz.com.

13

Getting started with ORBLink: A tutorial

Prerequisites for working through the tutorial
These are the prerequisites for running the tutorial:

1. You should be able to load Allegro Common Lisp and ORBLink.
2. You should have some familiarity with CORBA
3. You should have read the IDL/Lisp mapping document.
4. You should know where the ORBLink home directory is located.

However, even if you do not have all the prerequisites, you might find the tutorial useful to get an idea of
what an ORBLink application entails.

Because of the length of this tutorial, you may find it more convenient to print out rather than to read
on-line.

Overview of the tutorial
In this tutorial, we will work through a very simple example of implementing IDL in Lisp and then
invoking the Lisp client. After doing this, we will see how to modify the server itself on the fly.

We will assume that there are two distinct Lisp worlds that have been started: one is called the server and
the other the client.

Commands that should be typed into the server or client listener are prefaced with
[server-listener]USER> or [client-listener]USER> in the text below.

In broad terms, to start our application we will:

start a server,
start a client,
invoke methods from the client to the server.

Our tasks are thus logically partitioned into two categories: server-side and client-side.

Server side steps

1. Load ORBLink
2. Compile the IDL on the server
3. Define the implementation classes and methods
4. Instantiate a server object
5. Publish the IOR of the server object

14

Client side steps

1. Load ORBLink on the client
2. Compile the IDL on the client
3. Retrieve the IOR of the server object and generate a client proxy from this IOR
4. Invoke methods on the client proxy.

These method invocations will result in the forwarding of remote requests to the server object.

It is important to note that either the client or the server side can be implemented in any
CORBA-compliant language; that the client or server process can reside on the same or on a different
computer in numerous platforms; and that the overall structure of these steps is the same for any
language/platform configuration.

After these basic steps we will show how a Lisp server or client can be modified dynamically.

Let us, thus, begin by starting the server side:

Loading ORBLink on the server
The Lisp source code for this example is included in the directory examples/grid/cl/. You can load the
example code from any directory. However, for specificity we will assume here that the current working
directory is the root of the ORBLink home installation. You can use the :cd from within a Lisp listener to
set the current working directory of the listener, e.g.

[server-listener]USER> :cd /usr/acl-5/code/orblink
[server-listener]USER> (require :orblink)

We recommend as well setting the current package to user :

:package :user

Compile the IDL on the server
The IDL source code for this example encapsulates the interface to a simple two-dimensional array of
strings:

module example {
 interface grid;
 interface grid {
 readonly attribute short height;
 readonly attribute short width;
 void set(
 in short n,
 in short m,
 in string value
);
 string get(
 in short n,

15

 in short m
);
 };
};

To compile the IDL, give the pathname of the IDL as the argument to the IDL compiler:

[server-listener]USER> (corba:idl "examples/grid/idl/grid.idl")

This will define the classes example:grid , example:grid-proxy , and
example:grid-servant . The corba:idl function will return an Interface Repository object that
encapsulates in CORBA compliant format the definitions in the IDL file.

The class example:grid-servant already has defined slots named op:width and op:height ,
corresponding to the attributes in the IDL definition of the grid interface. These slots have pre-defined
readers named op:width and op:height with corresponding initialization arguments :width and
:height .

Define the implementation classes and methods
In order to write a server for the grid interface, it is first necessary to define a class that extends
example:grid-servant (technically this step is unnecessary, insofar as the new methods could be
defined on the example:grid-servant class directly, but this usage would be poor style.

We will name our user-defined class, which extends example:grid-servant ,
user::grid-implementation .

Our class user::grid-implementation will extend example:grid-servant and will include
a single extra slot named array that holds the actual values in the grid.

The example:grid-servant class defines slots named op:width and op:height and, since
these are readonly attributes, it defines readers of the same name. Our grid-implementation will
add default initforms to these slots of values 4 and 5 respectively. Users who wish to initialize the grid
with a different size can do so using the automatically defined :width and :height initargs.

Our class definition thus looks like this (or see the file examples/grid/cl/grid-implementation.cl):

(defclass grid-implementation (example:grid-servant)
 (
 (op:width :initform 4)
 (op:height :initform 5)
 (array)))

We define an initializer for this class that simply initializes the array to the size specified by the values of
the slots named op:width and op:height , with initial element the string "initial" :

(defmethod initialize-instance :after ((this grid-implementation) &rest args)
 (setf (slot-value this ’array)
 (make-array ‘(,(op:width this) ,(op:height this)) :initial-element "Initial")))

16

Finally, we implement the IDL operations named get and set . Because these are IDL operations, their
implementation must be via the corba:define-method macro. The syntax of
corba:define-method is specified as part of the CORBA IDL/Lisp mapping and closely follows the
syntax of the usual defmethod macro.

For example the get method is implemented as:

(corba:define-method get ((this grid-implementation) row column)
 (aref (slot-value this ’array) row column))

You should now load the file that contains the definitions of the grid implementation class and its
associatiated methods:

[server-listener]USER> :ld examples/grid/cl/grid-implementation.cl

Instantiate a server object
We can now verify that the appropriate classes have been loaded by instantiating an instance of
user::grid-implementation :

[server-listener]USER> (setq test-grid (make-instance ’grid-implementation))
[server-listener]USER> (op:set test-grid 1 2 "This is a test.")
[server-listener]USER> (op:get test-grid 1 2)
---> "This is a test"

(Note that not all responses from the Lisp listeners are printed here).

The ORB itself is only involved implicitly in this computation; there is no marshalling or unmarshalling,
and no socket connections, involved. The op:get and op:set methods are normal CLOS methods.

Publishing the IOR
In order to invoke methods on test-grid remotely, it is necessary to publish the IOR (interoperable
object reference) of test-grid .

The IOR of the test-grid object can be obtained by invoking the op:object_to_string method
on the ORB itself. The ORB is always bound to corba:orb :

USER> (op:object_to_string corba:orb test-grid)
---> [a long string of characters beginning with "IOR"]

As a side effect of computing this string, called a stringified IOR, a TCP socket listener has been started
that waits from invocations on the test-grid object. Since no client yet knows the IOR of
test-grid , however, no invocations can be forthcoming until we make this IOR available to a client.

The simplest way to make the IOR available is for the server to write the IOR to a file that is then read by
the client. This method is not particularly general, of course, but it will suffice to run simple examples.
Choose a file for storing the IOR that is both writeable by the server and that can be read by any client.
For example, you can try using the filename [directory]/grid.ior where the string "[directory]"
in the following should be replaced by some directory to which you have write access:

17

USER> (orblink:write-ior-to-file test-grid "[directory]/grid.ior")

You should verify now that the IOR string you computed above has indeed been written to the file
[directory]/grid.ior . Note that you can examine the source to the write-ior-to-file
function in the file examples/ior-io/cl/sample-ior-io.cl:

(defun orblink:write-ior-to-file (object pathname)
 "Writes the IOR of object, the first argument, to the file denoted by pathname, the
 second argument. Because this routine is primary explanatory, little error checking is
 performed. If *default-ior-directory* is non-nil, pathname is first merged with
 default-ior-directory"
 (when *default-ior-directory*
 (setq pathname (merge-pathnames pathname *default-ior-directory*)))
 (ensure-directories-exist pathname) ; Create intermediate directories if necessary
 (with-open-file
 (stream pathname :direction :output :if-exists :supersede)
 (format stream ("~A" (op:object_to_string corba:orb object)))
 (format t "Wrote ior to file: ~a~%" pathname)
 (force-output)
 t))

Starting the client: Load ORBLink and compile the IDL on the
client
Now that the IOR of the test-grid object has been published in a "well-known" place, a client can
bind to it. You should start a new Lisp world for this portion of the tutorial, perhaps on a different
machine, and then restart ORBLink and recompile the file examples/grid/idl/grid.idl . Thus
there are now two Lisp listeners: the client and the server. (In fact this example will work just as well if
the client and server are implemented in the same image and the same listener, but it is clearer for the
exposition to separate them).

[client-listener]USER> (require :orblink)
[client-listener]USER> (corba:idl "examples/grid/idl/grid.idl")

Generate a client proxy for the server object
The process of generating a proxy is conceptually divided into two phases: reading the IOR and
converting the IOR into a proxy.

Since the IOR now resides in the file [directory]/grid.ior , it may be read simply via:

[client-listener]USER> (setq ior
 (with-open-file (stream "[directory]/grid.ior" :direction :input)
 (read-line stream)))

This form should return, in the client listener, the same long string that was returned above in the server
listener as the result of calling op:object_to_string on the test-grid object.

18

The next step is to create a proxy from this IOR. This can be done using the CORBA compliant
string_to_object operation on the ORB:

[client-listener] USER> (setq test-grid-proxy (op:string_to_object corba:orb ior))

This should return an instance of type example:grid-proxy . This proxy may then be used to invoke
operation on the server-side object in the server image from the client image.

Note: the preceding two steps, reading an IOR from a file and forming a proxy from that IOR could have
been coalesced into the single invocation:

 (setq test-grid-proxy (orblink:read-ior-from-file "[directory]/grid.ior))

The source code for the orblink:read-ior-from-file function is also located in the file
examples/ior-io/cl/sample-ior-io.cl.

Invoke methods on the client proxy
You can now invoke methods on the test-grid-proxy object using exactly the same calling
sequence as you did to invoke methods directly on the test-grid object:

[client-listener]USER> (op:set test-grid-proxy 1 3 "proxy-test")
[client-listener]USER> (op:get test-grid-proxy 1 3)
---> "proxy-test"

You can verify from the server world that these values really have changed:

[server-listener]USER> (op:get test-grid 1 3)
----> "proxy-test"

This concludes the first part of the tutorial.

Next, we discuss the issue of modifying the server on the fly.

Modifying the server
One convenient feature of Lisp is its ability to add functionality to the server without stopping and
restarting the application. To demonstrate this functionality, we presume that it is desired to augment the
grid object with a new attribute, say name. Make a copy of the file examples/grid/idl/grid.idl and
modify the copy by adding the line

 attribute string name;

in the interface definition. Now recompile the modified file using the corba:idl function.

For your convenience the modified version is in the file examples/grid/idl/grid-modified.idl and thus the
recompilation step is done via:

19

[server-listener]USER> (corba:idl "examples/grid/idl/grid-modified.idl")

If you now evaluate the form (describe test-grid) on the server side, you will see that a new slot
named name has indeed been added to the test-grid object. Now let’s set the value of this new slot:

[server-listener]USER> (setf (op:name test-grid) "Modified grid")
[server-listener]USER> (op:name test-grid)
----> "Modified grid"

Modifying the client
In order for the client to invoke the newly defined methods on the test-grid proxy, it also needs to
recompile the IDL source:

[client-listener]USER> (corba:idl "examples/grid/idl/grid-modified.idl")

Now the client can invoke the new methods:

[client-listener]USER> (op:name test-grid-proxy)
----> "Modified grid"
[client-listener]USER> (setf (op:name test-grid-proxy) "client-modified name")
[client-listener]USER> (op:name test-grid-proxy)
----> "client-modified name"

Moving on
ORBLink offers many features not discussed in this introductory tutorial, among which are customizable
exception handling, handling many other data types, support for persistent IORs, any handling, and so
forth.

Parting words on the tutorial
CORBA is not always as simple as in this case. In general, there will be configuration problems in starting
up different ORBs: all sorts of environment variables have to be set up correctly and various daemons
need to be started. Once these configuration issues are resolved, the actual invocation of methods on
remote objects is normally straightforward.

20

Using the IDL Administrative interfaces

ORBLink ORB administrative interfaces are themselves specified in IDL, or more technically in
pseudo-IDL. Pseudo-IDL is like IDL except that:

1. A pseudo-interface, an interface specified in pseudo-IDL, does not generate -servant or -stub
classes, and

2. a pseudo-object may not be passed remotely.

Most of the pseudo-interfaces defined by the IDL for the administration of the ORB are defined in the
ORBLink module. The associated symbols are thus interned as external symbols in the orblink
package.

Except for this all of the mapping is done as specified in the official mapping document.

All of the ORB pseudo-interfaces in excess of what is specified by CORBA itself are defined in IDL
itself. Interface definitions in this file are hyperlinked to their semantic definition.

Thus, the Lisp calling sequence for any particular API can be determined directly from the pseudo-IDL.

For example, some of the IDL for message looks like:

module ORBLink {...
 pseudo interface Message {
 ...
 enum MessageDirection {incoming,outgoing,unknown};
 readonly attribute MessageDirection direction;
 };
};

This is shorthand for the following:

There is a Lisp class named by the Lisp symbol orblink:message .
There is a Lisp type named by the Lisp symbol orblink:message/messagedirection
which denotes the type comprising the three keywords :incoming , :outgoing and :unknown .
If m is a Lisp symbol bound to an instance of orblink:message , then the invocation:

(op:direction m)

will return a value of type orblink:message/messagedirection .

Note that this API gives no way actually to create a new message.

It is important remember that the variable corba:orb is always bound to an instance of the ORB
pseudo-interface.

21

/*

IDL for ORBLink administrative interfaces

The IDL source in this file, which is in the code font, encapsulates pseudointerfaces to ORB functionality
in excess of what is required by the CORBA IDL/Lisp mapping. In order to understand the way in which
this file describes Lisp functions, you should be familiar with that mapping. The functionality described in
this document, thus, is only necessary for advanced CORBA applications. Each IDL definition in this file
is linked to a text description of the semantics of that definition.

*/
module ORBLink {
 native value;
 native Condition;

 exception Forward ;
 Object location;
 }
 exception orblink_servant_exception
 any original_condition;
 string message;}

 pseudo interface Junction {
 readonly attribute value socket;
 unsigned long SecondsIdle();
 boolean isOpen();
};
 pseudo interface ActiveJunction : Junction {
 readonly attribute unsigned long MessagesReceived;
 readonly attribute string RemoteHost;
 readonly attribute unsigned long RemotePort;
 void close();
 };
 pseudo interface PassiveJunction: Junction {;};
 pseudo interface ClientJunction : ActiveJunction {;};
 pseudo interface ServerJunction : ActiveJunction {};
 typedef sequence ServerJunctionList;
 typedef sequence ClientJunctionList;
 typedef sequence PassiveJunctionList;

 pseudo interface Message{
 enum MessageDirection {incoming,outgoing,unknown};
 readonly attribute MessageDirection direction;
 enum MessageType {Request,Reply,CancelRequest,LocateRequest,
 LocateReply,CloseConnection,MessageError,Fragment};
 readonly attribute MessageType type;
 readonly attribute junction ForwardingJunction;
 }

 pseudo interface ORB : CORBA::ORB {

22

 Object _narrow(in Object obj, in Symbol class_name);
 void HandleJunctionError (in Junction j, in Condition c);
 void HandleJunctionClose (in Junction j);

 readonly attribute ServerJunctionList ServerJunctions;
 readonly attribute ClientJunctionList ClientJunctions;
 readonly attribute PassiveJunctionList PassiveJunctions;
 enum ServerJunctionErrorPolicyType {continue, debug, handle};
 attribute ServerJunctionErrorPolicyType ServerJunctionErrorPolicy;
 attribute boolean HandleJunctionClosePolicy;

 enum break_policy_type {return,break};
 attribute break_policy_type break_policy;
 enum thread_policy_type {singly_threaded, thread_per_request}
 enum verbose_level_type {low, high};
 attribute verbose_level_type verbose_level;
 attribute thread_policy_type thread_policy;
 attribute boolean tracing;
 attribute unsigned long port;
 attribute string domain ;
 attribute string host;
 readonly attribute string version;
 };

};

module CORBA {
 const ORB orb;
pseudo interface ORB {
 String object_to_string (in Object obj);
 Object string_to_object (in String str);
{;

 pseudo interface Object {
 };

 pseudo interface Proxy (Object) {
 readonly attribute _junction;
 }

 pseudo interface Servant (Object) {
 readonly attribute string _marker;
 void _forward (in Object location) raises (ORBLink::Forward);
 }
}

23

The ORBLink ORB

The global special variable CORBA:ORB is always set to the singleton instance of the ORBLink ORB.

The ORBLink ORB is encapsulated in the pseudointerface:

 pseudo interface ORB : CORBA::ORB {
 Object _narrow(in Object obj, in Symbol class_name);
 void HandleJunctionError (in Junction j, in Condition c);
 void HandleJunctionClose (in Junction j);

 readonly attribute ServerJunctionList ServerJunctions;
 readonly attribute ClientJunctionList ClientJunctions;
 readonly attribute PassiveJunctionList PassiveJunctions;
 enum ServerJunctionErrorPolicyType {continue, debug, handle};
 attribute ServerJunctionErrorPolicyType ServerJunctionErrorPolicy;
 attribute boolean HandleJunctionClosePolicy;

 enum break_policy_type {return,break};
 attribute break_policy_type break_policy;
 enum thread_policy_type {singly_threaded, thread_per_request}
 enum verbose_level_type {low, high};
 attribute verbose_level_type verbose_level;
 attribute thread_policy_type thread_policy;
 attribute boolean tracing;
 attribute unsigned long port;
 attribute string domain ;
 attribute string host;
 readonly attribute string version;
 };

Most of these attributes and operations are defined in other sections, hyperlinked to their name.

The version attribute is bound to a string that denotes the current ORB.

Simply printing the value of corba:orb will give version, host, and other useful information.

Stringification
Note that the CORBA pseudo-interface itself defines certain functions on the ORB. By far the most
important of these are object_to_string and string_to_object . See the section on naming for
more information on these.

24

The ORBLink IDL to Lisp Compiler

An IDL file may be compiled by using the corba:idl function with a single argument, the pathname of
the file to be compiled. By default the preprocessor symbol "LISP" is defined.

Basic usage of corba:idl
The effect of the function

(corba:idl pathname)

is to load into the Lisp image those Lisp values defined by the official mapping that correspond to the IDL
file denoted by pathname .

This includes:

constant definitions,
type definitions,
class definitions,
proxy definitions,
servant definitions,
struct definitions,
union definitions, and
marshalling and unmarshalling functions for each of the data types and operations defined in the IDL
file.

Generating fasl files from IDL files: Advanced usage of
corba:idl
The corba:idl function can also be used to generate a .fasl file from an IDL file. This .fasl can later
be loaded into a Lisp image into which ORBLink has been loaded. When the .fasl file is loaded, the
effect on the Lisp world is the same as if the original IDL file had been passed as sole argument to the
corba:idl function. The name of the generated fasl file is determined by keyword arguments passed to
corba:idl . The allowed keyword arguments to corba:idl are:

:compile
Set to T if a fasl is to be generated from the argument IDL file. The default is nil . If set to T, a
fasl file is generated from the argument IDL file. The default name of this fasl file is the same as the
concatenation of the name of the IDL file without extension concatenated to the string "-tmp" with
the file extension replaced by ".fasl". Note that by default, when the value of :compile is set to T,
the fasl file is generated but is not loaded; thus, it is necessary subsequently to load manually the
generated fasl file.

25

:compile-and-load
Set to T if a fasl file is to be generated from the argument IDL file and subsequently loaded into
the running Lisp image. The name of the generated fasl file follows the conventions of the
:compile keyword argument.

:lisp-file
The name of the intermediate Lisp file that is generated. The default is the name (without extension)
of the given IDL file concatenated to the string "-tmp.cl". This argument should be set only if either
:compile or :compile-and-load were set to T.

:retain-lisp-file
Set to T if the intermediate Lisp file is to be retained after compilation; by default it is deleted. This
option is included for didactic purposes only; in particular, the operation of recompiling this
generated Lisp file by the user is explicitly not supported, as the compilation must be done in a
particular environment controlled by the ORB.

[all other keyword arguments]
All other keyword arguments are passed through to compile-file without change.

For example, given a file /a/b/x.idl, the form (corba:idl "/a/b/x.idl" :compile t) will
generate a fasl file named /a/b/x-tmp.fasl. When loaded into another Lisp world, the effect will be the
same as if (corba:idl "/a/b/x.idl") were evaluated.

26

The Interface Repository in ORBLink

An interface repository is an object implementing the CORBA::Repository interface. This is a
standard CORBA interface whose IDL is given in the CORBA Core IDL.

The purpose of the interface repository is to maintain type information about IDL files. Once an IDL file
is compiled, its definitions can be stored in an interface repository and can be retrieved remotely by other
ORBs.

The semantics of the interface repository are specified in the CORBA Core standard as well as in most
good books on CORBA. Therefore, we will not discuss the semantics here in detail except to give a few
simple examples. Unlike most ORBs, ORBLink naturally and seamlessly can access multiple interface
repositories. Each invocation of the IDL compiler creates a new interface repository that can be navigated.

Getting the root interface repository object
The simplest way to obtain the interface repository object is as the value returned by the IDL/Lisp
compiler, corba:idl .

The script below illustrates navigation of the grid example IDL.

; Get the repository object
USER(5): (setq repository (corba:idl "examples/grid/idl/grid.idl"))
#< ORBLINK::CORBA-REPOSITORY-IMPLEMENTATION :DEF_KIND :DK_REPOSITORY @ #x86b680a>

; List all definitions in the repository
USER(6): (op:contents repository :dk_all nil)
(#< ORBLINK::CORBA-MODULEDEF-IMPLEMENTATION :NAME "example" :ID "IDL:example:1.0" :DEF_KIND :DK_MODULE @ #x86b9dca>)

; Get the first (and only) definition
USER(8): (setq moduledef (car (op:contents repository :dk_all nil)))
#< ORBLINK::CORBA-MODULEDEF-IMPLEMENTATION :NAME "example" :ID "IDL:example:1.0" :DEF_KIND :DK_MODULE @ #x86b9dca>

; Get the name of this definition
USER(9): (op:name moduledef)
"example"

; describe the module definition (this returns a struct)
USER(10): (op:describe moduledef)
#< CORBA:MODULEDESCRIPTION :NAME "example" :ID "IDL:example:1.0" :DEFINED_IN "" :VERSION "1.0" @ #x86bd67a>

; List the contents of the module
USER(11): (op:contents moduledef :dk_all nil)
(#< ORBLINK::CORBA-INTERFACEDEF-IMPLEMENTATION :NAME "grid" :ID "IDL:example/grid:1.0" :DEF_KIND :DK_INTERFACE @ #x86bf31a>)

; Get the interface defined in the module
USER(12): (setq interfacedef (car (op:contents moduledef :dk_all nil)))
#< ORBLINK::CORBA-INTERFACEDEF-IMPLEMENTATION :NAME "grid" :ID "IDL:example/grid:1.0" :DEF_KIND :DK_INTERFACE @ #x86bf31a>

; Describe the interface
USER(13): (op:describe interfacedef)
#< CORBA:INTERFACEDESCRIPTION :NAME "grid" :ID "IDL:example/grid:1.0" :DEFINED_IN "IDL:example:1.0" :VERSION "1.0" :BASE_INTERF ACES NIL @
 #x86c0732>

; Get the repository ID of the interface
USER(14): (op:id interfacedef)
"IDL:example/grid:1.0"

; List the contents of the interface
USER(15): (op:contents interfacedef :dk_all nil)
(#< ORBLINK::CORBA-OPERATIONDEF-IMPLEMENTATION :NAME "_get_width" :ID "IDL:example/grid/_get_width:1.0" :DEF_KIND :DK_OPERATION @ #x86c247a>
 #< ORBLINK::CORBA-OPERATIONDEF-IMPLEMENTATION :NAME "_get_height" :ID "IDL:example/grid/_get_height:1.0" :DEF_KIND :DK_OPERATI ON @ #x86c2602>
 #< ORBLINK::CORBA-ATTRIBUTEDEF-IMPLEMENTATION :NAME "height" :ID "IDL:example/grid/height:1.0" :DEF_KIND :DK_ATTRIBUTE @ #x86 c37aa>
 #< ORBLINK::CORBA-ATTRIBUTEDEF-IMPLEMENTATION :NAME "width" :ID "IDL:example/grid/width:1.0" :DEF_KIND :DK_ATTRIBUTE @ #x86c3 92a>
 #< ORBLINK::CORBA-OPERATIONDEF-IMPLEMENTATION :NAME "set" :ID "IDL:example/grid/set:1.0" :DEF_KIND :DK_OPERATION @ #x86c3aca>
 #< ORBLINK::CORBA-OPERATIONDEF-IMPLEMENTATION :NAME "get" :ID "IDL:example/grid/get:1.0" :DEF_KIND :DK_OPERATION @ #x86c3c22>)

27

Getting the interface repository from an object
Given any CORBA object o, in theory the invocation:

(op:_get_interface o)

will return an instance of class CORBA:InterfaceDef that can be used (via the
op:containing_repository method) to get the repository. However, in practice some ORBs either
do not implement interface repositories or do not enable them by default. However, this call should always
work for any ORBLink object. In fact, it can be used to traverse the repository of all CORBA definitions:
given any ORBLink object oo, the invocation:

(op:containing_repository
 (op:_get_interface
 (op:_get_interface oo)))

should return a corba:repository object that represents all of the CORBA Core definitions.

28

Implementing operations: smart proxies and
synchronization

The main tool for defining implementation methods is the corba:define-method macro. The syntax is very
similar to that of the usual Lisp defmethod, except that the first argument, and only the first argument,
may be specialized. The formal syntax of corba:define method is described in the mapping document.
There are numerous examples in the examples subdirectory. A typical define-method form might look like
the following, taken from examples/test/test-implementation.cl.

(corba:define-method testexception ((this test-implementation) a)
 (cond
 ((plusp a) a)
 ((zerop a) (/ 1 0))
 (t
 (error ’idltest:exceptionexample :member1 a))))

This defines a new implementation of op:testexception , which should have been defined as an
operation in an IDL interface implemented by the test-implementation class. Incoming requests to invoke
the operation testexception on a test-implementation instance will result in evaluation of the
corba:define-method body.

Signalling exceptions in corba:define-method
You can signal a condition within the body of corba:define-method form as normal. When the
implementation body is invoked remotely, the ORB will catch any signalled exceptions and behave as
described by the ORB exception API.

Synchronization
You can interlock method invocations on a particular invocation by using the :synchronized keyword
after the method name.

Smart proxies
You can use the usual Common Lisp :before, :after, and :around methods. One common usage is to create
a smart proxy. For example, consider the IDL:

module M {
 interface test{
 long remoteoperation (in long fum);};
 };

Suppose we want to print a message every time the remoteoperation operation on any proxy of class test
was invoked. We could do this via:

29

(corba:define-method remoteoperation :before ((this M:test-proxy) fum)
 (format t "Proxy: ~s received message remoteoperation with parameter: ~a~%" fum)
 (force-output)) ; always a good idea to call this after formats which may occur in background

Now suppose there is a global variable named *call-remotely*. We can forward remote requests remotely
only when this is T, otherwise we return 0:

(corba:define-method remoteoperation :around ((this M:test-proxy) fum)
 (if *call-remotely* (call-next-method)
 0))

You can use this, for example, to cache remote state and avoid remote invocations.

Forwarding requests
You can forward the request to another object within the body of a define-method form. The forwarding
API is described separately.

Message access
Within the body of a define-method form the orblink:*message* special variable is bound to the
IIOP Request message that caused the invocation. This functionality is described separately.

30

Debugging ORBLink processes

The following IDL pertains to debugging APIs:

module ORBLink {
 pseudo interface ORB {
 enum verbose_level_type {low, high};
 attribute verbose_level_type verbose_level;
 attribute boolean tracing;
 }
}

The verbose_level attribute of corba:orb , when set to :high outputs various information.

The tracing attribute of corba:orb , when T, prints a message, whose verboseness is governed by the
verbose_level .

Setting the verbose_level to :high automatically turns on tracing.

These particular debugging APIs are somewhat crude, of course. For more sophisticated debugging issues,
you should can use the usual reconfigurability properties of Lisp.

For example, you can redefine a server method on the fly, which can be used to insert print statements in
server methods.

You can also use auxiliary methods to trace excecution of particular remote or local invocations.

31

Exception handling in ORBLink

Introduction
Server behavior on implementation exception
When (op:break_policy corba:orb) is :break
When (op:break_policy corba:orb) is :return
Default server behavior
Default configuration failure modes

Introduction to exception handling in ORBLink
This section describes how to customize the behavior of the ORB when a Lisp implementation of a
CORBA interface signals an unexpected exception. This section does not discuss handling of two other
kinds of exceptions:

Customization of I/O exception handling is discussed in the section on connection management.
Invocation of a CORBA operation on a Lisp client-side proxy may result in a condition being
signalled to the client. The behavior of the program in this case can be customized via the standard
Common Lisp handler-case form and is outside the scope of this document.

The IDL encapsulation for exception handling in ORBLink is encapsulated in the following IDL:

module ORBLink {
 pseudo interface ORB : CORBA::ORB {
 enum break_policy_type {return,break};
 attribute break_policy_type break_policy;
 };
};

ORBLink server behavior on implementation exception
When a user’s Lisp implementation of a CORBA interface signals a condition that is not a subtype of
CORBA:userexception , or if it returns types that are not consistent with its IDL signature, one of two
things occurs:

1. A debugger break loop is entered on the server or
2. A corba system exception is returned to the client.

Which of these occurs depends on the value of the break_policy attribute of corba:orb :

When (op:break_policy corba:orb) is :break

If the value of the break_policy attribute of corba:orb is :break , then option 1. above will be
selected:

32

 (setf (op:break_policy corba:orb) :break)

A debugger break loop will be started and will offer the user at least the following options:

Debugger break loop options

Returning a corba SYSTEM EXCEPTION to the client
Reinvoking the function that signalled the condition.

Thus, the user can fix or modify, and then recompile, the implementation code before re-invoking it.

As such, it is useful important to understand the concepts of dynamic ORBLink server reconfiguration in
CORBA server development.

When (op:break_policy corba:orb) is :return

If the value of the break_policy attribute of corba:orb is :return , option 2 is selected. A
CORBA system exception will be returned to the invoking client.

 (setf (op:break_policy corba:orb) :return)

Default error handling
The default value of the break_policy attribute of corba:orb is:

:break

.

Default configuration failure modes
The invocation of a debugger by a server thread in response to an undeclared exception signalled by user
code will not always result in a useful debugger output.

In particular, if the server is being run from a standard console, for example in a Unix tty shell, the created
debugger will attempt to share input with the main Lisp listener which will result in user input being sent
to the incorrect thread.

In consequence, when running an ORBLink server from a standard console, you should normally set the
value of the break_policy attribute of corba:orb to :return .

In general, we have found the emacs/Lisp environment to be quite powerful for multi-threaded
CORBA/ORBLink development.

33

Naming and persistent IORs

One of the trickiest problems in CORBA is the bootstrap problem: how does a CORBA client get an
initial object on which to invoke object references?

Introduction and terminology of naming
Recall that in CORBA, every object has a unique Interoperable Object Reference, or IOR, that can be used
to locate the object. The IOR contains information such as the host on which the object resides, the
TCP/IP port on which the object is listening for requests, and an object key that distinguishes the object
from other objects listening on that port.

An IOR has an opaque string representation, called a stringified IOR that may be read by any
CORBA-compliant ORB. An typical stringified IOR (or just IOR for short) looks like:

IOR:005858580000001549444C3A69646C746573742F746573743A312E30005858580000000100000000000000350001005800000006636F726261009B44000 000214F52424C696E6B3A3A636F7262613A33393734383A3A736B656C65746F6E202330

CORBA itself defines two operations in the ORB pseudo interface for acting on stringified IORs:

module CORBA {
 pseudo interface ORB {
 string object_to_string (in Object obj);
 Object string_to_object (in String ior);
 };
}

Thus, given a stringified IOR bound to the string str , a Lisp proxy for the object represented by the
string can be created via:

(op:string_to_object corba:orb str)

Given an object, its stringified IOR can be formed via:

(op:object_to_string corba:orb str)

Recall here that corba:orb is always bound the the ORB itself.

The simplest way for a client to access the server object on which it is to make invocations is for it to
retrieve the stringified IOR of the server object.

ORBLink offers two utility functions to facilitate this.

The function orblink:read-ior-from-file , given a filename, returns a proxy for the IOR string
stored in that filename.

The function orblink:write-ior-to-file , given an object and a pathname, writes the IOR of the
given object to the file denoted by its argument.

34

The definition of these functions are located in the file examples/ior-io/cl/sample-ior-ior.cl.

This method for bootstrapping, although simple to understand and test, has several disadvantages,
preeminent among which is the need for the client and the server to share access to a file system.

CORBA also defines a naming service. A Name Service is simply a standard CORBA object which
contains operations that bind human-readable names to objects.

ORBLink itself will interoperate with other CORBA-compliant name services and, in addition, ORBLink
contains a name service that is bundled, with source, with the ORB. The source to the ORBLink name
service is located in the directory examples/naming/.

However, configuring and using a CORBA compliant name service has two disadvantages:

1. Its API is somewhat complicated (although standardized).
2. The IOR of the name service itself must be published.

The advantage of 1. above is that, although the CORBA Naming API is complicated, there are numerous
third-party books that describe it. Once the CORBA Naming API and the IDL/Lisp mapping are learned,
the Lisp API to the naming service is immediate.

In particular, if a CORBA naming service is already in use in your organization, this can be a good
solution.

Another good solution to the naming problem is for the server to write the IOR to a file as usual, but for
the client to retrieve the file via http: . This requires that a Web server have access to the file system to
which the application server wrote the IOR. Such an architecture is particularly useful when the client is in
Java and the server is in Lisp.

Finally, the process of disseminating IORs can be made simpler if the IOR is persistent; that is, if it does
not change over even when the process holding the object it represents is started and stopped.

Creating persistent IORs
The IOR of an ORBLink object is formed from three fields:

The host on which the ORB runs.
The port on which the ORB is listening
The marker of the object.

The host and the port are attributes of the ORB, the object bound to corba:orb .

The salient IDL for these attributes is located in the file: orblink-idl.htm:

35

module ORBLink{
 pseudo interface ORB : CORBA::ORB {
 ...
 attribute unsigned long port;
 attribute string host;
};
};

These attributes are described in more detail in the section on the ORB pseudo-interface.

Each servant has a readonly attribute, its _marker . The name of this attribute is _marker , from the IDL

module CORBA {
 pseudo interface Servant {
 readonly attribute string _marker; // Only apples to servants
 };

A CORBA implementation object inherits from corba:servant . You can assign a marker , a unique
name for the implementation object within the ORB, by using the :_marker initarg at object creation
time. It is an error to assign the same marker to distinct objects.

Thus, the following sample code should return an object whose IOR is constant over different invocations.
We assume that the class grid-implementation has been defined to inherit from
corba:servant , for example using

 (defclass grid-implementation (interface_name-servant)...)
 (setf (op:port corba:orb) 50000) ; Set the port on which the ORB listens.
 (setq grid-object (make-instance ’grid-implementation :_marker "GridServer"))
 (corba:object_to_string grid-object) ; get the IOR and start the socket listener

The string returned by the call to object_to_string should be constant across Lisp world
invocations on the same host.

Architecting naming services
If you do not already have a Naming Service configuration, we recommend the following architecture.

1. Set up a single factory object for your application. This server will simply provide the IOR of the
actual entities in your application. You can customize and design it as you wish, but it is better to
separate it from the application logic. For example sample IDL might be:

 module ObjectFactory{
 interface ApplicationFactory{
 Object GetApplicationInstance();};};

2. Implement the GetApplicationInstance operation in the IDL. Start the
ApplicationFactory server and publish its IOR. There are several ways to publish the IOR as
described above:

36

Write it to a file that can be read by all the clients.
Store it in a Web Server.
Start the ApplicationFactory server as a persisent IOR and hardcode the IOR into
application code or into the applet parameter fields in HTML.

37

The IDL/Lisp Standard and ORBLink

The CORBA IDL/LISP proposed standard mapping allows the implementor flexibility in the
implementation of various types and functions. The purpose of this document is to describe the choices we
have made.

Sequence handling
This ORB always unmarshals values corresponding to the IDL sequence type as vectors. However, a list
may be used anywhere a sequence is expected.

float and double types
corba:float , corresponding to the IDL float type, denotes the type single-float .

corba:double , corresponding to the IDL double type, denotes the type double-float .

Operation mapping
ORBLink implements CORBA operations as generic functions. An operation named "foo" will be mapped
to a method on a standard generic function named OP:FOO.

The signature of the generic function is (T &REST ARGS) .

User code may rely on the fact that OP:FOO is a funcallable object and may freely use auxiliary methods
with such objects. However, Franz may change the low-level implementation of such functions in the
future and user code should not rely on the metaclass or the signature of such generic functions.

Unimplemented features
The following aspects of the CORBA Core are unimplemented:

1. DII/DSI
2. Wide strings, wide characters
3. Extended numeric types (long double, long long)
4. Fixed types
5. POA
6. Contexts

38

Note on on enum types
According to the CORBA 2.2 specification, an enum type does not begin a new naming scope. This means
that enum members themselves define a new type in the namespace of the IDL construct containing the
enum type definition. The CORBA 2.3 specification may change this counter-intuitive rule. In any case,
we follow the CORBA 2.2 specification so that users must make sure that enum members do not conflict
with names in a containing scope.

39

Connection Management in ORBLink

Connection management introduction and terminology
Connection management refers to the set of APIs that perform administrative functions that handle socket
opening and closing. Using the connection management API, an application can determine the set of open
sockets, can close them when applicable, and can set hooks that are called when a particular connection is
closed.

All of the connection management APIs are encapsulated in IDL.

Junction
The ORB interfaces to TCP/IP sockets through the abstract interface ORBLink::Junction :

module ORBLink{
 pseudo interface Junction {
 readonly attribute value socket;
 unsigned long SecondsIdle();
 boolean isOpen();
};

The attributes and operations supported by the ORBLink::Junction pseudointerface (which is to say,
the Lisp class named orblink:junction :

The socket attribute of ORBLink::Junction is an opaque Lisp type corresponding to the
underlying socket stream.
The SecondsIdle() operation gives the number of seconds the junction has been idle. It is reset
to 0 on creation or I/O activity, but information requests do not result in resetting the idle time.
The isOpen() operation returns T if and only if the junction is actively forwarding messages, that
is if its state is open . This state can be set to closed by the ActiveJunction::close()
operation.

Subclasses of Junction
module ORBLink {...
 pseudo interface ActiveJunction : Junction {
 readonly attribute unsigned long MessagesReceived;
 readonly attribute string RemoteHost;
 readonly attribute unsigned long RemotePort;
 void close();
 };
 pseudo interface PassiveJunction : Junction {;};
 pseudo interface ClientJunction : ActiveJunction {;};
 pseudo interface ServerJunction : ActiveJunction {};
 };
};

40

Any junction instance is an instance of one of three disjoint classes:

1. Orblink:ClientJunction

An instance of ORBLink:ClientJunction is responsible for forwarding messages, normally
request messages, from a CORBA client to a CORBA server.

2. ORBLink:ServerJunction

An instance of ORBLink:ServerJunction is responsible for forwarding messages, normally
replies, from a CORBA server to a CORBA client.

3. ORBLink:PassiveJunction .

An instance of ORBLink:PassiveJunction is responsible for listening to connection requests
from prospective clients and allocating Server junctions as necessary to handle the resulting
connections.

ActiveJunction

An instance of Orblink:ActiveJunction is either an instance of orblink:clientjunction
or an instance of orblink:serverjunction . The attributes supported by the pseudo-interface
ORBLink::ActiveJunction are:

The MessagesReceived attribute gives the number of messages that have been received.
The RemoteHost attribute gives the name of the host to which the active junction is connected.
The RemotePort attribute is the remote port of the corresponding socket.

An instance of orblink:activejunction also supports the close operation. When invoked on a
junction, the close operation:

closes the junction - future invocations of the isOpen() operation will return nil
Terminates any associated threads, typically threads listening for input, and
closes any associated streams, namely the value of the socket attribute if it is an open stream.

An active junction also closes itself if its associated socket stream signals an I/O error, including an
EOF error.

When a ServerJunction is closed, it removes itself from the list of ServerJunctions maintained
by the ORB in its ServerJunctions attribute; it cannot be reused.
When a ClientJunction junction is closed, however, it is reopened when a new Request is
invoked through that junction.

Determining the available junctions
The ORB itself offers facilities for listing the available junctions and for customizing the behavior of a
junction on closure:

41

module ORBLink {
 pseudo interface ORB : CORBA::ORB{
 readonly attribute ServerJunctionList ServerJunctions;
 readonly attribute ClientJunctionList ClientJunctions;
 readonly attribute PassiveJunctionList PassiveJunctions;
 };
};

The ORBLink::ORB::ServerJunctions , ORBLink::ORB::ClientJunctions , and
ORBLink::ORB::PassiveJunctions attributes contain lists of the operational junctions of the
appropriate type.

Thus, the forms:

(op:serverjunctions corba:orb)
(op:clientjunctions corba:orb)
(op:passivejunctions corba:orb)

Will return lists (or sequences) of the server, client, and passive junctions.

Junction close policies
The behavior of junctions on closure is determined by the following pseudo-IDL:

module ORBLink {
 pseudo interface ORB : CORBA::ORB{
 attribute boolean HandleJunctionClosePolicy;
 void HandleJunctionClose (in Junction j);
}

When the value of the HandleJunctionClosePolicy attribute of the corba:orb singleton is
nil , junction closure operates normally.

When the value of the HandleJunctionClosePolicy attribute of the corba:orb singleton is T,
on the other hand, after a junction j is closed the HandleJunctionClose operation of the
CORBA:ORB object is invoked with parameter of j . In this case, the user should override the definition of
HandleJunctionClose .

For example, the following set of definitions will print a message whenever a junction is closed:

(corba:define-method HandleJunctionClose ((orb ORBLink:ORB) junction)
 (format t "HandleJunctionClose: closed junction: ~s ~%" junction)
 (force-output)
)

(setf (op:HandleJunctionClosePolicy CORBA:ORB) T)

42

Junction error policies
The behavior described in this section is experimental and has not been tested.

The behavior of the ORB on a server junction error (that is, an I/O error, as contrasted with an error
signalled by a servant) is also customizable. It is encapsulated in the ORB IDL:

module ORBLink {
 pseudo interface ORB : CORBA::ORB{
 enum ServerJunctionErrorPolicyType {continue, debug, handle};
 attribute ServerJunctionErrorPolicyType ServerJunctionErrorPolicy;
 };
};

Because a junction error results in a junction close, normally customization of the close method is
sufficient.

The server junction error handling is determined by the ServerJunctionErrorPolicy attribute of
CORBA:ORB:

1. If this value is :continue , the error is ignored.
2. If the value is :debug , a debugger is invoked.
3. If the value is :handle . the HandleJunctionError operation on the CORBA:ORB object is

invoked with parameters the server junction that caused the error and the error itself.

The default value of the ServerJunctionErrorPolicy is :continue .

Client junction errors are normally signalled back to the invoking client; thus, client junction error
customization is not exposed in this API.

43

The Message pseudo-interface

The IDL for the message interface in ORBLink is:

 pseudo interface Message{
 enum MessageDirection {incoming,outgoing,unknown};
 readonly attribute MessageDirection direction;
 enum MessageType {Request,Reply,CancelRequest,LocateRequest,
 LocateReply,CloseConnection,MessageError,Fragment};
 readonly attribute MessageType type;
 readonly attribute junction ForwardingJunction;
 }

The corresponding Lisp class is named ORBLink:message and instances of that class represent IIOP
messages.

Suppose m is bound to an instance of ORBLink:message . Then the form

(op:direction m)

corresponding to the direction attribute will return a value of type
ORBLink:MessageDirection , that is, one of :incoming , :outgoing , or :unknown depending
on whether m represents an incoming, outgoing, or message of unknown direction.

The form

(op:type m)

corresponding to the type attribute of m returns a keyword of type ORBLink:MessageType , a
member of (:request :reply :cancelrequest :locaterequest :locatereply
:closeconnection :messageerror :fragment) .

The ForwardingJunction attribute of m holds an instance of class ORBLink:Junction which
represents the junction from which the message was received (if an incoming message) or to which the
message is being sent (if an outgoing message).

Only Request messages can actually be obtained using exposed APIs.

A Request message (a message whose type attribute is :request) is obtained as follows.

When a ServerJunction receives an IIOP Request message from a client, the operands are
dispatched to the appropriate local implementation object which then executes the body of the
corba:define-method corresponding to the operation requested by the message. Within the
dynamic scope of that body, the special variable orblink:*message* is bound to the corresponding
request message.

The appropriate server junction can then be obtained from the value of the ForwardingJunction
attribute of message .

44

The IDL and implementation in examples/test/test.idl and examples/test/test-implementation.cl include a
simple example for accessing the message from the body of a corba:define-method form.

The relevant IDL is in examples/test/test.idl:

 module idltest{ interface test
 oneway void testmessage (in unsigned short delay);

The associated implementation class in examples/test/test-implementation.cl is:

(defclass test-implementation (idltest:test-servant)
 ((message :accessor get-message)))

The implementation of the operation defined in the IDL is given by:

(corba:define-method testmessage ((this test-implementation) delay)
 (sleep delay)
 (format t "testmessage: got message of: ~s~%" orblink:*message* this)
 (force-output)
 (setf (get-message this) orblink:*message*)

)

(The delay can be used easily to verify that orblink:*message* is bound to
different messages in different threads).
Thus, the serverjunction corresponding to a message can be obtained via:

(op:forwardingjunction orblink:*message*)

In conjunction with the handlejunctionclose operation and the
HandleJunctionClosePolicy attribute in pseudo interface ORBLink::ORB , these features allow
the user, for example, to determine which implementations correspond to which server junctions and to
perform local cleanup if desired.

45

Threading in ORBLink

The IDL associated with threading is in the ORBLink:ORB pseudoInterface.

module ORBLink{
 pseudo interface ORB : CORBA::ORB {
 enum thread_policy_type {singly_threaded, thread_per_request};
 attribute thread_policy_type thread_policy;
 };
};

The enum statement encodes the fact that there is a type named ORBLink:thread_policy_type
comprising the keywords :singly_threaded and :thread_per_request .

Thus:

 (typep :singly_threaded ’orblink:thread_policy_type)
--> T

The ORB has an attribute named thread_policy whose value is always a member of that type.

The value of the attribute can be retrieved as follows:

 (op:thread_policy corba:orb)
--> :THREAD_PER_REQUEST

The value of the attribute can be set using standard setf syntax:

 (setf (op:thread_policy corba:orb) :thread_per_request)

Thus, the IDL definitions describe how to access certain values but they do not describe the meaning of
the values themselves; that is the purpose of this document.

When the ORB handles an incoming request, it spawns a separate Lisp thread, an instance of mp:process,
if the value of the thread_policy attribute of corba:orb is :thread_per_request .

This is the default and is the recommended settings. If the value of the attribute is set to
:singly_threaded , however, then the request is executed in the same thread as was used to read the
request from the wire.

46

Forwarding requests to another object

You can use the _forward operation in the Object pseudo interface to forward a request to a different
object:

 pseudo interface servant (Object) {
 void _forward (in Object location) raises (ORBLink::Forward);
 }

Within the body of a corba:define-method definition corresponding to an implementation object r ,
the function invocation

(op:_forward r p)

will forward to the object designated by p the request that was received by the object r .

This functionality only works if the original request was received remotely by r .

It is implemented at the IIOP level by returning to the invoker a reply of type LOCATION_FORWARD
with the IOR of p in the IIOP message body. All subsequent requests on that proxy (which can be in the
address space of a non-Lisp ORB) which forwarded the original request to r will be routed directly to p.

op:_forward signals an ORBLink:Forward condition which is handled by the ORB when servicing
a remote request. This implementation detail is normally transparent to the user and should not be relied
upon.

47

Dynamic reconfiguration of ORBLink servers

An ORBLink server may be dynamically reconfigured in a number of ways.

Redefinition of implementation methods
A corba:define-method form may be reevaluated at any time. The most recent definition will be
used.

One common such usage occurs when an implementation has signalled an exception for with the ORB is
configured to enter a debug loop. From the debug loop, the implementation may be re-invoked; if the
implementation has been modified, the most recent implementation definition will be used.

Recompilation of IDL files
An IDL file may be edited and recompiled using corba:idl . The semantics are analogous to the
semantics of normal Lisp redefinition of types.

This is most useful when a server interface has been modified to accept additional operations. Existing
clients will continue to work unchanged and new clients can take advantage of the new operations.

However, if the signature of an existing operation was altered, care must be taken to avoid clients using
the old operation definition.

The tutorial works though an example of dynamically adding an attribute to an existing server.

Reconfiguration of clients
Of course, clients can also be reconfigured simply by recompiling the IDL. Care must be taken to ensure
that the client is not using an old operation with an incompatible signature. That is, in order to modify an
operation to an incompatible signature, the IDL in both the server and the client must be recompiled.

Other means for server configuration
Sometimes handlers for certain server events, like errors and junction closure can be defined.

The ORB itself offers a few additional run-time configuration options.

48

Using ORBLink to bridge Lisp and Java

A comprehensive discussion of the issues involved in bridging Java and Lisp using ORBLink requires in a
certain sense full discussion of the installation and use of Java ORBs.

Fortunately, there are several good books on CORBA and Java available, for example, Programming
with Visibroker , by Doug Pedrick, Jonathan Weedon, Jon Goldberg, and Erik Bliefield, Wiley, 1998.

A tutorial walking through a Lisp-Java application is available here.

Java applets and CORBA
You can use CORBA to connect a Java applet to Lisp, but doing so is more complicated than hooking up
a Java application to a Lisp program. The reason it is more complicated is that a Java applet imposes
security restrictions on network connections. The nature of these security restrictions tends to be highly
enterprise-dependent, depending on such variables as:

1. The exact version of the browser your users are using, and what Java ORB you want to use.
2. The security configuration of the browser.
3. The version of JDK you are using; whether you are using the Java activator
4. The firewall configuration at your site.
5. Whether internet or intranet access is desired.
6. Should the applet be usable to remote users who will tunnel through their own firewall?

There is no "one perfect solution" for all applications at this time. In general, for example, the you
can use http tunnelling (using, for example, the Visigenic tunnelling tools) to allow internet applet
users to tunnel through their own firewalls, but this often imposes an unacceptable performance
overhead for things like callbacks. Browsers tend to support different versions of the JDK as well; of
course, if you are willing to use the Java plug-in, things can be somewhat simpler.

However, if you have control over the browser configuration and are running within an intranet so
that firewall configuration is not a problem, hooking up to an applet is much easier. Still, we suggest
you begin by getting your application working correction as a Java application and only later
addressing the more subtle security and browser issues that are required to get an applet solution to
work reliably.

49

Bridging Allegro CL Applications to Java with ORBLink

This example illustrates how to connect a simple Java GUI to Lisp server using CORBA. We will use
ORBLink as the Lisp ORB and Visibroker for Java as the Java ORB.

In order to run the example, you’ll need Java, which you can get from JavaSoft, or elsewhere. The
example we give today uses the JavaSoft version of the Java VM version 1.1. To use Java CORBA
requires a third party ORB, and we use Visibroker. (Of course, CORBA support will be bundled into the
JDK 1.2, although the Visibroker ORB is nonetheless more industrial strength than JavaSoft’s bundled
ORB). You can get trial copies of Visibroker for free from Inprise.

The example application is borrowed from February/March Java Pro article written by Luke Andrew
Cassidy-Dorion (the article and the Java code are used with permission). All code can be found here.
There is a Makefile for making the Java side, but we’ll actually go through the steps here.

This example is a distributed Chat application. The Chat application consists of an arbitrary number of
Java based Listeners, each of which permits you to type in comments, and an Allegro CL server, which
broadcasts comments to all the other Listeners.

Designing the Application
CORBA IDL (Interface Definition Language) is a specification language that describes behavior, not
implementation. We give as an example a simple Chat Room server and Chat Room listeners application.
ChatListenerI is implemented by the Java code and ChatServerI is implemented in Lisp. When the server
calls messageReceived the actual code runs remote in the Java client. ChatServerI is implemented in the
Lisp server. When a new Java client listener starts up, it calls addListener to register itself with the server.
When input gets typed into a Java client listener, the client calls sendMessage to send its input to the
server which, in its turn, calls messageReceived (with the text it just got from the listener that called
sendMessage) on each of the registered listeners. The code for messageReceived in each listener displays
the text of the message.

The interface definitions are below

module chat{
 interface ChatListenerI{
 void messageReceived (in string message);
 };
 interface ChatServerI{
 void addListener (in ChatListenerI listener);
 void sendMessage(in string message);
 };
};

The Server Implementation
Here is the server implementation (it’s all in the file ChatServer.cl which is in the files you have
downloaded). We define a class my-server, which will inherit from a class automatically generated by the
Allegro OrbLink IDL compiler. By convention, this generated class chat:ChatServerI-servant is in a
package with the same name as the IDL module and is named for the interface with -servant attached.

50

http://www.javasoft.com/
http://www.inprise.com/

 (defclass my-server (chat:ChatServerI-servant)
 ((listeners :initform nil :accessor get-listeners)))

The class my-server has a slot, listeners that will contain all the registered listeners. To complete the
implementation, we need to define the methods addListener and sendMessage. Adding a listener just
pushes the new listener onto the slot (remember, when a Java listener instantiates itself, the first thing it
does is call addListener). The method sendMessage takes the message sent by a listener and broadcasts it
to all the listeners by successively calling messageReceived on each listener in turn. The code for
displaying the message in each listener is the implementation code for messageReceived, which, of
course, is written in Java.

 (corba:define-method addListener ((this my-server) listener)
 (push listener (get-listeners this)))
 (corba:define-method sendMessage ((this my-server) message)
 (dolist (listener (get-listeners this))
 (op:messageReceived listener message)))

The Client Implementation
On the Java side, things are a bit more complex and we won’t show the full implementation, just a portion
of the initialization method that shows how each listener finds and registers itself with the server.

 private void doConnect(){
 orb = ORB.init();
 boa = orb.BOA_init();
 org.omg.CORBA.Object obj = IorIo.resolve(orb, filename); // filename is the location of the IOR
 server = ChatServerIHelper.narrow(obj);
 ChatListenerI listener = new Listener();
 boa.obj_is_ready(listener);
 server.addListener(listener);
 // ... more stuff ... //
 }

The way the Java code finds the proxy for the server is to use an IOR or Interoperable Object Reference,
which has the information about where the server is and how to connect to it. An IOR is an encoded string
of digits containing things like the IP address, the port number, and any other information needed to
connect to a server. In this example, as you will see a little later, each Java client is launched with the
filename containing the IOR as an argument. The Lisp server is responsible for writing the IOR into the
file when it starts up.

A diagram of the architecture illustrates how it will all work:

Chat Architecture Graphic

Starting up the Lisp Chat server
So here’s how we would start up the server (assuming you have changed into the directory where you
have the code) and started up an Allegro CL with Allegro OrbLink loaded in:

 (corba:idl "chat.idl") ;; load in the IDL and define the interfaces
 (load "ChatServer.cl") ;; load in the chat-server implementation

 ;; start the server
 (setq server (make-instance ’my-server))
 ;; and write out the IOR
 (orblink:write-ior-to-file server "chat.ior")

51

Starting up the Java Chat clients
In the directory where you have put the sample code, there is a Makefile which will automatically compile
the Java code, but here are the steps spelled out.

1. Generate the Java code from chat.idl by using the command:
idl2java chat.idl

2. Generate the application using the Visibroker wrapping for the java CORBA compiler:
vbjc ChatClient.java IorIo.java

You are now ready to launch clients using: vbj ChatClient chat.ior

Your CORBA based client/server chat application is up and running!

52

Reporting bugs in ORBLink

To report a bug, set the verbose_level attribute of corba:orb to :high as follows:

(setf (op:verbose_level corba:orb) :high)

and send a script created via dribble-bug to

orblink@franz.com

To use dribble-bug , just invoke

 (dribble-bug filename)
 [code to execute]
 (dribble)

The script will be created in the file filename.

If other ORBs are involved, please include the appropriate source code and IDL code for them as well.

53

Glossary

CORBA has a lingo all its own. Here are some of the commonly used terms we mention in this document.
These definitions are not complete and contain inaccuracies for the sake of simplicity. For more detailed
information, see a text on CORBA.

Attribute
Technically an attribute is a shorthand for two operations, a setter and a getter, unless it is readonly,
in which case it is shorthand only for the getter.

Client
A process that makes requests on a CORBA object.

exception
IDL data type similar to exceptions in C++ or Java and conditions in Lisp.

Forwarding
Instead of responding to a request a CORBA object may designate another object to which this
request, and all future requests, are to be forwarded.

Pseudo-interface
A pseudo-interface is specified in IDL but does not obey all the mapping rules. Typically a
pseudo-objects (instance of pseudo-interfaces) must be local to the process. Thus, a pseudo-interface
has no corresponding stubs or servant classes generated.

IDL
Interface Definition Language. Simple language for specifying data types that can be exchanged by
CORBA compliant programs. IDL files by default have the extension .idl.

IDL Compilation
Conversion of an IDL file into a set of Lisp definitions. Normally refers by default to the loading of
these definitions into the current Lisp world.

IIOP
Internet Interoperability Object Protocol. The TCP/IP protocol by which IDL data types are
exchanged.

Implementation
In Lisp, a Lisp class that can respond meaningfully to the methods corresponding to the operations
defined in the interface.

Interface
An interface is an IDL construct that denotes a set of operation signatures to which an object that
implements that interface must respond. Similar to abstract class.

54

Interface Repository
CORBA Object that holds type definitions.

IOR
IOR stands for Interoperable Object Reference. It is a data structure associated with a CORBA object
that contains enough information to locate that object from anywhere on the network. IOR is often
used informally to mean stringified IOR.

Mapping
The correspondence between IDL and the native data types in some language.

Marshalling
Conversion of a CORBA value into a stream of bytes, typically to be sent over TCP/IP.

Message
IIOP communicates via IIOP messages. The most usual are Request and Reply.

module
top-level scoping construct in IDL, corresponds to packages in Lisp. Modules may be nested.

Naming
The assocation of a human readable or logical name with an IOR.

Object
A reference to an implementation of an interface

OMG
Object Management Group. Consortium of industry, government and academic entities responsible
for standardization of CORBA.

Operation
The IDL notion of a method is called an operation.

ORB
Object Request Broker. Program component that handles communication from a process to other
processes using IIOP or other CORBA protocols. An ORB is usually used to refer to the complex of
library functionality that supports CORBA for a language, such as debugging tools and IDL
compilation.

ORBLink
ORB for Allegro Common Lisp

Persistent IOR
An IOR which is valid beyond the lifetime of any particular server process (i.e, Lisp World)

Proxy
A placeholder for a remote object implementation. When requests are received by the proxy they are
forwarded to the remote object that it reprepresents via IIOP.

55

Servant
In Lisp, the instance of a class that implements an interface.

Skeleton
Same as Servant

Server
Process that maintains one or more servant objects that are invoked by a client. Sometimes the
servant object itself is called a server.

Socket
Low-level programming interface to TCP/IP. Sockets are abstracted away by the junction interface in
ORBLink.

Stringified IOR
A standardized string representation of an IOR. Any stringified IOR may be interpreted by any
CORBA ORB in any language, on any machine.

TCP/IP
Low-level protocol used to communicate between machines; normally supported directly by the
operating system.

Smart proxy
A proxy that only forwards some requests over IIOP and computes others using local information.

struct
IDL data type similar to C struct

thread
Lightweight autonomous concurrent execution context. In Lisp these are called "processes" which is
distinct from the Unix meaning of the term.

union
IDL data type similar to C union

Unmarshalling
Conversion of a stream of bytes into the CORBA value that it represents.

56

Introduction

Table of Contents
.................... 1Introduction
............ 2CORBA-Enabling Allegro CL Applications
.................... 6Installation
............... 7Mapping IDL to Common Lisp
............ 8Summary of the IDL/Common Lisp Mapping
.................. 13Lexical conventions
................... 14Getting started
............. 21Using the IDL Administrative interfaces
............ 22IDL for ORBLink administrative interfaces
.................. 24The ORBLink ORB
.............. 25The ORBLink IDL to Lisp Compiler
.................. 27Interface Repository
................. 29Implementing operations
............... 31Debugging ORBLink processes
............... 32Exception handling in ORBLink
................ 34Naming and persistent IORs
............. 38The IDL/Lisp Standard and ORBLink
................. 40Connection Management
................ 44Message pseudo-interface
.................... 46Threading
.................... 47Forwarding
................. 48Dynamic reconfiguration
..................... 49Java
.................. 50Java - an example
................... 53Reporting bugs
.................... 54Glossary

i

	Introduction to ORBLink
	Installing ORBLink
	Mapping IDL to Common Lisp
	Summary of the IDL/Common Lisp Mapping
	Mapping for primitive types
	Mapping for sequences
	Mapping for interfaces
	Mapping for operations
	structs
	unions
	Exceptions
	Typedef and const definitions

	Understanding the rules for constructed types
	Lexical conventions
	Getting started with ORBLink: A tutorial
	Prerequisites for working through the tutorial
	Overview of the tutorial
	Server side steps
	Client side steps

	Loading ORBLink on the server
	Compile the IDL on the server
	Define the implementation classes and methods
	Instantiate a server object
	Publishing the IOR
	Starting the client: Load ORBLink and compile the IDL on the client
	Generate a client proxy for the server object
	Invoke methods on the client proxy
	Modifying the server
	Modifying the client
	Moving on
	Parting words on the tutorial

	Using the IDL Administrative interfaces
	/*
	IDL for ORBLink administrative interfaces
	*/
	The ORBLink ORB
	Stringification

	The ORBLink IDL to Lisp Compiler
	Basic usage of corba:idl
	Generating fasl files from IDL files: Advanced usage of corba:idl

	The Interface Repository in ORBLink
	Getting the root interface repository object
	Getting the interface repository from an object

	Implementing operations: smart proxies and synchronization
	Signalling exceptions in corba:define-method
	Synchronization
	Smart proxies
	Forwarding requests
	Message access

	Debugging ORBLink processes
	Exception handling in ORBLink
	Introduction to exception handling in ORBLink
	ORBLink server behavior on implementation exception
	 When †op:break_policy corba:orb‡ is :break
	When †op:break_policy corba:orb‡ is :return
	Default error handling
	Default configuration failure modes

	Naming and persistent IORs
	Introduction and terminology of naming
	Creating persistent IORs
	Architecting naming services

	The IDL/Lisp Standard and ORBLink
	Sequence handling
	float and double types
	Operation mapping
	Unimplemented features
	Note on on enum types

	Connection Management in ORBLink
	Connection management introduction and terminology
	Junction
	Subclasses of Junction
	ActiveJunction

	Determining the available junctions
	Junction close policies
	Junction error policies

	The Message pseudo-interface
	Threading in ORBLink
	Forwarding requests to another object
	Dynamic reconfiguration of ORBLink servers
	Redefinition of implementation methods
	Recompilation of IDL files
	Reconfiguration of clients
	Other means for server configuration

	Using ORBLink to bridge Lisp and Java
	Java applets and CORBA

	Reporting bugs in ORBLink
	Glossary

