
Scalability of Color-Based Segmentation of Football
Players over GPUs

Miguel Ángel Montañés
University of Zaragoza

1 Maria de Luna
Zaragoza, Spain

mmonla@unizar.es

Enrique F. Torres
∗

Univ. of Zaragoza, HiPEAC
1 Maria de Luna
Zaragoza, Spain

enrique.torres@unizar.es
Jesús Martínez

University of Kingston
Penrhyn Road, Kingston Upon

Thames
KT1 2EE, UK

Jesus.Martinezdelrincon@
kingston.ac.uk

J. Elías Herrero
University of Zaragoza

1 Maria de Luna
Zaragoza, Spain

jelias@unizar.es

ABSTRACT
In this paper, we study the scalability of a real applica-
tion to the available number of cores in the GPU. Our ap-
plication is a real-time image processing in which a foot-
ball player feature extractor based in color patterns obtain
feasible measures for tracking system. Since football play-
ers are composed for diverse and complex color patterns,
a Gaussian Mixture Models (GMM) is applied as segmen-
tation paradigm. Optimization techniques have also been
applied over the C++ implementation using profiling tools
focused on high performance. Time consuming tasks were
implemented over NVIDIA’s CUDA platform, and later re-
structured and enhanced, speeding up the whole process sig-
nificantly. Our resulting code is around 4-11 times faster on
a low cost GPU than a highly optimized C++ version on
a central processing unit (CPU) over the same data. The
optimized application has been benchmarked over different
GPUs with different number of cores. Due to data depen-
dencies performance increase 1.4x when doubling number of
cores.

1. INTRODUCTION
Real-time image processing systems are specially relevant
in Computer Vision. Any advanced image processing appli-

∗This work was supported in part by grants TIN2010-
21291-C02-01, TIN2007-66423 and TIN2007-60625 (Span-
ish Government and European ERDF), gaZ: T48 research
group (Aragón Government and European ESF), Consolider
CSD2007-00050 (Spanish Government), and HiPEAC-2
NoE (European FP7/ICT 217068).

cation requires a previous extraction of significant features.
These features could be used in recognition or tracking sys-
tems for several applications. Our proposal is oriented to
improve drastically the performance of image segmentation
systems. Concretely, we focus on feature extraction and ob-
ject classification based on those features, not only over pre-
recorded video sequences but also from live video streaming.

Our method to extract those features consists in an image
segmentation according to color information. Segmentation
systems are usually a first stage inside an image processing
framework. Thus, for instance, results generated by seg-
mentation techniques can be used as input for a tracking
algorithm. In the literature, it exists a broad variety of
methods for a reliable segmentation of objects in an image.
One of the most popular approaches consists in a Gaussian
mixture model (GMM) in which every object can be rep-
resented by one or more Gaussians. This is because most
objects are composed of a mixture of different tones asso-
ciated to a unique color or even of several different colors.
Although GMM is a successful and broadly used method for
feature extraction, its computational cost is a strong hand-
icap for real time applications. The spectacular evolution
that CPUs experimented in the past has provided a tool
for mitigating the problem. Nevertheless, the progressive
slowdown during the last years has stopped this progres-
sion whereas it has promoted parallel architectures, such as
multi-core, as a solution for increasing the computational
power. Unfortunately, most programs are conceived using
a serial philosophy. Serial code cannot automatically take
advantage of multiple cores to execute itself faster, so that
code must be redesigned from a newer parallel point of view.

The GPU architecture is optimized for massively parallel
processing with peaks up to hundreds of GFLOPS. Recently,
in order to take advantage of these high performance com-
puting devices, some extensions to well-known programming
languages have been generated, such as CUDA C [4]. This
language is a set of parallel extensions of the C/C++ pro-
gramming languages and it is able to interact with a special

hardware interface built into all current NVIDIA GPUs.

In the last few years, the amount of scientific application
tested over GP-GPU has increased [3]. Although generally
those researches are focused on specific calculations, they
provide an initial idea about the intrinsic potential of this
new platform [10]. Particularly, in our field of interest, sev-
eral studies probe this capability in modern GPUs [7]. Tra-
ditional methodologies have been implemented, such as pat-
tern recognition algorithms based on textures [6], Gaussian
mixture models [9] or image feature extraction techniques
[13, 15]. All these examples give an idea of the increase of
efficiency that can be achieved thanks to these devices.

In our research, we have developed an application which is
able to detect football players in a video sequence. Once they
are extracted from background, each player is classified into
any of the teams. For classification purposes, a color-based
method is employed. Our election has been Expectation
Maximization for Gaussian Mixture Models [9]. Since one
of our main objectives is to process multi high-resolution
cameras, detection and classification processes must be ap-
plied on real time in a extremely efficient manner. In order
to achieve that, we have adapted and implemented those
tasks over GPU platform taking advantage of its high par-
allel computational capability (Section 5).

The evaluation of our implementation has been made over
a set of different low cost GPUs with 16, 32 and 64 cores
to study the scalability of the implementation. These tests
have also been run under different CPUs, to clarify as much
as possible the real contribution of our implementation.

The outline of the paper is as follows. In Section 2 the
hardware infrastructure is described. Section 3 introduces
the stages that compose our application and discusses their
computational cost. Section 4 explains the computational
cost of a prototype implemented in an optimized version in
C++ running in a conventional CPU. In section 5, the paral-
lelization as well as the CUDA implementation are detailed.
Section 6 presents a comparison between CPU and GPU re-
sults and its scalability. Finally, conclusions are presented
in Section 7.

2. INFRASTRUCTURE
Our approach consists of the processing and classification al-
gorithms for football players in sequences provided from one
or multiple cameras, which are installed in a real football
stadium. In our infrastructure, we propose a system com-
posed of 8 static high definition digital cameras (resolution
1388x1036) with overlapping fields of view. The cameras are
positioned around the stadium as is shown in fig. 1.

This camera distribution has been done in this way because
the minimum number of cameras for covering the football
field with enough resolution is 8 and the overlapping cameras
are crucial to solve occlusions, specially in conflictive areas.

In order to check the performance improvement and scal-
ability that our implementation achieves, we have tested
the algorithm over different types of processors and GPUs.
Thus, three different types of PCs are available for scalabil-
ity study and a fourth PC is used to confirm results. These

Micro GHz nVidia Cores Bandwidth
(GB/s)

PC1 Core 2
T7500

2.2 Geforce
8600M GS

16 6.7

PC2 Core 2
T8900

2.4 Quadro
FX 1600M

32 11.2

PC3 Core 2
Quad

2.83 Quadro
FX 1800

64 38.4

PC4 Core i7
Quad

2.8 Geforce
GTX260

216 111.9

Table 1: Different types of CPUs and GPUs for testing

Figure 1: Camera distribution on the roof

equipments are shown in table 1. These equipments are
close to the average current processors, giving us a significa-
tive sampling of the market. On the other hand, 4 different
GPUs have been tested too keeping same philosophy. They
also fulfill another requirement: since our implementation
employs atomic functions to obtain synchronism, we need
video cards compatible with CUDA Compute Capability 1.1
or higher. For every possible combination of both platforms
(CPUs and GPUs), a scalability study was made.

3. DESCRIPTION OF APPLICATION
The proposed classification algorithm can be decomposed
into a set of steps. Most of them should be done per camera.
The steps and input data that they require are described
next.

3.1 Independent processing per camera
• Image Capture: at this stage, images are retrieved on

demand from each camera.

• Color Space Transformation from Bayer to RGB: high-
resolution cameras usually provide images in raw for-
mat (also called Bayer-type RGGB [2]), i.e. 8 bits
per pixels for color codification. To obtain a RGB im-
age, we need an intermediate transformation process

called BayerToRGB. RGB values which match up in
the RGGB sequence are mapped directly, while other
channels are calculated as an arithmetic mean of all
neighbors corresponding to the same channel.

• Motion Detection: it consists in a thresholded sub-
traction between the current image (fig. 2 a)) of ev-
ery camera and a pre-generated image of the scenario,
called background (fig. 2 b)). Process is shown in fig.
2 c). Motion detection image contains the dynamic
areas, which will be used for posterior processing like
distracter removal.

• Color Space Conversion RGB to HSV : under vari-
able illumination conditions, better segmentation re-
sults can be obtained by applying a transformation in
the color space [14]. Instead of RGB, HSV (Huge, Sat-
uration, Value) has shown a better accuracy.

• Blob Labelling: it is the algorithm that seeks con-
nected areas, called blobs, in the resulting image of
the previous step. By grouping pixels into blobs and
assigning a common label we simplify the posterior
tracking stage.

• Color Segmentation: this procedure tackles the prob-
lem of identifying different areas of the image. GMM
(Gaussian Mixture Model) has been chosen as paradigm,
which implies a preliminar training by extracting color
features from regions of interest. Thanks to this tech-
nique, a distinction into three groups is obtained: player
of team 1, player of team 2 and noise from the back-
ground.

a) Current image b) Background image

c) Motion Image, thresholded subtraction
between the current image and background.

Figure 2: Current image, background image and sub-

straction result image.

Fig. 3 details the processing flow per camera. Output gen-
erated from previous stages is used as input for a tracking
algorithm in order to ensure the temporal coherence. Al-
though it is out of the scope of this paper, a Multi-Camera
Uncensted Kalman Filter (MCUKF) [8] has been used to

Figure 3: Processing schema

demonstrate the global feasibility. Empirical experiments
allow us to conclude that a successful tracking can be ob-
tained with a processing frame rate between 8 and 15 per
each camera and to process 8 cameras we need more than
64 images per second for real time.

3.2 Gaussian Mixture Method for Image Seg-
mentation

In collaborative sport applications, it is known a priori that
both teams, as well as background, are defined by clear and
distinctive color patterns in their clothing. These color pat-
terns can be easily modeled by parametric methods.

GMM is a method that allows a reliable object modeling
and image segmentation even in presence of complex targets,
which can be composed of multimodal appearance distribu-
tions. Since it is a parametric technique, it needs a off-line
training phase to calculate those parameters. Training re-
sults are used afterwards in classification On-line stage.

The simplest technique to model the appearance coefficients
consists in assuming the target as a monochrome region and
modeling it as a Gaussian using only two parameters: mean
µ and covariance σ2. Although this assumption limits the
generality of the methodology, it can be easily extended by
dividing the target into a predefined set of monochrome re-
gions [12].

p(x) =
1√
2πσ

e−(x−µ)2/2σ2

(1)

p(x) =
N∑
i=1

wi
1√
2πσi

e−(x−µi)
2/2σ2

i (2)

Both off-line training and on-line classification are composed
of different phases:

1. Off-Line Computing consist of a sample selection in or-
der to supervise sample selection for every group (team
1, team 2 and background), parameter tuning to ade-
quate number of Gaussians used to model every group
and training.

2. On-Line Computing is composed of a classification step
in which every pixel is classified into one of the differ-
ent groups. For this, it is required to HSV conversion,
computation of the distance between the pixel candi-
date and the different model of every group, final deci-
sion based on minimum distance and probability com-
putation to measure the membership degree to every
group. This last process generates, as result, probabil-
ity images [5] that can be used to improve the tracking
quality based on stochastic approaches.

As the offline stage is only applied once at the beginning and
under supervision, it can be considered out of the real-time
system and, therefore, its implementation is not required
over a GPU platform for our goals. However, this process is
also amenable to be implemented using the GPU, as it was
demonstrated in [9], obtaining excellent results.

4. CPU IMPLEMENTATION
A single thread implementation of the algorithm was made
in C++ language running under Windows.

For this optimization process, performance analysis tools,
such as Intel VTune Performance Analyzer were applied to
identify the possible hotspots. This tool aimed at increasing
performance, in addition to the location of hotspots, allowed
us to perform a deep analysis of them. Thus, Intel VTune
Performance Analyzer let us to detect, to re-code and to op-
timize our implementation, improving the performance sub-
stantially. An important difference must be noticed between
those general optimizations and those that act on specific
parts of the code.

• General optimizations: they improve the global per-
formance of the application. Our main optimizations
consist in:

1. Usage of a specific optimizing compiler, such as
Intel C++ compiler. Full optimization and spe-
cific architecture compilation flags are both used
in this implementation.

2. Classical Code Optimizations [1]. It is crucial to
take into account the memory mapping of data
structures. In this way, we ensure a high success
rate in the access to cache memories. For that,
input data must be stored consecutively in mem-
ory as often as possible, i.e. data are stored in
memory in raw order. Therefore, in loops, image
data have to be accessed by rows. Thus, data ac-
cess obtains high cache hit. Access by columns
fails in cache because data are not consecutively
in memory.

• Specific optimizations: they improve the performance
of given functions. The most important of them is
the use of Look-up Tables or LUTs. Those func-
tions with a clear and repetitive pattern, such as color
classification, can be replaced for a storage in mem-
ory of all possible result for any input combination.
This resulting matrix is called Look-up Table (LUT).
An example is color space conversion. For each RGB
value, the classification result is calculated and stored
in LUT. After its generation, the expensive calcula-
tion is replaced for a memory access to the right mem-
ory slot, which implies a substantial boost of the effi-
ciency. The more complex the operation is, the more
efficient this technique is. For our particular case, cal-
culations for determining the segmentation of a pixel
costs 39.96ns, whereas the memory access to check the
value in the LUT is 6.02 ns, which implies a speed-up
x6.63. Although generating the LUT implies a fixed
cost of 670.48 ms, it can be done off-line since the color
model is usually static.

Stages Time (ms) % of total

Conversion Bayer to RGB 15.7 10.34
Motion Detection 9.83 6.47
Conversion RGB to HSV 35.61 23.45
Labelling 5.3 3.49
Segmentation 85.39 56.24

Table 2: Time of different stages over optimized In-
tel C++ compilation [ICC] and percentage time of
them over total time.

In table 2 is shown that any implementation using Intel C++
[ICC] achieves good results.

RateIntel(fps) = 6.58fps

In spite of this considerable improvement, Conversion RGB
to HSV and Segmentation stages still remain as critical bot-
tle necks. Therefore, in order to raise the performance and
to be able to achieve our goals, a more powerful tool is re-
quired. Moreover, other stages that were not so critical a
priori, like Conversion RGB to HSV, have acquired now a
more important role. It is because of this reason that stages
shown in Table 2 have been implemented on the GPU plat-
form, with a special focus on the Segmentation stage.

5. GPU IMPLEMENTATION
The hardware architecture of a system with a GPU can
be seen in fig. 4. A GPU is a hardware device connected
to the main system through a fast bus, second-generation
PCI Express currently. It has some very specific processing
features allowing to take advantage over the current CPUs.

Figure 4: Hardware architecture of a system with GPU

Specifically, the features that make GPUs specially powerful
in massively parallel computing are:

1. Hardware composed of several computing functional
units and several multicores.

2. In single precision floating point, a GPU can reach up
to 500 Gflops owed to the 30-50 Gflops of conventional
CPUs.

3. It has a high bandwidth to the internal memory of up
to one order of magnitude higher than the bandwidth
of a CPU and system memory (about 86.4 GB/s in a
GPU versus 8.5 GB/s in a CPU).

4. In order to take advantage of such high bandwidth,
GPUs allow several memory access operations to run
simultaneously.

5. Paradigm Single Instruction Multiple Thread, SIMT,
is used by the GPU. This specific execution allows
and needs many independent and simultaneous active
threads that execute the same instructions over differ-
ent data. All of them are running into a unique kernel
at the same time.

Attending GPU characteristics and SIMT paradigm, a pre-
liminary study of our application is needed. Different crite-
ria have been used in this analysis: Computational cost and
redesign of several algorithms for massively parallel comput-
ing.

5.1 Preliminary Study
In this section, the adequacy of each stage to be implemented
on GPU has been analyzed. The CUDA implementation
was tested using PC3 (see Section 2 table 1) obtaining the
results shown in fig. 5, where we can conclude:

• Conversion Bayer to RGB : this stage requires, for
every pixel, access to the neighbor pixels in order to
calculate the resulting RGB. The processing is made
per pixel independently, although the final result also
depends on the adjacent input values. Therefore, there
is no easily adaptable and massively parallelizable im-
plementation due to a dependency among the instruc-
tions data. In spite of pixelwise calculation, Conver-
sion Bayer a RGB stage presents several dependencies
in its data. CUDA implementation has to be carefully
studied because time is higher in CUDA implementa-
tion as is depicted in fig. 5.

• Motion detection: Since it is basically a pixelwise
subtraction, there is not dependency with the neighbor
pixels and a new thread per pixel can be launched in-
dependently. Motion Detection and Conversion RGB
to HSV stages prove a good behavior when they are
implemented over CUDA. This results are obtained be-
cause in this phases the computation is realized pixel
by pixel and dependency data is very scarce. Time
cost is reduced considerably.

• Conversion RGB to HSV : in the same way as the
previous stage, processing is pixelwise but there is no
data dependency regarding the neighbor pixels.

• Blob Labelling: this algorithm searches for connected
zones in the image. The nature of the connectivity
search produces a strong dependency among neigh-
bors. There is not a simple parallel solution and a
new algorithm should be developed to take advantage
of the available features. Labelling stage is not par-
allelizable and our designed algorithm for GPU has a
deficient behavior. Its computation time has increased.

• Color Segmentation: it is also a good candidate
to be implemented on GPU as computation does not
have dependency with the neighbors and it implies a
substantial part of the total time. It can be decom-
posed into three substages: resulting image calculation
by consulting the corresponging LUT, LUT update for
the next frame and noise filtering by morphological op-
erators. CUDA implementation of Segmentation stage

Figure 5: Computational cost for [ICC] and CUDA (over

PC3) implementations.

presents a significative improvement.

Because of data shown in fig. 5, relevant decisions can be
taken. Analyzing fig. 5, it can be observed that segmenta-
tion, for being the most expensive stage, must be analyzed
carefully. This stage takes between 58.27% to 57.8% of com-
puting time (without taking into account labelling time) in
[ICC] or CUDA implementations respectively. Since Con-
version Bayer to RGB stage takes between 25.37% (in PC3)
of the total time in CUDA implementation and its data de-
pendencies detected, it needs a special optimization. For
Motion Detection and Conversion RGB to HSV stages, data
independence provides margin to get better.

A critical design phase is the labelling computing, since it is
not parallelizable. Since labelling becomes a expensive stage
in GPU as observed in fig. 5, it is worthy to take special
care in aspects as kernel context switch or data transfer with
CPU, avoiding unnecessary waste of time. Three solutions
must be studied:

• Option 1: All the stages are run on the GPU : La-
belling allows identifying active areas in the image, re-
ducing the segmentation to those areas and making un-
necessary segmenting the rest of the image. Total com-
putational cost would be Ttotal1 = Tp + tegpu + tsblob ,
where Tp is the time due to the pre-labelling stages,
tegpu is the labelling cost in GPU and tsblob is the seg-
mentation cost on the active areas.

• Option 2: Previous stages to labelling are run on
GPU, results are transferred to the host, which runs
the labelling and returns the result to the GPU, where
the segmentation is done on the active areas. Ttotal2

= Tp + ttotaltrans + tecpu + ttotaltrans + tsblob , being
ttotaltrans the transference cost + kernel commutation
cost + driver access cost.

• Option 3: All the stages are run on GPU an the
labelling is eliminated. This implies that segmentation
is applied to the whole image and not only over active
areas. Ttotal3 = Tp + tsimage .

In each kernel switch or data transference, the CPU needs
to access the GPU driver to complete the operation, which
implies an additional time.

Figure 6: Comparison: First CUDA (over PC3) imple-

mentation versus optimized C++

1. The computational cost of transferring data CPU ⇒
GPU or GPU ⇒ CPU is around 7.19 ms. By running
as many instructions as possible inside the GPU, just
two transfers should be needed: to introduce input
data and to obtain the results.

2. For each kernel switch, the GPU requires extra time
for changing the context. By grouping different stages
in a shared kernel, we save this extra time.

Therefore, every single operation of any type that we could
run into the GPU will avoid to waste time unnecessarily.
Thus, it is a good practise to design stages which could run
into the same kernel.

Previous options have been tested and results are shown in
fig. 6 from PC3. By minimizing the computational cost
(Ttotal1 , Ttotal2 and Ttotal3), the optimum decision can be
taken. As fig. 6 shown, option 3 provides the optimum
solution (64.78 ms) in comparison with the other alternatives
whose costs are 144.91 and 71.25 ms. As fig. 6 shows, option
1 is even more expensive than [ICC] implementation whose
processing time is about 100.52 ms. Because the extra data
transfers and the kernel context switching, option 2 is worse
than option 3 although the whole image is segmented in the
last one. In the light of previous results, we can conclude
that Blob Labelling is not efficient for parallel computing
and, in case it would be necessary for the posterior stages
such as tracking or distracter removal (football field lines),
must be relegated to the CPU. Taking this decision as a new
starting point, the next step consists in the optimization of
all the stages.Therefore option 3 has been selected, Labelling
stage is relegated to CPU (if it is needed) and segmentation
is applied over the whole image.

5.2 Techniques for optimizing GPU code
Several techniques are at our disposal for an optimum use
of GPU capacities according to recommended methodolo-
gies [11]. Across all the stages these techniques have been
evaluated. A GPU is a device designed for highly paral-
lel computation having a very high number of functional
units and a large memory bandwidth. Therefore, the main
techniques for increasing performance are based on keeping
up the occupation of functional units (known as occupancy)

and maximizing the use of effective bandwidth to memory.
Next, the most effective ones are described.

5.2.1 Occupancy
Occupancy is measured by the number of threads assigned to
each processor. Maintaining a high occupancy in the GPU
is important to performance due to it can be achieved by
means of two different ways: through the number of regis-
ters and through the amount of shared memory employed.

As a general rule, the less the number of register used per
kernel, the higher occupancy. However, it is worthy to note
that this modification is not always easy since it strongly
depends on the algorithm and could imply a deep restruc-
turing.

By analyzing one of the segmentation substages and restruc-
turing an indexing instruction for memory allocation, we
were able to save 2 registers per kernel. This complex re-
duction implies the core occupancy has gone from 66% to
100%

5.2.2 Coalescence
Coalescence is a technique for optimizing memory accesses.
Memory accesses from different threads can be merged into
a single access if the required conditions are fulfilled [4].
This fusion process is known as coalescence. Coalescence
is defined as a mean to gather several simultaneous mem-
ory accesses in parallel. It is promoting during the global
memory accesses.

Coalescence is, without doubt, the most powerful method
for optimization in GPU. It consists in a mechanism that
fuses into a unique operation all read/write accesses from
the running threads in the current active block. GPUs have
specific hardware that detects and makes this fusion, allow-
ing to hide the high latency of threads accessing to local
or global memory when cache is not available, and improv-
ing the speed-up above two orders of magnitude for these
operations.

This technique is specially relevant in the following stages,
although it has been applied across the whole system: con-
version Bayer to RGB: 100% coalescent on writing and on
some reading, conversion RGB to HSV: 100% coalescent on
both writing and reading, motion detection: 100% coales-
cent on both writing and reading and color segmentation:
≈ 10% coalescent in substage 1, ≈ 30% coalescent in sub-
stage 2 and 100% coalescent in substage 3.

5.2.3 Others Techniques
Other techniques to achieve improvement in GPU are:

• Masking of high latency memory accesses: this can be
achieved by sending non data-dependant instructions
to the processing units during the transference cycles.

• Avoiding branch divergence: when several threads should
take different paths, it is called divergence and the ex-
ecution times of all the branches become serialized,
increasing the cost for every divergent thread.

CPU GPU Speedup

PC1 4.11 8.66 2.11

PC2 5.33 12.37 2.32

PC3 6.58 22.45 3.41

PC4 5.94 63.38 10.67

Table 3: Final results (in number of frames)

6. RESULTS AND SCALABILITY TEST
As our system is composed of identical high definition cam-
eras (1388x1036), we will only analyze the processing time
for one of them. Later, we could extrapolate results to work
out the scalability of our processing kernel.

A scalability study aims to assess the performance of our
algorithm as a function of the number of images, the number
of cameras or the computational power. To this end, we
have processed the algorithms on several computers that
have been selected on the basis of different criteria:

1. The CPUs will be of mid-high range because it seeks
a significant increase in computational power.

2. The first 3 GPUs have been chosen with the criteria
of having a number of cores that is a multiple of the
number of cores of the previous GPU. The aim is to
study the evolution of the cost of processing each of
the phases and the global system.

3. The fourth GPU is chosen to confirm the tendency
showed in the previous tests as this section describes.

Thus, the chosen configuration for each experiment is as is
shown in Section 2 table 1.

Analyzing results from the application point of view (see
Table 3), a considerable speed increase has been obtained
(10.67x), being possible to process 63.38 frames per second
with a Geforce GTX 260 versus the 5.94 that CPU4 could.
A comparison GPU - CPU in PC1 shows that achieved im-
provement is around 2.11x, since this CPU processed 4.11
fps and its GPU processed 8.66 fps. Values in comparison
GPU - CPU in PC2 achieve 5.33 fps in CPU2 and 12.37 fps
in GPU2 resulting in a speed up of 2.32. Values in compari-
son GPU - CPU in PC3 achieve 6.59 fps in CPU3 and 22.45
fps in GPU3 resulting in a speed up of 3.41.

In the same manner, a comparison among the time cost
evolution of different stages and process ratio in fps over
different equipments has been extracted (see fig. 7 and 8).

In these figures, results using the 4 GPUs with 16, 32, 64
and 216 cores are depicted. Two comparative analysis can
be done: evaluating the time cost for every stage for each
GPU or comparing the global performance of the application
using the 4 different CPUs against the GPUs measured in
frames per second, fps.

Analyzing in the stage level (fig. 7), it is important to note
that improvement increase with GPU performance, almost
always proportional to the number of cores. The only ex-
ceptions are the conversion Bayer to RGB and segmenta-
tion stages, where input data dependence produces a slightly
lower rate (see fig. 7). Global improvement has an almost

Figure 7: Stage computing time using different GPU

models.

linear tendency achieving an execution code 7.32 time faster
in GPU4 than in GPU1.

In fig. 8, results are compared in the application level be-
tween three GPU-CPU configurations, and the same ten-
dency can be appreciated. A very low-cost laptop equipped
with GPU1 is able to obtain enough processing ratio in fps
to connect a tracking stage (8 fps or more). Nevertheless a
highly optimized implementation in a medium PC as PC4
is not able to do that without the GPU.

It is also worthy to note some characteristics of the three
different equipments under test. Despite the fact that the
pair CPU-GPU are contemporary, the evolution of both ar-
chitectures are not equal over time. CPU power increase
in the last two years is really smaller in comparison with
GPUs in the same period. This can be explained due to the
maturity of both technologies and the improvement margin.

It has to be noticed how a low-cost GPU as Geforce 8600M
GS with only 16 cores takes advantage over a medium-high
CPU as Core i7 (8.66 fps versus 5.94 fps, respectively), being
1.46 times faster in global processing.

Finally, note that the speed-up increase with the number of
cores is constant although not in the same proportion. This
difference is mainly due to the overhead of the transference
time CPU ⇔ GPU.

Given that a minimum processing rate of 8 fps is required
for a posterior tracking stage and that we need to process 8
cameras, it is necessary a minimum processing rate of about
8 ∗ 8 = 64fps. Thus, the scalability can be obtained as:

• PC type 3 processes 6.58 fps per camera using CPU3,
so we need 10 medium-high PC.

• A GPU Quadro FX 1800 (GPU3) processes 22.45 fps
per camera, so we need 3 low-cost GPUs.

Figure 8: Ratio in frames per second for different GPUs

in comparison with the three available CPUs.

In addition, since the performance increase is ∼1.4x when
the number of cores doubles, we could extrapolate that a
machine with a GPU with a triple number of cores, could
process the 64 fps needed over only one equipment.

This extrapolation has been confirmed in a experiment over
a Geforce GTX 260 while price is around 150 dollars. Re-
sults show a processing ratio around 64 fps proving that our
scalability study is correct.

7. CONCLUSIONS
In the light of these results, we can assert a set of interesting
conclusions:

• Usage of high-capability computing devices, such as
GPUs, have a potential for this kind of applications.
It has been possible to segment football players in real
time by making an efficient use of these platforms. We
are able to improve all the processing stages, with the
exception of labelling, with speed-ups up to 40x and
using medium-cost hardware. The global performance
improvement is x10.67 making possible a processing
rate of 63.38 fps instead of the 4.11 fps in low-medium
PC (PC1), 5.33 fps in medium PC (PC2), 6.58 fps in
medium-high PC (PC3) or 5.94 fps in medium-high
PC (PC4).

• We have been able to make the functionality indepen-
dent of the scalability. Therefore, we have proved that
a single but more powerful card would be able to pro-
cess our 8 cameras.

• Even optimizing the GPU occupancy and the effec-
tive memory bandwidth using coalescence, scalability
is affected by the data dependencies.

8. REFERENCES
[1] D. Bacon, S. L. Graham, and O. J. Sharp. Compiler

transformations for high-performance computing.
ACM Computing Surveys, 26:345–420, 1993.

[2] B. E. Bayer. Bayer. United States Patent, 1975.
http://en.wikipedia.org/wiki/Bayer filter.

[3] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer,
and K. Skadron. A performance study of general-
purpose applications on graphics processors using

cuda. Journal of Parallel and Distributed Computing,
68(10):1370–1380, 2008.

[4] N. Corp. CUDA 2.0 Programming Guide. NVIDIA,
2008.

[5] J. M. del Rincón and C. O. Uruñuela. Feature-based
human tracking: from coarse to fine. PhD thesis,
Zaragoza, University of Zaragoza, Zaragoza, Dic 2008.
Presented: December 2008.

[6] J. Fung and S. Mann. Using multiple graphics cards as
a general purpose parallel computer: Applications to
computer vision. In ICPR ’04: Proceedings of the
Pattern Recognition, 17th International Conference on
(ICPR’04) Volume 1, pages 805–808, Washington,
DC, USA, 2004. IEEE Computer Society.

[7] M. Garland, S. L. Grand, J. Nickolls, J. Anderson,
J. Hardwick, S. Morton, E. Phillips, Y. Zhang, and
V. Volkov. Parallel computing experiences with cuda.
Micro, IEEE, 28(4):13–27, September 2008.

[8] J. R. Gómez, J. E. Herrero, C. Medrano, and
C. Orrite. Multi-sensor system based on unscented
kalman filter. In IASTED, pages 13–18. In Proc.
Image Processing (VIIP), 2006.

[9] N. S. L. P. Kumar, S. Satoor, and I. Buck. Fast
parallel expectation maximization for gaussian
mixture models on gpus using cuda. High Performance
Computing and Communications, 10th IEEE
International Conference on, 0:103–109, 2009.

[10] P. Lu, H. Oki, C. Frey, G. Chamitoff, L. Chiao,
E. Fincke, C. Foale, S. Magnus, W. McArthur,
D. Tani, P. Whitson, J. Williams, W. Meyer,
R. Sicker, B. Au, M. Christiansen, A. Schofield, and
D.Weitz. Orders-of-magnitude performance increases
in gpu-accelerated correlation of images from the
international space station. Journal of Real-Time
Image Processing, 2009.

[11] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E.
Stone, and J. C. Phillips. Gpu computing. Proceedings
of the IEEE, 96(5):879–899, 2008.

[12] P. Pérez, C. Hue, J. Vermaak, and M. Gangnet.
Color-based probabilistic tracking. In ECCV ’02,
pages 661–675, London, UK, 2002. Springer-Verlag.

[13] S. N. Sinha, J. Frahm, M. Pollefeys, and Y. Genc.
Gpu-based video feature tracking and matching.
Technical report, In Workshop on Edge Computing
Using New Commodity Architectures, 2006.

[14] A. R. Smith. Color gamut transform pairs. In
SIGGRAPH ’78: Proc. of the 5th annual conference
on Computer graphics and interactive techniques,
pages 12–19, New York, NY, USA, 1978. ACM.

[15] T. Tuytelaars and K. Mikolajczyk. Local invariant
feature detectors: a survey. Found. Trends. Comput.
Graph. Vis., 3(3):177–280, 2008.

