
Store Buffer Design for
Multibanked Data Caches

Enrique Torres, Member, IEEE, Pablo Ibáñez, Member, IEEE,

Vı́ctor Viñals-Yúfera, Member, IEEE, and José M. Llaberı́a

Abstract—This paper focuses on how to design a Store Buffer (STB) well suited to first-level multibanked data caches. The goal is to

forward data from in-flight stores into dependent loads within the latency of a cache bank. Taking into account the store lifetime in the

processor pipeline and the data forwarding behavior, we propose a particular two-level STB design in which forwarding is done

speculatively from a distributed first-level STB made of extremely small banks, whereas a centralized, second-level STB enforces

correct store-load ordering. Besides, the two-level STB admits two simplifications that leave performance almost unchanged.

Regarding the second-level STB, we suggest to remove its data forwarding capability, while for the first-level STB, it is possible to:

1) remove the instruction age checking and 2) compare only the less significant address bits. Experimentation covers both integer and

floating point codes executing in dynamically scheduled processors. Following our guidelines and running SPEC-2K over an 8-way

processor, a two-level STB with four 8-entry banks in the first level performs similar to an ideal, single-level STB with 128-entry banks

working at the first-level cache latency. Also, we show that the proposed two-level design is suitable for a memory-latency-tolerant

processor.

Index Terms—Cache memories, computer architecture, memory architecture, pipeline processing.

Ç

1 INTRODUCTION

OUT-OF-ORDER processors with precise exceptions require
enforcement of the memory dependences and writing

of the data cache in program order. However, in order to
speed up the program execution, processors also add a
functionality called store-to-load data forwarding (data
forwarding, for short). Data forwarding allows an in-flight
load reading a given address to take its data from the
previous and nearest, if any, noncommitted store writing to
the same address.

In order to accomplish the former functions, namely,
memory dependence enforcement, in-order data cache
writing, and data forwarding, a structure usually called
Store Buffer (STB) is employed. A conventional STB keeps
store instructions in program order until their in-order
commitment. Usually, an STB is designed as a circular
buffer whose entries are allocated to stores at Dispatch and
deallocated at Commit (Fig. 1). Instruction dispatch stalls
if a store instruction finds all the STB entries already
allocated. When a store instruction executes, it writes its
address and data in the allocated entry. As entries are
allocated in order, the relative age of two store instructions
can be determined by the physical location they occupy in
the circular buffer (age ordering).

The data forwarding logic of the STB consists of a store
address CAM, an age-based selection logic, and a data RAM. A
load instruction proceeds as follows:

1. When a load instruction is dispatched it is tagged
with an identifier of the entry allocated to the last
store instruction in the STB.

2. After address computation, the load instruction
concurrently accesses the data cache and the STB.

3. Inside the STB, the CAM structure associatively
searches for stores matching the load address. Then,
the age-based selection logic discards all the stores
younger than the load (using the identifier and a
mask logic) and picks up the youngest store among
the remaining ones (using a priority encoder). Age
ordering of STB entries simplifies the design of the
age selection logic.

4. Finally, the data associated with the selected store (if
any) is read from the data RAM and forwarded into
the load. If a load address does not properly match
within the STB, the load data will come from the
data cache.

The STB is a critical component of out-of-order proces-
sors, because its data forwarding logic is in the critical path
that sets the load-to-use latency. If the STB latency is longer
than the L1 cache latency, the scheduling of load-dependent
instructions becomes complicated and performance is
severely affected. Moreover, the whole circuitry that
identifies and forwards data is complex and incurs long
delays as STB size increases. If the trend toward faster
processor clocks, wider pipelines, and an increasing number
of in-flight instructions goes on, the latency problem posed
by the STB may worsen [1].

On the other hand, multibanked L1 data caches are
considered as good candidates to support wide pipelines in
superscalar processors [2], [10], [11], [12], [16], [30], [31].

IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 10, OCTOBER 2009 1307

. E. Torres, P. Ibáñez, and V. Viñals-Yúfera are with the Departamento de
Informatica e Ingenieria de Sistemas and the Aragon Institute of
Engineering Research (I3A), Universidad de Zaragoza, Maria de Luna,
1, Edificio Ada Byron, 50018 Zaragoza, Spain.
E-mail: {enrique.torres, imarin, victor}@unizar.es.

. J.M. Llaberı́a is with the Departamento Arquitectura de Computadores,
Campus Nord, módulo D6, Universidad Politécnica de Cataluña, Jordi
Girona 1-3, 08034 Barcelona, Spain. E-mail: llaberia@ac.upc.edu.

Manuscript received 9 June 2006; revised 21 Feb. 2008; accepted 10 Feb. 2009;
published online 24 Mar. 2009.
Recommended for acceptance by N. Bagherzadeh.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0226-0606.
Digital Object Identifier no. 10.1109/TC.2009.57.

0018-9340/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 05:44 from IEEE Xplore. Restrictions apply.

Multibanking provides low latency and high bandwidth by
physically splitting storage in independent, single-ported
cache banks. But the latency of a big multiported STB is
longer than the latency of a small single-ported cache bank
[19]. Therefore, a multibanked L1 data cache organization
calls for a distributed STB, and distribution can be achieved
in a straightforward way by placing independent, single-
ported STB banks next to each L1 cache bank.

Zyuban and Kogge use a single-level distributed STB
[31]. In their work, when a store is dispatched to the
selected Issue Queue, an STB entry is allocated to the store
in all STB banks. Because store-load ordering enforcement
and data forwarding are performed by STB banks, stores
cannot be removed from the STB banks until they Commit,
and Dispatch is stalled whenever STB becomes full. As we
will show later, a single-level distributed STB, if under-
sized, can seriously limit performance due to Dispatch
stalls. But, on the other hand, increasing the STB size may
increase its latency [19].

Our goal is to speculatively forward data from noncom-
mitted stores to loads at the same latency of a cache bank. By
looking into the store lifetime and the data forwarding
behavior, we propose to decouple the different tasks
performed by a monolithic STB using a two-level STB [29].
Forwarding is speculatively done from a distributed first-
level STB (STB1) made up of very small banks optimized for
low latency. A few cycles later, a second-level STB (STB2)
checks the speculative forwarding made by the STB1 and, if
required, enforces correct memory access ordering by taking
the proper recovery action.

The STB2 entries are allocated in program order when
stores are dispatched and deallocated when they Commit,
as in a conventional STB. However, as we observe that
stores forward data in a narrow window of time after store
execution, we propose to delay the allocation of STB1 entries
to stores until they execute, and allow STB1 entry deal-
location to proceed before stores Commit. If an STB1 bank is
full, new entries are retrieved in FIFO order. This STB1
allocation/deallocation policy prevents stalling Dispatch
when STB1 banks are full and enables reducing the STB1
size. Moreover, as we allocate STB1 entries at the Execution
stage, every store will only occupy a single STB1 entry in a
single STB1 bank (just the right one).

The proposed two-level organization allows us to trade
complexity for a small performance decrease. Namely, we
will show that selecting a forwarding store from the STB1
without considering ages, and comparing only a subset of
the load/store addresses degrades performance marginally.
We will also show that the STB2 can be completely freed
from the task of forwarding data, and that the STB2 latency
is not a limiting factor of processor performance.

We evaluate the two-level STB design in a sliced memory
pipeline framework, but the concept is applicable to other
multibanked L1 data cache organizations (for instance, those
with a second queue which schedules memory accesses
contending for banks [11], [12], [30]). In a sliced memory
pipeline, the memory pipeline splits into simple and
independent slices where every cache bank is coupled with
an address generation unit, and the target cache bank is
predicted before reaching the Issue Queue stage [16], [30].

This paper is structured as follows: Section 2 outlines the
processor-cache model being used and motivates the work.
Section 3 provides a set of design guidelines for a two-level
STB system. Section 4 details the simulation environment.
Section 5 analyzes performance of integer benchmarks for
the basic two-level STB system working with line-inter-
leaved multibanked L1 caches. Section 6 introduces several
design alternatives aimed at improving the performance
and reducing the complexity of the proposed two-level STB.
Section 7 is a performance summary showing figures for
integer and floating point benchmarks. Section 8 extends the
analysis to memory-latency-tolerant processors. Section 9
discusses related work and Section 10 concludes the paper.

2 MOTIVATION

The STB is in the critical path of the load execution. The STB
latency increases with the number of STB ports and entries
[1], [19]. If the STB latency is longer than the L1 cache latency,
the scheduling of load-dependent instructions becomes
complicated and performance is severely affected. To show
that, in this section, we analyze the performance of a
processor with a single-level distributed STB as a function
of the size and latency of each STB bank. We also characterize
the utilization of a distributed STB showing the average
lifetime of a committed store.

Next, we begin outlining the processor and multibanked
L1 cache models.

2.1 Processor and Multibanked L1 Cache Models

We assume a first-level data cache made of several address-
interleaved L1 cache banks operating as independent,
pipelined, memory slices [30]. A memory slice has an Address
Generation Unit (AGU), a cache bank, and an STB bank (Fig. 2).
We also assume an Issue Queue (IQ) with a fixed number of
scheduler ports shared among integer ALUs and memory
slices. Load and store instructions are dispatched to the IQ
carrying a prediction on their target cache bank which was
generated by a Bank Predictor accessed in the front-end
stages of the processor pipeline. The IQ uses the prediction in
order to issue memory instructions to the predicted slice.
Whenever a bank misprediction arises, the mispredicted load
or store instruction is reissued from the IQ to the right bank.

1308 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 10, OCTOBER 2009

Fig. 1. Conventional STB and simplified load data path.

Fig. 2. Simplified data path example with a four-banked L1 cache and

single-level distributed STB.

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 05:44 from IEEE Xplore. Restrictions apply.

2.2 Single-Level Distributed STB

An STB can be distributed in a straight way by placing
independent, single-ported STB banks close to each L1 cache
bank [31], an approach we call single-level distributed STB
(Fig. 2). Each STB bank is only responsible for the address
subset mapped to its cache bank companion. Forwarding
data to loads and enforcing store-load ordering is thus
locally performed at each STB bank. In this approach, an
entry is allocated in all STB banks when a store is dispatched,
because the store address (and also the destination bank) is
still unknown. Later on, when the store executes in the right
slice, a single STB bank entry is filled. Eventually, when the
store Commits, the entries are simultaneously deallocated in
all STB banks. Thus, the STB bank size determines the
maximum number of in-flight stores.

A single-level distributed STB, if undersized, can
seriously limit performance due to Dispatch stalls. Besides,
increasing the STB size may increase its latency, which, in
turn, also limits performance. Next, we study how single-
level distributed STB performance depends on the STB bank
size and latency. After that, we analyze how STB entries are
used during store lifetime.

For these experiments, we model an 8-way dynamically
scheduled processor with four memory slices and a 256-entry
Reorder Buffer having in-flight up to 128 loads and 128 stores
(a number large enough not to stall Dispatch). More details of
cache and processor parameters, memory pipeline, bench-
marks, and simulation methodology are given in Section 4.

2.3 Processor Performance Versus Number
of STB Entries

Fig. 3 shows the variation of the average IPC of SPECint-2K
benchmarks in the simulated processor with a single-level
distributed STB (1L) when the number of entries of each
STB bank goes from 4 to 128 (notice that the total STB size is
four times that number). The computed IPC assumes that
the STB and the L1 cache banks have the same latency, no
matter what the simulated STB size.

As can be seen, if undersized, a single-level distributed
STB limits performance severely: 4-entry STB banks show a
40.5 percent IPC drop relative to 128-entry STB banks. Below
32 entries, the IPC slope is very steep (�9:3 percent IPC from
32 to 16 entries). A 32-entry STB sets the IPC 3.7 percent
below the upper bound. From 64 entries onward, the STB
does not limit processor performance.

2.4 Processor Performance Versus STB Latency

The STB logic that checks dependences and forwards data is
complex and incurs long delays as the STB size increases
[1], [19]. Besides, if the STB latency is higher than the
L1 cache latency, there appear structural hazards and the
scheduling of load-dependent instructions gets compli-
cated. To take the two latencies into consideration, every
load is tagged on Dispatch with a predicted latency (either
L1 cache latency or STB latency). Afterward, resource
allocation1 and speculative wake-up of dependent instruc-
tions take place according to the predicted latency.

It is easy to predict what loads are going to be forwarded
by the STB and tag them with the STB latency. In this
section, we will use a simple, tagless, 4K-entry bimodal
predictor, since the obtained IPC is similar when using an
oracle-like predictor (under 1 percent IPC improvement
across all the tested configurations).

In order to determine the negative effect on performance
of having an STB slower than the L1 cache, we simulate a
system with four 32-entry STB banks varying their latency
from two to seven cycles (two cycles equal the L1 cache
latency, hollow bar in Fig. 4). We simulate two models of
latency prediction. The first model blindly predicts L1 cache
latency for all loads (black bars). The second model (gray
bars) uses the bimodal predictor. As we can see, if loads
take just one extra cycle to reach, access, and get data from
STB banks, the IPC loss resulting from blind prediction is
almost 8 percent. Even if we add a bimodal predictor, the
IPC degrades 3 percent per additional cycle.

2.5 STB Entry Utilization

Looking at STB utilization is a key factor to overcome the
size-latency tradeoff and increase STB performance. Fig. 5
indirectly shows STB utilization by plotting the average
lifetime of a committed store.

On average, each store spends 46.4 cycles in STB:
17.7 cycles from Dispatch to Execution and 28.7 cycles from
Execution to Commit. When stores execute, they fill a single
STB bank with a <data, address> pair, but only 22.4 percent
of stores will forward data to some load. Stores tend to
forward data soon after they execute: on average, the last use
of an STB entry occurs 8.5 cycles after the store execution

TORRES ET AL.: STORE BUFFER DESIGN FOR MULTIBANKED DATA CACHES 1309

Fig. 3. Single-level distributed STB (1L) with four banks. IPC harmonic

mean versus number of entries per STB bank. X-axis in logarithmic

scale.

Fig. 4. Single-level distributed STB performance for four 32-entry STB
banks. STB bank access latency increases from two cycles (L1 cache
latency, hollow bar) to seven cycles (L1 cache latency plus five cycles).
Black and gray bars show the IPC harmonic mean with a blind predictor,
and a 4K-entry bimodal predictor of loads to be forwarded by STB,
respectively.

1. Resource examples are bypass network and write ports to register file;
their management adds complexity to the IQ scheduler.

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 05:44 from IEEE Xplore. Restrictions apply.

(75 percent of data forwarding occurs within the next seven
cycles, and 90 percent within the next 14 cycles). Therefore,
from a data forwarding standpoint, we notice that: 1) only
a few STB entries forward data to loads, 2) the data
forwarding is performed in a narrow window of time after
store execution, and 3) each STB entry is allocated too early
(at dispatch time) and deallocated too late (at Commit time).

Summarizing, we can conclude that big (and possibly
slow) STB banks are required in order not to stall Dispatch,
but STB latencies larger than cache access times hurt
performance. Another important fact is: from a forwarding
perspective, STB entries are poorly managed.

3 BASIC TWO-LEVEL STB DESIGN GUIDELINES

Our goal is to keep STB bank latency equal to or under
L1 cache bank latency. However, allocating and deallocating
STB entries to stores at Dispatch and Commit, respectively,
requires large (and slow) STB banks in order not to stall
Dispatch frequently.

To overcome this limitation, we propose a two-level STB
design with allocation and filling policies specific to each
level (Fig. 6). A two-level STB decouples the different tasks
performed by a single-level STB as follows: the STB1 only
performs speculative data forwarding, while the STB2
checks store-load ordering, performs data forwarding at
STB2 speed (whenever STB1 fails to do it), and updates
caches in program order. Thus, a load instruction can obtain
the data from either an L1 cache bank, an STB1 bank, or the
STB2. Anyway, we will blindly predict L1 cache latency for
all load instructions.

3.1 First-Level STB Description

The STB1 has to be as simple and small as possible to match
the L1 cache bank latency. To that end, we distribute the
STB1 in single-ported banks and reduce their size by limiting
the number of cycles an STB1 entry remains allocated to a
particular store. From the forwarding behavior exhibited by
stores (Fig. 5), we can limit the time a store stays in the STB1,
probably without performance losses, if we enforce the
following two guidelines:

1. Delay allocation of STB1 entries until stores reach
Execution stage. Thus, before Execution, no store wastes
STB1 entries. Delaying allocation could shorten store life-
time in STB1 by around one-third as pointed out in Fig. 5.
Allocation is now done after bank check, and thus, a single
entry is allocated to each store in only one single STB1 bank.

2. Deallocate STB1 entries before stores Commit. We
can deallocate entries early because most data forwarding

happens in a short period of time (see Fig. 5 again). This fact
suggests an FIFO STB1 replacement policy, so that the
Dispatch stage never stalls even though the STB1 gets full.
As entries are allocated in issue order, an STB1 bank keeps
only the stores most recently issued to that bank.

As we will see in Section 5, following these guidelines
allows us to design a two-level STB with very small STB1
banks (eight entries). However, the entry allocation in the
STB1 is not based on the store instruction age but on the issue
order. That is, the entry index in the STB1 does not reflect the
relative instruction age with respect to other entries. There-
fore, the age-based selection logic of our STB1 requires a
CAM structure that explicitly keeps store instruction ages
(age-CAM) instead of the mask logic of a conventional STB.
The age-CAM compares the load age with the age of each
STB entry and activates those entries older than the load.
Next, the youngest of the activated entries is selected.

Nonetheless, in Section 6.3, we will see that the two-level
organization allows us to trade STB1 complexity for a small
performance decrease. Namely, we will show that selecting
a forwarding store from STB1 can be done without
considering ages (removing age-based selection). The STB1
selects the last-inserted store with a matching address. So,
the store that forwards data is selected by using only a
priority encoder, eliminating the CAM structure that
explicitly keeps store age in our first STB1 design. Note also
that the mask logic of a conventional STB is not required.
Moreover, complexity can be further reduced by comparing
only a subset of the load/store data addresses (partial address
comparison). Both simplifications, removing age-based selec-
tion and partial address comparison, help to match the
latencies of STB1 and L1 cache even more, while also
reducing area and energy consumption of the STB1.

3.2 Second-Level STB Description

On the other hand, the STB2 keeps all in-flight stores, but it
is placed outside the load-use critical path. At dispatch
time, as in a conventional STB, entries are allocated to stores
in STB2, where they remain until they Commit. So, Dispatch
stalls when running out of STB2 entries, irrespective of the
STB1 size. Notice that the maximum number of in-flight
stores is the number of STB2 entries.

As STB1 banks do not keep all in-flight stores, any data
supplied to a load by the L1cache/STB1 ensemble is
speculative and must be verified in the STB2. To that end,
the STB2 acts as a conventional STB, selecting the forward-
ing store if it exists. Besides, the identifier of this store is
compared with the identifier of the forwarding store in
STB1. This operation, which we call data forwarding check,
detects a forwarding mis-speculation whenever a load finds a
matching store in the STB2 and the load is not forwarded
from the STB1, or it is forwarded by a wrong store. In these
cases, STB2 starts a recovery action which consists in the

1310 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 10, OCTOBER 2009

Fig. 5. Store lifetime in a single-level distributed STB with four 128-entry

STB banks (arithmetic means).

Fig. 6. Simplified data path example with a two-level distributed STB and

a four-banked L1 cache.

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 05:44 from IEEE Xplore. Restrictions apply.

nonselective redispatch to the IQ of all the instructions
younger than the load (see Section 4.3).

Alternatively, the load-dependent instructions could be
re-issued selectively from the IQ as in any other latency
misprediction. However, the extra IQ occupancy of the
selective method and the small number of data forwarding
misspeculations make the nonselective mechanism a better
option [29].

In our simulations, as an STB2, we model a conventional
multiported STB. Nevertheless, in Section 6.2, we will show
that STB2 can be completely freed from the task of data
forwarding. Additionally, some published STB optimiza-
tions targeted at reducing area (number of ports), energy
consumption (banking, filtering accesses), or both [3], [17],
[21] can be added to our STB2 profitably.

The default STB2 forwarding check latency has eight
cycles: AGU (one cycle), TLB (one cycle), STB2 (four latency
cycles plus two transport cycles). Anyway, as we will see in
Section 5, performance does not depend on the STB2 latency.

4 SIMULATION ENVIRONMENT

We have modified SimpleScalar 3.0c [4] in order to model a
Reorder Buffer and separate integer and floating point IQs.
Latency prediction (cache bank, L1 cache hit/miss, etc.),
speculative memory instruction disambiguation, specula-
tive instruction issue, and recovery have been carefully
modeled. The memory hierarchy has three cache levels and
a set of interconnection buses whose contention has also
been modeled. We assume an out-of-order 8-issue processor
with eight stages from Fetch to IQ and one stage between IQ
and Execution. Other processor and memory parameters
are listed in Table 1.

Next, Section 4.1 presents the memory data path and the
load/store pipeline timing. Section 4.2 describes how data is
distributed across L1 banks and how memory instructions are
routed to an L1 bank. Section 4.3 explains how the processor
recovers from mispredictions, and finally, Section 4.4 shows
the benchmarks used in our simulations.

4.1 Memory Data Path

The L1 data cache is sliced into four independent paths
(Fig. 7). Each path has an address generation unit (AGU), a
cache bank, and an STB1 bank.

The cache bank has only one read/write port shared
between loads, committed stores, and refills from the
L2 cache. Cache banks are tied to the L2 cache through a
single refill bus of 32 bytes, which also supports forwarding

from STB2 (later we remove this capability). From each
STB1/cache ensemble, there is a single data path to the
Bypass Network shared among supplies from the
STB1 bank, the L1 cache bank, the L2 refill, and the STB2
data forwarding.

Requests to the L2 cache are managed by an L2 Queue
(L2Q) after accessing L2 tags as Intel Itanium II does [15]. The
L2Q can send up to four nonconflicting requests per cycle to
the 16 interleaved 2-cycle cache banks (16B interleaving). A
refill to the L2 cache takes eight banks. The model can stand
16 primary L1 misses and eight L2 misses.

Enforcing load/store ordering. Stores are not issued
until both data and address registers become available.
Memory dependence prediction is used to execute load
instructions and their dependent instructions before know-
ing the addresses accessed by older store instructions. We
use the Store-Sets disambiguation predictor as described in
[5]. The predictor is accessed in the front-end stages of the
processor pipeline and the predicted ordering is managed
by the IQ, which will delay the issue of a load until an older
store has been issued if a dependency between them has
been predicted. Memory ordering misspeculations are
discovered when stores execute, possibly many cycles after
loads and their dependent instructions have left the IQ.

Load instructions. After the Address Generation (in the
AGU), a memory access takes one cycle to access the
L1 cache bank and the STB1 in parallel, plus an extra cycle to
reach the bypass network (line 1 in Fig. 8, cycles 2 and 3). The
forwarding speculation check performed by STB2 is known
several cycles past the L1 cache latency (line 2, cycle 8), but

TORRES ET AL.: STORE BUFFER DESIGN FOR MULTIBANKED DATA CACHES 1311

TABLE 1
Microarchitecture Parameters

Fig. 7. Simplified memory hierarchy and data path showing a two-level

distributed STB. For clarity, only the connection detail in Bank0 is

shown.

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 05:44 from IEEE Xplore. Restrictions apply.

only affects load execution if an STB1 forwarding mis-
speculation arises. A load experiencing an L1 cache miss is
reissued from the IQ in time to catch the data coming from
the L2 cache refill (line 3, cycle 7). On an L2 cache miss, a
request is sent to the L3 cache (line 4), which, in case of hit,
delivers data to the bypass network in cycle 22.

Store instructions. The L1 cache is write-through and
no-write-allocate. Store instructions are committed to L2,
and whenever they hit the L1 cache (filtered by the L2 cache
directory), they are placed in an 8-entry coalescing write
buffer local to each cache bank (not shown in Fig. 7). Write
buffers update L1 cache banks in unused cycles.

4.2 L1 Data Distribution (Cache and STB1 Banks)

Banks are line-interleaved. Because memory instruction
routing is made from the IQ prior to computing addresses, a
bank prediction is required by the IQ scheduler. Bank
prediction is done in the front-end stages of the processor
pipeline and bank check is made concurrently with address
computation by evaluating the expression Aþ B ¼ K with-
out carry propagation [6]. The IQ is notified during the
cycle following bank check (line 1, IQn, cycle 2 in Fig. 8). A
correct bank prediction does not need further information,
but a misprediction comes along with the correct bank
number. So, the IQ will be able to route the mispredicted
memory instruction to the correct bank.

As a bank predictor, we have chosen a global predictor
because it is able to yield several predictions per cycle easily
[22]. We have also chosen to predict each address bit
separately (two bits for four banks) [30]. As a bit predictor,
we have used an enhanced skewed binary predictor, originally
proposed by Michaud et al. for branch prediction [14].
Every bit predictor has 8K entries for the three required
tables and a history length of 13, totalling 9 Kbyte per
predictor. Table 2 shows the accuracy of four-bank
predictors. Each individual execution of a memory instruc-
tion has been classified according to the bank prediction
outcome (right or wrong). Store instructions roughly have
half the bank mispredictions experienced by load instruc-
tions. See [28] for a detailed comparison of bank predictors.

4.3 Recovery from Misspeculations

L1 cache latency is blindly predicted for all loads, and thus,
dependent instructions are speculatively woken-up after the
L1 cache latency elapses. Therefore, there are three sources of
load latency misprediction: bank misprediction, L1 cache miss,
and store-load forwarding misspeculation. Additionally, the
processor has two more sources of misspeculation: memory
ordering misspeculation and branch misprediction.

The modeled processor implements three recovery
mechanisms: namely, recovery from Fetch (branch mispredic-
tion), recovery from the Renamed Instruction Buffer (Memory
ordering and store-load forwarding misspeculations), and
recovery from the IQ (bank misprediction and L1 cache miss).

Recovery from Fetch. All the instructions younger than
the branch instruction are flushed out of the pipeline and
the instruction fetch is redirected to the correct target
instruction. The minimum latency is 13 cycles.

Recovery from the IQ. In order to allow recovering from
the IQ, all speculatively issued instructions that depend on
a load are kept in the IQ until all load predictions are
verified (first, bank check in AGU; next, tag check in the
cache bank). Once a latency misprediction has been
detected, the already issued instructions dependent on the
mispredicted load are reissued at the right moment, either
after the load is rerouted to the correct bank or after the
cache miss is serviced. Notice that recovery is selective
because reissuing only affects dependent instructions.

Recovery from the RIB. Usually, to recover from a
memory ordering misspeculation, the load and all younger
instructions (dependent or not) are flushed out of the
pipeline and subsequently refetched from the instruction
cache. However, the refetched instructions are just the same
ones that have been flushed. So, to reduce the misspeculation
penalty, recovery can be supported by a structure that keeps
already renamed instructions. We call this structure Renamed
Instruction Buffer. As recovery is not done at the Fetch stage,
we do not have to checkpoint the Register Map Table2 on
every load instruction as is done with branch instructions.

The RIB is an FIFO buffer located between the Register
Rename and the Dispatch stages, having the ability to
keep all the renamed in-flight instructions (Fig. 9). So, the
RIB is continuously being filled, in program order, with
instructions already renamed and tagged with all the
predictions computed in the early stages. To simplify the
RIB design, we have chosen not to update RIB entries
when a memory instruction is executed and a bank
misprediction is discovered, even though in not doing so
a further recovery from the RIB would re-experience the
same bank misprediction.

Recovery consists in redispatching the offending load
and all subsequent instructions to the IQ, taking them
sequentially from the RIB. So, the RIB has only one write
and one read port. A similar buffer was suggested by
Lebeck et al. in [13] to tolerate long-latency cache misses.
However, that proposal is more complex because it makes a

1312 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 10, OCTOBER 2009

Fig. 8. Memory pipeline timing after the register read stage. BC, IQn, and tr stand for Bank Check, IQ notification, and transport cycles, respectively.

busX and TagX stand for bus use and tag access, respectively. TLB and m stand for Translation Look-aside Buffer access and L1 cache access (two

cycles, 2 and 3), respectively. The cycles before L2 hit and L3 hit are used to determine L1 miss and L2 miss, respectively.

2. Table used to rename logical registers to physical registers.

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 05:44 from IEEE Xplore. Restrictions apply.

selective recovery and updates the buffer information when
instructions Execute.

4.4 Workload

We use SPECint2K compiled to Alpha ISA, simulating a
contiguous run of 100 million instructions from SimPoints
[24] after a warming-up of 200 million instructions. We also
use SPECfp2K for a limited set of experiments. Tables 3 and 4
show input data sets for SPECint2K and SPECfp2K,
respectively.

All figures (except otherwise noted) show the IPC
harmonic mean (y-axis) across different STB bank sizes
(x-axis in logarithmic scale). Other measures show arith-
metic mean values. We have computed the reported IPCs
by excluding MCF because it is strongly memory-bound.
Nevertheless, a summary of individual program results,
including MCF, is shown in Section 7.

5 BASIC TWO-LEVEL STB PERFORMANCE

In this section, we present the performance results obtained
by our basic two-level STB proposal explained in Section 3.
We also compare the basic two-level STB with the single-level
STB, and with the two-level system previously proposed by
Akkary et al. [1]. Finally, we analyze the sensitivity of the
basic two-level STB system performance to the STB2 latency.

Akkary et al. proposed a two-level STB in the context of a
processor without multibanked cache [1]. In this organiza-
tion, both the STB1 and the STB2 are monolithics (not
multibanked). STB1 entries are allocated to stores at
Dispatch time in FIFO order. When the STB1 becomes full,
the oldest store is moved to STB2. Both STBs can forward
data but at different latencies. In order to reduce the
number of STB2 accesses, they use a Membership Test Buffer
(MTB), which detects the forwarding misspeculations. We
model a multibanked version of this proposal (2L_MTB).
As the MTB has the latency of an L1 cache access, on a
forwarding misspeculation, 2L_MTB uses the same recov-
ery mechanism as that on a latency misspeculation. In our
simulations, we use an oracle predictor instead of the MTB,
and thus, the 2L_MTB results are optimistic.

Fig. 10a shows variations of the IPC as the number of
STB1 bank entries goes from 4 to 128 for four STB systems:
the single-level STB system presented in Section 2.2 (1L), the
basic two-level STB presented in Section 3 (2L), the basic
two-level STB when reducing the STB2 latency from eight
cycles to just the cache latency plus one cycle (2L_1c), and
the 2L_MTB system. The computed IPC assumes that the

first-level STB access latency is equal to the L1 cache
latency, no matter the STB size we simulate.

For all STB bank sizes, the proposed two-level system
outperforms the single-level system and the 2L_MTB
system. This is so because the proposed two-level system
makes better use of STB1 bank entries, allocating them only
when data is available and deallocating them as new stores
enter the STB1. Therefore, the performance gap increases as
the number of STB1 entries decreases.

Fig. 10b presents the STB1 load coverage for the basic
two-level STB (2L) and 2L_MTB. Namely, 100 percent load
coverage means that any load needing data forwarding from
an older in-flight store is fed from the STB1. As we can see,
in our proposed 2L system, even for very small STB1 banks,
the STB1 load coverage is very high. As an example, only
less than 1 percent of the loads requiring forwarding
(0.13 percent of the total loads) are not forwarded from an
8-entry STB1. Note also that below 32 entries, the coverage of
2LMTB is much lower than that of the proposed 2L system.

In order to get an insight about how the STB2
forwarding check latency affects performance, we simulate
the basic two-level STB system again, but this time reducing
the STB2 forwarding check latency from the cache latency
plus five cycles to the cache latency plus just one cycle
(2L_1c). As the number of forwarding misspeculations is
very low, the proposed two-level system has an IPC which
is almost independent of the STB2 latency, see 2L versus
2L_1c in Fig. 10a.

Next, in Section 6, we improve the basic two-level
distributed STB design in several ways.

6 DESIGN ENHANCEMENTS

Both the store behavior in the pipeline and the high load
coverage achieved by the basic two-level distributed STB
design suggest several enhancements that we explore in this
section. The first one increases performance and the last two
reduce complexity.

First, as the contention in the issue ports to the memory
slices is an important drawback in sliced memory pipelines,
we propose reducing the IQ contention by identifying stores
that do not forward data (nonforwarding stores), sending

TORRES ET AL.: STORE BUFFER DESIGN FOR MULTIBANKED DATA CACHES 1313

Fig. 9. Renamed Instruction Buffer (RIB) and its location in the

processor.

TABLE 3
Simulated SPECint2K Benchmarks and Input Data Set

TABLE 4
Simulated SPECfp2K Benchmarks and Input Data Set

TABLE 2
Bank Predictor Accuracy for Four Banks (Percent)

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 05:44 from IEEE Xplore. Restrictions apply.

them by any free issue port to memory, thus bypassing
STB1 and going directly to STB2. Second, we simplify the
STB2 design by removing its data forwarding capability.
Finally, we simplify the STB1 data forwarding logic by
eliminating age checking in the selection logic and reducing
the number of address bits used to compare.

6.1 Reducing Contention for Issue Ports to Memory

Contention in an L1 multibanked cache appears when a
burst of ready memory instructions is targeted to a single
bank. In this situation, all memory instructions contend for
a single issue port to memory and performance may suffer.
We have previously seen that the greatest part of stores do
not forward data. As this behavior is highly predictable, we
could detect such stores and divert them through any free
issue port to memory, thus bypassing STB1 and going
directly to STB2. To that end, we propose using a predictor
that we call Nonforwarding Store Predictor (NFS predictor)
that is accessed in the front-end stages of the processor
pipeline. Stores classified as nonforwarders can be issued
by any free issue port to memory, thus increasing effective
issue bandwidth. Notice that the NFS predictor is further
acting as a store insertion filter, because the STB1 holds only
stores classified as forwarders, which can increase the STB1
effective capacity.

A trade-off exists in the predictor design. By reducing
the number of stores classified as forwarders, we reduce
contention for issue ports. However, forwarding misspecu-
lations may increase because more forwarder stores would
be classified as nonforwarders. We design the predictor in
order to reduce stores wrongly classified as nonforwarders.
As an NFS predictor, we use a simple bimodal predictor
having 4K counters of 3 bits each indexed by an instruction
address.

Table 5 shows some predictor statistics. Sixty-four
percent of stores are classified as nonforwarders, reducing
contention for issue ports to memory and reducing STB1

pressure. However, 0.47 percent of stores which forward
data before Committing are wrongly classified as nonfor-
warders, causing a forwarding misspeculation.

Fig. 11a shows the IPC for basic two-level SYB systems
with and without an NFS predictor. The system with an
NFS predictor (2L_NFSP) always achieves a better IPC than
a system without it (2L).

In order to separate the contributions of contention
reduction and STB1 store filtering, we simulate a system
with an NFS predictor used only to filter store insertion in
the STB1 and not to reduce contention for issue ports to
memory (2L_nfsp).

Making use of free issue ports to memory consistently
improves performance across the whole range of STB1 sizes
(2L_NFSP versus 2L_nfsp). However, by only filtering store
insertion, performance increases for small STB1 of four to six
entries, but it decreases above eight entries (2L_nfsp vs. 2L).

To explain the performance decrease introduced by
filtering store insertion, in Fig. 11b, we have plotted the load
coverage of a system enhanced with an NFS predictor
(2L_NFSP) and a system without it (2L). We see that an
NFS predictor performs well with very small STB1 banks of
four or six entries. But beyond six entries, load coverage is
better without an NFS predictor due to the 0.47 percent stores
that do forward data but are wrongly classified (see Table 5).

Summarizing, in spite of the performance loss due to load
coverage decrease, using an NFS predictor increases
performance for all the analyzed bank sizes, because
contention for issue ports to memory is consistently reduced.
This enhancement is particularly important if store conten-
tion is a big issue, for example, in the case when cache bank
mirroring is used to increase load bandwidth [8], [25], [29].

6.2 Removing STB2 Data Forwarding Capability

In order to forward data from STB2, we need as many data
read ports as there are cache banks, and the IQ Scheduler
must handle two latencies for load instructions. To that end,
a load is first issued by the IQ hoping that it will be serviced
from the STB1/L1 cache, and then, the IQ speculatively
wakes up its dependent instructions. If the STB2 discovers
later that a forwarding misspeculation has arisen, a recovery
action is undertaken. The load is tagged so that it can be
reissued by the IQ now assuming forwarding from the STB2.

As STB2 service is very infrequent (see Fig. 10b), we
remove the STB2 store-load data forwarding capability. In

1314 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 10, OCTOBER 2009

Fig. 10. (a) IPC for the single-Level distributed STB (1L), the basic two-Level STB (2L and 2L_1c), and 2L_MTB. (b) STB1 load coverage for the

basic two-Level STB system and the 2L_MTB. X-axis in logarithmic scale.

TABLE 5
Nonforwarding Store Predictor (Percent)

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 05:44 from IEEE Xplore. Restrictions apply.

turn, this STB2 simplification allows a simpler IQ scheduler
(single-load latency) and also removes the STB2 data
forwarding read ports and their counterpart input ports
to the Bypass Network. Now, every time the STB2 dis-
covers a forwarding misspeculation, the load is reissued by
the IQ in order to obtain the data from the cache after the
offending store Commits. By looking at simulations, we
have realized that usually after a forwarding misspecula-
tion, by the time the load instruction is re-executed for the
first time, the matching store has already written the cache.

Fig. 12 shows a system with STB2 forwarding capability
(2L_NFSP) and a system without it (2L_NFSP_NoFW). Both
are basic two-level STB systems with an NFS predictor.

We have found a performance decrease ranging from
0.8 percent to 0.2 percent across all tested STB1 bank sizes. In
particular, for 8-entry STB1 banks, the IPC loss is about
0.3 percent. Therefore, the forwarding capability can be
removed from STB2 without noticeably hurting perfor-
mance. This loss of performance comes from a small number
of loads waiting until a matching store Commits.

6.3 Simplifying STB1 Data Forwarding Logic

As we have seen in Section 3, our main objective is to design
a store-load forwarding logic as fast as a small single-ported
cache bank. In this section, we present two STB1 simplifica-
tions which help to reduce the STB1 latency: first, we
eliminate the age-based selection circuit, and second, we
reduce the number of bits used to compare addresses. These

simplifications add new forms of data forwarding mis-
speculations to the already existing ones. However, the
overall two-level STB operation, in which the STB2 checks
the data forwarding for all loads, supports all these new
forms of misspeculation without adding new complexity.

6.3.1 Removing Age-Based Selection

This simplification removes the CAM structure (age-CAM)
that compares ages in the selection logic. Now, the most
recently allocated entry having a matching address will
forward data. Explicit ages are still needed, but they are
not used within the critical STB1 data forwarding path.
Namely, explicit ages are needed to: 1) purge the proper
STB1 entries (branch misprediction, data forwarding mis-
speculation, etc.) and 2) label the loads fed by the STB1 so
that the STB2 can detect forwarding misspeculations.

Because entries are allocated out of order, purging can
make holes in STB1 (for instance, purging due to branch
misprediction). In order to keep STB1 complexity as low as
possible, we propose not using compacting circuitry, even
though effective capacity may shrink. All simulations below
have been done according to this assumption.

When removing age-based selection, the following
corner case can arise: let us suppose a store following, in
program order, a load to the same address carrying a wrong
bank prediction. If the store is issued immediately after the
load, the load reaches the correct STB1 bank after the store.
A few cycles later, the STB2 discovers this load suffering a
forwarding misspeculation, and it starts a (nonselective)
recovery from the RIB. As the load is redispatched from the
RIB keeping the same bank prediction (wrong), the initial
situation happens once again.

To make sure that program execution makes forward
progress and that a load is not endlessly serviced from a
younger store, the load is tagged when it is redispatched so
that its re-execution does not check the STB1 again.

6.3.2 Partial Address Comparison

This simplification reduces the size of each entry in the
CAM structure that compares addresses (address-CAM).
We compare only the N least significant bits of load/store
addresses. In general, partial address comparison is used in
some processors to conservatively delay the load execution
on a partial address match with previous stores [15].

TORRES ET AL.: STORE BUFFER DESIGN FOR MULTIBANKED DATA CACHES 1315

Fig. 11. (a) IPC for 2-level STB systems with an NFS predictor (2L_NFSP), without it (2L), and with an NFS predictor used only to filter store insertion

in the STB1 (2L_nfsp). (b) STB1 Load coverage for two two-level systems with a Nonforwarding store predictor (2L_NFSP) and without it (2L).

Fig. 12. IPC for 2-Level STB systems having STB2 forwarding capability

(2L_NFSP) or not (2L_NFSP_NoFW).

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 05:44 from IEEE Xplore. Restrictions apply.

Instead, we will use partial address comparison to spec-
ulatively forward data from a store to a load on a partial
address match.

6.3.3 Misspeculation Examples

Fig. 13 shows a code in which a Load instruction should be
fed from data of the Store labeled B. We assume all addresses
converge into a 2-entry STB1 bank, and each example shows
a possible misspeculation arising when the Load instruction
finds the STB1 filled with the contents depicted. Entries in
the STB1 are assigned FIFO as stores A, B, C, and D are
executing in any relative order. In all examples, store B has
already been executed but it is still not committed.

The first two examples (i, ii) happen in an STB1 without
simplification, and we assume Store B could have been
deallocated from the STB1 by the execution of other stores or
that Store B could never even have been inserted in the STB1
after being filtered by the NFSP. In the first case (i), data is
wrongly supplied by the L1 cache as there is no older store in
the STB1 matching the load address. In the second case (ii),
data from store A is wrongly forwarded by the STB1, because
Store A is older than the load and their addresses match.

The third example (iii) shows a forwarding misspecula-
tion appearing when removing the age-based selection
circuit out of the STB1. Store B is present in the STB1, but
data is wrongly forwarded from the younger store D,
because it is the last executed store having the load address.

The last example (iv) shows a forwarding misspeculation
appearing when the STB1 compares only an address bit
subset. In this case, the data will be wrongly forwarded
from store C as long as the selected address bit subset has
the same value in addresses Y and Z.

6.3.4 Performance Impact of the STB1 Simplifications

Fig. 14 shows the IPC for several two-level systems. All of
them are basic two-level STB systems with an NFS predictor
and an STB2 without the forwarding capability.

The baseline in this section is 2L_NFSP_NoFW, where
the STB1 forwards data by both checking instruction ages
and doing full address comparison. In 2L_NFSP_NoFW_
NoAGE, the STB1 performs full address comparison but
does not check ages. In the other three systems
(2L_NFSP_NoFW_NoAGE_@n), the STB1 does not check
ages and compares only n address bits taken from the
nþ 2 least significant address bits, where the two
removed bits correspond to the bank number.

Removing age checking degrades performance around
0.6 percent across all STB1 bank sizes (2L_NFSP_NoFW vs.
2L_NFSP_NoFW_NoAGE). Thus, store selection can be
done regardless of age with negligible performance loss.
Degradation happens mainly when a store forwards data to
an older load.

Once age checking has been removed, comparing only
12 address bits causes a negligible performance degradation
(0.1 percent) across all STB1 bank sizes (2L_NFSP_NoFW_
NoAGE versus 2L_NFSP_NoFW_NoAGE_@12). Degrada-
tion increases when using 10 or 8 address bits (around
0.8 percent and 3.3 percent, respectively). Thus, store
selection can be done with partial-address comparison.

7 INDIVIDUAL PROGRAM RESULTS

In this section, we summarize the impact of all design
decisions by looking at the individual program behavior of
SPECint2K (Fig. 15) and SPECfp2K (Fig. 16).

Both figures show performance of a single-level dis-
tributed system (1L) and two implementations of a two-
level system. The 1L system uses 128-entry STB banks
which are reachable within L1 cache latency. Both two-level
systems (2L_NFSP and 2L_NFSP_NoFW_NoAGE_@12)
have 8-entry STB1 banks and use an NFS predictor. The
second two-level system removes STB2 forwarding and has
an STB1 that does not check instruction ages and compares
only 12 bits of data addresses.

As Fig. 15 shows, all SPECint2K programs follow the same
trends. We can see that removing STB2 forwarding capability,
performing STB1 data forwarding without age checking, and
comparing a 12-bit address subset end up in negligible
performance losses. So, a two-level STB system with a single
load latency and made up of simple 8-entry STB1 banks
performs similar to an ideal 128-entry one-level STB.

With respect to SPECfp2K, Fig. 16 shows that the
behavior of the three configurations is also very similar

1316 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 10, OCTOBER 2009

Fig. 13. Four examples of forwarding misspeculations in a 2-level STB

design with 2-entry STB1 banks. Store instructions are inserted by the

tail and removed by the head.

Fig. 14. IPC for 2-level STB systems with explicit age checking

(2L_NFSP_NoFW), without age checking (2L_NFSP_NoFW_NoAGE),

and with a partial address comparison of n bits (2L_NFSP_NoFW_

NoAGE_@n).

Fig. 15. Individual IPC for all SPECint2K programs.

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 05:44 from IEEE Xplore. Restrictions apply.

across all programs. The two-level systems with 8-entry
STB1 banks perform just like the idealized one-level system.
Comparing both two-level systems, we can conclude that
the simplifications added reduce performance by a negli-
gible 0.1 percent.

The sensitivity of the IPC to the number of STB1 entries
in SPECfp2K is not shown because performance is almost
flat; the IPC variation is within 0.4 percent across all
reported STB1 sizes. In order to explain such results, Table 6
presents some key statistics about the forwarding behavior
of SPECint2K and SPECfp2K.

The first and second rows show the average percentage
of Store instructions and forwarding Store instructions,
respectively. The last two rows show Store lifetime in a
single-level distributed STB with 128-entry STB banks.

Time from Dispatch to Commit is the average number of
cycles a Store has allocated an STB2 entry, while Time from
Execution to last forwarding is the minimum average time we
would like a forwarding Store to have an STB1 entry
allocated. Both SPECfp2K lifetimes double those of SPE-
Cint2K, and so the required number of STB entries seems to
increase at both levels to sustain performance.

However, this higher demand does not imply perfor-
mance degradation, because it is compensated by a lower
number of store instructions (from 12.6 percent to 9.6 percent)
and by a lower number of forwarding stores (from
22.4 percent to 11 percent).

8 MEMORY-LATENCY TOLERANT PROCESSORS

In order to hide the effect of long memory access delays,
some techniques which increase the number of in-flight
instructions have been proposed [1], [7], [13], [26]. Of
course, such techniques increase the number of store
instructions to be kept in STB.

In this section, we study the behavior of a two-level STB
working in a memory-latency-tolerant (MLT) processor. To
model such a processor, we have set the Reorder Buffer,
Instruction Queue, and STB2 to 2,048 entries, and the Miss
Request Queue to 64 entries in our simulator.

Fig. 17 shows the IPC for SPECint2K and SPECfp2K, for
an efficient two-level STB system working both in the
baseline processor described in Table 1 (2L_NFSP_NoFW_
NoAGE_@12) and in the MLT processor (MLTP_2L_
NFSP_NoFW_NoAGE_@12). We have also plotted the
performance of the one-level distributed STB and the Akkary
two-level STB working in the MLT processor (MLTP_1L and
MLTP_2L_MTB) [1].

As shown in other works, increasing the number of in-
flight instructions has a great impact on floating point
performance, but a limited one on integer performance
(MLTP_2L_NFSP_NoFW_NoAGE_@12 versus 2L_NFSP_
NoFW_NoAGE_@12) [1], [8], [26].

The MLT processor with one-level STB requires a large
number of STB entries to achieve a good performance
(MLTP_1L). The MLTP_2L_MTB performance decreases by
10 percent for SPECint2k and by 11 percent for SPECfp2k
when reducing the STB1 bank size from 2,048 to 8 entries.
However, when considering our two-level STB, perfor-
mance is almost independent of the number of STB1 entries

TORRES ET AL.: STORE BUFFER DESIGN FOR MULTIBANKED DATA CACHES 1317

Fig. 16. Individual IPC for all SPECfp2K programs.

TABLE 6
Forwarding Behavior for SPEC2K (INT and FP) in a

Single-Level Distributed STB with 128-Entry STB Banks

Fig. 17. SPECint2k and SPECfp2k IPC for efficient two-level STB systems working in the MLT processor (MLTP_2L_NFSP_NoFW_NoAGE_@12)

and in the baseline processor (2L_NFSP_NoFW_NoAGE_@12). Also shown is a one-level distributed STB and the Akkary two-level STB working in

the MLT processor (MLTP_1L and MLTP_2L_MTB).

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 05:44 from IEEE Xplore. Restrictions apply.

(MLTP_2L_NFSP_NoFW_NoAGE_@12). Namely, reducing
the number of STB1 bank entries from 2,048 to eight
performs only 0.6 percent worse for SPECint2k, and
2 percent for SPECfp2k. So, our two-level STB proposal
seems to be a valuable design option for memory-latency
tolerant processors.

To get an insight into such good results of the proposed
two-level system, Table 7 shows the forwarding behavior of
SPECint2K and SPECfp2K executing on the MLT processor.

When comparing the forwarding behavior of MLT and
base processors (Table 6), we see a significant increase in the
time a store remains within the pipeline (from Dispatch to
Commit time it gets multiplied by four). As there are more in-
flight instructions, the number of forwarding stores increases
25 percent and 64 percent for SPECint2K and SPECfp2K,
respectively. However, the time from Execution to last
forwarding barely increases or even decreases (from 18 to
15.7 cycles in SPECfp2K). This temporal locality in the store-to-
load data forwarding, which is the underlying cause of the
good results achieved by the proposed two-level STB design,
seems to be a quality of the workload and the out-of-order
execution model. The temporal locality can be explained in
two ways, either the store and its dependent loads are close
together in the instruction stream, or, when they are apart,
instructions between them belong to a separate dependent
chain and are executed before or after them.

Finally, notice that an MLT processor with a two-level
STB having the largest number of STB1 entries (2,048)
performs better than an MLT processor with an equally
sized one-level STB. This is because the two-level STB has
an NFS predictor, which reduces contention in the issue
ports to memory.

9 RELATED WORK

Yoaz et al. introduce the concept of Sliced Memory Pipeline
and exemplify it with a two-banked first-level cache [30].
They propose to steer store instructions to both banks.
However, we have shown that memory issue port conten-
tion is a problem, and consequently, spreading stores to all
STB banks can hurt performance.

Zyuban et al. partition a Load/Store Queue (LSQ) into
banks [31]. When dispatching a store, an entry is allocated
in all LSQ banks and it remains allocated until the store
Commits. A large number of LSQ entries are needed not to
stall Dispatch, as shown in Section 3.

Racunas and Patt propose a new dynamic data distribu-
tion policy for a multibanked L1 cache [18]. As in the
preceding work, they use a partitioned STB (local STB),
whose entries are allocated to stores at dispatch time and
deallocated at Commit time. Therefore, local STB banks need

a large number of entries not to stall Dispatch. Allocation to
a local STB bank is done using bank prediction. Store
information (address, data, etc.) has to be transferred
between local STB banks in two situations: 1) when a store
allocation misprediction happens and 2) when a cache line is
dynamically transferred from one bank to another, in which
case all local STB entries related to that line have to be moved
from the initial bank to the target bank. When transferring
stores from one bank to another, room should be assured in
the target bank. Local STB banks use age information to
decide which store instruction forwards data when several
stores match a load address. On the other hand, a global STB
with forwarding capability is used to forward data to all loads
experiencing bank mispredictions.

In contrast to the two proposals above, we can use STB1
banks with a very small number of entries, because they are
allocated late and deallocated early. As STB1 entries are
allocated just after checking the predicted bank, our design
does not need interbank communication. Besides, our two-
level proposal enables a low-complexity design, which has
STB1 banks that do not use age information nor full-address
comparison to speculatively forward data, and which has
an STB2 that does not require any forwarding capability.

Akkary et al. propose a hierarchical store queue organiza-
tion to work along with a centralized cache on a Pentium 4-
like processor (one load per cycle) [1]. It consists of a fast STB1
plus a much larger and slower backup STB2 (both centra-
lized) and an MTB to reduce the number of searches in STB2.
The MTB is on the load execution critical path. Moreover, the
MTB is managed out-of-order and speculatively. Thus,
maintaining precisely its contents is difficult. In this paper,
we model an oracle MTB, and therefore, the conflicting stores
and the false positives from loads that match younger stores
do not exist. We show that the performance of this approach is
outperformed by our proposal. In a later work, Gandhi et al.
propose a new, centralized, two-level STB scheme [9]. In the
absence of long-latency load cache miss, a conventional one-
level STB performs all the duties required. In the shadow of
such a long-latency cache miss, they switch responsibility to a
two-level STB made up of a first-level forwarding cache and a
second-level simplified STB2. In this second operating mode,
forwarding is mainly done through a specific forwarding
cache, which is speculatively written by stores in execution
order. After a cache miss service, a limited form of speculative
forwarding through the STB2 is also used, which avoids
associative search by using indexed references to the STB2.

Because our first-level STB is a multibanked structure
and entry allocation is delayed until store execution, very
small STB1 banks suffice for good performance. Therefore,
associative search is limited to very few entries. Also, we
evaluate our multibanked STB1 proposal in a multibanked
cache configuration, which requires analyzing issues such
as how to manage multiple STB1 banks and how to cope
with memory issue port contention. Moreover, we suggest
simple designs for both the STB1 (no age checking, partial-
address comparison) and the STB2 (no forwarding).

Baugh and Zilles [3], and Roth [20] use a two-level STB
design in which data forwarding is restricted to the first level.
On the one hand, Baugh and Zilles use a centralized STB1
whose entries are allocated in program order at dispatch time,
but only by those store instructions predicted as forwarders
[3]. Furthermore, to reduce the STB1 search bandwidth, they
use a simple predictor to predict which load instructions
might require forwarding. Instead, we propose a distributed
STB1 whose entries are allocated at Execution, together with a

1318 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 10, OCTOBER 2009

TABLE 7
Forwarding Behavior for SPEC2K (INT and FP) in a

Single-Level Distributed STB with 2,048-Entry STB Banks
Working in an MLT Processor

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 05:44 from IEEE Xplore. Restrictions apply.

Nonforwarding Store Predictor that reduces contention in the
issue ports to memory. Like us, their second-level STB is used
only as a checking device, but it is split in address-interleaved
banks and its entries are allocated at Execution.

On the other hand, Roth uses a centralized queue (FSQ1)
as an STB1 in parallel with a multibanked forwarding buffer
(F1), which keeps unordered stores and handles simple
forwarding cases [20]. FSQ1 entries are allocated in
program order by those stores, which forwarded incorrectly
from F1 in the past. Likewise, loads that were incorrectly
fed from the F1 in the past are steered to the FSQ1. The
second-level STB is an FIFO buffer used only for store
Commit. Forwarding misspeculations are discovered by
compelling selected (vulnerable) loads to reaccess the data
cache at Commit time. In contrast, our proposal does not
have to split the load/store stream among forwarding
sources, because the STB1 is the only forwarding provider.

Sha et al. propose eliminating the associative search in age-
ordered STBs by using two predictors [23]. One of them
identifies, for each load, the most likely forwarding STB entry.
The other predictor is used to delay difficult-to-predict loads
until all but the youngest of their potential forwarding stores
have committed.

Stone et al. suggest using an address-indexed store-
forwarding cache to perform speculative store-load for-
warding, together with an address-indexed memory dis-
ambiguation mechanism [27]. Dependences among memory
instructions are predicted and enforced by the instruction
scheduler.

In order to eliminate load searches in the Store Queue,
Setthumadhavan et al. propose using a Bloom filter [21].
They also use another filter to decide which loads should be
kept in the Load Queue, thus reducing the Store Queue
bandwidth and the Load Queue size. Similarly, Park et al.
reduce the STB search bandwidth by using a Store-Load
pair predictor based on the Store-sets predictor [17]. They
also split the STB into multiple smaller queues with variable
latencies. The ideas in both papers could be applied to our
second-level STB in order to reduce power consumption
and the number of STB2 ports by either reducing the
number of searches or the number of entries to be searched.

10 CONCLUSION

High-performance out-of-order processors need to effi-
ciently forward data among noncommitted stores and
loads. The STB is the structure in charge of that: it keeps
all in-flight stores, supports address-based associative
search and age-based selection for every issued load, and
forwards the right data whenever a match takes place. In a
balanced design, size and bandwidth of the STB should be
proportional to the instruction window size and the issue
width, respectively. Large and multiported STBs can either
compromise the processor cycle time, or increase the
forwarding latency, or both.

In this paper, we find out that the store-load forwarding is
performed in a narrow window of time after store execution,
showing up that from a forwarding point of view the
conventional allocation/deallocation policy of STB entries
can be improved a lot. Therefore, we suggest a two-level STB
in which the first level only deals with data forwarding
(speculatively). Owing to the temporal locality of the store-
load forwarding activity, the first-level STB (STB1) can be
really small, and therefore, very fast (as fast as the L1 cache).
The second-level STB (STB2), out of the data forwarding

critical path, checks the speculative forwarding and, if
necessary, starts recovery. The two-level STB design has
been applied to a processor with a sliced memory pipeline,
where, in consequence, the STB1 is distributed in several
banks.

An STB2 entry is allocated at store Dispatch, and deal-
located at store Commit. However, the allocation of an STB1
entry is delayed until the store executes, and the deallocation
can proceed before the store Commits. If an STB1 bank is full,
entries are managed in FIFO order. Such STB1 allocation/
deallocation policy allows reducing the STB1 size, allocating
the entry only in the right STB1 bank, and not stalling the
Dispatch stage when STB1 banks become full.

Moreover, the proposed role distribution between levels
enables three design simplifications that do not hurt
performance noticeably: 1) forwarding capability can be
removed from the STB2, 2) the STB1 does not use instruction
age to select a forwarding store, and finally, 3) the number
of bits used to compare addresses in the STB1 can be greatly
reduced.

A nonforwarding store predictor can be used to reduce
contention for the issue ports to memory. Stores having a
nonforwarding prediction are issued by any free memory
port, thus increasing effective issue bandwidth.

Following our guidelines, a two-level STB with 8-entry
STB1 banks (STB1 without age checking and with partial
address comparison, and STB2 without forwarding cap-
ability) performs similar to an ideal single-level STB with
128-entry banks working at first-level cache latency. Both
the concept and the guidelines are similar to other multi-
banked L1 data cache organizations (for instance those with
a second queue which schedules memory accesses for
banks). Microarchitectural techniques such as multithread-
ing aimed at improving throughput, and the trend toward
more in-flight instructions to hide the ever-growing
memory latency are going to increase STB storage require-
ments. In this latter scenario, we have shown that our
proposal can help in designing a fitted STB.

ACKNOWLEDGMENTS

This work was supported in part by grants TIN2007-66423
and TIN2007-60625 (Spanish Government and European
ERDF), gaZ: T48 research group (Aragón Government and
European ESF), Consolider CSD2007-00050 (Spanish Gov-
ernment), and HiPEAC-2 NoE (European FP7/ICT 217068).

REFERENCES

[1] H. Akkary, R. Rajwar, and S.T. Srinivasan, “Checkpoint Proces-
sing and Recovery: Towards Scalable Large Instruction Window
Processors,” Proc. 36th Int’l Symp. Microarchitecture (MICRO-36),
pp. 423-434, Dec. 2003.

[2] R. Balasubramonian, S. Dwarkadas, and D.H. Albonesi, “Dyna-
mically Managing the Communication-Parallelism Trade Off in
Future Clustered Processors,” Proc. 30th Int’l Symp. Computer
Architecture (ISCA-30), pp. 275-287, June 2003.

[3] L. Baugh and C. Zilles, “Decomposing the Load-Store Queue by
Function for Power Reduction and Scalability,” Proc. IBM P ¼
AC2̂ Conf., pp. 52-61, Oct. 2004.

[4] D.C. Burger and T.M. Austin, “The SimpleScalar Tool Set, Version
2.0,” Technical Report #1342, UW Madison Computer Science,
June 1997.

[5] G.Z. Chrysos and J.S. Emer, “Memory Dependence Prediction
Using Store Sets,” Proc. 25th Int’l Symp. Computer Architecture
(ISCA), pp. 142-153, June 1998.

TORRES ET AL.: STORE BUFFER DESIGN FOR MULTIBANKED DATA CACHES 1319

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 05:44 from IEEE Xplore. Restrictions apply.

[6] J. Cortadella and J.M. Llabera, “Evaluation of Aþ B ¼ K Condi-
tions without Carry Propagation,” IEEE Trans. Computers, vol. 41,
no. 11, pp. 1484-1488, Nov. 1992.

[7] A. Cristal, O.J. Santana, and M. Valero, “Toward Kilo-Instruction
Processors,” ACM Trans. Architecture and Code Optimization
(TACO), vol. 1, no. 4, pp. 389-417, Dec. 2004.

[8] J. Edmondson et al., “Internal Organization of the Alpha 21164, a
300-MHz, 64-Bit, Quad Issue, CMOS RISC Microprocessor,”
Digital Technical J., vol. 7, no. 1, pp. 119-135, Jan. 1995.

[9] A. Gandhi, H. Akkary, R. Rajwar, S.T. Srinivasan, and K. Lai,
“Scalable Load and Store Processing in Latency Tolerant
Processors” Proc. 32nd Int’l Symp. Computer Architecture (ISCA),
pp. 446-457, June 2005.

[10] P. Hsu, “Design of the TFT Microprocessor,” IEEE Micro, vol. 14,
no. 2, pp. 23-33, Apr. 1994.

[11] C.N. Keltcher, K.J. McGrath, A. Ahmed, P. Conway, C.N.
Keltcher, K.J. McGrath, A. Ahmed, and P. Conway, “The AMD
Opteron Processor for Multiprocessor Servers,” IEEE Micro,
vol. 23, no. 2, pp. 66-76, Apr. 2003.

[12] A. Kumar, “The HP PA-8000 RISC CPU,” IEEE Micro, vol. 17,
no. 2, pp. 27-32, Apr. 1997.

[13] A.R. Lebeck, J. Koppanalil, T. Li, J. Patwardhan, and E. Rotenberg,
“A Large, Fast Instruction Window for Tolerating Cache Misses,”
Proc. 29th Int’l Symp. Computer Architecture (ISCA), pp. 59-70, May
2002.

[14] P. Michaud, A. Seznec, and R. Uhlig, “Trading Conflict and
Capacity Aliasing in Conditional Branch Predictors,” Proc. 24th
Int’l Symp. Computer Architecture (ISCA), pp. 292-303, June 1997.

[15] S.D. Naffziger, G. Colon-Bonet, T. Fischer, R. Riedlinger, T.J.
Sullivan, and T. Grutkowski, “The Implementation of the Itanium
2 Microprocessor,” IEEE J. Solid State Circuits, vol. 37, no. 11,
pp. 1448-1460, Nov. 2002.

[16] H. Neefs, H. Vandierendonck, and K. De Bosschere, “A Technique
for High Bandwidth and Deterministic Low Latency Load/Store
Accesses to Multiple Cache Banks,” Proc. Sixth Int’l Symp. High-
Performance Computer Architecture (HPCA), pp. 313-324, Jan. 2000.

[17] I. Park, L.O. Chong, and T.N. Vijaykumar, “Reducing Design
Complexity of the Load/Store Queue,” Proc. 36th IEEE/ACM Int’l
Symp. Microarchitecture (MICRO), pp. 411-422, Dec. 2003.

[18] C. Racunas and Y.N. Patt, “Partitioned First-Level Cache Design
for Clustered Microarchitectures,” Proc. 17th Int’l Conf. Super-
computing (ICS), pp. 22-31, June 2003.

[19] A. Roth, “A High-Bandwidth Load/Store Unit for Single- and
Multi-Threaded Processors,” Technical Report MS-CIS-04-09,
Univ. of Pennsylvania, June 2004.

[20] A. Roth, “Store Vulnerability Window (SVW): Re-Execution
Filtering for Enhanced Load Optimization,” Proc. 32th Int’l Symp.
Computer Architecture (ISCA), pp. 458-468, June 2005.

[21] S. Sethumadhavan, R. Desikan, D. Burger, C.R. Moore, and S.W.
Keckler, “Scalable Hardware Memory Disambiguation for High
ILP Processors,” Proc. 36th IEEE/ACM Int’l Symp. Microarchitecture
(MICRO), pp. 399-410, Dec. 2003.

[22] A. Seznec, S. Felix, V. Krishnan, and Y. Sazeides, “Design Tradeoffs
for the Alpha EV8 Conditional Branch Predictor,” Proc. 29th Int’l
Symp. Computer Architecture (ISCA), pp. 295-306, May 2002.

[23] T. Sha, M. Martin, and A. Roth, “Scalable Store-Load Forwarding
via Store Queue Index Prediction,” Proc. 38th IEEE/ACM Int’l
Symp. Microarchitecture (MICRO), pp. 159-170, Nov. 2005.

[24] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Auto-
matically Characterizing Large Scale Program Behaviour,” Proc.
10th Int’l Conf. Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pp. 45-57, Oct. 2002.

[25] G.S. Sohi and M. Franklin, “High-Bandwidth Memory Systems
for Superscalar Processors,” Proc. Int’l Conf. Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), pp. 53-62, Apr. 1991.

[26] S.T. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and M. Upton,
“Continual Flow Pipelines,” Proc. 11th Int’l Conf. Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), pp. 107-119, Oct. 2004.

[27] S.S. Stone, K.M. Woley, and M.I. Frank, “Address Indexed
Memory Disambiguation and Store-to-Load Forwarding,” Proc.
38th IEEE/ACM Int’l Symp. Microarchitecture (MICRO), pp. 171-182,
Nov. 2005.

[28] E. Torres, P. Ibáñez, V. Viñals, and J.M. Llaberı́a, “Contents
Management in First-Level Multibanked Data Caches,” Proc. 10th
Int’l Euro-Par 2004 Conf., pp. 516-524, Sept. 2004.

[29] E. Torres, P. Ibáñez, V. Viñals, and J.M. Llaberı́a, “Store Buffer
Design for Multibanked Data Caches,” Proc. 32nd Int’l Symp.
Computer Architecture (ISCA), pp. 469-480, June 2005.

[30] A. Yoaz, M. Erez, R. Ronen, and S. Jourdan, “Speculation
Techniques for Improving Load Related Instruction Scheduling,”
Proc. 26th Int’l Symp. Computer Architecture (ISCA), pp. 42-53, May
1999.

[31] V. Zyuban and P.M. Kogge, “Inherently Lower-Power High-
Performance Superscalar Architectures,” IEEE Trans. Computers,
vol. 50, no. 3, pp. 268-285, Mar. 2001.

Enrique Torres received the MS degree in
computer science from the Polytechnic Univer-
sity of Catalunya in 1993, and the PhD degree
in computing science from the University of
Zaragoza in 2005. He was an assistant
professor in the Polytechnic Schools of the
University of Girona. He is an assistant profes-
sor in the Computer Science and Systems
Engineering Department (DIIS) at the University
of Zaragoza, Spain. He is also on sabbatical

leave for study and research at the University of California in Berkeley,
where he is a member of the International Computer Science Institute
(ICSI). His research interests include processor microarchitecture,
memory hierarchy, and parallel computer architecture. He is a member
of the IEEE Computer Society. He is also a member of the Aragón
Institute of Engineering Research (I3A) and the European HiPEAC
NoE. More details about his research and background can be found at
http://webdiis.unizar.es/gaz/miembros.html.

Pablo Ibáñez received the MS degree in
computer science from the Polytechnic Univer-
sity of Catalunya in 1989, and the PhD degree
in computer science from the University of
Zaragoza in 1998. He is an associate professor
in the Computer Science and Systems Engi-
neering Department (DIIS) at the University of
Zaragoza, Spain. His research interests include
processor microarchitecture, memory hierarchy,
and parallel computer architecture. He is

member of the IEEE and the IEEE Computer Society. He is also a
member of the Aragón Institute of Engineering Research (I3A) and the
European HiPEAC NoE.

Vı́ctor Viñals-Yúfera received the MS degree in
telecommunication and the PhD degree in
computer science from the Polytechnic Univer-
sity of Catalunya (UPC) in 1982 and 1987,
respectively. He was an associate professor at
the Barcelona School of Informatics (UPC)
during 1983-1988. Currently, he is a professor
in the Computer Science and Systems Engineer-
ing Department (DIIS), University of Zaragoza,
Spain. His research interests include processor

microarchitecture, memory hierarchy, and parallel computer architec-
ture. He is a member of the IEEE, the ACM, and the IEEE Computer
Society. He is also a member of the Aragón Institute of Engineering
Research (I3A) and the European HiPEAC NoE. He belongs to the
Juslibol Midday Runners Team.

José M. Llaberı́a received the MS degree in
telecommunication, and the MS and PhD
degrees in computer science from the Poly-
technic University of Catalunya (UPC) in 1980,
1982, and 1983, respectively. He is a professor
in the Computer Architecture Department,
UPC, Barcelona, Spain. His research interests
include high-performance architectures, mem-
ory hierarchy, multicore architectures, and
compiler technology. He is a member of the

European HiPEAC NoE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1320 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 10, OCTOBER 2009

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 05:44 from IEEE Xplore. Restrictions apply.

