L
(X
INTERNATIONALIZATION

Information pertaining to the C++ Standard Library has been edited
and incorporated into DIGITAL C++ documentation with permission
of Rogue Wave Software, Inc. All rights reserved.

Copyright 1994-1997 Rogue Wave Software, Inc.

Table of Contents

1. Internationalizationccoouiiiiiiiiiiiiiiiecee e 3
1.1 How to Read this SECHIONcoiviiiii e 3
1.2 Internationalization and Localization................coccevvviiiiiiinnnnen. 3

1.2.1 Localizing Cultural Conventionscc.ccovevvieiiniiineiiieieeenn, 4
1.2.2 Character Encodings for Localizing Alphabets................... 8
1.2.3 SUMIMIAIY ..ttt e e e e 15
1.3 The Standard C Locale and the Standard C++ Locales...|...... 15
1.3.1The CLOCAlE ... 16
1.3.2The CH4 LOCAIES ...cuivieiiiei e 18
1.3 .3 FACES .o 19

1.3.4 Differences between the C Locale and the C++ Locales... 20
1.3.5 Relationship between the C Locale and the C++ Locale .. 26

LA TRE LOCAIE ...uuiiiiiii e 26
1.5 THE FACELS...cuuiiee et 28
1.5.1 Creating a Facet Object.........ccooevviiiiiiiii e, 28
1.5.2 Accessing a Locale’s FacetS........cocevvuiiiiiiiiiiineiiiecineeeenn, 30
1.5.3 Using a Stream’s FAcCet........c.cccovviiiiiiiiiiiii e 31
1.5.4 Creating a Facet Class for Replacement in a Locale......... 34
155 The Facet Id.......oooiuniiiiiie e 37
1.5.6 Creating a Facet Class for Addition to a Locale................ 38
1.6 User-Defined Facets: An Example........c.ccoeeieieieneenenenennen.. 40
1.6.1 APhone Number Class..........ccoviiiiiiiiiiiiiii e, 40
1.6.2 A Phone Number Formatting Facet Class...............c......... 41
1.6.3 An Inserter for Phone NUmMbers.........c.c.cooiiiiniiiiiiiiieeennn, 42
1.6.4 The Phone Number Facet Class Revisited 42
1.6.5 An Example of a Concrete Facet Class.............cccoeevevnnenn. 46
1.6.6 Using Phone Number Facets..........ccccovvvieiieiineiinine, 46
1.6.7 Formatting Phone NUmbers...........cccooiiiiiiiiiiicicee, 47

1.6.8 Improving the Inserter FUNCLION..........ccooiiiiiiiiicen 48

” Section 1.
4

Internationalization

1.1 How to Read this Section

This section of the User's Guide deals with locales in the Standard
C++ Library. Since the focus here is on concepts rather than details,
you will want to consult the Class Reference for more complete
information.

We begin the section with an introduction to internationalization in
general. Itis intended to explain why and how locales are useful for
the benefit of readers with no experience in this area. Eventually it
will include a reference for the standard facets, but not in this first
version of the User's Guide. Hence, the section may look a bit
unbalanced for the time being.

Following the introduction, we describe the facilities in C that are
currently available for internationalizing software. Users with a
background in C will want to understand how the C locale differs
from the C++ locale. Some developers may even need to know how
the two locales interact.

For their benefit, we then contrast the concept of the C++ locale with
the C locale. We learn what a C++ locale is, what facets are, how
locales are created and composed, and how facets are used,
replaced, and defined. The standard facets are only briefly
described here, but details are available in the Class Reference.

For the advanced user, we conclude the internationalization section
with a rather complex example of a user-defined facet, which
demonstrates how facets can be built and used in conjunction with
iostreams.

1.2 Internationalization and Localization

Computer users all over the world prefer to interact with their systems
using their own local languages and cultural conventions. As a
developer aiming for high international acceptance of your
products, you need to provide users the flexibility for modifying

4 Internationalization

output conventions to comply with local requirements, such as
different currency and numeric representations. You must also
provide the capability for translating interfaces and messages
without necessitating many different language versions of your
software.

Two processes that enhance software for worldwide use are
internationalization and localization. Internationalization is the
process of building into software the potential for worldwide use. Itis
the result of efforts by programmers and software designers during
software development.

Internationalization requires that developers consciously design and
implement software for adaptation to various languages and
cultural conventions, and avoid hard-coding elements that can be
localized, like screen positions and file names. For example,
developers should never embed in their code any messages,
prompts, or other kind of displayed text, but rather store the
messages externally, so they can be translated and exchanged. A
developer of internationalized software should never assume specific
conventions for formatting numeric or monetary values or for
displaying date and time.

Localization is the process of actually adapting internationalized
software to the needs of users in a particular geographical or cultural
area. Itincludes translation of messages by software translators. It
requires the creation and availability of appropriate tables
containing relevant local data for use in a given system. This
typically is the function of system administrators, who build facilities
for these functions into their operating systems. Users of
internationalized software are involved in the process of localization
in that they select the local conventions they prefer.

The Standard C++ Library offers a number of classes that support
internationalization of your programs. We will describe them in
detail in this chapter. Before we do, however, we would like to
define some of the cultural conventions that impact software
internationalization, and are supported by the programming
languages C and C++ and their respective standard libraries. Of
course, there are many issues outside our list that need to be
addressed, like orientation, sizing and positioning of screen displays,
vertical writing and printing, selection of font tables, handling
international keyboards, and so on. But let us begin here.

1.2.1 Localizing Cultural Conventions

The need for localizing software arises from differences in cultural
conventions. These differences involve: language itself;

Rogue Wave Standard C++ Library

representation of numbers and currency; display of time and date;
and ordering or sorting of characters and strings.

1.2.1.1 Language

Of course, language itself varies from country to country, and even
within a country. Your program may require output messages in
English, Dutch, French, Italian or any number of languages
commonly used in the world today.

Languages may also differ in the alphabet they use. Examples of
different languages with their respective alphabets are given below:

American a-zA-Z and punctuation

English:

German: a-zA-Z and punctuation and &a6u
AOUR

Greek: a-w A-Q and punctuation

1.2.1.2 Numbers

The representation of numbers depends on local customs, which
vary from country to country. For example, consider the radix
character, the symbol used to separate the integer portion of a
number from the fractional portion. In American English, this
character is a period; in much of Europe, it is a comma. Conversely,
the thousands separator that separates numbers larger than three
digits is a comma in American English, and a period in much of
Europe.

The convention for grouping digits also varies. In American English,
digits are grouped by threes, but there are many other possibilities.
In the example below, the same number is written as it would be
locally in three different countries:

1,000,000.55 us
1.000.000,55 Germany
10,00,000.55 Nepal

1.2.1.3 Currency

We are all aware that countries use different currencies. However,
not everyone realizes the many different ways we can represent
units of currency. For example, the symbol for a currency can vary.
Here are two different ways of representing the same amount in US
dollars:

Rogue Wave Standard C++ Library

Internationalization 5

6 Internationalization

$24.99 usS

USD 24.99 International currency symbol for the
us

The placement of the currency symbol varies for different currencies,
too, appearing before, after, or even within the numeric value:

¥ 155 Japan
13,50 DM Germany

£14 19s. 6d. England before
decimalization

The format of negative currency values differs:
0S 1,1 -0S 1,1 Austria

1,1DM -1,1DM Germany
SFr.1.1 SFr.-1.1 Switzerland
HK$1.1 (HK$1.1) Hong Kong

1.2.1.4 Time and Date

Local conventions also determine how time and date are displayed.
Some countries use a 24-hour clock; others use a 12-hour clock.
Names and abbreviations for days of the week and months of the
year vary by language.

Customs dictate the ordering of the year, month, and day, as well as
the separating delimiters for their numeric representation. To
designate years, some regions use seasonal, astronomical, or
historical criteria, instead of the Western Gregorian calendar system.
For example, the official Japanese calendar is based on the year of
reign of the current Emperor.

The following example shows short and long representations of the
same date in different countries:

10/29/96 Tuesday, October 29, us
1996
1996. 10. 29. 1996. oktéber 29. Hungary
29/10/96 martedi 29 ottobre 1996 Italy
29/10/1996 Tpitn, 29 OktwPpiov 1996 Greece
29.10.96 Dienstag, 29. Oktober Germany
1996

Rogue Wave Standard C++ Library

The following example shows different representations of the same
time:

4:55 pm UsS time

16:55 Uhr German time

And the following example shows different representations of the
same time:

11:45:15 Digital representation, US
11:45:15 Digital representation,
MU Greece

1.2.1.5 Ordering

Languages may vary regarding collating sequence; that is, their
rules for ordering or sorting characters or strings. The following
example shows the same list of words ordered alphabetically by
different collating sequences:

Sorted by "ASCII rules Sorted by German
rules
Airplane Airplane
Zebra ahnlich
bird bird
car car
ahnlich Zebra

Rogue Wave Standard C++ Library

The ASCII collation orders elements according to the numeric value
of bytes, which does not meet the requirements of English language

Internationalization 7

clustered and treated as a single character. The following example
shows the difference this can make in an ordering:

Sorted by ASCII rules Sorted by Spanish

rules
chaleco cuna

cuna chaleco
dia dia
llava loro
loro llava
maiz maiz

The word llava is sorted after loro and before maiz, because in
Spanish Il is a digraph?, i.e., it is treated as a single character that is
sorted after | and before m Similarly, the digraph ch in Spanish is
treated as a single character to be sorted after ¢, but before d. Two
characters that are paired and treated as a single character are
referred to as a two-to-one character code pair.

In other cases, one character is treated as if it were actually two
characters. The German single character B, called the sharp s, is
treated as ss. This treatment makes a difference in the ordering, as
shown in the example below:

Sorted by ASCII rules | Sorted by German

rules

Rosselenker Rosselenker

Rostbratwurst RoRhaar

RoRhaar Rostbratwurst

1.2.2 Character Encodings for Localizing Alphabets

We know that different languages can have different alphabets.
The first step in localizing an alphabet is to find a way to represent,

? Generally, a digraph is a combination of characters that is
written separately, but forms a single lexical unit.

8 Internationalization Rogue Wave Standard C++ Library

or encode, all its characters. In general, alphabets may have
different character encodings.

The 7-bit ASCII codeset is the traditional code on UNIX systems.

The 8-bit codesets permit the processing of many Eastern and
Western European, Middle Eastern, and Asian Languages. Some
are strictly extensions of the 7-bit ASCII codeset; these include the 7-
bit ASCII codes and additionally support 128-character codes
beyond those of ASCII. Such extensions meet the needs of Western
European users. To support languages that have completely
different alphabets, such as Arabic and Greek, larger 8-bit codesets
have been designed.

Multibyte character codes are required for alphabets of more than
256 characters, such as kanji, which consists of Japanese
ideographs based on Chinese characters. Kanji has tens of
thousands of characters, each of which is represented by two bytes.
To ensure backward compatibility with ASCII, a multibyte codeset is
a superset of the ASCII codeset and consists of a mixture of one- and
two-byte characters.

For such languages, several encoding schemes have been defined.
These encoding schemes provide a set of rules for parsing a byte
stream into a group of coded characters.

1.2.2.1 Multibyte Encodings

Handling multibyte character encodings is a challenging task. It
involves parsing multibyte character sequences, and in many cases
requires conversions between multibyte characters and wide
characters.

Understanding multibyte encoding schemes is easier when
explained by means of a typical example. One of the earliest and
probably biggest markets for multibyte character support is in
Japan. Therefore, the following examples are based on encoding
schemes for Japanese text processing.

In Japan, a single text message can be composed of characters
from four different writing systems. Kaniji has tens of thousands of
characters, which are represented by pictures. Hiragana and
katakana are syllabaries, each containing about 80 sounds, which
are also represented as ideographs. The Roman characters include
some 95 letters, digits, and punctuation marks.

Here is an example of an encoded Japanese sentence composed of
these four writing systems:

Rogue Wave Standard C++ Library

Internationalization 9

10 Internationalization

- i 11l 1 B

‘Roman characters . hiragana

T katakana T kanji

Figure 1. A Japanese sentence mixing four writing systems

The sentence means: “Encoding methods such as JIS can support
texts that mix Japanese and English.”

A number of Japanese character sets are common:

JIS C 6226- JIS X 0208-1983
1978

JIS X 0208- JIS X 0212-1990
1990

JIS-ROMAN ASCII

There is no universally recognized multibyte encoding scheme for
Japanese. Instead, we deal with the three common multibyte
encoding schemes defined below:

JIS (Japanese Industrial Standard)
Shift-JIS
EUC (Extended UNIX Code)

1.2.2.1.1 JIS Encoding

The JIS, or Japanese Industrial Standard, supports a number of
standard Japanese character sets, some requiring one byte, others
two. Escape sequences are required to shift between one- and two-
byte modes.

Escape sequences, also referred to as shift sequences, are sequences
of control characters. Control characters do not belong to any of the
alphabets. They are artificial characters that do not have a visual
representation. However, they are part of the encoding scheme,
where they serve as separators between different character sets, and
indicate a switch in the way a character sequence is interpreted.
The use of the shift sequence is demonstrated in the following figure.

Rogue Wave Standard C++ Library

InJapan <ESC>$B # % # % <ESC>(B means “kana & kanji’.

N 1

JIS X 0208-1983 ASCII
two-byte characters one-byte characters
shift to Kaniji shift to ASCII

Figure 2. An example of a Japanese text encoded in JIS

For encoding schemes containing shift sequences, like JIS, it is
necessary to maintain a shift state while parsing a character
sequence. In the example above, we are in some initial shift state at
the start of the sequence. Here itis ASCII. Therefore, characters are
assumed to be one-byte ASCII codes until the shift sequence <ESC>$B
is seen. This switches us to two-byte mode, as defined by JIS X 0208-
1983. The shift sequence <ESC>(B then switches us back to ASCII
mode.

Encoding schemes that use shift state are not very efficient for
internal storage or processing. Sometimes shift sequences require up
to six bytes. Frequent switching between character sets in a file of
strings could cause the number of bytes used in shift sequences to
exceed the number of bytes used to represent the actual data!

Encodings containing shift sequences are used primarily as an
external code, which allows information interchange between a
program and the outside world.

1.2.2.1.2 Shift-JIS Encoding

Despite its name, Shift-JIS has nothing to do with shift sequences and
states. In this encoding scheme, each byte is inspected to see if it is
a one-byte character or the first byte of a two-byte character. This is
determined by reserving a set of byte values for certain purposes.
For example:

1. Any byte having a value in the range 0x21-7E is assumed to be
a one-byte ASCIIZJIS Roman character.

2. Any byte having a value in the range 0xA1-DF is assumed to be
a one-byte half-width katakana character.

3. Any byte having a value in the range 0x81-9F or OXEO-EF is
assumed to be the first byte of a two-byte character from the set
JIS X 0208-1990. The second byte must have a value in the
range 0x40-7E or 0x80-FC.

Rogue Wave Standard C++ Library Internationalization 11

12 Internationalization

While this encoding is more compact than JIS, it cannot represent as
many characters as JIS. In fact, Shift-JIS cannot represent any
characters in the supplemental character set JIS X 0212-1990, which
contains more than 6,000 characters.

1.2.2.1.3 EUC Encoding

EUC is not peculiar to Japanese encoding. It was developed as a
method for handling multiple character sets, Japanese or otherwise,
within a single text stream.

The EUC encoding is much more extensible than Shift-JIS since it
allows for characters containing more than two bytes. The encoding
scheme used for Japanese characters is as follows:

1. Any byte having a value in the range 0x21-7E is assumed to be
a one-byte ASCIIZJIS Roman character.

2. Any byte having a value in the range 0xA1-FE is assumed to be
the first byte of a two-byte character from the set JIS X0208-1990.
The second byte must also have a value in that range.

3. Any byte having a value in the range 0x8E is assumed to be
followed by a second byte with a value in the range 0xA1-DF,
which represents a half-width katakana character.

4. Any byte having the value 0x8F is assumed to be followed by
two more bytes with values in the range 0xA1-FE, which together
represent a character from the set JIS X0212-1990.

The last two cases involve a prefix byte with values Ox8E and 0x8F,
respectively. These bytes are somewhat like shift sequences in that
they introduce a change in subsequent byte interpretation.

However, unlike the shift sequences in JIS, which introduce a
sequence, these prefix bytes must precede every multibyte
character, not just the first in a sequence. For this reason, each
multibyte character encoded in this manner stands alone and EUC is
not considered to involve shift states.

1.2.2.1.4 Uses of the Three Multibyte Encodings

The three multibyte encodings just described are typically used in
separate areas:

« JISis the primary encoding method used for electronic
transmission such as e-mail because it uses only 7 bits of each
byte. This is required because some network paths strip the
eighth bit from characters. Escape sequences are used to switch
between one- and two-byte modes, as well as between different
character sets.

Rogue Wave Standard C++ Library

« Shift-JIS was invented by Microsoft and is used on MS-DOS-based
machines. Each byte is inspected to see if it is a one-byte
character or the first byte of a two-byte character. Shift-JIS does
not support as many characters as JIS and EUC do.

« EUC encoding is implemented as the internal code for most
UNIX-based platforms. It allows for characters containing more
than two bytes, and is much more extensible that Shift-JIS. EUC
is a general method for handling multiple character sets. It is not
peculiar to Japanese encoding.

1.2.2.2 Wide Characters

Multibyte encoding provides an efficient way to move characters
around outside programs, and between programs and the outside
world. Once inside a program, however, it is easier and more
efficient to deal with characters that have the same size and format.
We call these wide characters.

An example will illustrate how wide characters make text
processing inside a program easier. Consider a filename string
containing a directory path where adjacent names are separated
by a slashl for example, /CClinclude/locale.h . To find the actual
filename in a single-byte character string, we can start at the back
of the string. When we find the first separator, we know where the
filename starts. If the string contains multibyte characters, we must
scan from the front so we don't inspect bytes out of context. If the
string contains wide characters, however, we can treat it like a
single-byte character and scan from the back.

Conceptually, you can think of wide character sets as being
extended ASCII or EBCDIC?; each unique character is assigned a
distinct value. Since they are used as the counterpart to a multibyte
encoding, wide character sets must allow representation of all
characters that can be represented in a multibyte encoding as wide
characters. As multibyte encodings support thousands of
characters, wide characters are usually larger that one byte—
typically two or four bytes. All characters in a wide character set
are of equal size. The size of a wide character is not universally
fixed, although this depends on the particular wide character set.

There are a number of wide character standards, including those
shown below:

® EBCDIC stands for "extended binary coded decimal
interchange code. Itis a single-byte character set
developed by IBM.

Rogue Wave Standard C++ Library

Internationalization 13

14 Internationalization

ISO 10646.UCS-2" 16-bit

characters
ISO 10646.UCS-4 32-bit

characters
Unicode® 16-bit

characters

The programming language C++ supports wide characters; their
native type in C++ is called wchar_t . The syntax for wide character
constants and wide character strings is similar to that for ordinary,
tiny character constants and strings:

La’ is a wide character constant,
and

L"abc” is a wide character string.

1.2.2.3 Conversion between Multibytes and Wide Characters

Since wide characters are usually used for internal representation of
characters in a program, and multibyte encodings are used for
external representation, converting multibytes to wide characters is
a common task during input/output operations. Input to and output
from files is a typical example. The file will usually contain
multibyte characters. When you read such a file, you convert these
multibyte characters into wide characters that you store in an
internal wide character buffer for further processing. When you
write to a multibyte file, you have to convert the wide characters
held internally into multibytes for storage on a external file. The
following figure demonstrates graphically how this conversion
during file input is done:

* ISO 10646 is the encoding of the International Standards
Organization.

® Unicode was developed by the Unicode Consortium. It is
code-for-code equivalent to the 16-bit ISO 10646
encoding.

Rogue Wave Standard C++ Library

etard file
[Jalpfajn| [={$[B] | | |
JIS
inerd bffe
| ol a of [|]
Unicode

Figure 3. Conversion from a multibyte to a wide character encoding

The conversion from a multibyte sequence into a wide character
sequence requires expansion of one-byte characters into two- or four-
byte wide characters. Escape sequences are eliminated. Multibytes
that consist of two or more bytes are translated into their wide
character equivalents.

1.2.3 Summary

In this section, we discussed a variety of issues involved in
developing software for worldwide use. For all of these areas in
which cultural conventions differ from one region to another, the
Standard C++ Library provides services that enable you to easily
internationalize your C++ programs. These services include:

* Formatting and parsing of numbers, currency unit, dates, and
time;

« Handling different alphabets, their character classification, and
collation sequences;

« Converting codesets, including multibyte to wide character
conversion;

 Handling messages in different languages.

1.3 The Standard C Locale and the Standard C++
Locales

As a software developer, you may already have some background
in the C programming language, and the internationalization
services provided by the C library. You may even be facing the

Rogue Wave Standard C++ Library

Internationalization 15

16 Internationalization

problem of integrating internationalized software written in C with
software in C++. If so, we recommend that you study this section.
Here we give a short recap of the internationalization services
provided by the C library, and its relationship to C++ locales. We
then describe the C++ locales in terms of the C locale.

1.3.1 The C Locale

All the culture and language dependencies discussed in the
previous section need to be represented in an operating system. This
information is usually represented in a kind of language table,

called a locale.

The X/Open consortium has standardized a variety of services for

Native Language Support (NLS) in the programming language C.

This standard is commonly known as XPG4. The X/Open's Native
Language Support includes internationalization services as well as
localization support.® The description below is based on this

standard.

According to XPG4, the C locale is composed of several categories:

Table 1. Categories of the C locale

Category Content
LC_NUMERIC Rules and symbols for numbers
LC_TIME Values for date and time information

LC_MONETARY

Rules and symbols for monetary

information

LC_CTYPE Character classification and case
conversion

LC_COLLATE Collation sequence

LC MESSAGE

Formats and values of messages

°1SO C also defines internationalization services in the

programming language C. The respective ISO
standard is ISO/IEC 9899 and its Amendment 1. The
ISO C standard is identical to the POSIX standard for
the programming language C. The
internationalization services defined by ISO C are
part of XPG4. However, XPG4 offers more services
than ISO C, such as localization support.

Rogue Wave Standard C++ Library

The external representation of a C locale is usually as a file in UNIX.
Other operating systems may choose other representations. The
external representation is transformed into an internal memory

representation by calling the function setlocale()

figure below:

, as shown in the

C Library

-

LC_NUMERIC
N

LC_MONETARY)

LC_TIME

~—
~
~_
~

external
represenation
of a locale

setlocale ()

Services
scanf()
struct Iconv .
decimd point printf()
thousand mbtowc()
curren isdiait()
neodive sion

stftime()

Figure 4. Transformation of a C locale from external to internal
representation

Inside a program, the C locale is represented by one or more global
data structures. The C library provides a set of functions that use
information from those global data structures to adapt their behavior
to local conventions. Examples of these functions and the

information they cover are listed below:

Table 2. C locale functions and the information they cover

C locale function Information covered
setlocale(), Locale initialization and
language information
isalpha() , isupper() , isdigit() , Character classification
strftime() N Date and time functions
strfmon() Monetary functions
printf() , scanf() , ... Number parsing and
formatting
strcoll() , wescoll) ... String collation

Rogue Wave Standard C++ Library

Internationalization 17

mblen() , mbtowc() , wctomb() , ... Multibyte functions

cat_open() , catgets() Message retrieval
cat_close()

1.3.2 The C++ Locales

In C++, a locale is a class called locale provided by the Standard
C++ Library. The C++ class locale differs from the C locale because
it is more than a language table, or data representation of the
various culture and language dependencies. It also includes the
internationalization services, which in C are global functions.

In C++, internationalization semantics are broken out into separate
classes called facets. Each facet handles a set of internationalization
services, for example, the formatting of monetary values. Facets
may also represent a set of culture and language dependencies,
such as the rules and symbols for monetary information.

Each locale object maintains a set of facet objects. Basically, you
can think of a C++ locale as a container of facets. This concept is
illustrated graphically in the figure below:

convert()

C++ Library

Figure 5. A C++ locale is a container of facets

18 Internationalization Rogue Wave Standard C++ Library

1.3.3 Facets

Facet classes encapsulate data that represents a set of culture and
language dependencies, and offer a set of related
internationalization services. Facet classes are very flexible. They
can contain just about any internationalization service you can
invent. The Standard C++ Library offers a number of predefined
standard facets, which provide services similar to those contained in
the C library. However, you are free to bundle additional
internationalization services into a new facet class, or purchase a
library of facets.

1.3.3.1 The Standard Facets

As listed in Table 1, the C locale is composed of six categories of
locale-dependent information: LC_NUMERIQrules and symbols for
numbers), LC_TIME (values for date and time information),
LC_MONETARYrules and symbols for monetary information), LC_CTYPE
(character classification and conversion), LC_COLLATE(collation
sequence), and LC_MESSAGHEformats and values of messages).

Similarly, there are six groups of standard facet classes. A detailed
description of these facets is contained in the Class Reference, but a
brief overview is given below. Note that an abbreviation like
num_get <charT,Inputlterator> means that num_get is a class
template taking two template arguments, a character type, and an
input iterator type. The groups of the standard facets are:

¢ Numeric. The facet classes num_get<charT,Inputlterator> and
num_put<charT, Outputlterator> handle numeric formatting and
parsing. The facet classes provide get) and put) member
functions for values of type long , double , etc.

The facet class numpunct<charT> specifies numeric punctuation. It

provides functions like decimal_point() , thousands_sep() , etc.
* Monetary. The facet classes

money_get<charT,bool,Inputlterator> and money_put<charT,

bool, Outputlterator> handle formatting and parsing of

monetary values. They provide get() and put() member
functions that parse or produce a sequence of digits, representing
a count of the smallest unit of the currency. For example, the
sequence $1,056.23 in a common US locale would yield 105623
units, or the character sequence “105623".

The facet class moneypunct <charT, bool International> handles
monetary punctuation like the facet numpunct<charT> handles
numeric punctuation. It comes with functions like curr_symbol()
etc.

Rogue Wave Standard C++ Library

Internationalization 19

20 Internationalization

« Time. The facet classes time_get<charT,Inputlterator> and
time_put<charT, Outputlterator> handle date and time
formatting and parsing. They provide functions like get_time()
get date() , get weekday() ,etc.

e Ctype. The facet class ctype<charT> encapsulates the Standard
C++ Library ctype features for character classification, like
tolower() , toupper() , isspace() , isprint() , etc.

e Collate. The facet class collate<charT> provides features for
string collation, including a compare() function used for string
comparison.

e Code Conversion. The facet class codecvt<fromT,toT,stateT> is
used when converting from one encoding scheme to another,
such as from the multibyte encoding JIS to the wide-character
encoding Unicode. Instances of this facet are typically used in
pairs. The main member function is convert() . There are
template specializations <char, wchar_t, mbstate_t> and
<wchar_t, char, mbstate_t> for multibyte to wide character
conversions.

* Messages. The facet class messages<charT> implements the
X/0pen message retrieval. It provides facilities to access
message catalogues via open() and close(catalog) , and to
retrieve messages via get(..., int msgid,...)

The names of the standard facets obey certain naming rules. The
get facet classes, like num_get and time_get , handle parsing. The put
facet classes handle formatting. The punct facet classes, like
numpunct and moneypunct , represent rules and symbols.

1.3.4 Differences between the C Locale and the C++ Locales

As we have seen so far, the C locale and the C++ locale offer similar
services. However, the semantics of the C++ locale are different from
the semantics of the C locale:

« The Standard C locale is a global resource: there is only one
locale for the entire application. This makes it hard to build an
application that has to handle several locales at a time.

« The Standard C++ locale is a class. Numerous instances of class
locale can be created at will, so you can have as many locale
objects as you need.

To explore this difference in further detail, let us see how locales are
typically used.

Rogue Wave Standard C++ Library

1.3.4.1 Common Uses of the C locale

The C locale is commonly used as a default locale, a native locale,
or in multiple locale applications.

Default locale. As a developer, you may never require
internationalization features, and thus never set a locale. If you can
safely assume that users of your applications are accommodated by
the classic US English ASCII behavior, you have no need for
localization. Without even knowing it, you will always use the
default locale, which is the US English ASCII locale.

Native locale. If you do plan on localizing your program, the
appropriate strategy may be to retrieve the native locale once at the
beginning of your program, and never, ever change this setting
again. This way your application will adapt itself to one particular
locale, and use this throughout its entire run time. Users of such
applications can explicitly set their favorite locale before starting the
application. Usually the system’s default settings will automatically
activate the native locale.

Multiple locales. It may well happen that you do have to work with
multiple locales. For example, if you have to implement an
application for Switzerland, you might want to output messages in
Italian, French, and German. As the C locale is a global data
structure, you will have to switch locales several times.

Let's look at an example of an application that works with multiple
locales. Imagine an application that prints invoices to be sent to
customers all over the world. Of course, the invoices need to be
printed in the customer’s native language, so the application has to
write output in multiple languages. Prices to be included in the
invoice are taken from a single price list. If we assume the
application is used by a US company, the price list will be in US
English.

The application reads input (the product price list) in US English, and
writes output (the invoice) in the customer’s native language, say
German. Since there is only one global locale in C that affects both
input and output, the global locale must change between input and
output operations. Before a price is read from the English price list,
the locale must be switched from the German locale used for
printing the invoice to a US English locale. Before inserting the price
into the invoice, the global locale must be switched back to the
German locale. To read the next input from the price list, the locale
must be switched back to English, and so forth. This activity is
summarized in the following figure:

Rogue Wave Standard C++ Library

Internationalization 21

22 Internationalization

Figure 6. Multiple locales in C

Here is the C code that corresponds to the previous example”:

double price;

char buf[SZ];

while (...) // processing the German invoice

{ setlocale(LC_ALL, “En_US";
fscanf(priceFile,"%fl" &price);
Il convert $ to DM according to the current exchange rate
setlocale(LC_ALL,"De_DE");
fprintf(invoiceFile,"%f",price);

Using C++ locale objects dramatically simplifies the task of
communicating between multiple locales. The iostreams in the
Standard C++ Library are internationalized so that streams can be
imbued with separate locale objects. For example, the input stream
can be imbued with an English locale object, and the output stream
can be imbued with a German locale object. In this way, switching
locales becomes unnecessary, as demonstrated in the figure below:

" The example is oversimplified. One would certainly use
the strfmon() function for formatting monetary
values like prices. We will consider more realistic
examples in section 1.5.

