Contents Management in
First-Level Multibanked Data Caches*

E.F. Torres', P. Ibafiez!, V. Vifials!, and J.M. Llaberia?

! DIIS, Universidad de Zaragoza, Spain.
{enrique.torres, imarin, victor}Qunizar.es
2 DAC, Universidad Politécnica de Catalunya, Spain. 1laberia®ac.upc.es

Abstract. High-performance processors will increasingly rely on multi-
banked first-level caches to meet frequency requirements. In this paper
we introduce replication degree and data distribution as the main multi-
banking design axes. We sample this design space by selecting current
data distribution policy proposals, measuring them on a detailed model
of a deep pipelined processor and evaluating the trade-off introduced
when the replication degree is taken into account. We find that the best
design points use data address interleaving policies and several degrees
of bank replication.

1 Introduction

Future superscalar processors will require a low-latency and high-bandwidth
memory in order to attain high degrees of ILP. Among other things, a non-
blocking, multiported, first-level cache able to feed data to ALUs in as few cycles
as possible is needed[11]. This is specially true for integer codes without much
data parallelism, where performance can be very sensitive to load-use delay.

To get a view of the involved trade-offs, Figure 1.a shows IPC (instructions
committed per cycle) for an 8-issue out-of-order processor when varying three
key parameters of a true-multiported first-level cache: size, latency (lat) and
number of ports (P). Numbers come from executing SPEC2K integer codes in
processors having three levels of on-chip cache (simulation details in Section 4).
The uppermost line shows a 2-cycle latency, four-ported cache 2lat-/P. The bot-
tom line shows a 4-cycle latency, four-ported cache 4lat-4P. Enclosed between
the two lines there is a significant gap ranging from 1.98 to 2.37 IPC. As we can
see size is an important parameter (roughly, a 2% IPC increase for each dou-
bling), but it is not the most important one. The number of ports is increasingly
important as we limit them: when moving from 2lat-4P to 2lat-3P and further
to 2lat-2P we see a 1.5% and 6% IPC decrease, respectively, no matter the size.
On the other hand, increasing the cache latency by one cycle has a fixed 7%
penalty, both from 2lat-4P to 3lat-4P and from 3lat-4P to 4lat- 4P.

* This work is supported by the Ministry of Education of Spain under grant TIC
2001-0995-C02-02 and the Diputacién General de Aragén (BOA 58,14/05/03). We
gratefully thank Elena Castrillo Soto for her contributions in editing this paper.

2 E.F. Torres et al.

L1 Data Cache L2 Data Cache L3 Data
b Cache
_4
= BO 000
<
£ —4
2 B1
] E
L3
o0 0
:
2 Committed et v to Memory
2054 — — — — — — — = ~ =ll=2lat-4P £ stores
——2lat-3P g
2000 - -~ ___ __ —e—3lat-4P
: —O—2lat-2P nd 0 M
195 —A—4dlat-4P to FUs

8kB 16kB 32KB 64KB

Fig. 1. a) Performance of a true multiported L1 cache. b) Data path of the memory
data stream implemented in multibanking schemes. Load routing is made from 1Q

Clearly, we will want to include the 64kB design with four ports and a 2-
cycle latency as a first-level cache. Unfortunately such a cache cannot be built
with such low latency if we plan to use current or future technologies targeted
to deliver fast clocking [1].

Multibanking has lately been proposed as a feasible alternative to a mono-
lithic multiported cache [3,4,7-9,11-13]. Multibanking distributes data (cache
lines or words) into several disjoint banks which are physically located close to
address generation units or even close to functional units, minimizing then the
wiring delay.

Multibanking adds two main additional freedom degrees to the design, namely
number of ports per bank and bank content management. There are no works
exploring big areas of this new and broad design space, since research up to now
has focused on the proposal and evaluation of specific multibanking schemes.

Our contribution is twofold, on the one hand we describe what we believe
are the two main design axes for a multibanked scheme: replication degree and
distribution policy, placing current proposals within our taxonomy. On the other
hand, we simulate a representative sample of design options in detail taking as a
design unit, exclusively, a simple single-ported bank. We do not consider banks
having multiported bit cells intentionally, because we seek a fair comparison
among alternatives totalling the same raw storage capacity and keeping constant
access time. Instead, we replicate data into as many banks as needed in order to
achieve the desired multiport effect which in turn will reduce effective capacity
(mirror caching [11]).

Simulations assume a high-frequency 8-issue superscalar processor with three
levels of cache within the chip. We carefully model the collateral effects of deep
pipelining, such as speculative instruction issue by making latency-prediction
and using a mechanism to recover from latency misprediction. As we will see,
simple static distribution policies coupled with partial replication of data may
outperform some dynamic distribution schemes [3, 9].

Next section gives details about the processor and memory we model. Sec-
tion 3 introduces a bank content management taxonomy, mapping existing pro-

Contents Management in First-Level Multibanked Data Caches 3

posals into it and exposing the main performance trade-offs. Section 4 shows
the experimental framework and discusses the performance of the alternatives
selected in order to cover a broad design space. Section 5 ends the paper with
our conclusions.

2 Processor and memory

We model an 8-way processor with eight stages from Fetch to Issue Queue (IQ)
and one stage between IQQ and Execution. Other processor and memory param-
eters are listed in Figure 2. After issuing, instruction payload and operands are
read and execution starts. Cache hit latency is assumed for a load instruction.
Dependent instructions on the latency-predicted instructions can be issued spec-
ulatively while waiting for the resolution of all latency predictions. Because 1Q
is used as the Recovery stage, the predicted latency instruction itself and its de-
pendent instructions remain in 1Q until the last check arrives. We use a chained
recovery mechanism which starts recovery as soon as a misprediction notification
reaches I1Q [12]. This mechanism is selective, meaning that only the instructions
that depend on a mispredicted load will be re-executed.

fetch and decode width 8 L1 I-cache | 64KB, 4-way | |L2 Unified Cache| 16 banks, 8-way,

branch predictor: hybrid 16 bits L1 D-cache 2 cycles 256 kB 7 cycles
(bimodal, gshare) banks 4 line size 128 B
reorder buffer entries 256 | | ports per bank 1r/w L2 MHSR 8 entries
in-flight load/store 128 bank size |2-16 KB, 4-way| [L3 Unified Cache| 4MB, 16-way,
19 cycles
integer/FP 1Q entries [64 /32 line size 32B line size 128 B
integer/FP units 8/4 L1 MHSR| 16 entries main memory lat. 200 cycles

Fig. 2. Microarchitectural parameters

Figure 1.b shows the memory data path. The L1 cache is sliced into four
logically independent banks. Each bank is tied only to one address computation
unit (AGU) and placed as close to the functional units (FU) as possible. Each
bank has only one read/write port shared among loads, committed stores and
refills from the L2 cache. The banks are tied to the L2 cache through a single
refill bus of 32 bytes.

The memory access takes one cycle to access the bank plus an extra cycle to
reach the bypass network (line 1 in Figure 3). Load instructions that miss in L1
cache are reissued from IQ in time to catch the data when the refill is performed.

Requests to L2 cache are managed by the L2Q after accessing L2 tags (line
2 in Figure 3) in the same way Itanium II does [7]. The L2Q can send up to
four independent and non-conflicting request to the sixteen address interleaved
2 cycles banks in each cycle. On an L2 cache miss a request is made to L3 cache

4 E.F. Torres et al.

cyce 1 2 3 4 5 6 7 8 9 10 11 12.15 16 17 18 19 20 21 22 23
LD

miss L1D MSHR| TL2 | L2Q | tr | Bank | bust [Bank [busT]

miss L2 [T 73 T o T... Tbus2]bus2]bus2]bus2]

Fig. 3. Load pipeline . ¢tr and busX mean transport cycles and bus use, respectively

and to memory (line 3 in Figure 3). A refill to L2 cache takes eight banks. The
model can stand 16 primary L1 misses and 8 L2 misses.

We assume memory disambiguation based on the Alpha 21264 approach,
where loads place addresses into a load buffer, and stores place address and data
into a store buffer at once. We model a multiported store buffer (not shown
in figure) with the same latency as the first-level cache and assume an oracle
predictor for store-load independency.

Store instructions use a memory port and are routed to the store buffer
when issued. L1 is write-through and write-not-allocate. Store instructions are
committed to L2 and, when they hit L1 cache (filtered by the L2 cache directory),
placed in one or more local buffers (depending on the replication degree). The
8-entry coalescing local write buffers update the L1 cache banks in unused cycles.

3 Design axes for bank content management

3.1 Data replication degree

The replication degree sets the number of copies a data can have spread across
the cache banks. In order to achieve a given replication degree, the item required
in a bank miss is refilled into a single bank (no replication at all), a bank subset
(partial replication) or into all banks (full replication).

Full replication refills all banks with each missed line (Figure 4.a). Effective
capacity is the smallest possible (the single bank size), but the cache access is
conflict-free because any four simultaneous requests are satisfied at once without
issue memory ports contention (no bank conflicts).

A B C D A B C D A BfC D O represents a cache line
dplolla] [Jal [] 9al] [] mesnomons
N a7 Aronte o target bank(s)
\\7:: - “route to any froute toB 1 either A or B
free port
Id Id + pred B Id + pred AB

Fig. 4. Data replication options in a 4-bank (A,B,C,D) cache. a) Full Replication, b)
No Replication line interleaving and c¢) Partial Replication line interleaving.

No replication allows only a single copy of the missed item (Figure 4.b). Here
the effective capacity is the largest possible (the aggregated size of all banks)
but cache access may frequently undergo issue port contention (bank conflict).

Contents Management in First-Level Multibanked Data Caches 5

The middle ground between previous policies is partial replication: two or
more copies of the missed item are placed in a bank subset (Figure 4.c). Par-
tial replication trades off effective capacity against bank conflict reduction in
an interesting way. A second-order effect of data replication is the accuracy of
the bank predictor (if any) tied to the data distribution policy: the higher the
replication the better the predictability, simply due to the fact that predicting
one among n banks is usually harder than predicting one among n/2.

3.2 Data distribution policy

A distribution policy determines in which bank subset (one or more banks) a
data has to be placed, trying to minimize bank conflicts and cache misses. A
distribution policy has a mechanism that predicts or suggests the destination
bank of every load. Static policies always place the same line in the same bank
subset. Dynamic Policies allow lines to move or to replicate among subsets. Next,
we briefly explain each policy.

Static policies

Distribution by data type. It consists in distributing different data struc-
tures to different bank subsets. In the first-level cache context this idea has only
been applied by Cho et al. to separate the stack region from the remaining ones
[4]. Both this work and our simulation use a 4 KB Access Region predictor to
guess the right region.

Distribution by data address. This is the most conventional approach and
consists in distributing data according to a hash function applied to some bits
of their addresses [8,11-13]. The data can either be a word (word interleaving)
or a line (line interleaving). This policy requires a bank or bank subset predictor
because the load routing is made from IQ, prior to computing addresses. Bank
mispredictions are corrected by re-routing loads to the correct place from 1Q. As
a bank predictor we use an enhanced skewed binary predictor, originally proposed
by Michaud et al. for branch prediction [6, 13]. We choose to predict each address
bit separately: up to 2 bits for 4 banks. Every bit predictor is identically sized:
8K entries for the three required tables and a history length of 13, totalling 9KB
per predictor. Since we are interested in recognizing the hard-to-predict loads,
we further add a 2-bit confidence saturating counter to every entry in all tables.
This allows us to use spare bandwidth by broadcasting those loads having a
low-confidence prediction. Load broadcast can increase performance by lowering
the number of recoveries [12].

Dynamic Policies They allow lines to move or replicate dynamically among
bank subsets to avoid bank conflicts or maintain effective capacity. Two policies
have been suggested up to now, both using load identities (program counter) to
drive load routing and data placement.

Distributing the working set of individual loads (Instruction Work-
ing Set). This policy by Racunas and Patt tries to take the whole data working

6 E.F. Torres et al.

set referenced by each load and place it in a single bank subset [9]. Lines ref-
erenced from several loads can migrate among subsets according to the relative
confidence of predictions. Such predictions come from two tables (called iPAT
and dPAT, respectively) requiring a total of 16KB for four banks. Bank mispre-
dictions are corrected by accessing L2, and so they have the same cost that a
first-level cache miss. The authors evaluate a first level made up of 8 two-ported
banks in 16-way processor. We scale this proposal to two bank subsets with two
replicated banks each and also evaluate a no replication version, which performs
poorly due to frequent bank conflicts caused by lack of ports.

Conflict-aware distribution. This policy by Limaye et al. replicates a
line as soon as a bank conflict appears [3]. A table remembers the last bank
(a cachelet) assigned to each load and will repeatedly route it to such a bank
unless a bank conflict appears, in which case a free bank will be referenced and
refilled from level two. This proposal may allocate a line to one, several or all
the banks. Our four single-ported banks are similar to the configuration they
evaluated, requiring an 8 KB table to remember the last bank.

3.3 Studied design points

The policies we have described above have been evaluated by their authors using
very different processor and memory hierarchy models. So, in Section 4 we eval-
uate them within the framework described in Section 2. We will use IPC as the
main metric, correlating it with cache misses and bank conflicts. Data replica-
tion introduces a new trade-off into the data distribution policies because data
replication reduces bank conflicts but at the same time the effective capacity
reduction increases cache misses.

As design points with no replication we choose the following: distribution
by data address (Word interleaving and Line interleaving) and distribution by
instruction working set (IWS). Partial replication is evaluated by arranging the
four banks into two subsets with two replicated banks. These design points are
word interleaving (Word-2R), line interleaving (Line-2R), instruction working
set (IWS-2R) and distribution by access region (AR-2R). Conflict-aware distri-
bution (CA) is another design point with partial replication. Finally, we also
evaluate a full replication organization (4R).

4 Results

We use SimpleScalar3.0c [2] to carefully model the processor and memory stated
in Section 2. As workload we use all SPECint 2K but mcf because it has a very
low IPC (0.23) no matter the L1 cache we consider. We use Alpha binaries
simulating a contiguous run of 100M instructions from the SimPoints [10] after
a warming-up of 200M instructions. All figures show the IPC harmonic mean.
Figure 5 shows the IPC achieved by the different distribution policies and
replication degrees with banks ranging from 2KB to 16KB. Figure 5.a and Fig-
ure 5.b show policies with no replication and partial replication, respectively,

Contents Management in First-Level Multibanked Data Caches 7

while Figure 5.c compares the best ones to full replication, assuming a 2-cycle
latency for L1.

L — —o—Word-2R 2 1q -2, 7 _ /-~ —-Word
=%-Line-2R

—0—Word-2R

—A—IWS-2R
- -AR2R 205 ——4R
—=—CA X best-2Lat
2.00 2.00 : T T 2.00! 2.0
ax2k 4xak 4x8k 4x16k 4x2k 4xdk 4x8k 4x16k ax2k 4xak 4x8k 4x16k ax2k 4xak 4x8k 4xi6k

a) b) c) d)

Fig. 5. IPC achieved with banks ranging from 2KB to 16KB with 2-cycle latency. a) no
replication, b) partial replication, ¢) the best of the previous ones plus full replication,
and d) merging the best points for latency 2 (x) with the best 3-cycle latency points.

In order to better understanding the IPC results we also show L1 cache miss
ratio (Figure 6.a, grey), and bank misprediction ratio (Figure 6.a, black) on 8KB
banks. The total length of each bar represents the load percentage undergoing
latency misprediction. Besides, Figure 6.b exposes the average number of cycles
a load, once ready, waits on IQ due to issue memory ports contention (conflicts)

4R 1 % Lat. Mispred. 4R | ' f f ' Gonflicts (aycles)

CA 1 CA_ 1 1 1 1 1 1

AR-2R :I : : oL AR-2R ee— ' ' ' '
o]

IWS-2R e, | | mBank IWS-2R | — ' ' 1 '

Line-2R [— | | Line-2R jummm 1 ' ' ' ' '

Word-2R [| | Word-2R ! ' ' ' ' '
ws e e — I S

Line [| I I Line |———— ! ! !

Word == | ! ! Word ju—— ' ! ! ! !

0.00 5.00 10.00 15.00 20.00 25.00 000 050 100 150 _ 200 250 300 350
a b)

Fig. 6. a) Percentage of latency mispredictions, b) average number of lost cycles due
to issue memory ports contention (bank conflicts).

Starting from Figure 5.a, notice that Instruction Working Set (IWS) behaves
clearly worse than the interleaving policies (Word and Line) due to its higher
number of bank conflicts (Figure 6.b) and of L1 cache misses (Figure 6.a). Word
performs always better than Line. Word undergoes less bank conflicts, has a
lower L1 cache miss rate and exhibits better bank predictability than Line.

In general, partial replication policies (Figure 5.b) reduce the number of bank
conflicts but at the expense of increasing the L1 cache miss ratio. Conflict-Aware
(CA) has an IPC lower than the other policies. CA has a very high L1 cache miss

8 E.F. Torres et al.

ratio (Figure 6.a) on account of the changes made in bank mapping to eliminate
bank conflicts.

Access Region (AR-2R) and IWS-2R have a worse IPC than Word-2R and
Line-2R. They experience a worse distribution across the bank subsets gener-
ating more L1 cache misses and bank conflicts (Figure 6). As in Figure 5.a,
Word-2R is better than Line-2R.

Finally we analyze Figure 5.c, where we compare Full Replicated (4R) against
Word and Word-2R, the best performing design points up to now. Word-2R
provokes less bank conflicts and bank mispredictions than Word, but has more
L1 cache misses because it is half the effective size than Word (Figure 6). As
capacity is the main factor of performance losses (Figure 5), with 4 banks of
only 2KB, Word is the best option. However, with banks greater than 2KB the
best design point is Word-2R.

Increasing the bank size makes 4R appealing. With 16KB the performance
of 4R is more or less the same as the best design point, but at much lower cost
and complexity.

Summing up, the design point giving the best performance is Word. The
optimal replication degree is subject to the bank size. For 2KB banks it is better
not to replicate to keep effective capacity, whereas on 4KB and 8KB banks,
partial replication removes enough bank conflicts to offset the effective capacity
loss. Finally, full replication achieves the highest performance for 16KB banks
with no predictor at all.

4.1 Effect of rising L2 latency

Doing over the same experiments with a 10 cycle latency to reach L2 shows up
a lower TPC across all design points. The L1 cache miss penalty increase is more
deeply suffered by those configurations with higher L.1 miss rates. For example,
with 2KB the IPC for 4R decreases by 4.3% while Word does by 2.3%. The
crossing between Word-2R and Word now goes to the right and Word becomes
the best option for banks up to 4KB.

4.2 Effect of rising L1 Latency

Up to this point we have assumed, regardless of the bank size, a 2-cycle L1 cache
access latency. Bank latency, in cycles, depends on the particular technology used
and on the design of the rest of the processor (cycle time, routing,...). It is out of
the scope of this work to determine this latency. At the same time it is evident
that banks of different sizes will have unequal latencies. This is why we present
results over a range of values.

Figure 5.d shows performance for a 3-cycle L1. Moreover, for each bank size
the best design points achieved with a 2-cycle L1 (extracted from Figure 5.c) are
market with a cross. As we can see, even the smallest 2-cycle banks surpass any
3-cycle design points. Moreover a 2-cycle Word with 4 banks of 2KB outperforms
most 4-port true-multiported schemes of Figure 1 with latencies of 3 or 4 cycles.
Increasing the bank size is never a good option if it involves latency add-on.

Contents Management in First-Level Multibanked Data Caches 9

5 Conclusions

There are two major decisions regarding contents management when facing the
design of a first-level multibanked cache: distribution policy and replication de-
gree. Choosing a given design point sets how many copies of a line are allowed
and the identity of the banks able to hold them. In general, distribution poli-
cies that spread data flow by data address lead to the smallest number of cache
misses and bank conflicts. Our results show that the most suitable distribution
policy is Word interleaving.

The optimum replication degree is subject to the bank size. For a 2KB bank
the optimal is no replication. Partial replication over two banks is the most effec-
tive method for sizes between 4KB and 8KB. On greater banks, Full replication
performance is equivalent to the best bank content management at a lower cost.
On the explored design space (banks between 2KB and 16KB with latencies of
2 and 3 cycles), increasing bank size is never a good option if it involves latency
add-on.

References

1. V. Agarwal et al.: Clock Rate versus IPC: The End of the Road for Conventional
Microarchitectures. Proc. of 27th ISCA (2000) 248-259

2. D.C. Burger and T.M. Austin: The SimpleScalar Tool Set, Version 2.0. UW Madison
Computer Science Technical Report #1342 (1997)

3. D. Limaye, R. Rakvic, and J.P. Shen: Parallel Cachelets. Proc. 19th ICCD 284-292.
Sept. 2001.

4. S. Cho, P. Yew, and G. Lee: A High-Bandwidth Memory Pipeline for Wide Issue
Processors. IEEE Trans. on Computers, vol. 50, no. 7 (2001) 709-723

5. R.E. Kessler, E.J. MacLellan, and D.A. Webb: The Alpha 21264 Microprocessor
Architecture. Proc. of ICCD98 90-95. Oct. 1998.

6. P. Michaud, A. Seznec, and R. Uhlig: Trading Conflict and Capacity Aliasing in
Conditional Branch Predictors. Proc. of 24th ISCA (1997) 292-303

7. S. Naffziger et al.: The implementation of the Itanium 2 Microprocessor. IEEE J.
Solid State Circuits, vol. 37, no. 11 (2002) 1448-1460

8. H. Neefs, H. Vandierendonck, and K. De Bosschere: A Technique for High Band-
width and Deterministic Low Latency Load/Store Accesses to Multiple Cache
Banks. Proc. of 6th HPCA (2000) 313-324

9. C. Racunas and Y.N. Patt: Partitioned First-Level Cache Design for Clustered Mi-
croarchitectures. Proc. of 17th ICS 22-31. June 2003.

10. T. Sherwood, E. Perelman, G. Hamerly, and B. Calder: Automatically Character-
izing Large Scale Program Behaviour. Proc. of ASPLOS (2002)

11. G.S. Sohi and M. Franklin: High-Bandwidth Memory Systems for Superscalar Pro-
cessors. Proc. 4th ASPLOS (1991) 53-62

12. E. Torres, P.E. Ibaez, V. Vials, and J.M. Llabera: Counteracting Bank Mispredic-
tions in Sliced First-Level Caches. 9th EuroPar, LNCS 2790 586-596, Sept. 2003.

13. A. Yoaz, E. Mattan, R. Ronen, and S. Jourdan.: Speculation Techniques for Im-
proving Load Related Instruction Scheduling. Proc. of 26th ISCA (1999) 42-53

