

Copyright 2006 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303, U.SA. All
rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copy-

Shade Analyzers

Shade Analyzers shade intro(1sh)

application expects (and has reserved enough space) to save all 64 bits of each register. The
default is —win32.

The analyzer-options supported by the analyzers in the standard Shade distribution are:

-U

Print a usage message and immediately exit.
-V

Print a version message and immediately exit.
—exec

If the traced application exec's a new program image, the analyzer will not normally con-
tinue tracing the new image but will execute it natively instead. Thus, tracing the shell pro-
cess, for example, will trace just the shell and not any of the commands it spawns. The
—exec

Shade Analyzers shade intro(1sh)

Any Shade analyzer can trace a variety of different types of applications. If an application uses shared
libraries, the analyzer traces the application itself, the shared libraries, and the dynamic loader. If an
application is a shell script, the analyzer traces the shell as it interprets the script. Shade analyzers can-
not, however, trace setuid or setgid programs unless the owner is the same as the user running Shade.

Shade Analyzers icount (1sh)

NAME

icount — count executed instructions
SYNOPSIS

icount [—annul] [—perthread]
DESCRIPTION

The icount analyzer counts and prints the number of instructions executed by each of the specified
application programs. In addition to the standard Shade analyzer switches, the icount analyzer accepts
the following options:

—annul
Causes icount to]

—perthread
Causes

Shade Analyzers rcount (1sh)

NAME
rcount — count executed instructions per region
SYNOPSIS
rcount [-o outfile] [-sample sample _info] [-skip skip_count] -r regionfile -- command
DESCRIPTION
The rcount Shade analyzer counts the number of instructions executed in a set of user defined regions.
A region is defined by a starting PC and zero or more ending PC's. When the application executes the

instruction at a region's starting PC, that region becomes active. The region remains active until the
application executes one of the region’s ending PC's. Note, the instructions encompassed by a region

Shade Analyzers spixcounts(1sh)

NAME
spixcounts — generate spix counts file

SYNOPSIS
spixcounts[—b fmt] [—data fmt] [—merge] [—s

Shade Analyzers spixcounts(1sh)

Both the —b and —data switches require a file name template to be specified. The file name template
may contain format specifies which are replaced as follows:

%p Replaced with the basename of the application program or the basename of the shared library.
When used with the —data switch, this is always replaced with the basename of the application
program.

%n Replaced with a per-command sequence number. The sequence number starts out at one and is
incremented for each application that is traced. This specifier is not allowed in the —b file
name template when the —mer ge switch is specified.

% Replaced with the process ID of the analyzer. This specifier is not allowed in the —b file name
template when the —mer ge switch is specified.

%% Replaced with ‘%',
If no —b switch is specified, spixcounts uses the template name "%p.%n.bb" (if the —merge switch is
not specified), or "%p.bb" (if the —merge switch is specified).
THREADS
The spixcounts analyzer combines the execution counts for all application LWPs (threads) together.

FORK AND EXEC
If the traced application forks, the spixcounts analyzer forks too, and each analyzer then writes its own
set of output files. The execution counts reported for the child are exclusive of the counts reported for
the parent. The "%i" file name template format can be used to distinguish output files generated by the
parent and child.

If the application exec's a new image and the —exec switch is specified (see shade intro(1sh)), instruc-

Shade Analyzers

NAME

pairs — instruction pairs analyzer
SYNOPSIS

pairs

addpairs

postpairs [

pairs(1sh)

Shade Analyzers trips(1sh)

NAME
trips — instruction triplets analyzer

SYNOPSIS
trips[—a]
DESCRIPTION
The trips analyzer is like pairs(1sh) except it looks at three instructions at a time instead of two.

Normally trips truncates its output after printing information for the top 90% of instruction triplets. The
—a option causes information for all executed instruction triplets to be printed.
Like pairs(1sh), trips displays statistics by opcode group rather than by opcode.

THREADS

The trips analyzer tracks the execution of each LWP (thread) independently, but merges the statistics for
all threads together in its output.

FORK AND EXEC
If the traced application forks, the trips analyzer forks too, and each analyzer then reports its own set ofa

Shade Analyzers window (1sh)

NAME
window — register window analyzer

SYNOPSIS
window

DESCRIPTION
The window Shade analyzer tracks the register window usage for one or more applications. The output

Shade Analyzers

Shade Analyzers cachesim5 (1sh)

Caches are virtually addressed. Annulled instructions cause an instruction (or unified) cache reference,

Shade Analyzers brpred (1sh)

NAME

brpred — branch predictor performance analyzer
SYNPOSIS

brpred [-u] [-single-cpu] [-pcs] <brpredspec>+
DESCRIPTION

The brpred

Shade Analyzers hist (1sh)

NAME
hist — shade tool to print an application’s most recent instructions

SYNOPSIS
hist [—exit] [—pc addresd[:count]] [—ea[rw] {BHOW}address:count]] [—signal signal] [—o
filename] [—num number] [—log filename] [—stdenv] [—notrace] [—traceafter number] [—tracepc
address[:count]] [-N] -- application

DESCRIPTION
The hist Shade analyzer maintains a trace history of an applications most recently executed instructions.
The trace history is printed when the application causes any of several user-definable events to occur.
This produces a history of instructions leading up to that event.

The following options allow you to choose when the trace history is printed. More than one of these
options may be specified, causing the trace history to be dumped when any of the chosen events occurs.

—exit
Causes the trace history to be dumped when the application exits. In this case the trace is a
history of the application’s final instructions.

—pc <address>[:<count>]
Causes the trace history to be dumped immediately after the application executes the instruc-
tion at the given address. If 'count’ is not specified, the history is dumped each time the
application reaches this address. If "count’ is specified, the history is dumped only when the
application reaches the address "count’ times.

—ea[rw] { BOHOW?} <address>[:<count>]
Causes the trace history to be dumped immediately after the application read or writes the
memory at the given address(r after -ea means read only, w - write only). Executing an
instruction at this address does not count as aread. Use -pc for that. One of the characters
B, H, or W must precede the address indicating either a byte, half-word (2 byte), or word (4
byte) range of addresses. If 'count’ is not specified, the history is dumped each time the

Shade Analyzers hist (1sh)

instructions in the tool’s trace output. The exact number of instructions in the trace depends
both on the size of the buffer and on the mix of instructions the application executes.
(Some instructions require more buffer space than others) You may not use the —log
option if you specify —num.

—log <filename>

Shade Analyzers hist (1sh)

If the instruction modified a register, the line contains a record of the form $rn=value, indicating that the
given value was written to the given register. If the instruction modifies memory, the line contains a
record of the form {BOHW}address=value, indicating that the given value was written to the given
memory location (byte, halfword, or word). If the instruction reads memory, the line contains a record
of the form ({ BCHOW}

Shade Library shade _anal (3sh)

NAME
shade anal, shade fp, shade ego, shade usage, shade error, shadeuser initialize, shadeuser analyze,
shadeuser_report, shadeuser terminate, shadeuser analusage, shadeuser analversion — Common Shade
analyzer interface and functions that must be defined by user to use the interface.

SYNOPSIS
cc[flag...] file... libshadea [

Shade Library shade _anal (3sh)

The interface calls shadeuser _analyze() once for each application. If the analyzer detects an error, it
should issue a message and return a non-zero value. This causes the interface to ignore any remaining
applications and immediately cal the anayzer's shadeuser terminate() function. |If
shadeuser_analyze() does not detect an error, it should return zero.

When shadeuser _analyze() exits, the interface calls shadeuser _report() to report any results. Please
035 -w (shen)the interface calls

Shade Library shade _appname(3sh)

NAME
shade appname, shade interpname, shade appbase, shade interpbase — Retrieve information about
Shade application

SYNOPSIS

Shade Library shade _appstatus(3sh)

NAME
shade_appstatus — Return status of application running under Shade

SYNOPSIS
#include <shade.h>

shade

Shade Library shade_bench_memory (3sh)

AN shade bench_memory — Return Shade application’s base memory address
SYNOPSIS

#include <shade.h>

char [khade bench_memory(void);
DESCRIPTION

The shade _bench_memory() function returns the base memory address of the application loaded under
Shade. The analyzer can add this value to any address in the application to yield the corresponding

Shade Library shade getopt (3sh)

NAME
shade getopt, shade

Shade Library shade iset(3sh)

NAME
shade iset, shade iset newclass, shade iset newtype, shade iset newop, shade iset_newcopy,
shade iset_free, shade iset_addclass, shade iset addtype, shade iset_addop — Manage sets of instruc-
tions for Shade

SYNOPSIS

#include <shade.h>

shade iset_t [Bhade iset_newclass(shade iclass t iclass, ...);

shade iset_t [Bhade iset_newcopy(shade iset_t [hiset);

void shade iset_free(shade iset_t [hiset);

shade iset_t [Bhade iset addclass(shade iset_t Opiset , shade iclass ticlass, ...);

#include <shade ARCH.h>

shade iset_t [Bhade iset_newop(spix ARCH iop_tiop, ...);

shade iset t [Bhade iset_addop(shade iset t Chiset, spix ARCH iop_tiop, ...);

shade iset_t [Bhade iset_newtype(spix ARCH itype t itype, ...);

shade iset t [Bhade iset_addtype(shade iset t [hiset, spix ARCH_itype t itype, ...);
DESCRIPTION

Shade Library shade iset(3sh)

SHADE_ICLASS UBRANCH
Selects all unconditional branch instructions.

SHADE_ICLASS CBRANCH
Selects all conditional branch instructions.

SHADE_ICLASS TRAP
Selects al instructions that explicitly trap to privileged code. Typically, this includes
instructions an application uses to request system services, but does not include instructions
that trap due to, say, a page fault.

TheS .96 shade _ (TRA

Shade Library shade load (3sh)

NAME
shade load, shade |oadp, shade unload — Load an application under Shade

SYNOPSIS
#include <shade.h>

int shade load(const char Cpath, char Oconst Cargv, char Cconst Cenvp);
int shade loadp(const char [Hile, char Oconst Cargv, char Oconst Cenvp);
void shade unload(void);

DESCRIPTION
The shade load() and shade loadp() functions load a new application under Shade. Both provide the

Shade Library shade lock (3sh)

NAME
shade lock, shade lock _new, shade lock delete, shade lock set, shade lock clr — Lock critical regions
of Shade code

SYNOPSIS
#include <shade.h>

shade lock t [hade lock new(void);

void shade lock_delete(shade lock t Cplock);
void shade lock_set(shade lock t Cplock);
void shade lock_clIr(shade lock _t Cplock);

DESCRIPTION
These functions provide a way for Shade analyzers to lock critical regions of code in user-defined trace
functions (enabled via shade trfun(3sh)

Shade Library shade _malloc(3sh)

NAME
shade shade_shadeshade

Misc. Reference Manual Pages shade print_opt_info.3sh(5/Mar/04)

NAME
shade print_opt_info — Function for printing help information.

SYNOPSIS
cc[flag...] file... libshgetopt.a[library...]

#include <shgetopt.h>
void shade print_opt_info(charO anal_info, const shade options t

Shade Library shade run(3sh)

NAME

shade run — Run and trace application under Shade
SYNOPSIS

#include <shade.h>

unsigned shade run(shade trace t [ptrace, unsigned ntrace);
DESCRIPTION

The shade run() function executes the application loaded under Shade and collects any requested trace
information. The ptrace parameter specifies the start of a buffer of ntrace trace records into which
Shade stores trace information from the application. The shade run() call returns when the trace buffer

Shade Library

Shade Library shade setopt (3sh)

NAME
shade setopt — Enable Shade options

SYNOPSIS
#include <shade.h>

int shade setopt(shade opt_t opt);

DESCRIPTION
The shade _setopt() function allows an analyzer to set options that affect the way Shade operates. The
following options are supported.

SHADE_OPT_EXECTRACE
This option alows an analyzer to trace an application after it execs a new executable image.
When this option is in effect, shade run(3sh) returns zero after the application execs a new

Shade Library shade_shell (3sh)

NAME
shade shell, shade fshell, shade sshell — Run application scripts in Shade

SYNOPSIS
#include <shade.h>

int shade shdl(int (Canal)(int, char (1] char (1] char [1));

Shade Library shade signal (3sh)

NAME
shade signal, shade analsig, shade sendsig — Manipulate signals in Shade

SYNOPSIS
#include <shade.h>

int shade analsig(int sig, void (Chandle)(int, siginfo_t

Shade Library shade splitargs(3sh)

NAME
shade splitargs — Separate Shade analyzer and application arguments

SYNOPSIS
#include <shade.h>
int shade splitargs(char [(Targvin, char [(ITpargvapp, int Chargcapp);

DESCRIPTION
The shade splitargs() function provides a mechanism for separating analyzer and application argument
lists. It relies on a convention followed by many Shade analyzers of marking the application arguments

Shade Library shade _trange(3sh)

NAME
shade trange, shade addtrange, shade subtrange, shade intrange, shade argtrange, — Restrict Shade trac-
ing by address range

SYNOPSIS
#include <shade.h>

void shade subtrange(spix_addr_t addrlo, spix_addr_t addrhi);
void shade addtrange(spix_addr_t addrlo, spix_addr_t addrhi);
spix_bool t shade intrange(spix_addr_t addr);

int shade argtrange(const char Cpstr);

DESCRIPTION
These functions work in concert with shade trctl(3sh) and shade trfun(3sh) to determine which
instructions Shade traces. Shade traces an instruction only if it is selected by shade trctl(3sh) or
shade trfun(3sh) and if that instruction resides in an address range selected by the shade trange()
functions. By default, all addresses in the application are selected, so an analyzer need not call the
shade trange() functions unless it wants to restrict the range of traced instructions.

The shade subtrange() function disables tracing for instructions residing in the given address range.
The shade addtrange()

Shade Library shade_trfun(3sh)

unused.

The shade trfun_at() function is like shade trfun() except it only applies to the instruction starting at
the given target address. If the instruction at that address is specified by piset, the user-defined trace
functions are called for that instruction as defined above. If shade trfun() and shade trfun_at()
specify different functions, the functions in the shade _trfun_at() call prevail. Moreover, the instruction
at address addr is evaluated dynamically, so the address need not be mapped when the analyzer calls
shade trfun_at()

Shade Library shade

Shade Library shade trsize(3sh)

NAME
shade trsize — Specify size of Shade trace record

SYNOPSIS
#include <shade.h>
int shade trsize(size t size);

DESCRIPTION
This function specifies the size (in bytes) of the Shade analyzer’'s trace record. Analyzers should call
shade trsize() before calling the shade trctl(3sh) functions in order to tell Shade the size of a trace

Shade Library shade tset (3sh)

SHADE_TRCTL_TID
Record the ID of the thread executing the traced instruction in the tr_tid field of the trace

Shade Library shade tset (3sh)

If an invalid value is passed to shade tset_new() or shade tset_add(), the function issues a diagnostic
message and returns NULL.

SEE ALSO
shade trctl(3sh), shade iset(3sh), shade ARCH_trctl(Ssh).

Shade Last change: 11/Sep/98 3

Shade Library shade version(3sh)

NAME
shade version — Shade library version string

SYNOPSIS
#include <shade.h>

const char shade version[];

DESCRIPTION
The shade version character array contains a read-only string representation of the Shade library’s
version level.

Shade Last change: 8/Sep/98 1

S1 4F2 1 T4v7 0 TDg(arge) TiBT 3F2 1TDgs.246 Ow (, char)TjBT 1F2 1 T3.19 0 TDg(S1 4F2 1 envp? 0 TDg(argc) TiB6 4F2 1)

Headers, Environments, and Macros shade_sparcv9_trctl (5sh)

NAME
shade sparcv9_trctl — SPARC V9 trace parameter codes

SYNOPSIS
#include <

Headers, Environments, and Macros shade ssparc99

Headers, Environments, and Macros shade_sparcv9_trctl (5sh)

