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Abstract In this paper, we propose a multi camera ap-
plication capable of processing high resolution images
and extracting features based on colors patterns over
graphic processing units (GPU ). The goal is to work
in real time under the uncontrolled environment of a
sport event like a football match. Since football players
are composed for diverse and complex color patterns, a
Gaussian Mixture Models (GMM) is applied as segmen-
tation paradigm, in order to analyze sport live images
and video. Optimization techniques have also been ap-
plied over the C++ implementation using profiling tools
focused on high performance. Time consuming tasks were
implemented over NVIDIA’s CUDA platform, and later
restructured and enhanced, speeding up the whole pro-
cess significantly. Our resulting code is around 4-11 times
faster on a low cost GPU than a highly optimized C++
version on a central processing unit (CPU) over the same
data. Real time has been obtained processing until 64
frames per second. An important conclusion derived of
our study is the scalability of the application to the num-
ber of cores on the GPU.
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1 Introduction

Professional sport is an extremely competitive world.
Mass media coverage has contributed to the popularity
of many sports, increasing its importance in our current
society due to the money and fame that it generates.
In this environment, in which any assistance is welcome,
video-based applications have proliferated. Video-based
approaches have shown themselves to be an important
tool for analysis of athletic performance, especially in
collaborative sports, where many hours of manual work
are required to analyze tactics and collaborative strate-
gies. Computer-vision-based methods can provide help
in automating many of those tasks.

Real-time image processing systems are specially re-
levant in Computer Vision. Any advanced image pro-
cessing application requires a previous extraction of sig-
nificant features. These features could be used in recog-
nition or tracking systems for several applications. Our
proposal is oriented to improve drastically the perfor-
mance of image segmentation systems. Concretely, we fo-
cus on feature extraction and object classification based
on those features, not only over pre-recorded video se-
quences but also from live video streaming.

Our method to extract those features consists in an
image segmentation according to color information. Seg-
mentation systems are usually a first stage inside an
image processing framework. Thus, for instance, results
generated by segmentation techniques can be used as in-
put for a tracking algorithm. In the literature, it exists
a broad variety of methods for a reliable segmentation
of objects in an image, being the most interesting ones,
those capable of dealing with objects composed of var-
ious colors [21, 3, 7, 6, 15, 10]. One of the most pop-
ular approaches consists in a Gaussian mixture model
(GMM ) in which every object can be represented by
one or more Gaussians. This is because most objects are
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composed not only of an unique color but also of a mix-
ture of different tones associated to an unique color or
even of several different colors.

AlthoughGMM is a successful and broadly used met-
hod for feature extraction, its computational cost is a
strong handicap for real time applications. The specta-
cular evolution that CPUs experimented in the past has
provided a tool for mitigating the problem. Neverthe-
less, the progressive slowdown during the last years has
stopped this progression whereas it has promoted par-
allel architectures, such as multi-core, as a solution for
increasing the computational power.

This novel style of multi-core design and program-
ming acquires even a more relevant position thanks to
the last technological developments. Return of these ad-
vances are the newest Graphics Processing Units or GPU
containing up to hundred of simple processor cores. The
GPU architecture is optimized for massively parallel pro-
cessing with peaks up to hundreds of GFLOPS. But their
most interesting features of these devices is that they
can also be harnessed for general computing in a modal-
ity known as general-propose GPU (GP-GPU )[23]. Re-
cently, in order to take advantage of these high per-
formance computing devices, some extensions to well-
known programming languages have been generated, such
as CUDA C [8]. This language is a set of parallel exten-
sions of the C/C++ programming languages and it is
able to interact with a special hardware interface built
into all current NVIDIA GPUs [22, 26].

In the last few years, the amount of scientific appli-
cation tested over GP-GPU has increased [5]. Although
generally those researches [27, 24, 28] are focused on spe-
cific calculations, they provide an initial idea about the
intrinsic potential of this new platform [20]. Particularly,
in our field of interest, several studies probe this capa-
bility in modern GPUs [14]. Traditional methodologies
have been implemented, such as pattern recognition algo-
rithms based on textures [11], Gaussian mixture models
[19] or image feature extraction techniques [29, 31]. All
these examples give an idea of the increase of efficiency
that can be achieved thanks to these devices.

In our research, we have developed an application
which is able to detect football players in a video se-
quence. Once they are extracted from background, each
player is classified into any of the teams. For classification
purposes, a color-based method is employed based on
Expectation Maximization for Gaussian Mixture Models
[21, 3, 19]. Since one of our main objectives is to process
multi high-resolution cameras, detection and classifica-
tion processes must be applied on real time in an extre-
mely efficient manner. In order to achieve that, we have
adapted and implemented those tasks over GPU plat-
form taking advantage of its high parallel computational
capability (Section 5).

The evaluation of our implementation has been made
over a set of different low cost GPUs with 16, 32 and
64 cores to study the scalability of the implementation.

These tests have also been run under different CPUs, to
clarify as much as possible the real contribution of our
implementation.

The outline of the paper is as follows. In Section 2
the hardware infrastructure is described. Section 3 in-
troduces the stages that compose our methodology and
discusses their computational cost. Section 4 compares
the computational cost between a version in C++ using
Microsoft Visual Studio compiler and a version highly
optimized using Intel C++ compiler, running in a con-
ventional multicore CPU. In section 5, the paralleliza-
tion methodology is introduced and a CUDA implemen-
tation is detailed. Section 6 presents a comparison be-
tween CPU and GPU results and its scalability. Finally,
conclusions and future work are presented in Section 7.

2 Infrastructure

Our goal consists in the processing and classification of
football players in video sequences provided from one
or multiple cameras installed in a real football stadium.
The minimum number of cameras required for covering a
football field depends on several factors, such as camera
resolution, angle of vision and height of installation. In
our infrastructure, we propose a system composed of 8
static high definition digital cameras (1388x1036) posi-
tioned on the roof around the stadium. Thus, we obtain

Fig. 1 Camera distribution on the roof

a detailed coverage of the 2 goalkeeper areas (2 cam-
eras for each one) as well as the rest of the field which
is covered by other 4 cameras. It is important to remak
the importance of a multi camera representation, since
overlapping cameras are crucial to solve occlusions, spe-
cially in conflictive areas. On the other hand, the more
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Fig. 2 Infrastructure schema

cameras you have, the more increase of computational
cost. For this reason the number of 8 cameras has been
chosen, since we consider it is the minimum number to
make viable the processing of the match: it ensures the
coverage of a player by at least two cameras at any point
of the pitch and with an acceptable resolution level.

All the cameras are linked by ethernet optical fiber
and shielded twisted pair with a computer set which has
to process the received data and combine results. A dis-
tribution schema and its connection with the comput-
ing system can be seen in fig. 2 and a overlapped zones
schema can be seen in fig. 1.

3 Methodology

Our system is composed of multiple and identical high
definition cameras with a resolution 1388x1036. As re-
quirement, this application must perform the capture of
8 images per second, the processing of all frames (includ-
ing extraction and classification processes), visualization
tasks, communication and, finally, tracking.

The proposed classification algorithm can be decom-
posed into a set of steps. Most of them should be done
per frame and per camera. The steps and input data that
they require are described at following section (3.1) and
in fig. 3 the processing flow per camera is detailed. Out-
put generated from previous stages can be used as input
for a tracking algorithm in order to ensure the temporal
coherence. Several different options can be found in the
literature [18, 12, 13, 4]. Although it is out of the scope
of this paper, a Multi-Camera Uncensted Kalman Filter
(MCUKF) [16] has been used to demonstrate the global
feasibility.

Empirical experiments allow us to conclude: A suc-
cessful tracking can be obtained with a processing frame
rate between 8 and 15 per each camera, that is, a pro-

Fig. 3 Processing schema

cessing time per image per camera around 66-125 mil-
liseconds, and to cover the whole football field, at least
8 cameras are needed to obtain enough overlapping. As
conclusion, this requirement allows us to define the con-
cept of real time and the scalability of the processing
kernel for our particular needs.

3.1 Independent processing per camera

– Image Capture: at this stage, images are retrieved on
demand from each camera.

a) Bayer image b) RGB equivalent

c) Transform Bayer RGGB type to RGB equation.

Fig. 4 Raw image (Bayer), RGB equivalent and Transform
equation.

– Color Space Transformation from Bayer to RGB: high-
resolution cameras usually provide images in raw for-
mat (also called Bayer-type RGGB [2]), i.e. 8 bits per
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pixels for color codification. This format only needs a
third of a conventional RGB image size, but it is not
suitable for our post-processing since all the channels
are mixed. To obtain a RGB image, we need an inter-
mediate transformation process called BayerToRGB,
which is depicted in fig. 4. The procedure to generate
three channels from a Bayer sequence RGGB needs a
particular calculation for every channel. RGB values
which match up in the RGGB sequence are mapped
directly, while other channels are calculated as an
arithmetic mean of all neighbors corresponding to the
same channel. For example, RGB value for a red po-
sition can be reconstructed as:
– R value is copied as the same value.
– G value is, as shown in fig. 4 c), the average of the

four-neighbor pixels: left, right, up and low pixels.
– B value is, as shown in fig. 4 c), the average of the

four-neighbor pixels in diagonal: up-left, up-right
low-left, low-right pixels.

– Color Space Conversion RGB to HSV : under variable
illumination conditions, better classification results
can be obtained by applying a transformation in the
color space [30]. Instead of RGB, HSV (Huge, Satura-
tion, Value) has shown a better accuracy. Equations
can be seen in equations (1), (3), (5).

– Motion Detection: it consists in a thresholded sub-
traction between the current image (fig. 5 a)) of ev-
ery camera and a pre-generated image of the scenario,
called background (fig. 5 b)). Process is shown in fig.
5 c). Motion detection image contains the dynamic
areas, which will be used for posterior processing like
distracter removal.

H =



no defined if MAX = MIN

60o ∗ G−B
MAX−MIN + 0o if MAX = R

and G ≥ B

60o ∗ G−B
MAX−MIN + 360o if MAX = R

and G < B

60o ∗ B−R
MAX−MIN + 120o if MAX = G

60o ∗ R−G
MAX−MIN + 240o if MAX = B

(1)

(2)

S =

 0 if MAX = 0

1− MIN
MAX , otherwise

(3)

(4)

V = MAX (5)

– Blob Labelling: it is the algorithm that seeks con-
nected areas, called blobs, in the resulting image of

the previous step. By grouping pixels into blobs and
assigning a common label we simplify the posterior
tracking stage.

– Color Segmentation: this procedure tackles the pro-
blem of identifying different areas of the image. GMM
(Gaussian Mixture Model) has been chosen as para-
digm, which implies a preliminar training by extract-
ing color features from regions of interest. Thanks to
this technique, a distinction into three groups is ob-
tained: player of team 1, player of team 2 and noise
from the background.

a) Current image b) Background image

c) Motion Image, thresholded subtraction
between the current image and background.

Fig. 5 Current image, background image and substraction
result image.

3.2 Gaussian Mixture Method for Image Segmentation

In collaborative sport applications, feature extraction
and classification, although a difficult task, have an im-
portant advantage in comparison with more general ap-
proaches like video surveillance. It is known a priori that
both teams, as well as background, are defined by clear
and distinctive color patterns in their clothing. These
color patterns can be easily modeled by parametric meth-
ods.

GMM is a method that allows a reliable object mo-
deling and image classification even in presence of com-
plex targets, which can be composed of multimodal ap-
pearance distributions. Since it is a parametric tech-
nique, it needs an off-line training phase to calculate
those parameters. Training results are used afterwards
in classification (On-line stage).

The simplest technique to model the appearance coef-
ficients consists in assuming the target as a monochrome
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region and modeling it as a Gaussian using only two
parameters: mean µ and covariance σ2. Although this
assumption limits the generality of the methodology, it
can be easily extended by dividing the target into a pre-
defined set of monochrome regions [25].

p(x) =
1√
2πσ

e−(x−µ)2/2σ2

(6)

p(x) =

N∑
i=1

wi
1√
2πσi

e−(x−µi)
2/2σ2

i (7)

s̃ = (
s1 − X̄1

σ1
, · · ·, sm − X̄m

σm
) (8)

Cs
i =

m∑
j=1

s̃ja
s
j (9)

Probteam0 =
1

1+distanceteam0

distancemin

(10)

Both off-line training and on-line classification are
composed of different phases:

1. Off-Line Computing
– Sample selection: supervised sample selection for

every group (team 1, team 2 and background).
– Parameter tuning: a crucial issue is the adequate

number of Gaussians used to model every group.
Given the special characteristics of several colla-
borative sports, like a football match, where col-
ors are well-defined, but where the video compres-
sion can generated halos around the players, a
deep study was made in order to optimize it as
much as possible (equation 6 and 7).

– Training: Expectation Maximization (EM) algo-
rithm using Fuzzy C-Means as initialization [3]
provides final model.

2. On-Line Computing
– Classification: In this step, every pixel is classified

into one of the different groups. For this, the dis-
tance between the pixel candidate and the differ-
ent model of every group is computed (equations
8 and 9) and a final decision based on minimum
distance are taken (equation 10). In addition, the
membership degree to every group is computed
inside a probabilistic framework giving, as result,
probability images [9] that can be used to im-
prove the tracking quality based on stochastic ap-
proaches.

As the offline stage is only applied once at the begin-
ning of the match and under human supervision, it can
be considered out of the real-time system and, therefore,
has been implemented over CPU. However, this process
is also amenable to be implemented using GPU, as it was

demonstrated in [19], obtaining excellent results. Fur-
thermore, and due to lighting conditions changes over
the game, color models need to be updated every 2 or 3
minutes. This update does not require manual annota-
tion at all, since a random sample of the classified pixels
are feed back to the model for its update. Thus, mod-
els updating has to be implemented in real time and its
computational cost has been taken into account in this
paper.

For the selection of optimum parameters of the Gaus-
sian mixture during the training, different experiments
have been performed, as stated in Section 4.2 of [9].
For our application, two different color spaces were cre-
ated, one for modeling the players of both teams and
one to model the background. Likewise, it was decided
to consider 2 gaussians for each model, ie, the model
of each team consists of 2 gaussians for each team and
2 additional gaussians to model the background. These
number are not arbitrary: whereas two Gaussians per
team permits to model t-shirt and shorts independently,
two Gaussians for the background enables to capture the
variability introduced by shadows and saturated areas of
the pitch. The reader could argue that many sport equip-
ments contains of more complex color patterns, such as
vertical strips, but in the reality, the distance to the
camera mixes that patterns into a single one given the
current technology of HD cameras. In the same way,
shadows or saturated areas could be modeled as a sin-
gle model in an appropriated color space such as HSV.
However, this is plausible only for an optimal setup of
the camera parameter, which is not practical and evolves
during the game.

In the classification stage (on-line computing), a cer-
tain number of mathematical operations are performed
per pixel (equations 8, 9 and 10). The results depends on
the pixel values HSV and the color models. As the max-
imum number of possible combinations of HSV values
is not large (maximum 256x256x256 values) and models
do not change often, an optimization in both CPU and
GPU implementations is the use of Look-up tables or
LUTs. Those functions with a clear and repetitive pat-
tern, such as color classification, can be replaced for a
storage in memory of every possible result for any input
combination. This resulting matrix is called segmenta-
tion Look-up Table (LUT ) and there is one per camera.
When the color models change, the LUT is re-calculated
for every possible HSV values. An example is depicted
in fig. 6. For every HSV value, the classification result is
pre-computed and stored in the LUT. After its genera-
tion, the expensive calculation is replaced for a memory
access to the right memory slot, which implies a sub-
stantial boost in efficiency. For example, the calculation
result for a pixel HSV with values [H, S, V] = [1, 2, 3],
is stored in row 1, column 2 and plain 3 as fig. 6. The
more complex the operation is, the more efficient this
technique proves itself.
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Fig. 6 Calculation of the segmentation value for color
[H,S,V] = [1,2,3]. These data are stored in the segmentation
Look-up Table

3.3 Performance Evaluation

All image processing operations described in this section
have been implemented in the corresponding CPU and
GPU versions. For validating them, results were com-
pared with a prototype modeled in Matlab, confirm-
ing that insignificant differences are only due to typical
rounding errors.

In order to check the performance improvement that
our implementation achieves, we have tested the algo-
rithm over different types of processors and GPUs. Thus,
four different types of PCs are available: Core 2 Duo
2.2GHz 3GB Ram, Core 2 Duo 2.4GHz 3.5GB Ram,
Core 2 Quad 2.83Ghz 3 GB Ram, and Core i7 Quad
2.66Ghz 4GB Ram. These equipments are close to the
average current processors, giving us a significant sam-
pling of the market. On the other hand, 4 different GPUs
have been tested too: GeForce 8600M GS, Quadro FX
1600M and Quadro FX 1800. All of them can be con-
sidered low-cost GPUs containing 16, 32 and 64 cores
respectively. The fourth GPU, GTX260 with 216 cores,
Has been chosen to confirm the tendency.

For every possible combination of both platforms (
CPUs and GPUs), a scalability study was made. A sca-
lability study aims to assess the performance of our algo-
rithm as a function of the number of images, the number
of cameras or the computational power. To this end, we
have processed the algorithms on several computers as
it is shown in table 1.

In the next section the implementation on C++ and
CPU optimizations are described. Section 5 does the
same for the implementation on GPU and in the last
section, a scalability test is performed.

4 CPU Implementation

Our first implementation of the algorithm was made in
C++ language running under Windows. Once the accu-
racy of the results were validated with a Matlab proto-
type, a set of optimizations were included in order to
obtain an improved C++ version.

Micro GHz nVidia Cores Bandwidth
(GB/s)

PC1 Core 2
T7500

2.2 Geforce
8600M GS

16 6.7

PC2 Core 2
T8900

2.4 Quadro
FX 1600M

32 11.2

PC3 Core 2
Quad

2.83 Quadro
FX 1800

64 38.4

PC4 Core i7
Quad

2.66 Geforce
GTX260

216 111.9

Table 1 Different types of CPUs and GPUs for testing

For this optimization process, performance analysis
tools, such as Intel VTune Performance Analyzer [17]
were applied to identify the possible hotspots. This tool
aimed at increasing performance, as well as the loca-
tion of hotspots, allowing us to perform a deep analysis
of them. Thus, VTune lets us detect, re-code and op-
timize our implementation, improving the performance
substantially.

A comparative studio between the default Microsoft
Visual Studio compiler and Intel C++ was made for our
application, showing that the usage of this last one was
always beneficial with a general speedup of almost 4x.
Full optimization and specific architecture compilation
flags are both used in this implementation. These spe-
cific flags perform aggressive loop and memory-access op-
timizations, such as scalar replacement, loop unrolling,
loop blocking to allow more efficient use of cache and
additional data prefetching.

Intensive use of SIMD and code modifications have
been also done to allow the compiler to automatically
apply SIMD instructions. Special care has been taken in
the alignment of data in memory, and vector and simd
pragmas has been used. Classical Code Optimizations
[1] as Loop-invariant code motion, Strength re-
duction, and Arithmetic pointers have been used to
clear loops. Compiler generated code has been analyzed
following the compiler High level Loop Optimizations
(HLO) and vectorization reports (/Qopt-report), Vtune,
and in some cases studying the generated assembler code
and comparing performance with a not-vectorized ver-
sion.

As result, we obtain the differences between an opti-
mized single threaded implementation in C++ using Mi-
crosoft Visual Studio compiler [MVCC] versus the same
code compiled with Intel C++ compiler [ICC]. Results
are depicted in Table 1 (obtained using PC3 described
in section 3.3). As can be seen, there are stages with
low speed-up (like RGBToHSV ), while Conversion Bay-
erToRGB get a boosts in performance of 4.56x. The
main gain comes from Segmentation that goes from 297.5
down to 90.69ms.

In table 2 it is shown that confronting [MVCC] and
[ICC] implementations a big difference in performance
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Stages in PC3 MVCC
(ms)

ICC
(ms)

Speed-up

Conversion BayerToRGB 71.62 15.7 4.56

Conversion RGBToHSV 71.58 35.61 2.01

Motion Detection 31.67 9.83 3.22

Segmentation 297.5 90.69 3.28

Table 2 Time comparison between optimized C++ using
Microsoft Visual Studio [MVCC] and optimized C++ using
Intel C++ compiler [ICC], running in PC3

exists just by compiling the code. The results prove that,
as expected, using an optimizing compiler increases per-
formance considerably.

These measurements have been obtained using the
evaluation metric shown in equation 11, where spfi is
the speed-up for stage i, tfi,mvcc is the execution time
of stage i optimized using Visual Studio and tfi,icc the
execution time of stage i optimized using Intel C++.

spfi =
tfi,mvcc

tfi,icc
(11)

Another metric usually employed to evaluate the com-
puting capability of a real-time oriented system is the
processing rate or rate. Rate measures how many frames
are processed per second. Rate equation can be described
as follows:

Rate(fps) =
1000(ms)

ttotal(ms)
(fps) (12)

Using [MVCC] implementation, the processing rate
would be around 2.11 frames per second, while if [ICC]
optimization is used, rate increases around 6.58 fps. We
should remember that, as discussed in the introduction,
a minimum rate between 8 and 15 fps is necessary for
the correct operation of the subsequent tracking stage.

RateV isual(fps) =
1000ms

(71.62 + 71.58 + 31.67 + 297.5)
(13)

⇒ RateV isual(fps) = 2.11fps
⇒ RateIntel(fps) = 6.58fps

In a multicore processor we could have more than
one core doing image processing. As image processing
is composed of many pipelined stages, we could assign
each stage to a different thread or we could have many
cores working on the same frame. Due to load balanc-
ing problems between threads and the added synchro-
nization and communication, we found that it was much
better to have each core working on a different frame
(from the same camera or from another camera).

Image processing is clearly CPU bound, but as the
different cores share the last level cache and the mem-
ory bandwidth, we expect a certain performance penalty.
We have run multiple instances over different frames to

Time [ms]

Stage
CPU3
(Single
thread)

CPU3
(Four

Instances)

%
Increment

BayerToRGB 15.7 16.77 4.84

RGBToHSV 35.61 36.00 1.1

Motion Detection 9.83 10.30 4.78

Segmentation 85.39 87.75 2.76

Total 146.53 150.82 2.92

Table 3 Comparison of the processing time of each stage
between an implementation for a single frame and one for 4
frames using a machine with 4 cores (PC3 ).

observe the effect on each of the stages. The results are
presented in table 3 on a given run of 4 threads over the
4 cores of PC3.

Data in table 3 show that, while in the single thread
implementation we are able to process around 6.58 fps,
running one instance per core we reach about 25 fps, so
it follows that there is a minimal overhead for each stage
at around 2.5 % for this particular execution. Conversion
BayerToRGB is the stage that more variability supports
with a 4.84 % penalty due mainly to the increased L3
cache miss ratio.

5 GPU Implementation

The hardware architecture of a system with a GPU can
be seen in fig. 7. A GPU is a hardware device connected
to the main system through a fast bus, second-generation
PCI Express currently. It has some very specific process-
ing features regarding the current CPUs.

Fig. 7 Hardware architecture of a system with GPU
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Specifically, the features that make GPUs specially
powerful in massively parallel computing are:

– Hardware composed of several computing functional
units and several multicores.

– In single precision floating point, a GPU can reach
up to 500 Gflops owed to the 30-50 Gflops of conven-
tional CPUs.

– High bandwidth for the internal memory up to one
order of magnitude higher than the bandwidth of a
CPU and system memory (up 111.9 GB/s in GPU4 ).

– In order to take advantage of such high bandwidth,
GPUs allow several memory access operations to run
simultaneously.

– GPU use Single Instruction Multiple Thread (SIMT)
paradigm. This specific execution allows and needs
many independent and simultaneous active threads
that execute the same instructions over different data.
All of them running as an unique kernel.

Below, a brief introduction to the main techniques
in CUDA optimizations are described attending GPU
characteristics and SIMT paradigm. Next, a preliminary
study of our application is needed taking in mind these
techniques as well as different criteria such as compu-
tational cost or massively parallel computing redesign.
Finally, the optimized results for CPU and GPU imple-
mentations are shown and discussed.

5.1 Techniques for optimizing GPU code

Several techniques are at our disposal for an optimum
use of GPU capacities according to recommended me-
thodologies [22, 26, 24, 27]. Across all the stages these
techniques have been evaluated. A GPU is a device de-
signed for highly parallel computation having a very high
number of functional units and a high memory band-
width. Therefore, the main techniques for increasing per-
formance are based on keeping up the occupation of func-
tional units (known as occupancy), maximizing the use
of effective bandwidth to memory (using techniques like
coalescence) and minimizing branch divergency.

Occupancy: Occupancy is defined as the number of
threads assigned to each processor. Maintaining a high
occupancy in the GPU is important in order to mask
the high latency of memory accesses. It can be achie-
ved by means of three different ways: taking care with
data-independent instructions, maintaining the number
of registers per thread as low as possible and/or obtain-
ing the best compromise occupancy - shared memory size
per thread. Therefore, it is important to fully exploit the
parallelism available in the application.

Coalescence: Coalescence is a technique for opti-
mizing memory accesses. Memory accesses from different
threads can be merged into a single access to the device
memory if the required conditions are fulfilled [8]. This
fusion process is known as coalescence and it is defined as
a mean to gather several simultaneous memory accesses

in parallel. It is promoting during the global memory
accesses and it consists in a mechanism that fuses into
an unique operation all the read/write accesses from the
running threads in the current active block. GPUs have
specific hardware that detects and makes this fusion, hid-
ing the high latency of threads accessing to local or global
memory when cache is not available.

Divergency: In the SIMT paradigm implementation
of CUDA GPUs, high performance is obtained when all
the thread in the same active block are executing iden-
tical instruction. In conditional execution code (ie. con-
ditional branches) several threads could take different
paths. The result could be the serialized executions of
diverging threads within a block, and therefore, increas-
ing the cost for every divergent thread.

In order to evaluate and achieve high performance
over GPU, several tools have been used to refine code:
CUDA Visual Profiler, CUDA Occupancy Calcu-
lator , and Decompiler . This last one is a tool for dis-
assemble code generated by a CUDA project. It provides
the exact register mapping of the GPU, so bottlenecks
in terms of number of registers used by the kernel can
be checked. We used a specific decompiler named decuda
that is available at
http://wiki.github.com/laanwj/decuda/ [32]

5.2 Preliminary Study

In this section, the adequacy of each stage to be imple-
mented as a GPU kernel has been analyzed. Stages are
independently implemented in different kernels in order
to check their behavior using GPU paradigm. This test
has been performed over PC3 and the results are pre-
sented below.

Conversion BayerToRGB : this stage requires, for
every pixel, access to the neighbor pixels in order to cal-
culate the resulting RGB. The processing is made per
pixel independently, although the final result also de-
pends on the adjacent input values such as fig. 4 shown.
Therefore, there is no coalescence in reading or writing, it
has a high grade of divergency (each pixel is computed
in a different way) and because it is the first stage, it
supports the driver overhead (data has to be send to
the GPU ). Resulting RGB data are saved in memory
as planar form to take advantage of coalescence in the
following stages. Evaluation: suitable. Computational
cost: 19.47 ms (≈ 11.45%).

Conversion RGBToHSV : in the same way as the
previous stage, processing is pixelwise but there is no
data dependency regarding the neighbor pixels. There
is no divergence and as RGB data is kept in memory
in planar form accesses are fully coalesced. Evaluation:
suitable. Computational cost: 5.68 ms (≈ 3.31%).

Motion detection: Since it is basically a pixelwise
subtraction, there is not dependency. As in the previous
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stage, Motion detection has a high coalescence degree
and there is no divergence. Evaluation: suitable. Com-
putational cost: 7.2 ms (≈ 4.23%).

Color Segmentation: Segmentation consists basi-
cally in 2 substages, blob labelling and color classifica-
tion. We are going to study them independently.

– Blob Labelling: this algorithm searches for con-
nected zones in the image. The nature of the connec-
tivity search produces a strong dependency among
neighbors. There is not a simple parallel solution and
a new algorithm should be developed to take advan-
tage of the available features. We have tried many
different algorithms and implementations. The more
parallel code is, the more synchronization between
CUDA blocks is needed, so more performance lost.
Evaluation: not suitable. Computational cost: 93.34
ms (≈ 54.88%).

– Color Classification: it is also a good candidate to
be implemented on GPU as computation does not
have dependencies with the neighbors and it implies
a substantial part of the total time in the CPU im-
plementation. It can be decomposed into three sub-
stages: resulting image calculation by consulting the
corresponding LUT entry, LUT update for the next
frame and noise filtering by morphological operators.
The coalescence ratio for reading is low because LUT
accesses are not regular. Divergence is minimal or
none. Again, since this is the final stage, it supports
the driver overhead of returning data results to the
CPU. Evaluation: suitable. Computational cost:
44.37 ms (≈ 26.09%).

As a summary, main characteristics of every stage are
shown in table 4. The CUDA implementation was tested
over PC3, obtaining the results shown in fig. 8. We can
conclude:

Stage Occ1 Coal2 Div3 DO4

BayerToRGB 66 R̄/W̄ 5 High Yes

Motion detection 100 R/W Not Not

RGBToHSV 100 R/W Not Not

Classification 66-100 R̄/W̄
Low or
none

Yes

Table 4 Study of main parameters to improve the perfor-
mance in every stages. (1): Occupancy, (2): Coalescence, (3):
Divergence, (4): Driver Overload. (5)R/W: Coalescence in
read or write. R̄/W̄ : Non-coalescence in read and write.

– Most stages are performed per pixel, so there is plenty
of parallelism. Consecutive stages could be grouped

Fig. 8 Computational cost for [ICC] and CUDA (over PC3)
implementations.

and executed invoking a single kernel, reducing driver
and synchronization overheads.

– Motion Detection and Conversion RGBToHSV sta-
ges prove a good behavior when they are implemented
over CUDA. When comparing the CPU and the GPU
implementation, times goes from 9.83 to 7.20ms and
from 35.61 to 5.68ms respectively.

– In spite of pixelwise calculation, Conversion Bayer-
ToRGB stage presents several dependencies in its
data and divergence in the operations. CUDA imple-
mentation has to be carefully studied because time
is higher in the CUDA implementation (19.47 versus
15.7ms in the CPU).

– Labelling is not parallelizable and our designed algo-
rithm for GPU has a deficient behavior. Its compu-
tation time has increased almost 20x.

– CUDA implementation of the classification stage pre-
sents a significant improvement in performance, re-
presenting around 58% of the total time (if we do
not account labelling).

The critical design phase is the labelling computing,
since it is not parallelizable. The CPU version is much
faster than the GPU version, as observed in fig. 8, so an
hybrid implementation of the segmentation stage could
be implemented with Labelling done in the CPU. It is
worth to take special care in aspects as kernel context
switch or data transfer with CPU, avoiding unnecessary
waste of time as they needs to access the GPU driver to
complete the operation. The computational cost of trans-
ferring data CPU ⇒ GPU or GPU ⇒ CPU is around
7.19 ms. Three solutions have been studied:

– Option 1: All the stages are run over GPU : La-
belling allows identifying active areas in the image,
reducing the segmentation to those areas and making
unnecessary segmenting the rest of the image. Total
computational cost would be Ttotal1 = Tp + tegpu +
tsblob , where Tp is the time due to the pre-labelling
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Fig. 9 Comparison: First CUDA (over PC3) implementation
versus optimized C++

stages, tegpu is the labelling cost in GPU and tsblob is
the segmentation cost on the active areas.

– Option 2: Previous stages to labelling are run on
GPU, results are transferred to the host, which runs
the labelling and returns the result to theGPU, where
the segmentation is done on the active areas. Ttotal2

= Tp + ttotaltrans + tecpu + ttotaltrans + tsblob , being
ttotaltrans the transference cost + kernel commuta-
tion cost + driver access cost.

– Option 3: Classification is applied to the whole image
and not only over active areas. Ttotal3 = Tp+ tsimage .
In this hybrid solution, labelling and final segmenta-
tion are relegated to CPU because its performance for
these stages is more efficient than the corresponding
over GPU. So one GPU kernel is invoked for pro-
cessing all the pixelwise operations (from Bayer to
classification) and then the CPU ends with the seg-
mentation stage.

Previous options have been tested and results are shown
in fig. 9 over PC3. By minimizing the computational cost
Ttotal1 , Ttotal2 and Ttotal3 , the optimum decision can be
taken. As fig. 9 shows, option 3 provides the optimum
solution (64.78 ms) in comparison with the other alter-
natives whose costs are 144.91 and 71.25 ms. Option 1 is
even more expensive than [ICC] implementation whose
processing time is about 100.52 ms. Because the extra
data transfers and the kernel context switching, option
2 is worse than option 3 although the whole image is
classified in this last one.

In the light of previous results, we can conclude that
Blob Labelling is not efficient for parallel computing and,
in case of necessity for posterior stages such as tracking
or distracter removal (football field lines), must be rele-
gated to the CPU. Taking this decision as a new starting
point, the next step consists in the optimization of all the
stages.

5.3 Results

The preliminary study of the GPU execution concludes
that on-line processing are composed of four stages (Bay-
erToRGB conversion, RGBToHSV conversion, Motion
detection, and classification), all of them are done per
pixel. In addition, our implementation over GPU con-
sists of an unique kernel, avoiding thus the extra time
introduced by context changes or driver overload. This
kernel receives frame data and runs the four pixelwise
processes, and ends transferring the resulting data from
the classification to the CPU.

A comparison between implementations on PC3 over
the Intel C++ [CPU3] and over the CUDA [GPU3] ap-
plying all the optimizations is shown in table 5.

Time [ms]

Stage CPU3 GPU3 Speed-up

BayerToRGB 15.7 16.48 0.95

RGBToHSV 35.61 2.57 13.85

Motion detection 9.83 1.86 5.27

Labelling 5.3 Not used

Classification 85.39 23.63 3.61

Table 5 Comparison among CPU3 (single thread) and
GPU3 implementations.

– Since transfer time is a non-negligible limitation, a
detailed study for minimizing the number of data
transfer operations and kernels invocations has to be
done

– BayerToRGB performance accounts for the driver
overhead and it’s time is worse than the CPU im-
plementation.

– Motion Detection has a good behavior since process-
ing is pixelwise. High speed-up has been obtained,
being 5.27 times faster.

– Conversion RGBToHSV stage also achieves high speed-
up. This computing is boosted 13.85x.

– Finally, Classification, the most expensive stage, has
achieved an speed-up of 3.61x, being comparable in
time to other stages like Conversion BayerToRGB.

– Finally, the optimized version is 42.96% better than
the first implementation. The gain comes mainly from
the optimized version of classification. BayerToRGB
gets almost no improvement because it supports the
data transfer and driver overhead.

6 Scalability Test

The performance of a GPU system is mainly determined
by the number of cores and the memory bandwidth. To
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verify this, we have selected different systems with differ-
ent resources (shown in table 1) to test the performance.
The aim is to study the cost evolution per stage and glob-
ally. The first 3 GPUs have been chosen with a consistent
growing criterion in the number of GPU cores (16, 32 &
64). Memory bandwidth almost doubles from GPU1 to
GPU2, and GPU3 has almost 6 times more than GPU1.
The fourth GPU, with 216 cores and 112GB/s, is chosen
to confirm the tendency showed in the previous tests.

Two comparative analysis have been done. The first
one, at the stage level, evaluating the time cost for every
stage for each GPU (fig. 10). The second one, comparing
the global performance of the application using the 4
different CPUs against the GPUs measured in frames
per second fps (fig. 11).

Fig. 10 Stage computing time using different GPU models.

Analyzing at the stage level (fig. 10), it is important
to note that improvement increase with GPU power, al-
most always proportional to the number of cores. The
only exceptions are the conversion BayerToRGB and
Classification stages, where driver overhead, input data
dependence, and memory bandwidth produces a slightly
lower rate (see fig. 10).

In fig. 11, results are compared at the application level
between the GPU-CPU configurations, and the same
tendency can be appreciated. A very low-cost laptop
equipped with GPU1 is able to obtain enough process-
ing ratio in fps to connect a camera to the tracking stage
(8 fps or more). Nevertheless a highly optimized single
threaded implementation over a medium PC as CPU4 is
not able to do that. A comparison GPU - CPU in PC1
shows that achieved improvement is around 2.11x, 2.32x
in PC2, and 3.41x in PC3. A considerable speedup has
been obtained (10.67x) with GPU4, a Geforce GTX 260,
processing 63.38 frames per second versus the 5.94 from
CPU4, and 7.32x if we compare it with GPU1.

A remark about the architectures and characteristics
of the different equipments under test can also be ex-
tracted. Despite the fact that the pair CPU-GPU are
contemporary, the evolution of both architectures are not
equal over time. CPU power increase in the last two years

Fig. 11 Ratio in frames per second for different GPUs in
comparison with the three available CPUs.

is negligible in comparison with GPUs in the same pe-
riod. This can be explained due to the maturity of both
technologies and the improvement margin. CPU1 is able
to process 4.11 fps while CPU3 only goes up to 6,59 fps
and CPU4 only achieves 5,94 fps even slower than the
previous generation.

In a dual core processor (CPU1 and CPU2), while
one core is doing image processing the other is used by
the application for doing the other tasks (imagen cap-
ture, tracking, control and visualization). In machines
with additional cores, more frames could be processed
in parallel. As shown previously, CPU3 is able to run 4
threads, processing around 25 fps, almost 3 frames more
than GPU3. CPU4 is also a 4-core processor but has si-
multaneous multithreading (Hyperthreading in Intel ter-
minology), so it appears as eight CPUs to the Operat-
ing System. When running four threads, CPU4 achieves
21.29 fps and goes up to 30.62 fps when running eight
threads, getting more throughput but slowing down each
tread.

Given that we establish a minimum processing rate
of at least 8 fps as requirement for a successful posterior
tracking stage and that we need to process 8 cameras, it
is necessary a minimum processing rate of about 8 ∗ 8 =
64fps. Thus, real-time can be obtained as:

– PC3 processes 6.59 fps in single thread mode or ≃ 25
fps using multicore execution, so we need 3 medium-
high PCs.

– A GPU Quadro FX 1800 (GPU3 ) processes 22.45
fps, so we need at least 3 low-cost GPUs.

– In a hybrid implementation using a PC3 and a GPU3
it was possible to process ≃45 fps.

– A Geforce GTX 260, while its price is around 150
dollars, shows a processing ratio of around 64 fps.
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7 Conclusions and Future Work

7.1 Conclusions

In the light of these results, we can assert a set of inter-
esting conclusions:

– High-capability computing devices, such as current
GPUs, have an enormous potential for video process-
ing applications. As proof, segmenting football play-
ers in real time have been possible by making an ef-
ficient use of these platforms.

– The usage of GPUs has meant a significant success
for our application. We are able to improve all the
processing stages, with the exception of labelling, with
speed-ups up to 40x and using medium-cost hard-
ware.

– An hybrid segmentation implementation, where clas-
sifications is done for the whole image in the GPU
and labelling is later done by the CPU without any
penalty, gives us better performance.

– The global performance improvement is 10.67x over
a single thread implementation, making possible a
processing rate of 63.38 fps over a single GPU.

– Over a 4-core processor we are able to process almost
25 fps in a multithreaded implementation.

7.2 Future Work

Given the good performance achieved which confirms the
initial promising idea, we consider this paper as a first
step in a future research line. For that, we propose several
ideas that, due to lack of time, resources or for being out
of the scope of the paper have not been studied properly.
Future lines of research can use this increase not only for
increasing the processing rate, but also for an intrinsic
improvement of the processing stage.

– To study the evolution of processing rate according
to image resolution.

– Feature modeling has been assumed as known. We
propose to study the scalability according to varia-
tion in the target model (number of Gaussians, non-
parametric models, ...).

– To study how the classification metric (Euclidean
distance, Mahalanobis, ...) or even the classification
methodology (neural networks, SOM, ...) can affect
to the final results.

– To extend the application field to other compatible
disciplines such as facial recognition or human track-
ing, to name a few.
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