
Abstract

This paper focuses on how to design a Store Buffer (STB)

well suited to first-level multibanked data caches. Our goal

is to forward data from in-flight stores to dependent loads

with the latency of a cache bank. For that we propose a

particular two-level STB design in which forwarding is

done speculatively from a distributed first-level STB made

of extremely small banks, while a centralized, second-level

STB enforces correct store-load ordering a few cycles later.

To that end we have identified several important design

decisions: i) delaying allocation of first-level STB entries

until stores execute, ii) deallocating first-level STB entries

before stores commit, and iii) selecting a recovery policy

well-matched to data forwarding misspeculations.

Moreover, the two-level STB admits two enhancements that

simplify the design leaving performance almost unchanged:

i) removing the data forwarding capability from the second-

level STB, and ii) not checking instruction age in first-level

STB prior to forwarding data to loads. Following our

guidelines and running SPECint-2K over an 8-way out-of-

order processor, a two-level STB (first level with four STB

banks of 8 entries each) performs similarly to an ideal,

single-level STB with 128-entry banks working at the first-

level cache latency.

1. Introduction

Codes without much data parallelism are very sensitive to
the load-use delay [19]. Therefore, keeping both latency
low and bandwidth high are key design goals for first-level
(L1) caches in superscalar processors.

Multibanked L1 data caches are being considered good
candidates to support wide pipelines [2][7][8][9][13]
[21][22]. Multibanking provides low latency and high
bandwidth by physically splitting storage in independent,
single-ported cache banks. An option in order to keep a
simple and low-latency pipeline is to predict the target
cache bank before the Issue stage, and to couple every
cache bank with an address generation unit. In this option,

called sliced memory pipeline, the memory pipeline splits
into simple and independent slices, but now performance
will come at the price of an accurate bank predictor [13]
[21].

In order to support precise exceptions in out-of-order
processors, store instructions write cache in program order
at commit time. However, to speed program execution
while enforcing store-load memory ordering, a feature
called store-to-load data forwarding is added (data
forwarding, for short). Data forwarding allows in-flight
loads reading a given address to take data from the nearest
among the oldest, non-committed stores writing to the same
address. For this, a structure called Store Buffer (STB) is
used. Stores wait in STB until they commit and, using
CAM capability and additional logic, store-load memory
ordering is enforced and data forwarding is performed.

STB is a critical component of out-of-order processors
because its data forwarding capability can impact cycle
time [1]. The circuit that identifies and forwards data is
complex and incurs long delays as STB size increases. If
the trend towards fast processor clocks, wider pipelines and
increasing number of in-flight instructions goes on, the
latency problem posed by the STB may worsen [1].

A multibanked L1 data cache organization also requires
a distributing STB, resulting each STB bank coupled to a
cache bank. V. Zyuban and P.M. Kogge use a single-level
multibanked STB in [22]. In their work, STB entries are
allocated to stores in all STB banks when they are
dispatched to Issue Windows. Because store-load ordering
enforcement and data forwarding are performed by STB
banks, stores can not be removed from STB banks until
committing. Dispatch is stalled whenever STB becomes
full. As we will show later, allocating and deallocating STB
entries at dispatch and commit time, respectively, reduces
processor performance significantly.

In this paper we are concerned with two-level
distributed STBs well suited for multibanked caches whose
banks are integrated in a sliced memory pipeline. We
propose a small and fully distributed first-level STB
(STB1) specialized in speculative data forwarding, and a
centralized, second-level STB (STB2) specialized in
enforcing memory ordering. In particular, STB2 will check
all data forwardings made by STB1. This work was partly funded by the Diputación General de Aragón, and

grants TIN2004-07739-C02-01/02 (Spanish Ministry of Education/

Science and European RDF).

Store Buffer Design in First-Level Multibanked Data Caches

E.F. Torres1, P. Ibañez1, V. Viñals1, J.M. Llabería2

1 U. de Zaragoza, Spain and HiPEAC NoE. {enrique.torres, imarin, victor}@unizar.es
2 U. Politècnica de Catalunya, Spain. llaberia@ac.upc.es

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 08:37 from IEEE Xplore. Restrictions apply.

To reduce STB1 size we delay allocation of STB1
entries to stores until they execute, possibly out of program
order, doing then allocation and filling at once. We also
allow entry deallocation to proceed before store commit:
whenever an incoming store is executed and its STB1 bank
is full, the oldest allocated store is overwritten.

At dispatch time, entries are allocated to stores in
program order only in STB2. So, dispatch will only be
stalled when running out of STB2 entries, irrespective of
the STB1 size. When a store is issued by the correct port to
memory, address and data are copied into both STB1 and
STB2.

The two-level organization allows us to simplify the
STB1 and STB2 design without noticeably hurting
performance: STB1 does not use instruction age to select
the store that forwards data, and STB2 keeps all in-flight
stores until they commit, but it does not forward data.

As STB1 banks do not keep all the non-committed
stores, any data given to a load by the L1cache/STB1
ensemble is speculative and must be verified in STB2 (data
forwarding check). For example, from the moment a store
is removed from STB1 until it commits, it is necessary to
identify any consumer load matching such evicted store.
We call forwarding misspeculations to this kind of
situations, which are detected by STB2 when loads reach it.

Ones a forwarding misspeculation has been detected, a
recovery action is undertaken. Recovering from Issue
Queue (IQ), as usual in other latency mispredictions,
increases IQ pressure because loads and al l the
speculatively issued dependent instructions have to be kept
in IQ until STB2 performs the data forwarding check.

However, the very low number of forwarding
misspeculations we have measured allows us to decrease
IQ pressure by recovering from a Renamed Instruction
Buffer which stores all in-flight instructions in program
order. This recovery policy has a high misspeculation
penalty, but in the frequent case of no misspeculation it
enables removing instructions from IQ earlier, namely after
performing the L1 cache hit/miss check.

Finally, in order to reduce contention for the issue ports
to memory (the ports that send memory instructions to L1
cache banks), we use a non-forwarding store predictor.
Stores having a non-forwarding prediction are issued by
any free memory issue port, bypassing STB1 and staying
only in STB2, thus increasing the effective issue
bandwidth. This predictor has proven to be especially
useful in first-level cache systems having banks with
replicated contents (the same cache line is duplicated in
several cache banks in order to provide more load
bandwidth).

This paper is structured as follows: Section 2 outlines
the processor-cache model being used, motivates the work,
and provides the whole set of suggested two-level STB
design guide l ines . Sec t ion 3 de ta i ls s imulat ion
environment. Section 4 evaluates STB design alternatives
for line-interleaved multibanked L1 caches, extending
analysis in Section 5 to cache banks having replicated

contents. Section 6 discusses related work, and Section 7
concludes the paper.

2. A Two-Level STB in a Multibanked L1

Cache Framework

First the model of processor and multibanked L1 cache
being used is outlined. Next, the behavior and limitations of
a simple approach for distributing STB is analyzed. Finally,
the design alternatives used in this paper to overcome the
previous limitations are introduced.

2.1. Model of processor and multibanked L1 cache

A First-level cache is made of several address-interleaved
L1 cache banks operating as independent, pipelined,
memory slices (Figure 1). We assume an Issue Queue (IQ)
with a fixed number of scheduler ports shared among
integer ALUs and memory slices (ALU/AGU + cache
bank). Load and store instructions are dispatched to IQ,
carrying a prediction on their target cache bank (Bank
Predictor). By using this prediction IQ issues memory
instructions to the predicted slice. To enable recovering
from IQ, load and store instructions remain in IQ until bank
predictions are verified.

L1 cache hit latency is blindly predicted for all loads,
and thus dependent instructions are speculatively woken-up
after the hit latency has elapsed. Therefore, there are two
s o u r c e s o f l o a d l a t e n c y m is p r e d i c t i o n s : b a n k
mispredictions and L1 cache misses. Again, in order to
allow recovering from IQ, all speculatively issued
instructions that depend on a load are kept in IQ until all
load predictions are verified (first, bank check in AGU;
next , t ag check in cache bank) . Once a la tency
mispredict ion has been de tec ted, the dependent
misspeculated instructions of the missed load are re-issued
at the right moment, either after the load is re-routed to the
correct bank or after the cache miss is serviced. So, as only
the dependent instructions are re-issued, recovery is
selective.

Stores are not issued until both data and address
registers become available. Memory dependence prediction
is used to execute load instructions and their dependent
instructions before knowing the addresses accessed by
older s to re ins t ruc t ions . We use the Store -Se ts
disambiguation predictor as described in [5] The predicted
ordering is managed in IQ, which will delay the issue of a
load until an older store has been issued if a dependency
be t we en t h em ha s be en p r e d ic t e d . Ord e r i ng
misspeculations are discovered when stores execute,

Figure 1. Simplified data-path example with a two-banked L1 cache

Dispatch

Issue
Queue

Register
File

ALU 1 /

Cache
Bank 0

Cache
Bank 1

Bank
Predictor AGU 1

Rename

to other ALUs

Store-Set
Predictor

RIB
ALU 0 /
AGU 0

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 08:37 from IEEE Xplore. Restrictions apply.

possibly many cycles after loads and their dependent
instructions have left IQ.

Usually, to recover from an ordering misspeculation the
load and all younger instructions (dependent or not) are
flushed out of the pipeline. Instructions are then re-fetched
from the instruction cache. However, the re-fetched
instructions are just the same that have been flushed. So, to
reduce misspeculation penalty, recovery can be supported
by a structure that keeps renamed instructions; we call this
structure Renamed Instruction Buffer (RIB).

The RIB is located after rename and before dispatch. It
is continuously being filled and keeps all in-flight renamed
instructions in program order. Recovery consists in re-
dispatching instructions sequentially taken from the RIB to
IQ. Recovery is non-selective because the offending load
and all subsequent instructions in program order will be re-
dispatched. As recovery is not done from the fetch stage,
we do not have to checkpoint the Register Map Table on
every load instruction as it is done with branch instructions.
A similar approach was suggested by Lebeck et al. in [10]
to tolerate long latency cache misses. They made a
selective recovery and so the RIB is simpler than their
proposed buffer structure.

We model an 8-way dynamically scheduled processor
with a 256-entry Reorder Buffer having in-flight up to 128
loads and 128 stores (a number large enough not to stall
dispatch), four 8KB L1 cache banks, a 256KB second-level
(L2) cache and a 2MB third-level (L3) cache. Section 3
details the remaining cache and processor parameters,
pipeline timing, benchmarks (SPECint-2K), and simulation
methodology.

2.2. Motivation

STB can be distributed in a straight way by placing
independent, single-ported, STB banks close to each L1
cache bank [22], an approach we call single-level
distributed STB. Each STB bank is only responsible for the
address subset mapped to its cache bank companion.
Forwarding data to loads and enforcing store-load ordering
is thus locally performed at each STB bank. In this
approach, an entry in all STB banks is allocated when a
store is dispatched, because the store address (and also the
destination bank) is still unknown. Eventually, when the
store executes in the right slice, a single STB bank entry is
filled. As stores commit, entries are simultaneously
deallocated in all STB banks.

Single-level distributed STB performance depends
heavily on its size and latency. Let us quantify the impact of
these parameters. Figure 2 shows IPC for SPECint-2K as
the number of entries of each STB bank varies from 4 to
128 (notice that total STB size is four times that number).
Computed IPC assumes that STB access latency is equal to
L1 cache latency, no matter the STB size we simulate. A
single-level distributed STB limits performance seriously if
it is undersized: having 4-entry STB banks bears a 40.5%
IPC drop relative to 128-entry STB banks. From 64 entries
on, STB does not limit processor performance, while the

10-64 entry range exhibits a gradual IPC decrease. Below
10 entries the IPC slope is very steep.

The STB circuitry that identifies and forwards data is
complex and incurs long delays as STB size increases [1].
Besides, having an STB with an access time larger than the
cache hit access time complicates load instruction
scheduling. Every load is tagged with a predicted latency.
Resource allocation and speculative wake-up of dependent
instructions is made according to the predicted latency1. In
order to gauge the importance of this fact, we are going to
increase STB bank latency (relative to L1 cache latency).
Figure 3 shows this simulation for 32-entry STB banks,

when increasing STB latencies from +1 to +5 cycles. We
simulate two models. The first model predicts cache hit
latency for all loads (black bars). The second model (grey
bars) uses a 4K-entry bimodal predictor which gives a
latency prediction to each load, either a cache hit latency or
an STB latency. As we can see, if loads take just one extra
cycle to reach, access and forward data from STB banks,
the IPC loss resulting from blind prediction is almost 8%.
When using a bimodal predictor, IPC degradation roughly
accounts for 3% per each additional cycle. Store-load
forwarding is highly predictable because in all tested

1. Resources examples are bypass network and write ports to register

file; their management adds complexity to the IQ scheduler.

Figure 2. Single-level distributed STB. IPC harmonic mean vs.

number of entries per STB bank.

IPC

of bank entries

1.25

1.35

1.45

1.55

1.65

1.75

1.85

1.95

2.05

2.15

2.25

4 6 8 10 12 16 32 64 128

Figure 3. Single-level distributed STB performance for 32-entry

STB banks. STB bank access latency increases from L1 cache

latency (+0, hollow bar) to L1 cache latency plus 5 cycles (+5).

Black bars represent IPC harmonic mean with a blind predictor,

while grey bars represent a 4Kentry bimodal predictor.

IPC

1.70

1.75

1.80

1.85

1.90

1.95

2.00

2.05

2.10

+0 +1 +2 +3 +4 +5

Blind Predictor
4Ke Bimodal

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 08:37 from IEEE Xplore. Restrictions apply.

configurations an Oracle-like predictor outperforms the
bimodal predictor by only 1%.

Looking at STB utilization is a key factor to understand
how to overcome the size-latency tradeoff and increase
STB performance. Figure 4 indirectly shows STB
utilization by plotting the average lifetime of a committed
store.

On average, each store spends 46.4 cycles in STB: 17.7
cycles from dispatch to execution and 28,7 cycles from
execution to commit. When stores execute they fill a single
STB bank with a <data, address> pair, but only 22.4% of
stores will forward data to some load. Stores tend to
forward data soon after they execute: on average, the last
use of an STB entry occurs 8.5 cycles after the store
execution (75% data forwardings occur within the next 7
cycles, and 90% within the next 14 cycles). Therefore, from
a data forwarding standpoint, we notice that only a few
STB entries are used, being allocated too early (at dispatch
time) and deallocated too late (at commit time).

Summarizing, we can conclude that big (and possibly
slow) STB banks are required in order not to stall dispatch,
but STB latencies larger than cache hit access times hurt
performance. And another important fact: from a
forward ing pe r spec t i ve , STB banks a re h igh ly
underutilized.

2.3. Two-level STB design guidelines

Our goal is to keep STB bank access latency equal to or
under cache bank latency. However, allocating and
deallocating STB entries to stores at dispatch and commit,
respectively, requires large (and slow) STB banks in order
not to stall dispatch frequently.

To overcome this limitation, we use a two-level STB
design with allocation and filling policies specific to each
level (Figure 5). STB1 is distributed and each STB bank
has a single port. STB2 is centralized and multiported, but
it is placed outside the load-use critical path. STB1 and
cache banks have equal access times. STB2 latency is
initially assumed to be 5 cycles, however performance
sensitivity to STB2 latency will be checked in the results
section.

A two-level STB can decouple the different tasks
performed by a single-level STB as follows. STB1 only
performs speculative data forwarding. STB2 checks store-

load ordering, performs data forwarding at STB2 speed
(whenever STB1 fails to do it), and updates caches in
program order.

At dispatch time, entries are allocated to stores only in
STB2, where they remain until they commit. So, dispatch is
stalled when running out of STB2 entries, irrespective of
STB1 size. Notice that the maximum number of in-flight
stores is the number of STB2 entries.

Next, we describe several guidelines to deal with the
design of a two-level distributed STB. First, we explain
how to take advantage of the particular forwarding
behavior exhibited by stores. Second, the main drawback of
recovering latency misspeculations from IQ is analyzed
and a solution is proposed. Third, we suggest two design
simplifications that reduce STB1 and STB2 complexity
with a minimun loss of performance. Finally, in order to
reduce contention for issue ports to memory, we propose to
identify non-forwarding stores and send them to STB2
directly.

2.3.1. STB1 allocation policy. In order to reduce the
number of cycles an entry is allocated to a particular store,
we use the following guidelines.

1. Delay allocation of STB1 entries until stores reach exe-

cution stage. Before execution no store wastes STB1
entries. As we pointed out in Figure 4 this policy could
shorten store lifetime in STB1 around one third. Now
allocation is done after bank check, and thus a single entry
is allocated to each store in only a single STB1 bank.

2. Deallocate STB1 entries before stores commit. We ca n
deallocate entries soon, because most data forwarding is
done in a short period of time (see Figure 4 again). This fact
inspires the following STB1 replacement policy: a store
sent to a full STB1 bank becomes allocated to the place of
the oldest store issued to such bank. So, STB1 banks keep
only the most recently issued stores and the dispatch stage
never stalls even though STB1 gets full. In this particular
two-level STB design, a load instruction can obtain the data
from either an L1 cache bank, an STB1 bank or STB2.
Anyway, we will blindly predict cache hit latency for all
load instructions.

2.3.2. Recovery from latency mispredictions. A s
STB1 banks do not keep all in-flight stores, any data
supplied to a load by the L1cache/STB1 ensemble is
speculative and must be verified in STB2. To that end, the
address of an incoming load has to be compared with all

17.7 cycles 28.7 cycles

8.5

dispatch commitfill

Figure 4. Store lifetime in a single-level distributed STB with 128-

entry STB banks.

77.6%

100%

last data forwarding

forwarding
cycles

all
stores

stores

22.4%

committed
stores

Figure 5. Simplified data-path example with a two-level distributed

STB and a two-banked L1 cache.

Issue
Queue

Register
File

L1 Cache, Bank 0

L1 Cache, Bank 1

STB1

STB2

STB1ALU 1 /
AGU 1

ALU 0 /
AGU 0

to other ALUs

L2 cache,
L1 cache

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 08:37 from IEEE Xplore. Restrictions apply.

store addresses present in STB2. If we find one or more
matches with older stores, the nearest one is selected. This
operation, which we call data forwarding check, verifies
whether the load was not forwarded from STB1 or whether
it was forwarded by a wrong store. Once the data
forwarding check identifies the right store (forwarding
misspeculation), a recovery action begins.

Instructions dependent on a load could have been
speculatively woken up while the data forwarding check is
being performed. If IQ is used as the recovery stage, the
load itself and all the speculatively issued dependent
instructions must remain in IQ until STB2 completes the
check (several cycles past the predicted cache hit latency).
Consequently, IQ pressure increases and the number of
cycles where IQ is full may increase too, which can reduce
performance. This fact, coupled to a very low number of
forwarding misspeculations suggests that recovering from
RIB (like ordering misspeculations), and removing
instructions from IQ after performing the cache hit/miss
check might be highly beneficial. Simulation results shown
below will confirm this intuition.

2.3.3. Design simplifications.

Removing STB2 data forwarding capability. In o rde r t o
forward data from STB2 we need as many data read ports
as cache banks are, and the IQ Scheduler must handle two
latencies for load instructions. According to the selected
latency, IQ speculatively wakes up the instructions
dependent on a given load. To that end, the load is first
issued by IQ hoping that it will be serviced from STB1/
L1cache. If eventually STB2 discovers a forwarding
misspeculation, a recovery action is undertaken. The load is
tagged so that IQ can re-issue it assuming forwarding from
STB2.

As we will show later, STB2 forwarding capability is
not really needed, and it can be removed without lowering
performance not iceably (Sect ion 4) . This STB2
simplification removes complexity from IQ scheduler (only
a single load latency has to be managed) and also removes
the STB2 read ports and their counterpart input ports to the
Bypass Network.

Simplifying STB1 data forwarding logic. As STB1 entries
are allocated out of order, stores in STB1 need an explicit
age labelling. Among other things, age is used to select
among stores matching the same address. That is, if one or
more stores match a load address we make use of store age
to select the nearest, older store in program order. In any
case, STB2 must check the speculative forwarding done in
STB1, because the right store could have been deallocated
of STB1.

The age-based selection circuit adds complexity and
latency to STB1 data forwarding. To simplify this circuit
we propose to select the STB1 entry in a circular way,
without checking ages2. Now, the most recently allocated
entry having a matching address will forward the data. As
before, STB2 checks all loads. To make sure that program
execution makes forward progress, and that a load is not

serviced endlessly from a younger store, it suffices to purge
all STB1 entries younger than the load and to tag the load
so that its re-execution does not check STB1 again.

Because entries are allocated out of order, purging can
provoke holes in STB1 (for example after a branch
misprediction), but no compacting circuitry is added and so
the effective capacity may become reduced.

As we will show later, despite not always using the
whole STB1 capacity and having a potentially high number
of misspeculations, forwarding without considering age
does not lower performance noticeably (Section 4).

2.3.4. Reducing contention for issue ports to memory.

Contention in an L1 multibanked cache appears when a
burst of ready memory instructions are targeted to a single
bank. All memory instructions contend for a single issue
port to memory and performance may suffer. We have pre-
viously seen that the greatest part of stores do not forward
data at all. Because this behavior is highly predictable, we
could detect such stores and divert them through any free
issue port to memory, bypassing STB1 and going directly
to STB2. To that end, we propose to use a simple bimodal
predictor we call Non-Forwarding Store Predictor (NFS
predictor). Stores with a non-forwarding prediction are
issued by any free issue port to memory, thus increasing
effective issue bandwidth. This enhancement adds some
performance to the multibanked L1 cache described so far
(Section 4), but it is particularly useful if store contention is
a big issue, for example if cache bank mirroring [19] is
used to increase load bandwidth (Section 5).

3. Simulation Environment

We have modified SimpleScalar 3.0c [4] in order to model
a Reorder Buffer and a separate IQ. Latency prediction
(cache bank, L1 cache hit/miss, etc.), speculative
instruction issue, and recovery have been carefully
modelled. The memory hierarchy has three cache levels,
and a set of interconnection buses whose contention is also
modelled. We assume an out-of-order 8-issue processor
with eight stages from Fetch to IQ, two stages from RIB to
IQ and one stage between IQ and Execution. Other
processor and memory parameters are listed in Table 1.

Memory data path. The L1 data cache is sliced into four
independent paths (Figure 6). Every path has an address
generation unit (AGU), a cache bank and an STB1 bank.x

The cache bank has only one read/write port shared
between loads, committed stores and refills from L2 cache.
Cache banks are tied to L2 cache through a single refill bus
of 32 bytes, which also supports forwarding if STB2 has
this capability. From each STB1/cache ensemble, there is a
single data path to Bypass Network, shared among services

2. Explicit ages are still used but always out of the critical path. Namely,

they are used to: i) flush the proper STB1 entries in case of branch

misprediction or data forwarding misspeculation, and ii) label the

loads fed by STB1 so that STB2 is able to detect forwarding

misspeculations: right address but wrong store age.

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 08:37 from IEEE Xplore. Restrictions apply.

from STB1 bank, L1 cache bank, L2 refill, and STB2 data
forwarding.

Requests to L2 cache are managed by an L2 Queue
(L2Q) after accessing L2 tags (line 4 in Figure 7) as Intel
Itanium II does [12]. L2Q can send up to four non-
conflicting requests each cycle to the sixteen interleaved 2-
cycle cache banks (16B interleaving). On an L2 cache miss,
a request is sent to L3 cache (line 5 in Figure 7). A refill to
L2 cache takes eight banks. The model can stand 16
primary L1 misses and 8 L2 misses.

Load instructions. Memory access takes one cycle to
access L1 cache bank and STB1 in parallel, plus an extra
cycle to reach the bypass network (lines 2-3 in Figure 7,
cycles 2-3). L1 cache/STB1 misses are reissued from IQ in
time to catch the data coming from L2 cache refill (or from
STB2 data forwarding, if it exists, lines 2-3, cycles 7-9).

Store instructions. L1 cache is write-through and no-write-
allocate. Store instructions are committed to L2, and
whenever they hit L1 cache (filtered by the L2 cache
directory) they are placed in an 8-entry coalescing write

buffer local to each cache bank (not shown in Figure 6).
Write buffers update cache banks in unused cycles.

L1 data distribution (cache & STB1 banks). B a n k s a r e
line-interleaved. Because memory instruction routing is
made from IQ prior to computing addresses, a bank
prediction is required by the IQ scheduler. Bank check is
made concurrently with address computation by evaluating
the expression A+B=K without carry propagation [6]. IQ is
notified during the cycle following bank check (line 1,
cycle 2 in Figure 7). A correct bank prediction does not
need further information, but a misprediction comes along
with the correct bank number. So, a mispredicted memory
instruction will be able to be routed again to the correct
bank.

As a bank predictor we choose a global predictor,
because it is easy to yield several predictions per cycle [17].
We also choose to predict each address bit separately (2 bits
for 4 banks) [21]. As a bit predictor we use an enhanced
skewed binary predictor, originally proposed by Michaud et
al. for branch prediction [11]. Every bit predictor has 8K
entries for the three required tables and a history length of
13, totalling 9KB per predictor. Table 2 shows the accuracy
of two-bank and four-bank predictors. Each individual
execution of a memory instruction has been classified
according to the bank prediction outcome (right or wrong).
St o r e i n s t r u c t i o n s r o u g h ly h a v e h a l f t h e b a n k
mispredictions experienced by load instructions. Overall,
the number of bank mispredictions in a four-banked system
is about 1.6 times greater than in a two-banked system.

3.1. Workload

We use SPECint 2K compiled to Alpha ISA, simulating a
contiguous run of 100M-instruction from SimPoints [18]
after a warming-up of 200M-instruction.

fetch and decode width 8 L1 I-cache 64KB, 4-way

branch predictor: hybrid

(bimodal, gshare)
16 bits

L1 D-cache 2 cycles

banks 4

reorder buffer entries 256 ports/bank 1 r/w

in-flight loads 128 bank size 8 KB, 4-way

in-flight stores 128 line size 32 B

integer/FP IQ entries 64 / 32 L1 MHSR 16 entries

integer/FP units 8 / 4 Store-Set Pred. 4K-entry SSI Table

128-entry LFS Table

L2 Unified Cache
256 kB, 8-way

16 banks, 7 cycles

line size 128 B

L2 MHSR 8 entries

L3 Unified Cache
4MB, 16-way

19 cycle

line size 128 B

Bus L3-main mem. 8 cycles/chunk

main mem. lat. 200 cycles

Table 1. Microarchitectural parameters.

Figure 6. Simplified memory hierarchy and data-path showing a

two-level distributed STB. For clarity only the connection detail in

Bank0 is shown.

M
S

H
R

L2Q

B0

B1

B14

B15

B1

B2

B3

to Memory

fr
o

m

L1 Data Cache

L2 Data Cache

L3 Datacommitted
stores Cache

to Bypass

STB1

B0

STB2

Cache

refill from L2
and forward
from STB2

Bank
AGU0

A
G

U
s

fr
o

m
A

G
U

s

Network

cycle 1 2 3 4 5 6 7 8 9 10 11
12..
18

19 20 21 22 23

line

1
L1
cache

BC IQn

2 AGU
TLB

/m
m WB WB WB WB

3 STB1 STB1 STB2 bus1

4 L1cache miss MSHR Tag2 L2Q tr L2 Bank bus1 L2 Bank bus1

5 L2 cache miss tr Tag3 tr . . . bus2

Figure 7. Memory pipeline. BC, IQn, tr, mean bank check, IQ

notification, and transport cycles, respectively. busX and TagX

mean bus use and tag access, respectively. TLB and m mean

Translation Look-aside Buffer access and L1 cache access,

respectively.

load instr. store instr. all memory instr.

right wrong right wrong right wrong

2 banks 93.44 6.56 97.12 2.88 94.74 5.26

4 banks 89.32 10.68 95.38 4.62 91.46 8.54

Table 2. Bank predictor accuracy.

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 08:37 from IEEE Xplore. Restrictions apply.

Table 3 shows input data sets.

4. Performance Results

Experimental evaluation has five subsections. First, we
show the performance advantages of the proposed STB1
allocation/deallocation policies along with the coverage of
STB1 store-load data forwarding. Recovering from RIB
and removing STB2 forwarding capability are evaluated in
the second place. Third, we explore how useful the NFS
predictor proves for lowering the contention for issue ports
to memory. Removal of age checking in STB1 forwarding
is evaluated next. Finally, we show individual program
results. All figures (except otherwise noted) show IPC
harmonic mean (y-axis) across different STB bank sizes (x-
axis). Reported IPCs have been computed by excluding
mcf because it is strongly memory-bound. Nevertheless, a
sample of its full behavior is shown in the last subsection.

4.1. STB1 allocation / deallocation policies

Figure 8a shows the performance of a single-level
distributed STB system (1L) and a two-level STB system
(2L_IQ). In the single-level system, dispatched stores
allocate an entry in all STB banks. Those entries will be
deallocated at commit time. STB address check and
forwarding is done within L1 cache latency. In the two-
level STB system, STB1 entries are allocated at execution
and deallocated before commit. Speculatively issued
instructions remain in IQ until the forwarding check is
performed in STB2, 5 cycles after L1 cache hit/miss check.
STB2 do have data forwarding capability.

For STB bank sizes below 16 entries, the two-level
system outperforms the single-level system. This is so
because the two-level system makes a better use of STB1
bank entries, allocating them only when data is available
and deallocating them as new stores enter STB1. Therefore,
the performance gap increases as the number of STB1
entries decreases.

Figure 8b presents load coverage. 100% load coverage
means that all loads needing data forwarding from older in-
flight stores manage to obtain it from STB. STB1 load
coverage of 2L_IQ is very high, even for very small STB1
banks. As an example, in an 8-entry STB1, only less than
1% of the loads requiring forwarding (0.13% of total loads)
are not forwarded from STB1. To get the same STB load
coverage, the single-level system needs at least 32 entries
per bank.

Single-level systems stall dispatch when STB banks get
full, while a 2L_IQ system does not have to stall dispatch

as the number of in-flight stores depends on the STB2 size.
However, 2L_IQ systems keep in IQ the speculatively
issued instructions until the forwarding check is done in
STB2, and so the IQ pressure increases. When IQ becomes
full, dispatch is stalled constraining performance. This
degradation can be quantified by observing IPC for 128-
entry STB banks. All in-flight stores can be kept in the STB
banks in both systems. The IPC difference between them (-
9.2%) comes from the extra IQ occupancy suffered by
2L_IQ. With 128 STB entries, IQ is full 25% more cycles
in 2L_IQ than in 1L.

4.2. Exploiting high STB1 coverage

High STB1 load coverage suggests two 2L_IQ system
optimizations: i) reducing IQ occupancy using an
alternative recovery mechanism that allows speculatively
issued instructions to be removed from IQ before the STB2
forwarding check, and ii) removing store-load data
forwarding capability from STB2 in order to reduce
complexity.

4.2.1. Recovery from RIB. As the number of forward-
ing misspeculations is very low, a RIB can also be used to
recover from forwarding misspeculations. Consequently,
loads and speculatively issued instructions will leave IQ as
soon as L1cache/STB1 signals a hit. Now, when the check
carried out in STB2 detects a forwarding misspeculation,

Bench. Data set Bench. Data set Bench. Data set

bzip2 program-ref gzip program-ref twolf ref

crafty ref mcf ref vortex one-ref

eon rushmeier-ref parser ref vpr route-ref

gcc 166-ref perl diffmail-ref

Table 3. Simulated benchmarks and their input data set.

Figure 8. IPC for 1-Level distributed STB with dispatch-allocation

and commit-deallocation (1L), and 2-Level STB with execution-

allocation and deallocation before commit (2L_IQ) (a). Load

coverage for both systems (b).

(a)

(b)

IPC

1.25

1.35

1.45

1.55

1.65

1.75

1.85

1.95

2.05.

2.15

2.25

4 6 8 10 12 16 32 64 128

1L

2LIQ

of STB1 entries

90

91

92

93

94

95

96

97

98

99

100

4 6 8 10 12 16 32 64 128

2LIQ

% STB load
coverage

of STB1 entries

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 08:37 from IEEE Xplore. Restrictions apply.

the load instruction and all younger instructions (dependent
or not) are squashed and re-dispatched to IQ from RIB.

Recovering from RIB has a higher penalty than recover-
ing from IQ because RIB recovery is not selective and the
distance from the recovery stage to the resolution stage
(forwarding check in STB2) is larger [3]. However, the to-
tal cost computed as the number of forwarding misspecula-
tion multiplied by the misspeculation penalty, may be lower
than the degradation of stalling dispatch when IQ is full.

Figure 9 shows IPC for two systems: a system with
recovery from RIB (2L_RIB) and the system with recovery
from IQ (2L_IQ). Both are two-level systems with
allocation at execution, deallocation before commit, and
STB2 with store-load data forwarding capability. We carry
out a new set of simulations changing the STB2 forwarding
check latency from 5 cycles to just 1 cycle to get more
insight on how STB2 check latency affects performance
(2L_RIB_1, 2L_IQ_1).

The recovery policy has a great impact on performance:
recovering from RIB gives a consistent advantage over
recovering from IQ across all STB1 bank sizes. Focusing
on systems having 5-cycle STB2 latency (2L_RIB vs.
2L_IQ), the gain increases from 6.3% to 9.2% as we move
from 4 to 128 entries. For instance, with 8-entry STB1
banks, changing the recovery stage from IQ to RIB reduces
the number of cycles that IQ is full by nearly 10%,
improving IPC by 9%. Note that, as expected, with 128
STB1 entries (and so without forwarding misspeculations)
the IPC of 2L_RIB now matches the IPC of the 1L system.

As the number of forwarding misspeculations is very
low, the IPC when recovering from RIB is almost
independent of the STB2 latency. But, conversely, the
STB2 latency has a great impact when recovering from IQ
(see 2L_IQ vs. 2L_IQ1). No matter what the STB2 latency
is, recovery from RIB always performs better than recovery
from IQ.

4.2.2. Removing load forwarding from STB2. A s
STB2 service is very infrequent (see Figure 8b) we remove
the store-load data forwarding capability from STB2. As
shown in Section 2.3.3, this option would simplify control

and data path. Anyway, by the time load instructions are re-
executed after a forwarding misspeculation, most of the
times, the matching store has already committed its state to
L1 cache.

Figure 10 shows a system with STB2 forwarding
c a p a b i l i t y (2 L _ R I B) a n d a sy s t e m w i t h o u t i t
(2L_RIB_NoFWD2). Both are 2-level systems with
allocation at execution, deallocation before commit, and
recovery from RIB.

We found a performance decrease ranging from 2.2% to
0.65% across all tested STB1 bank sizes. In particular, for
8-entry STB1 banks, IPC loss is about 0.8%. Therefore, the
forwarding capability can be removed from STB2 without
noticeably hurting performance. Lost performance comes
from the small number of loads waiting until a matching
store commits.

4.3. Making profit from 70% non-forwarding

stores

In this subsection we use the NFS predictor to classify
stores as forwarders and non-forwarders. Stores that are
predicted not to forward data are directly sent to STB2.
Thus, they can be issued by any available IQ memory port.

A trade-off exists in the predictor design. By reducing
the number of stores classified as forwarders, we reduce
also contention for issue ports. However, forwarding
misspeculations may increase because more forwarder
stores are classified as non-forwarders. We design the
predictor in order to reduce stores wrongly classified as
non-forwarders. As NFS predictor we use a simple bimodal
predictor having 4K counters of 3 bits each indexed by the
instruction address.

Table 4 shows some predictor statistics. 64% of stores
are classified as non-forwarders, reducing contention for
issue ports to memory and reducing STB1 pressure.

Figure 9. IPC for 2-Level STB systems having forwarding

misspeculation recovery either from IQ or from RIB, varying STB2

latency from 5 extra cycles (2L_IQ and 2L_RIB) to 1 extra cycle

(2L_IQ_1 and 2L_RIB_1). IPC for the single level STB system (1L)

is also shown.

1.95

2.00

2.05

2.10

2.15

2.20

2.25

4 6 8 10 12 16 32 64 128

1L

2L IQ

2L RIB

2L IQ_1

2L RIB_1

IPC

of STB1 entries

Non-Forwarding Store Predictor statistics

predicts “forward” predicts “not forward”

right wrong right wrong

25.45 10.03 64.05 0.47

Table 4. STB1 store-forwarding predictor statistics

Figure 10. IPC for 2-Level STB systems having STB2 forwarding

capability (2L_RIB) or not (2L_RIB_NoFWD2).

1.95

2.00

2.05

2.10

2.15

2.20

2.25

4 6 8 10 12 16 32 64 128

2L RIB

2L RIB_NoFWD2

IPC

of STB1 entries

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 08:37 from IEEE Xplore. Restrictions apply.

However, 0.47% of stores which forward data before
committing are wrongly classified as non-forwarders,
causing a forwarding misspeculation.

Figure 11 shows load coverage for a system enhanced
with an NFS predictor (2L_RIB_NoFWD2_NFSP) and a
system without it (2L_RIB_NoFWD2). We see that NFS
predictor performs well with very small STB1 banks of 4
and 6 entries. Beyond 6 entries, load coverage without NFS
predictor is better, due to the mentioned 0.47% stores that
forward data but are wrongly classified.

Figure 12 shows the IPC for systems with and without a
NFS predictor. All are two-level systems with allocation at
execution, deallocation before commit, recovery from RIB,
and STB2 without forwarding capability. The system with
the NFS predictor (2L_RIB_NoFWD2_NFSP) always
ach ieves be t t e r IPC than the sys t em wi thout i t
(2L_RIB_NoFWD2).

In order to separate the contributions of contention
reduction and STB1 store filtering, the following
experiment is done: we simulate a system with an NFS
predictor, but this time the predictor is used only to filter
insertion of stores in STB1, and not to reduce contention
for issue ports to memory (2L_RIB_NoFWD2_nfsp).

C o m p a r in g 2 L _ R I B _ N o F W D2 a n d
2L_RIB_NoFWD2_nfsp systems, we see that by only
filtering store insertion performance increases for small

STB1 of 4-6 entries. Above 8 entries, in the system with the
NFS predictor, store instructions wrongly classified as non-
forwarders reduce load coverage and cause IPC flattening,
whereas in the system without NFS predictor the IPC
increases slightly.

However, if we both perform store filtering and make
use of free IQ ports (2L_RIB_NoFWD2_NFSP system),
improvement is consistent across the whole STB1 size
range. With very small STB1 banks of 4-6 entries, store
filtering is the boosting factor. From 8 entries on, the gain
due to reduction in IQ contention surpasses the loss due to
wrongly classified stores.

4.4. STB1 data forwarding without age checking

Until now, we have used a STB1 where instruction ages are
explicitly checked to speculatively forward data. To
simplify the forwarding data path, STB1 forwarding is
managed in a circular way without checking ages. The most
recently allocated matching entry will forward data.

Figure 13 shows IPC for a system where STB1 forwards
by checking instruction ages (2L_RIB_NoFWD2_NFSP)
and for another system where STB1 forwards without
checking ages (2L_RIB_NoFWD2_NFSP_NoAGE). Both
are two-level systems with allocation at execution,
deallocation before commit, recovery from RIB, STB2
without forwarding capability, and an NFS predictor.

Performance degradation is around 0.6% across all
STB1 bank sizes. Thus, from the viewpoint of speculative
forwarding, the STB1 design can be simplified with
negligible performance losses. Degradation comes mainly
from STB1 forwarding misspeculations caused by a young
store forwarding to an older load.

4.5. Individual program results

In this subsection we show the impact of all design
decisions looking at the individual program behavior. To
that end we define 2 reference points: first, a single-level
STB system having store allocation at dispatch in all banks,
deallocation at commit, and 128-entry STB banks
reachable within L1 cache latency (1L). The second
reference point is the same system but using a bimodal

Figure 11. STB1 Load coverage for two 2L systems with a Non-

Forwarding Store predictor (2L_RIB_NoFWD2_NFSP) and without

it (2L_RIB_NoFWD2).

of STB1 entries

90

91

92

93

94

95

96

97

98

99

100

4 6 8 10 12 16 32 64 128

2L RIB_NoFWD2

2L RIB_NoFWD2_NFSP

% STB load
coverage

Figure 12. IPC for 2-level STB systems with NFS predictor

(2L_RIB_NoFWD2_NFSP), without it (2L_RIB_NoFWD2), and

with NFS predictor used only to filter store insertion in STB1

(2L_RIB_NoFWD2_nfsp).

1.95

2.00

2.05

2.10

2.15

2.20

2.25

4 6 8 10 12 16 32 64 128

2L RIB_NoFWD2

2L RIB_NoFWD2_nfsp

2L RIB_NoFWD2_NFSP

IPC

of STB1 entries

Figure 13. IPC for 2-level STB systems with explicit Age checking

(2L_RIB_NoFWD2_NFSP) and without age checking

(2L_RIB_NoFWD2_NFSP_NoAGE).

1.95

2.00

2.05

2.10

2.15

2.20

2.25

4 6 8 10 12 61 32 64 128

2L RIB_NoFWD2_NFSP

2L RIB_NoFWD2_NFSP_NoAGE

IPC

of STB1 entries

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 08:37 from IEEE Xplore. Restrictions apply.

latency predictor, because now STB bank access takes 3
extra cycles (1L_+3c).

Reference models are compared to the 2-level systems
proposed so far with 8-entry STB1 banks. The first bar is a
system which recovers from IQ (2L_IQ). The second bar is
a system which recovers from RIB (2L_RIB). Over the
preceding system we take out STB2 forwarding capability
(2L_RIB_ No FWD2) , we add an NFS Pred ic to r
(2L_RIB_NoFWD2_NFSP) and finally we simplify STB1
f o r w a r d in g b y n o t c h e c k in g a g e s
(2L_RIB_NoFWD2_NFSP_NoAGE). Note that models
have been presented in the same order as they were
analyzed in the previous subsections.

As Figure 14 shows, all programs follow the same
trends. STB1 allocation/deallocation policy and recovering
from RIB are the main sources of performance gain across
all programs tested. Removing STB2 forwarding capability
and performing STB1 data forwarding without age
checking end in negl igib le per formance losses .
Summarizing, a two-level STB system with a fixed load
latency made up of simple 8-entry STB1 banks performs
more or less the same as an ideal 128-entry STB.

5. Two-Level STB in a L1 Multibanked Cache

with Data Replication

Contention for issue ports to memory is a weakness of
multibanked L1 caches. When multiple ready memory
instructions want to go to a given single-ported bank they
have to be serialized. Mirror caching [19] may allow
decreasing the memory issue port contention while using
single-ported banks: loads can be issued to one among
several memory ports. However, on an L1 cache miss
several banks are refilled with the missed line, thus
reducing effective capacity. Moreover, mirroring decreases
the number of alternatives the cache bank predictor has to
choose from, which increases predictor accuracy (see “2
banks” vs. “4 banks” in Table 2).

In this section we evaluate our two-level distributed
STB design on a multibanked cache configuration that

replicates data to increase load bandwidth, namely we use a
two-replication scheme with two sets of two banks each
(the two banks of a set keep the same data) [20]. The
distributed STB1 has a drawback in a multibanked cache
with replication: store instructions have to be issued to
several memory ports, increasing memory issue port
occupancy and probably increasing memory issue port
contention. Moreover, replication increases also the
number of stores requiring insertion in each individual
STB1 bank.

As in the previous section we maintain 4 issue ports to
memory, each connected to a single-ported L1 cache bank
and a single-ported STB1 bank. The Non-Forwarding Store
Predictor (NFS predictor) used in Section 4.2 is a good
candidate to overcome the mentioned drawback of our
distributed STB, because an NFS predictor can reduce both
port contention and the number of stores requiring STB1
insertion. Reduction in memory issue port contention is
even larger than in a non-replicated system because, by
using an NFS predictor in a two-replicated system, only
stores predicted as forwarders are issued to two ports. In
contrast, stores classified as non-forwarders are issued only
to just one of the four memory ports.

Figure 15a shows the IPC harmonic mean across
different STB1 bank sizes for two-replicated systems with
a n d w i th o u t t h e N FS p r e d i c t o r
(2 R _ 2 L _ R I B _ N o F W 2 _ NF S P_ No A GE a n d
2R_2L_RIB_NoFW2_NoAGE). We also show the IPC of a
non-replicated system equipped with an NFS predictor
(taken from Figure 13). All three systems recover from
RIB, lack STB2 forwarding capability, and use STB1
without age checking.

As we can see, the NFS predictor has a good impact on
performance in a system with replication. Adding an NFS
predictor to a two-replicated system is the best option for
all STB bank sizes, and even outperforms the non-
replicated system in the measured operating point (4 L1
cache banks with 8KB each, enhanced-skewed binary bank
predictor, etc.).

In Figure 15b we compare two systems with and without
replication, varying cache bank size from 2KB to 32KB.

Figure 14. Individual IPC for all tested programs.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr HM(mcf) HM

1L

1L+3c

2LIQ

2LRIB

2L RIB_NoFWD2

2L RIB_NoFWD2_NFSP

2L RIB_NoFWD2_NFSP_NoAGE

IPC

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 08:37 from IEEE Xplore. Restrictions apply.

Both systems use a two-level STB with an NFS predictor,
recovery from RIB, lack STB2 forwarding capability, and
in both, STB1 forwards without checking ages. This
experiment evidences that replicating achieves a good
trade-off between effective L1 cache size, bank predictor
accuracy and memory bandwidth for all cache sizes but the
smallest one (2KB banks).

6. Related work

In [21], Yoaz et al. introduce the Sliced memory pipeline
over a two-banked first-level cache. They propose to steer
store instructions to both partitions. In this paper, we have
shown that memory issue port contention is a drawback and
that consequently, spreading stores freely to all STB banks
can hurt performance.

Zyuban et al. distribute a Load/Store Queue (LSQ) in
banks [22]. When dispatching a store, an entry is allocated
in all LSQ banks and remains allocated until the store
commits. A large number of LSQ entries is needed not to
stall dispatch, as we have shown in Section 2.

Racunas and Patt propose a new dynamic data
distribution policy for a multibanked L1 cache [15]. As in
the previous work, they use a distributed STB (local STB)
whose entries are allocated to stores at dispatch time and
deallocated at commit time. Therefore, local STB banks
need a large number of entries not to stall dispatch.
Allocation in local STB is done using bank prediction.

Store information has to be moved between local STB
banks in two s i tuat ions: i) on a s tore al locat ion
misprediction, and ii) when a line dynamically changes its
allocation from one bank to another, in which case all local
STB entries related to that line have to be moved from the
initial bank to the target bank. When moving stores from
one bank to another, room should be assured in the target
bank. A global STB with forwarding capability is used to
forward data to all loads experiencing bank mispredictions.
Local STB banks use age information to decide which store
instruction forwards data when several stores match a load
address.

In contrast to the two proposals above, we can design
STB1 banks with a very small number of entries because
they are allocated late and deallocated soon. As STB1
entries are allocated after checking the predicted bank, our
design does not need inter-bank communication. Besides,
in our design STB1 banks do not use age information to
speculatively forward data, and the STB2 does not require
forwarding capability.

Akkary et al. propose a hierarchical store queue
organization to work along with a centralized cache on a
Pentium IV-like processor (one load per cycle) [1]. It
consist in a fast STB1 plus a much larger and slower back-
up STB2 (both centralized). STB1 entries are allocated to
stores at dispatch time in FIFO order. When STB1 becomes
full, the oldest store is moved to STB2. Both STBs can
forward data but at different latencies. To reduce the
number of searches in STB2 they use a Membership Test
Buffer. Our proposal is also a two-level STB but embedded
in a multibanked cache configuration, which requires
analyzing other issues such as how to manage multiple
STB1 banks and how to cope with memory issue port
contention. Moreover, we decrease STB1 size by delaying
the STB1 entry allocation until execution time, and we
suggest simple designs of both STB1 (no age checking) and
STB2 (no forwarding).
In order to eliminate load searches in the Store Queue,
Setthumadhavan et al. propose using a Bloom filter [16].
They also use another filter to decide which loads should be
kept in the Load Queue, thus reducing Store Queue
bandwidth and Load Queue size. Similarly, Park et al.
reduce STB search bandwidth by using a Store-Load pair
predictor based on the Store-sets predictor [14]. They also
split the STB into multiple smaller queues with variable
latencies. The ideas in both papers could be used on our
STB2 to filter either the number of searches or the number
of entries to be searched in order to reduce the number of
STB2 ports and power consumption.

7. Conclusions

In this paper we study how to design a two-level distributed
Store Buffer well suited to multibanked first-level caches.
Our goal is to speculatively forward data from non-
committed stores to loads, at the same latency of a cache
bank. Forwarding is speculatively done from a distributed
first-level STB (STB1) made of small banks. A few cycles

Figure 15. IPC for 4-banked, 2-level distributed STB systems with

and without data replication. Varying STB1 bank size for 8KB L1

cache banks (a), and varying L1 cache bank size for 8-entry STB1

banks (b).

1.95

2.00

2.05

2.10

2.15

2.20

2.25

4 6 8 10 12 16 32 64 128

2L RIB_NoFWD2_NFSP_NoAGE

2R2L RIB_NoFWD2_NoAGE

2R2L RIB_NoFWD2_NFSP_NoAGE

IPC

of STB1 entries

1.95

2.00

2.05

2.10

2.15

2.20

2.25

2k 4k 8k 16k 32k

2L RIB_NoFWD2_NFSP_NoAGE

2R2L RIB_NoFWD2_NFSP_NoAGE

IPC

L1 cache bank size

(a)

(b)

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 08:37 from IEEE Xplore. Restrictions apply.

later, a centralized second-level STB (STB2) checks the
speculative forwarding and enforces correct store-load
ordering.

STB2 entries are allocated when stores are dispatched
and deallocated when they commit. However, we delay
allocation of STB1 entries to stores until they execute, and
we allow STB1 entry deallocation to proceed before store
commit time. If an STB1 bank is full, entries are reallocated
in FIFO order. This STB1 allocation/deallocation policy
allows us to reduce STB1 size, to allocate entries only in
the right STB1 bank, and not to stall dispatch when STB1
banks are full.

Moreover, the proposed role distribution between levels
enables two design simplifications that do not hurt
performance noticeably; the STB1 does not use instruction
age to select the store that forwards data, and the
forwarding capability can be removed from STB2.

As STB1 data forwarding is speculative, our system
needs a mechanism able to recover from STB1 forwarding
misspeculations. We have found that recovering from IQ,
as in other latency mispredictions, decreases performance
because load instructions and their dependent instructions
stay in IQ for a long time. Alternatively, we propose
recovering from a Renamed Instruction Buffer, which
achieves much better performance in spite of its higher
misspeculation penalty.

Finally, a non-forwarding store predictor can be used to
reduce contention for the issue ports to memory. Stores
having a non-forwarding prediction are issued by any free
memory port, thus increasing the effective issue bandwidth.
This enhancement is particularly useful if store contention
is a big issue, for example when using cache bank
mirroring to increase load bandwidth.

Following our guidelines a two-level STB with 8-entry
STB1 banks (without age checking in STB1 and without
STB2 forwarding capability) performs similarly to an ideal
single-level STB with 128-entry banks working at first-
level cache latency.

Acknowledgements

The authors would like to thank Elena Castrillo for her
contribution in editing the English version of this paper. We
wish to thank the Gaz people for their inconditional support
and the anonymous reviewers for their valuable comments
on this paper.

References

[1] H. Akkary et al., “Checkpoint Processing and Recovery:
Towards Scalable Large Instruction Window Processors,” in Proc. of
36th MICRO, pp. 423-434. Dec. 2003.

[2] R. Balasubramonian et al., “Dynamically managing the com-
munication-parallelism trade-off in future clustered processors,” in
Proc. of 30th ISCA, pp. 275–287, June 2003

[3] E. Borch et al. “Loose Loops Sink Chips,” in Proc. of 8th
HPCA, pp. 299-310, Feb. 2002.

[4] D.C. Burger and T.M. Austin, “The SimpleScalar Tool Set, Ver-
sion 2.0,” UW Madison Computer Science T. R. #1342, June 1997.

[5] G.Z. Chrysos and J.S. Emer., “Memory Dependence Prediction
Using Store Sets,” in Proc. of 25th ISCA, pp. 142–153, June 1998.

[6] J. Cortadella and J.M. Llabería, “Evaluation of A+B=K Condi-
tions without Carry Propagation,” IEEE Trans. on Computers, vol.
41, no. 11, pp. 1484-1488, Nov. 1992.

[7] P. Hsu, “Design of the R8000 Microprocessor,” IEEE Micro,
vol.14, pp. 23-33, April 1994.

[8] C. N. Keltcher et al., “The AMD Opteron Processor for Multi-
processor Servers,” IEEE Micro, vol. 23, no. 2, pp. 66-76 March/
April 2003.

[9] A. Kumar, “The HP PA-8000 RISC CPU,” IEEE Micro, vol.
17, no. 2, pp. 27-32, March-April 1997.

[10] A.R. Lebeck et al., “A Large, Fast Instruction Window for Tol-
erating Cache Misses,” in Proc. of 29th ISCA, pp. 59-70, May 2002.

[11] P. Michaud et al., “Trading Conflict and Capacity Aliasing in
Conditional Branch Predictors,” in Proc. of 24th ISCA, pp. 292-303,
June 1997.

[12] S. Naffziger et al., “The implementation of the Itanium 2
Microprocessor,” IEEE J. Solid State Circuits, vol. 37, no. 11, pp.
1448-1460, Nov. 2002.

[13] H. Neefs et al., “A Technique for High Bandwidth and Deter-
ministic Low Latency Load/Store Accesses to Multiple Cache
Banks,” in Proc. of 6th HPCA, pp. 313-324, Jan. 2000.

[14] Il Park et al., ”Reducing Design Complexity of the Load/Store
Queue,” in Proc. of 36th MICRO, pp. 411-422. Dec. 2003.

[15] C. Racunas and Y.N. Patt, “Partitioned First-Level Cache
Design for Clustered Microarchitectures,” in Proc. of 17th ICS, pp.
22-31. June 2003.

[16] S. Sethumadhavan et al., “Scalable Hardware Memory Disam-
biguation for High ILP Processors,” in Proc. of 36th MICRO, pp.
399-410. Dec. 2003.

[17] A. Seznec et al.. “Design Tradeoffs for the Alpha EV8 Condi-
tional Branch Predictor”, in Proc. of 29th ISCA, pp. 295-306, May
2002.

[18] T. Sherwood et al., “Automatically Characterizing Large Scale
Program Behaviour,” in Proc. of ASPLOS, Oct. 2002.

[19] G.S. Sohi and M. Franklin, “High-Bandwidth Memory Systems
for Superscalar Processors,” in Proc. of 4th ASPLOS, pp. 53-62,
April 1991.

[20] E. Torres et al., “Contents Management in First-Level Multi-
banked Data Caches,” 10th EuroPar, LNCS 3149, pp. 516-524, Sept.
2004.

[21] A. Yoaz et al.., “Speculation Techniques for Improving Load
Related Instruction Scheduling,” in Proc. of 26th ISCA, pp. 42-53,
May 1999.

[22] V. Zyuban and P.M. Kogge, “Inherently Lower-Power High-
Performance Superscalar Architectures,” IEEE Trans. on Computers,
vol. 50, no. 3, pp. 268-285, March 2001

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 08:37 from IEEE Xplore. Restrictions apply.

