Compag C Compiler Version 6.2
for Linux Alpha

README

October 2000

This is the README for Version 6.2.9.505-1 of the Compaqg C compiler
for Linux Alpha.

Compaqg Computer Corporation
Houston, Texas

© 2000 Compaq Computer Corporation.

COMPAQ and the Compagq logo Registered in U.S. Patent and Trademark Office. Tru64, Alpha, and
OpenVMS are trademarks of Compaq Information Technologies Group, L.P. UNIX is a trademark
of The Open Group. All other product names mentioned herein may be trademarks or registered
trademarks of their respective companies.

Confidential computer software. Valid license from Compaq required for possession, use, or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

Compagq shall not be liable for technical or editorial errors or omissions contained herein. The
information in this publication is subject to change without notice and is provided "as is" without
warranty of any kind. The entire risk arising out of the use of this information remains with
recipient. In no event shall Compaq be liable for any direct, consequential, incidental, special,
punitive, or other damages whatsoever (including without limitation, damages for loss of business
profits, business interruption or loss of business information), even if Compaqg has been advised of
the possibility of such damages. The foregoing shall apply regardless of the negligence or other
fault of either party and regardless of whether such liability sounds in contract, negligence, tort,
or any other theory of legal liability, and notwithstanding any failure of essential purpose of any
limited remedy.

The limited warranties for Compaqg products are exclusively set forth in the documentation
accompanying such products. Nothing herein should be construed as constituting a further or
additional warranty.

This document was prepared using DECdocument, Version 3.3-1n.

Contents

1 INtroduction 1
2 Supported Linux Alpha Distributions 1
3 Summary of Changes from the December, 1999 Release 2
4 Compag C++ CDROM e 3
5 Installation Requirements and Instructions. 3
6 Invoking the Compiler 4
6.1 Simple Optimization 5
6.2 Using ccc with .sor SFiles 5
7 Documentation 6
8 Redistributing Runtime Libraries with Applications 6
9 Known Problems 6
10 gec Compatibility 7
10.1 Unsupported EXteNsSionNs 8
10.2 Supported or Partially Supported Extensions 9
10.3 Likely Future EXtensions i 11
11 Downloading Updates and Learning about Related Products. 11
12 Technical SUPPOrt o 11

1 Introduction

ccc is the Compaq C compiler for Linux Alpha. It is a port of the same
compiler that is available on the Compaq Tru64 UNIX platform (and also on
OpenVMS Alpha). The compiler produces excellent optimized code for the Alpha
architecture, particularly for floating-point intensive applications.

There are some specific limitations and differences relative to the C compiler for
Compagqg’'s Tru64 UNIX, including:

= No support for feedback-based optimization.

= No support for parallel programming (that is, no OpenMP).

= No support for Tru64-based performance tools like cord , atom, or om

= No-[xtaso features or pointer_size pragmas.

= No structured exception handling.

= The wchar t type on Linux is unsigned int ; on Tru64 UNIX it is signed .

= The long double data type is the same as double (Tru64 UNIX Version 5.0
makes long double a 16-byte IEEE quad-precision type).

e The -ieee command-line option on Linux has additional properties that
are not present on Tru64 UNIX systems. See the ccC manpage for more
information.

= Compiler-generated .s files cannot be assembled by the assembler.

While the compiler accepts some gcc extensions, and successfully builds about
70% of the SRPMS coded in C for Alpha that are in the Red Hat 5.2 distribution,
the compiler is primarily a standard C and K&R compiler. To the extent that gcc
extensions are supported, they are mostly limited to features that are in common
with the forthcoming C99 revision to the C standard, such as variable-length
arrays and initializers with designators, and to features commonly encountered
in source packages and header files even when configured for using a compiler
other than gcc.

2 Supported Linux Alpha Distributions

Compaq C Version 6.2 has been tested primarily under the Red Hat 5.2 Linux
distribution for Alpha, which comes with glibc-devel-2.0.7 and egcs-1.0.3a. There
has also been testing under Red Hat 6.0, 6.1, and 6.2, and SuSE 6.1 and 6.3,
which come with glibc-devel-2.1.1-7 and egcs-1.1.2-12. It may work with other
distributions and other versions of glibc-devel, but no other configurations have
been tested by the Compag compiler team.

The basic support mechanism for Compaq C is provided by the UNH web site
identified at the end of this document. In addition, Compagq offers per-incident
support for specific Linux distributions, which can be extended to include
Compagq C on those distributions (for an additional charge).

3 Summary of Changes from the December, 1999 Release

= The compiler now always generates gp-reloading prologues in the same style
as gcc, so that the "-relax " linker optimization will be able to optimize them.
On Tru64 UNIX systems, the linker has always performed this optimization
by default, and it handles several styles of prologues. The GNU linker’s
-relax optimization handles only the style of prologue generated by gcc. You
can specify -relax on the ccc command line to pass this option to the linker
if you use ccc to link. But be extra careful in testing because this support is
new, and the GNU linker ignores -relax ~ when it is not supported. So if your
program works with -relax , it might be because the linker is ignoring it. At
this time, we do not have specific information about which versions of the
linker implement the optimization on Alpha systems.

= New versions of cpml_ev5 , cpml_ev6 , and ladebug are provided.

The new compiler can generate code that requires the new cpml library, and
the new cpml library is compatible with the older compiler, so please upgrade
this library. If you use the ladebug debugger, the new version has bug fixes
and support for the new Compaq C++ for Linux Alpha.

e The RPM installation has been changed not to depend on the egcs compiler.
Instead, gcc is invoked during installation to determine the locations
of header files and libraries. Also, installation problems are diagnosed
somewhat better.

e The ccc command-line option, -version , allows you to select which version
of ccc to use (see ccc(l)). In order to use the option, install the new version
with rpm -i --replacefiles instead of rpm -U.

= A bug involving the preprocessor token-pasting operator has been fixed.
In the previous version, token-pasting sequences of hex digits to form hex
integer constants did not always work correctly in modes other than -std0
(-traditional). For example, token-pasting 0x1 to Oea would produce two
tokens (0x10e a) instead of the single token 0x10ea .

= In the previous version there were optimization problems where the compiler
could generate incorrect code in circumstances that cannot be clearly
characterized at the source code level. The basic symptom in the generated
code had the appearance of incorrect "dead store elimination," where the store
instruction to perform an assignment was removed, even though subsequent
code attempted to fetch the value. The only workaround for these problems
was to compile with -0O0.

< Implicitly-declared functions can be subsequently declared or defined with a
different type (gcc compatibility).

= Type qualifiers can be added when an object with linkage is redeclared (gcc
compatibility).

e The macro __digital__is no longer predefined by the ccc compiler driver.
This macro was intended to be defined only on Tru64 UNIX.

= The digraph form of alternative token spellings specified by Amendment 1 to
the I1SO C standard (and carried forward into C99) is now enabled by default
except in -std0 /-traditional mode (and -vaxc mode). In the previous
version, digraphs were enabled only by the -isoc94 command-line option.

Tentative definitions using incomplete array types now output a warning
(instead of an error) and are treated as having a single array element (gcc
compatibility).

#pragma assert can now be used to check format strings passed
to printf /scanf -like functions, in a similar manner to gcc’s

__attribute__ ((format ())). The syntax is:
#pragma func_attrs(~ name) format(printf|scantf, string , arg)
where:

e name is the name of the function

= printf] scanf specifies which kind of format string.

= string is the argument number of the format string (first is 1).

e arg is the argument number of the first argument to check.

Under the default command-line option of -intrinsics , the standard library

functions that take these kinds of format strings are recognized and given the
appropriate checking automatically. That checking can be turned off either by
disabling intrinsic treatment of the individual function (#pragma function) or

all functions (-nointrinsics).

4 Compaq C++ CDROM

The Compag C compiler is included on the Compaq C++ CDROM, which contains
in its root directory the software packages for installation, as well as a README

file that points to this README file (the file you are reading) and to other

documentation files under a directory named /docs . The /docs directory contains

documentation files for the different software components, each in its own
subdirectory named after its package name.

The software components relevant to the C compiler are:

Common Compiler Support Libraries (package libots)

Compagq Portable Math Library (packages cpml_ev5 and cpml_ev6)
Compaq C compiler (package ccc)

Compagq Ladebug debugger (package ladebug)

Use the supplied Red Hat Package Manager (RPM) files to install each of the
components listed above.

5 Installation Requirements and Instructions

To use Compaq C, the following packages should be installed in the order listed
below.

1.

libots-2.2.7-2.alpha.rpm

Compagq C depends on the libots runtime library provided for Compag's
Alpha Linux compilers in the libots package. You need to install libots
in order to use the compiler, and libots must be installed before cpml is
installed.

2. cpml library

The ccc command adds -lcpml to the options passed to the linker whenever
you specify -Im or -ieee on the command line, so one of the two following
packages also needs to be installed:

= cpml_ev5-5.1.0-2.alpha.rpm

This package has code that runs best on Alpha chips prior to the EV6
(21264) processor. The code will also run on EV6 machines, but the ev6
version of the package provides code that runs significantly faster on EV6
processors.

= cpml_ev6-5.1.0-2.alpha.rpm

This package provides a library that is highly tuned for the EV6
processor, but it will not run on earlier processors (it might produce
"lllegal instruction” traps).

3. ccc-6.2.9.505-1.alpha.rpm
The C compiler package.

4. ladebug-4.0.62-12.alpha.rpm

This package is optional. The code produced by ccc can be debugged by gdb.
But for those accustomed to the Tru64 UNIX ladebug debugger, and because
of its superior support for Fortran and C++ debugging, ladebug has been
ported to Linux Alpha. Ladebug might also work better than gdb on some
ccc -compiled code because gcc does not yet generate DWARF2 debugging
records on Linux Alpha by default.

To install each of these packages (if the package is not already installed), use the
following command:

rpm -i package-file-name

To see if any of these are already installed, and what versions they are, use the
following command:

rpm -q libots cpml_ev5 cmpl_ev6 ladebug ccc

If you already have a package of sufficient version installed, there is no need to
reinstall.

6 Invoking the Compiler

The command line for invoking the compiler and linker is mostly compatible
with both the gcc compiler and the Tru64 UNIX compiler. Where possible,
command-line options for gcc are translated to near-equivalents for the Tru64
UNIX compiler. Options that do not have Tru64 UNIX equivalents are silently
ignored by default. But overall, there is a reasonable probability that a makefile
that works on Linux Alpha using the gcc compiler could be used to build the
same application with the ccc compiler by changing only the compiler invocation
command from gcc (or cC) to ccc .

There is also a reasonable probability that a Tru64 UNIX application will build on
Linux Alpha from its Tru64 UNIX makefile (if it is GNU compatible) by changing
only the compiler invocation command from cC to ccc .

A quick way to try building with ccc is to set an environment variable named
CCto ccc, and then invoke make with the -e option to override the makefile’s
definition of the CCmacro. In order to find out just what the ccc compiler is doing
with your command-line options, you can add -v to the command line to see the
programs it is invoking and the options it is passing to them. You can also set
an environment variable named DRV_DUMP to the value 1, which causes the
compiler to report any gcc options that are simply being parsed and consumed by
the compiler driver without having any effect.

6.1 Simple Optimization

If you can successfully build your application with ccc, you might want to try
making it run faster. There is a good chance that you will get some speedup
over gcc by default. But if you've really tuned your build with gcc -specific
optimization controls that ccc will ignore, you might have to do some tuning with
ccc to see improvements.

A good first attempt would be just to add -fast to the beginning of your compiler
options. Note that the -fast option by default tells the compiler to generate

the fastest code for the machine the compiler is running on. So if you compile
on an advanced processor like EV6 (e.g. DS10), the code might produce "lllegal
instruction” traps if you try to run it on an older machine. If you want to try
some quick tuning but want to make sure the result will run on any Alpha
machine, specify -fast -arch generic . You might also want to try adding -O4,
but in this case be careful to verify your performance because -O4 can produce
either faster or slower code than -O3.

The ccc(l) man page and Programmer’s Guide contain more information about
optimization controls and tuning. See the documentation section for the location
and status of the documentation in this Kkit.

6.2 Using ccc with .s or .S Files

The ccc compiler driver has only rudimentary support for handling assembly
language source files (.s or .S files). It invokes the native preprocessor

(liblcpp) and assembler (fusr/bin/as) to handle these types of files, but it
does not understand all of the command-line options that may be passed to
them. To pass non-ccc switches through the ccc command line to the assembler,
prepend -Wa, to the switch, and change any blanks that separate switch letters
from their arguments into commas. To pass non-ccc switches through to the
preprocessor, prepend -Wp, instead of -Wa, .

For example, to pass -Wall to the preprocessor, enter ccc -Wp,-Wall foo.S . This
results in -Wall being passed to the /lib/cpp ~ command line.

Switches that are handled without the need for -Wp, or -Wa, include:

-C
-D
-E
-1

-U

If you are having problems, you can use the -v switch to see the transformed
command line. From there you can verify that the switches made it through
the transformation. If not, then use the -Wp, or -Wa, prefixing described above.
Alternatively, you might want to change your build to avoid using ccc to process
assembly language source files, and invoke gcc directly.

7 Documentation

The man pages provided are ccc(l) and protect_headers_setup(8) . See the list
of known problems for a problem and workaround using these man pages on Red
Hat 6.2 and Red Hat 7.0 distributions.

A and a are provided in both HTML and PDF format (and there is also a
plain text version of the Language Reference Manual). The ccc package installs
these in subdirectories Programmers_Guide and Language Reference under
lusr/doc/cce-6.2.9.505 , with an file in the parent directory. All of the files for
each document (.htm , .pdf , and .txt) are in the document’s subdirectory. On the
CDROM, the subdirectories are under /docs/ccc

Documentation for cpml is installed under /ust/doc/cpml_ev?-5.1.0 . On the
CDROM it is in /docs/cpml

Documentation for ladebug is a man page, ladebug(1) , and what is installed
under /usr/doc/ladebug-4.0.62 . On the CDROM, it is in /docs/ladebug

libots is undocumented because the routines in it are intended to be called only
by compiler-generated code.

8 Redistributing Runtime Libraries with Applications

Users with a valid license are permitted to redistribute the libots and cpml
runtime library packages included in the product, as follows.

If the application is linked with the -non_shared option, or is linked against
the archive library (.a) form of these libraries, no redistribution is necessary
(although it is permitted).

If the application is linked -call_shared and depends on libots.so and/or
libcpml.so , then it is necessary for you to provide these libraries along with
your application. The libraries should be redistributed in the form of the original
RPMs (or updated versions of them) as provided by Compagq, and the users of the
application should be advised to install them on the systems that will run the
application.

If you redistribute cmpl_ev6 , you need to caution your users that it should only
be installed on an EV6 or newer version of the Alpha processor. The cpml_ev5
package can be installed on any version of the Alpha processor, but will not
provide maximum performance on EV6 or newer processors.

Applications built by Compaqg C on Linux Alpha systems running the Red
Hat 5.2, 6.0, 6.1, or 6.2 distributions or SUSE 6.1 or 6.3 distributions can be
distributed for use on those systems. Distributing those applications on other
versions or other distributions of Linux Alpha has not been tested.

9 Known Problems

The following are known problems that we are working on—no need to report
these:

= On Red Hat 6.2 and Red Hat 7.0 distributions only, the installed location of
macro files sourced by these man pages is not acceptable to the man command.
The symptom appears as a pair of warning messages followed by the text
of the man page, but with most of its list-like formatting lost, producing
run-together paragraphs that are hard to decipher. The warning messages
look like this:

<standard input>:3: won't source ‘/../man/sml" outside of ‘/usr/man’
without -U flag

<standard input>:4: won't source ‘/../man/rsml" outside of ‘/usr/man’
without -U flag

Workaround: Use the full pathname of the man page files where they reside
within the /usr/lib/compagq tree. 1t may be simplest to set an environment
variable:

CCCMAN="{usr/lib/compag/ccc-6.2.9.505-1/alpha-linux/man",
Assuming that was done, instead of man ccc, use:
man $CCCMAN/manl/ccc.1

Instead of man protect_headers_setup , use:

man $CCCMAN/man8/protect_headers_setup.8

= Problems with gcc command-line options for the assembler or preprocessor,
as noted above under "Using ccc with .s or .S files".

= Multibyte characters in source code files are not processed correctly,
regardless of the setting of the locale. This is because the compiler is
linked -non_shared against libc on a Red Hat 5.2 system to avoid binary
incompatibilies in glibc shared objects between glibc-2.0.7 (on RH5.2),
glibc-2.1.1 (on RH6.0).

The multibyte locale support in glibc-2.0.7 does not work. Note that
applications built on systems with working multibyte locale support in libc
are not affected. This is only a problem if those applications depend on
locale-specific processing of multibyte characters at compile time.

10 gcc Compatibility

There are a number of extensions to the C language that are documented for gcc
in the GCC and CPP manuals at http://egcs.cygnus.com/onlinedocs/

As noted earlier, Compaq C implements a number of these extensions but not

all of them. The major themes for Compaq C are performance, reliability, and
standards compliance. Language extensions that are not standardized are usually
only implemented to address a specific identified need. So gcc extensions that
are the most likely to be implemented are those that match C99 features. Also,
features that are very heavily used in applications that "ought” to be compiled by
Compagq C for performance reasons are good candidates.

While gcc does represent a defacto standard for portability because of its
availability on so many platforms, source code that stays within the bounds of the
formal ANSI/ISO standard is much more portable. It is not a goal to make the
Compaq C compiler 100% compatible with gcc, but rather to reduce the difficulty
of building "fairly portable" source code that has become somewhat dependent on
gcc features.

We would appreciate feedback on specific features we do not implement that you
find would make a significant difference to the ease of building your code with
this compiler if we did implement them.

10.1 Unsupported Extensions

The following extensions are considered unlikely to be implemented in a future
version of Compaq C:

enum types are compatible with unsigned int

This is not an extension as much as a different implementation choice. The
C standard requires each enum type to be compatibile with some integer type.
gce chooses unsigned int (on both Tru64 UNIX and Linux), while Compaqg C
chooses signed int (on both Tru64 UNIX and Linux). This difference seems
unlikely to present a problem large enough to warrant a change.

Preprocessor Assertions

The #assert /#unassert directives, and the predefined assertions #system ,
#cpu, and #machine do not seem to be in common use in user-space source
code.

#pragma once

This is already noted in the CPP manual as obsolete, and Compag C has done
automatic detection of header files "guarded" by conditionals to include only
once for quite some time.

Statements and Declarations in Expressions

A compound statement enclosed in parentheses may appear as an expression
in GNU C.

Locally Declared Labels
Support for __label

Labels as Values
Ability to take the address of a local label using the && operator.

Nested Functions
Ability to define a function within another function.

Constructing Function Calls
Using any of the following:

e __Dbuiltin_apply_args

e builtin_apply

e builtin_return

Naming an Expression’s Type

Using the typedef <name> = <expression> syntax.
Generalized Lvalues

Allowing the following as lvalues if their operands are lvalues: compound
expressions, conditional expressions, and casts.

Note

ccc does accept a very limited subset of this capability if the K&R mode
switch (-std0) is specified.

Conditionals with Omitted Operands

Using the ?. operator without a second operand.

Case Ranges

Specifying a range of consecutive values in a single case label.
Cast to a Union Type

Casting a scalar type to a union type.

Declaration Attributes of Functions

Using the __attribute qualifier.

Prototypes and Old-Style Function Definitions

Using a function prototype declaration to override a later old-style definition.
Specifying Attributes of Types

Using the __attribute keyword on a type.

Controlling Names Used in Assembler code

Using the asm keyword in a declaration.

Variables in Specified Registers

Using the asm keyword in a declaration.

Incomplete enum Types

Defining an enum tag without listing its values.

Built-in functions

ccc and gcc provide a different set of built-in functions. There
may or may not be a ccc equivalent for a gcc built-in. See the

Programmer’s Guide and the /usr/lib/compag/ccc-< version >lalpha-
linux/include/machine/builtins.h header file.
Objective C

Compagq C tries to remain closer to standard C.

Casting an expression to a union

An expression can be cast to a union if the union contains a member of the
expression’s type.

10.2 Supported or Partially Supported Extensions

The following extensions are supported or partially supported in the current
version of Compag C (There are many other minor gcc features and behaviors in
common with Compag C not listed here):

va_start
The second operand to va_start can be parenthesized.

#include_next

This is very useful in adapting to various irregularities in system-supplied
header files without having to provide or generate entirely new versions to
make them compatible with the compiler.

Constructor Expressions

Using the construct (type-name){initializer-list}. This is what C99 refers to as
a compound literal.

Referring to a Type with typeof

10

ccc only supports the __typeof spelling of this operator. It does not
support the typeof spelling.

Arrays of Length Zero

When arrays of zero length appear in a struct or union or parameter
declaration, ccc treats them the same way gcc does.

When arrays of zero length appear elsewhere, ccc issues a diagnostic and
treats the array as if it were declared with one element.

Inquiring on Alignment

gcc supports the __alignof operator. ccc supports a similar
__builtin_alignof operator.

Specifying Attributes of Variables

Although ccc does not support the __attribute keyword on declarations,

it does provide some similar capabilities.

The gce aligned attribute corresponds to the __align storage-class modifier
on ccc .

Some of the gcc nocommon, section attributes can be set using #pragma
extern_model in ccc.

Inline Functions

Both gcc and C99 define an inline (__inline) qualifier for functions, and
allow it to be applied to functions with external linkage. Some of the details
differ—in particular the conditions under which a function body with an
external symbol is generated in the object module.

To get the gcc behavior (the default on Linux), use the command-line option
-accept geceinline

To get the C99 behavior (the default on Tru64 UNIX systems) use the
command-line option -accept nogccinline

Assembler Instructions with C Expression Operands

The compiler provides a simple but powerful form of inline-assembler
capability that resembles the gcc feature because it looks like a function call.
But the detailed syntax and semantics differ substantially. The Compaq C
form is simple and flexible to use and generally works well with the optimizer
without the need for semantic annotations that are often required with the
machine-description-based notation used by gcc.

See the Programmers Guide and the /ust/lib/compag/ccc-
<version >lalpha-linux/include/c_asm.h header file.

Function Names as Strings

The compiler implements the C99 __func__ predeclared variable that is
equivalent to the gcc variable _ _FUNCTION_ .

By default, the ccc driver provides a macro equivalence: D__FUNCTION_ =
__func__

The restrict keyword

In its default mode of compilation, gcc does not recognize the new C99
keyword restrict (it only recognizes __restrict). While ccc does recognize
restrict as a keyword in its default mode, the command-line option -accept
norestrict_keyword will give the gcc behavior.

10.3 Likely Future Extensions

The following extensions are likely to be implemented at least partially or in a
slightly different form that is consistent with C99:

An empty set of braces {} can be used in an initializer to designate all zero
values.

The #warning preprocessor directive

This is very similar to a form of #pragma message already supported by
Compagq C.

Macros with Variable Number of Arguments

Using a macro that accepts a variable number of arguments, as in C99.

Hex Floats
Using floating constants such as 0x1.fp3, as in C99.

Newlines within string literals

This extension seems to invite undetected typos that gobble up source code
unintentionally. And the same functionality of spreading a long string literal
over multiple source lines is given by two different "safer" mechanisms that
are also portable in standard C: adjacent string concatenation and trailing-
backslash line splicing. The latter was even portable in K&R C within a
string literal. But for some reason, this feature continues to be used in a
number of source packages.

The Character esc in constants

Using the "\ e’ escape sequence. This was not incorporated into C99. It might
be supported under an option if its absence proves to be a problem.

Complex Numbers

C99 defines builtin types for complex numbers that are somewhat different
from the current gcc implementation. We will be providing the C99 version,
but not a gcc -compatible variation.

11 Downloading Updates and Learning about Related Products

For information about downloading updates to Compag C, Compaq Ladebug,
CPML, and related products for Linux Alpha systems, including the new Compaq
C++ compiler, please see the following Web page and look for the link for "Alpha
Linux Power Tools":

For information about other third-party products (including web browsers) for the
Linux Alpha platform, please see the following Web page:

12 Technical Support

Technical support for this software is available only through the Peer to Peer
Support program hosted at the University of New Hampshire:

11

