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Abstract. Future processors having sliced memory pipelines will rely
on bank prediction to schedule memory instructions to a first-level cache
split into banks. In a deeply pipelined processor, even a small bank mis-
prediction rate may degrade performance severely. The goal of this pa-
per is to counteract the bank misprediction penalty, so that in spite of
such bank misprediction, performance suffers little. Our contribution is
twofold: a new recovery scheme for latency misprediction, and two poli-
cies for selectively replicating loads to all banks. The proposals have been
evaluated for 4 and 8-way superscalar processors and a wide range of
pipeline depths. The best combination of our mechanisms improves IPC
of an 8-way baseline processor up to 11%, removing up to two thirds of
the bank misprediction penalty.

1 Introduction

Current superscalar processors have the potential for exploiting high degrees
of ILP, demanding a large memory bandwidth. So, to overcome the potential
bottleneck of a single cache port, concurrent accesses to non-blocking first-level
caches are required [21]. An ideal implementation should not involve latency
increase, because programs often have load instructions at the head of critical
chains of dependent instructions and so, increasing the load-use delay could be
very harmful to performance.

Several alternatives have been used in commercial processors to support
such bandwidth demands. Truly multiported caches [17], Mirror caches [7] and
Virtual-multiporting [9, 14] caches have been widely studied and have drawbacks
in terms of area, latency or scalability. Multibanking uses an interconnection com-
ponent placed between address units and fast single-ported cache banks [4, 11,
13]. Multibanking scales easily to multiple ports, but the interconnection com-
ponent (either a crossbar network [11] or a bank scheduler [4, 13]) may increase
the latency of loads noticeably.

The sliced memory pipeline reduces the load latency of multibanked schemes
by removing the interconnection component from the memory pipeline [5, 18, 22,
23]. Because the Instruction Issue Queue (IQ) does not know memory addresses
yet and there is only one path to each bank, this design relies on bank prediction
to schedule memory instructions to banks. A hardware loop between IQ and
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the address computation stage is responsible for checking the bank prediction (a
loose loop according to Borch et al. [2]).

Speculation can be used to manage such a loose loop (load speculation). The
IQ assumes the bank prediction to be correct and speculatively schedules de-
pendent work at the proper time. If predictions are mostly correct, performance
increases. However, at each misprediction the speculative work is lost and a
recovery action is needed.

The aim of this papers is to counteracting the bad side effects of bank mis-
predictions in first-level sliced caches. We first introduce a new recovery scheme
for reducing the recovery penalty. Secondly, we propose two policies for a se-
lective replication of loads, so that the load-use delay and the number of load
misspeculations are reduced.

We evaluate deeply pipelined 4 and 8-way out-of-order processors, considering
that only a few logic levels will fit within the processor cycle [1]. Pentium 4 is
an example, with 20 stages up to branch check, and 4 between IQ and Ex [10].

Section 2 details the processor and memory pipelines, offering an alternative
for distributing the buffering needed for disambiguation. After detailing the sim-
ulation environment in Section 3, in Section 4 we isolate and analyze a number
of factors that contribute to the bank misprediction penalty. Next, we propose
two mechanisms for counteracting the bank misprediction penalty: Section 5 de-
scribes a new recovery mechanism and Section 6 introduces two mechanisms for
spreading loads into banks in a selective way.

2 Baseline processor and memory system

Processor. Figure 1a shows the execution pipeline of the superscalar processor
used as baseline. The front-end pipeline has eight stages from Fetch to IQ.
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Fig. 1. Execution pipeline (a). Out-of-Order execution core with two cache banks (b).

The IQ has a Dependence Matrix and a Selection Logic [8], see Figure 1b. The
Dependence Matrix encloses the dependency information among instructions and
uses wired-OR logic to find ready instructions (wake-up phase). The Selection
Logic issues the oldest instructions among the ready ones (select phase). After
issuing, instruction payload is read, operands are read from the register file, and
execution starts.



Counteracting Bank Misprediction in Sliced First-Level Caches 3

If the trend towards rising frequency holds, the number of stages between
IQ and Ex will continue increasing [1, 2, 10]. So, we will take this number as a
parameter in all our experiments and analyze its impact on performance.

The processor can issue speculatively while waiting for the resolution of all la-
tency predictions, namely bank prediction, cache hit prediction and disambigua-
tion buffer non-full prediction. Each prediction has its own resolution delay. IQ
assumes the cache hit latency for loads, and speculatively issues their dependent
instructions during a set of cycles called the Speculative Window. The Specula-
tive Window starts at the first cycle in which the direct dependents can issue
and ends either when the last-prediction acknowledgement reaches IQ, or when
a misprediction is notified to the Recovery stage.

IQ is used as the Recovery stage. The recovery mechanism used as a baseline
is described by Morancho et al. for latency prediction in [16]. It starts recovery
as soon as a misprediction notification reaches IQ. It is selective, meaning that
only the (already issued) instructions that depend on a mispredicted load will be
reexecuted. With Dependent Set we refer to the dependent instructions issued
during the Speculative Window. After every issue cycle, the instructions belong-
ing to the Dependent Set are identified and the non-speculative instructions are
removed from IQ. The load itself and the Dependent Set remain in IQ until the
last cycle of the Speculative Window ends. Therefore, the IQ pressure increase
is only determined by the longest resolution delay.
Sliced memory pipeline. The cache is sliced into banks. Each bank is only tied
to one address computation unit. We assume that bank check is made concur-
rently with address computation by evaluating the expression A+B=K without
carry propagation [6]. On a bank misprediction IQ knows about the right bank
number during the cycle following bank check, see Figure 2. Then, the mispre-
dicted instruction becomes ready to be issued again to the right bank one cycle
later. We model the resolution delay for a bank prediction with a duration of up
to 6 cycles, which is the case shown in Figure 2.
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Fig. 2. Bank check delay.

Bank predictor. All memory instructions need a bank prediction. We assume
that banks are line-interleaved. Therefore, the less significant bits of the line
number are our prediction target. We have chosen to predict each address bit
separately: 1 bit for 2 banks and 2 bits for 4 banks. As a bank predictor we use
the enhanced skewed binary predictor, proposed by Michaud et al. to perform
branch prediction [15]. We opt for a global predictor because it eases yielding
several predictions per cycle [19]. Every bit predictor is sized identically: 1K
entries for the three required tables and a history length of 10. Since we are
interested in recognizing the hard-to-predict loads, we further add a 2-bit confi-
dence saturating counter to every entry in all tables.

Each individual execution of a load has been classified according to confidence
(high or low) and bank prediction outcome (right or wrong). Table 1 shows the
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average percentages reached by the predictor for 2 and 4 banks (see workload
details in Section 3).

Table 1. Average percentages reached by the bank predictor

High confidence Low confidence
right wrong right wrong

2 banks 67.6 3.3 18.5 10.6
4 banks 53.7 2.6 22.8 20.9

Memory data flow. We assume memory disambiguation based on the Alpha
21264 approach [12], where loads place their addresses into a load buffer and
stores place address and data at once into a store buffer. In this centralized
model, the buffer entries are allocated in-order at decode, filled out-of-order at
execution, and finally released at commit.

In a sliced memory system the accesses handled by the different cache banks
reference disjoint memory regions. Consequently, the disambiguation unit could
be distributed acting locally at each bank. Nevertheless, the entries of such
distributed buffers cannot be allocated in fetch order because the bank number
is unknown at decode time.

Zyuban&Kogge have suggested a distributed disambiguation mechanism for
their multicluster architecture [23]. They solve the allocation problem partially
by allocating an entry to every store in the buffer of every cluster at decode time.
The main drawback of this approach is that the buffer of every cluster requires
almost the same size of a centralized buffer.

We propose reducing the size of buffers in accordance with the number of
banks and allocating buffer entries after the bank check (out-of-program order).
A deadlock situation might arise when an allocation demand is rejected because
all buffer entries have been already allocated.

The Buffer-Full condition is managed by adding a new prediction to the
memory loop: it is predicted that there will be room and the memory instruction
is speculatively issued. If the buffer is eventually full, a latency misprediction
occurs. The faulting instruction is reissued from IQ when a signal indicates that
the buffer is no longer full. On the other hand, in order to prevent deadlock it
is sufficient to warrant that the oldest memory instruction in IQ can progress.
This can be easily achieved by allocating the last free entry of a given buffer
only if it is requested by the oldest memory instruction in IQ.

As an example, the considered 8-way processor with four banks and up to
128 in-flight loads/stores does not show performance losses when reducing the
number of entries of every load buffer to 32 and of every store buffer to 16.

3 Simulation environment

We evaluate 4 and 8-wide issue processors having 8 stages before IQ and 1 to
4 stages between IQ and Ex. We have modified SimpleScalar 3.0c [3] in order
to model a Reorder Buffer and a separate Issue Queue, looking carefully at all
situations requiring latency misprediction recovery. We assume an oracle pre-
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Fig. 3. Microarchitectural parameters (a). Used SPECint 2K programs (b).

dictor for store-load independency. The microarchitectural parameters used are
summarized in Figure 3a.

We are interested in integer code because it exhibits difficult-to-predict ad-
dress streams. As workload we use all the integer benchmarks of SPECint 2K but
254.gap which could not be executed within our framework (see Figure 3b). We
use the Alpha binaries compiled by C. Weaver (www.simplescalar.com), simulat-
ing a contiguous run of 100M instructions from the points suggested by Sherwood
et al. after a warming-up of 200M instructions [20].

4 Performance impact of bank misprediction

Figure 4a shows execution of a well-predicted load and two dependent instruc-
tions. We can see a load-use delay of 2 cycles (cycles 2:3 ) and a 4-cycle Specu-
lative Window (cycles 4:7 ) inside which the Dependent Set (add, sub) is issued.

Figure 4b shows a bank misprediction. When IQ is notified a recovery action
is performed during a full processor cycle (cycle 7, box with N ). Recovery implies
stalling issue because the results of both the load and the Dependent Set must
be tagged as not available in the Matrix Dependence. In the same cycle, the load
itself and the Dependent Set become visible to the issue logic and they will be
executed again as their operands become available (cycles 8, 11, and 12 for ld,
add and sub, respectively).

When comparing the timings of the right and wrong bank predictions, the
following differences appear: the load-use delay has 7 added cycles (cycles 4:10 ),
the work started by the Dependent Set during the Speculative Window has been
lost, and finally, a cycle is spent for the recovery action (cycle 7 ). Summarizing,
the bank misprediction penalty is due to a number of factors, namely the load-
use delay increase, work loss, and recovery penalty. We group the last two factors
under the term misspeculation penalty. Notice that, as the resolution delay in-
creases (cycles 2:7 ) both the load-use delay and the work lost may also increase.

To quantify this penalty, Figure 5 shows IPC for processors having from 1 to
4 stages between IQ and Ex. First, we look at the bars labelled BASE and OBP
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Fig. 4. Right and wrong bank predictions, assuming 4 cycles between IQ and Ex. For
the sake of clarity only one instruction per cycle is issued. We show the stages of the
instructions to be nullified until the cycle where IQ is notified of the misprediction.

(Oracle Bank Predictor). The BASE processor has the realistic bank predictor
introduced above, while OBP has an oracle that always predicts the correct bank.
So the IPC difference between OBP and the BASE processor (OBP-BASE) is the
bank misprediction penalty (and the room for improvement). The IPC for OBP
worsens with the number of IQ-Ex stages because the branch penalty increases.
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Fig. 5. Harmonic IPC mean with an Oracle Bank Predictor (OBP), an Oracle Confi-
dence Predictor (OCP), and the real predictor (BASE).

Compared with OBP, the 4-way BASE processors experience an IPC loss
raging from 6.4% to 9.0% as the number of IQ-Ex stages increases from 1 to 4.
Eight-way BASE processors have more IPC loss, raging from 11.2% to 15.0%.

Another interesting point is breaking the misprediction penalty down into
load-use delay increase and misspeculation penalty. For that we simulate the
real bank predictor again, but now if the prediction is wrong the dependent
instructions are not issued (OCP, Oracle Confidence Predictor). Thus, the mis-
speculation penalty is removed and so (OBP-OCP) difference is the load-use
delay increase, whereas (OCP-BASE) difference is the misspeculation penalty.

Results show that both degrading factors are significant. However, load la-
tency weighs more as the number of IQ-Ex stages increases; specifically, its con-
tribution ranges from two thirds to three quarters as the number of IQ-Ex stages
increases from 1 to 4. This is true for both 4-way and 8-way processors. In Sec-
tion 6 we show how to reduce the overall misprediction penalty by replicating
some loads, and in Section 5 we introduce a new recovery mechanism for reducing
the recovery penalty.
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5 Chained Recovery

Chained Recovery (CR) reduces the recovery penalty by not stalling issue as the
baseline recovery does. Instead, the recovery process may require now several
cycles because, in a given cycle, instructions that depend on previously nullified
ones may be issued. In this Section the CR concept is applied to bank mispre-
diction, but notice that it can also be used to recover from any kind of latency
misprediction.
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Fig. 6. Bank misprediction and Chained Recovery.

Figure 6 shows how CR acts on the code of Figure 4b. In the first recov-
ery cycle (cycle 7 ), the results of the mispredicted load and the Dependent Set
are tagged as not available. However, in the same cycle the Issue Logic selects
an instruction (sub) which depend on another one that is being nullified (add).
Next, in cycle 8, CR identifies which instructions issued in the previous cycle de-
pends on the mispredicted load. Finally (cycle 9 ), the results of the instructions
identified by CR in cycle 8 are tagged as not available.

From now on, in every cycle (cycles 10, 11, ...) the two actions stated above
are made at once: a) the results of the instructions identified as dependents in
the previous cycle are tagged as not available, and b) those instructions issued
in the previous cycle and depending on nullified instructions are identified. The
recovery process will eventually finish in the cycle where no issued instruction
depends on any nullified instruction.

Adding a bit vector to the baseline recovery mechanism described in [16] is
enough to implement CR. This bit vector check whether the instructions issued
in a cycle depend or not on instructions nullified in the previous cycle.
Evaluation. Figure 7 shows results again for the OCP and BASE processors
considered in Section 4. The central bar in each bar group represents a processor
enhanced with CR. As expected, the misspeculation penalty paid for CR is quite
small -remember that such a penalty is the (OCP-CR) difference. So, the work
lost during the Speculative Window and the issue slots wasted during the chained
recovery have almost no adverse effects on performance.
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Summarizing, an 8-way processor with CR outperforms the baseline from
4.8% to 3.7% as the number of IQ-Ex stages grows from 1 to 4. In 4-way pro-
cessors the benefits are lower, ranging from 1.9% to 1.8%.

6 Load Replication

As shown in Section 4, bank mispredictions increase the load-use delay and the
effect is more pronounced as the number of the IQ-Ex stages increase. To reduce
this penalty, instead of re-issuing from IQ, Neefs et al. propose using a dedicated
network after the bank check. The network is out of critical timing paths and
re-routes the bank-mispredicted instructions towards the correct bank [18].

Our point is quite different. We consider taking conservative actions before
knowing about the outcome of the bank check. By conservative actions we un-
derstand issuing a load to several banks in limited cases. Next we show two
approaches to this idea.

The first approach is Replication Using Free Memory Slots (RF). It consists
in making use of idle memory ports. For that, after the selection phase in IQ the
oldest load is identified among the selected instructions. Then, several instances
of that load are issued to all free memory issue ports, if any. As usual, the
dependent instructions can be speculatively scheduled. This alternative is similar
to that proposed by Yoaz et al. However, since they assume a separate IQ for
the memory instruction stream, the replication policy has no interaction with
the integer IQ and the sliced memory system they propose is evaluated with an
analytical model, but it does not include load replication [22].

The second approach consists in adding confidence to the bank prediction
and whenever it is low, switch to a conservative dispatch policy that discards
the prediction. We call this approach Replication in Dispatch (RD), and it is
accomplished by tagging low-confidence loads in order to be issued to all the
banks from the IQ. All load instances are not necessarily issued in the same cycle.
Each port scheduler use instruction age to select, among the ready instructions,
the one to be issued. Thus, RD does not disturb the issuing of older instructions
with ready operands. Besides, when IQ is notified of the bank check, the load
instances pending issuing are nullified. Because a replicated load has low bank
confidence, we choose not to wake up the dependent instructions speculatively.
The latest load instance or an early bank check will wake them up.

RD could produce a performance loss. The low-confidence loads replicated
by RD account for a 43.7% (29%) of all loads for 4 (2) banks (see Table 1),
and so, younger instructions could be stalled by lack of issue slots. Moreover,
the low-confidence loads that were actually well predicted see their dependent
instructions delayed until the last instance is issued. On the other hand, the low-
confidence loads that were actually mispredicted (e.g. 21% for 4 banks) win the
replication benefit: load-use delay decrease and misspeculation penalty removal.
Summing up, the results below will show that the overall effect is clearly positive.
Evaluation. As said in Section 4, counteracting bank misprediction effects offers
good opportunities for improving performance, and these opportunities grow as
the number of IQ-Ex stages increases; see the gap between OBP and BASE bars
in Figure 8. The three bars between OBP and BASE report the performance
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Fig. 8. Harmonic IPC mean. OBP means Oracle Bank Predictor. Replication in Dis-
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of a selection of three enhancements of increasing complexity: RF, RD, and
the combination of RD and Chained Recovery (RD+CR). Lets focus on the
processors having 4 cycles from IQ to Ex and move then from the simplest
alternative to the most complete. First we consider RF, which improves IPC
6.3% (4.3%) for an 8 (4)-way processor, respectively. Considering that RF adds
a very small complexity in control, these are quite good numbers. Second, we
consider the RD approach. We add confidence to the bank predictor by investing
6Kbits in storage, but IPC now rises to 9.8% (5.6%) for an 8 (4)-way processor,
respectively. Third, if we add CR on top of RD, we are simultaneously decreasing
the misspeculation penalty and the average load-use delay, achieving then 11.1%
(6.5%) IPC increase for the 8 (4)-way processor, respectively (see the RD+CR
bar). This extra performance comes only from the slight increase in control
complexity added by CR.

As a final remark, it’s important to realize that for all IQ-Ex numbers and
for all issue widths, RD+CR achieves two thirds of the ideal performance given
by OBP. This makes RD+CR very sound across important microarchitectural
parameters and therefore an appealing cost/performance design point.

7 Conclusions

Current trends in microarchitectural design, such as issue width increase and
deeper pipelining, have a negative influence on processors having sliced memory
pipelines, which is increasingly dependent on the bank misprediction rate. In this
paper we have introduced two complementary approaches to reduce the overall
bank misprediction penalty.

The first one is Chained Recovery, a new recovery mechanism intended to
reduce the recovery penalty after a misspeculation. We have shown that CR is
very effective, achieving in the worst case 98.6% of the IPC given by an Oracle
Confidence Predictor.

The second approach is a set of two specific policies to issue a load to several
banks in limited cases. Replication Using Free Memory Slots replicate a load to
free banks when there are free issue slots at issue time. It achieves a maximum
6.3% increase in performance adding only a modest control complexity. On the
other hand, Replication in Dispatch replicates to all banks those loads with
a low-confidence prediction. The increase in performance achieves 9.8% in the
deepest pipelined 8-way processor, with an affordable increase in the predictor
size (6K bits for our bank predictor).
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Finally, if we put Chained Recovery and Replication in Dispatch together,
we eliminate about two thirds of the IPC lost in bank mispredictions for all the
simulated processors.
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