
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1

LP-NUCA: Networks-in-Cache for High-
Performance Low-Power Embedded Processors

Darío Suárez Gracia, Student Member, IEEE, Giorgos Dimitrakopoulos, Member, IEEE, Teresa Monreal Arnal,
Manolis G. H. Katevenis, and Víctor Viñals Yúfera, Member, IEEE

Abstract—High-end embedded processors demand complex
on-chip cache hierarchies satisfying several contradicting design
requirements such as high-performance operation and low energy
consumption. This paper introduces light-power (LP) nonuniform
cache architecture (NUCA), a tiled-cache addressing both goals.
LP-NUCA places a group of small and low-latency tiles between
the L1 and the last level cache (LLC) that adapt better to the
application working sets and keep most recently evicted blocks
close to L1. LP-NUCA is built around three specialized “net-
works-in-cache,” each aimed at a separate cache operation. To
prove the design feasibility, we have fully implemented LP-NUCA
in a 90-nm technology. From the VLSI implementation, we observe
that the proposed networks-in-cache incur minimal area, latency,
and power overhead. To further reduce the energy consumption,
LP-NUCA employs two network-wide techniques (miss wave
stopping and sectoring) that together reduce the dynamic cache
energy by 35% without degrading performance. Our evaluations
also show that LP-NUCA improves performance with respect to
cache hierarchies similar to those found in high-end embedded
processors. Similar results have been obtained after scaling to a
32-nm technology.

Index Terms—Cache organization, interconnection networks,
low-power design, network-on-chip, nonuniform cache architec-
ture (NUCA), VLSI.

I. INTRODUCTION

T HE complexity and variety of embedded applications are
constantly increasing, thus demanding systems with high

computing capacities and low power consumption. In order to

Manuscript received November 22, 2010; revised March 14, 2011; accepted
May 05, 2011. This work was supported in part by the HiPEAC European Net-
work of Excellence through a collaboration grant and postdoctoral fellowship,
by the Spanish Government and European ERDF under Grant TIN2007-66423
and Grant TIN2010-21291, the Aragón Government and European ESF through
the gaZ: T48 Research Group, the Spanish Government under Consolider
CSD2007-00050, and HiPEAC-2 NoE under Grant European FP7/ICT 217068.

D. S. Gracia and V. V. Yúfera are with the Computer Architecture Group
(gaZ), Departamento de Informática e Ingeniería de Sistemas, Instituto de Inves-
tigación en Ingeniería de Aragón, Universidad de Zaragoza, E-50018 Zaragoza,
Spain (e-mail: dario@unizar.es; victor@unizar.es).

G. Dimitrakopoulos is with the Informatics and Communications Engi-
neering Department, University of West Macedonia, GR-50100 Kozani, Greece
(e-mail: gdimitrak@uowm.gr).

T. M. Arnal is with the Department of Computer Architecture, Universitat
Politécnica de Catalunya (UPC), E-08034 Catalunya, Spain, and also with
the Computer Architecture Group (gaZ), Universidad de Zaragoza, E-50018
Zaragoza, Spain (e-mail: teresa@ac.upc.edu).

M. G. H. Katevenis is with the Foundation for Research and Tech-
nology—Hellas, Institute of Computer Science (FORTH-ICS)—Computer
Architecture and VLSI Systems (CARV) Laboratory, GR-70013 Heraklion,
Crete, and also with the Department of Computer Science, University of
Crete,GR-71409 Heraklion, Greece (e-mail: kateveni@ics.forth.gr).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2011.2158249

TABLE I
REPRESENTATIVE PROCESSOR SAMPLES OF CURRENT HIGH-END SOCS (40–45

nm). SHADED CELLS SHOW THE LAST LEVEL CACHE (LLC)

execute these applications and reduce costs embedded systems
are integrated into system-on-chips (SoCs). Many manu-
facturers offer SoCs meeting these stringent requirements.
To reach the performance goal, SoCs rely on concepts and
techniques previously proposed for the high-performance com-
puting segment, but tuned for minimizing energy consumption.

A review of current advanced embedded SoCs (40–45 nm)
clearly shows how their CPUs follow close behind their
high-performance siblings. Among other advanced features
(see Table I), embedded processors profit from out-of-order
wide issue or multithreaded execution [1]–[6].

These techniques such as wide issue and multithreading put
pressure on the cache hierarchy, so its design also inherits con-
cepts and techniques from the high-performance segment. For
example, we can see multiported L1 data caches optimized for
speed [5] and relatively big LLCs optimized for size.

An appealing proposal that has received much attention for
improving the performance of the cache hierarchy has been
the nonuniform cache architecture (NUCA) [7]–[21]. NUCA
tackles the wire delay problem in LLCs1 by merging the L2
and the L3 into a mesh of cache banks and enabling inter-bank
block migration. Hence, blocks located in the banks close to the
cache controller have a lower latency that those located further
apart [7].

Nevertheless, there are almost no examples of NUCA caches
in high-performance embedded SoCs. A close approach is
the L3 cache of NetLogic XLP832 [5]. This LLC is divided
into eight independent banks, and each bank is attached to
a bidirectional ring that also communicates with four DDR
ports and eight private L2 caches. Since L3 cache lines are
statically mapped into banks, the NetLogic solution resembles
the static NUCA proposal, but with a topological change: from
the original mesh to a ring.

1Driving a signal from the cache controller to the banks takes more time than
the bank access itself.

1063-8210/$26.00 © 2011 IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

To the best of our knowledge, there is little published work
attempting to bring NUCA caches into SoCs. Foglia et al. took
a first step in that direction proposing a low-power NUCA for
embedded LLC (triangular NUCA) [11], and Chou et al. con-
tinued it with a ring for sharing L1 caches in 3-D multicore chips
[20]. Following this path, in this paper, we extend light NUCAs
(L-NUCAs) for deployment in embedded environments.

L-NUCA is a proposal for closing the latency gap between
speed-optimized L1 caches and capacity-optimized LLC [18].
It tries to smooth this gap by retaining L1 most recently evicted
blocks in a fabric of very small tiles (capacity: 8–32 KB, latency:
one processor cycle). Tiles behave as a very large distributed
victim cache [22] leveraging short-term temporal locality. The
key novel feature of L-NUCAs is their three specialized net-
works-in-cache, exploiting the availability of on-chip wires to
minimize the network overhead in terms of delay, area, and
power. The resulting cache offers a reduced average memory
access time and a lower energy consumption regardless the or-
ganization of the LLC.

To prove the scalability and benefits of L-NUCA and its
networks-in-cache, we have implemented L-NUCA in a 90-nm
ASIC technology. From the implementation, we draw several
conclusions. First, only two types of tiles are required to build
L-NUCAs of any size. Second, all of the networks-in-cache
proposed in L-NUCA involve minimum overhead, and all
tile operations, including cache access plus routing, fit in a
single core clock cycle.2 Third, on-chip wire availability can be
used to reduce router complexity and, hence, latency. Fourth,
cache accesses (SRAM cells and cache control logic) account
for most of the total tile power, which is around 75%. Since
energy consumption is crucial in embedded processors, we
propose two network enhancements for its reduction based
on the previous fact. We have observed that there is time to
propagate a few global signals among tiles to reduce the cache
accesses, Miss Wave Stopping. With subsequent simulations,
we have also observed that block placement can be restricted,
Sectoring, without degrading performance. Both techniques
taken together form light-power NUCA (LP-NUCA), which is
a specialization of L-NUCA for high-performance embedded
processors.

In order to evaluate the performance and energy attained, we
have fed a detailed cycle-by-cycle simulator with the energy
costs from the different layout variants, finding that LP-NUCA
reduces the dynamic power consumption of L-NUCAs by 35%
without performance losses when running typical embedded
workloads. Compared with a slightly larger conventional L2
cache that mimics the memory hierarchy of a representative
high-end embedded processor, both L-NUCA and LP-NUCA,
besides power savings, enable also faster execution. Similar
conclusions have been derived after testing the energy behavior
of LP-NUCA at 32 nm using Cacti simulations.

The remainder of this paper is organized as follows. Section II
comments on the related work. Section III describes the organ-
ization of the L-NUCA, while Section IV focuses on its VLSI
implementation. The performance of L-NUCA is evaluated and
compared to previous state-of-the-art second-level cache orga-
nizations in Section V. The low-power enhancements of the

2Tile latency is mainly dominated by the cache access, which, in turn, is due
to its SRAM macros.

basic L-NUCA are described in Section VI along with the en-
ergy savings achieved. Finally, Section VII sketches coherence
and real-time support in LP-NUCA, and Section VIII concludes
the paper.

II. BACKGROUND AND RELATED WORK

Kim et al. introduced the NUCA organization [7]. Their
focus was to reduce the impact of wire delay in LLCs, so
they replace the global wires between the banks and the cache
controller with a conventional 2-D mesh and wormhole routers
forming the static NUCA (S-NUCA). They extend the network
with the ability of inter-bank block migration, dynamic NUCA
(D-NUCA), and implement them in the TRIPS processor [23].

Later, many authors have focused on improving NUCA
caches, mostly in two aspects: networks and content man-
agement in chip-multiprocessors. In both cases the target was
LLCs. On the former group (NUCA networks), Jin et al.
proposed a novel router for efficient multicast, a replacement
algorithm, and a heterogeneous halo topology [8]. Murali-
manohar and Balasubramonian introduced heterogeneity in
the wires and in the topology with a mixed point-to-point
bus network [9]. The same authors with Jouppi extended the
Cacti tool to support NUCA caches and add multiple kinds
of wires such as low-swing buses [10]. Foglia et al. proposed
triangular D-NUCA (TD-NUCA) for reducing power in large
caches of embedded processors [11]. Chou et al. have proposed
a single-cycle ring interconnection for multicore L1-NUCA
on 3-D chips [20]. They connect all of the L1 caches with
two counter-rotating rings and a global arbiter for granting
permissions.

On the latter group (content management), Beckmann and
Wood showed the complexity of block migration with requests
coming from multiple processors [12]. With a similar layout,
Lira et al. improve the bank replacement policy of D-NUCA
based on the type of data [19]. Merino et al. dynamically parti-
tion NUCA banks to reduce access latency and improve core
isolation [17]. Recently, other proposals have departed from
S-NUCA to extend them with OS directed placement in order
to get the advantages of D-NUCA without the migration com-
plexity [13]–[16].

Most of the previous proposals target multimegabyte LLCs,
and are made of large cache banks connected with conventional
routers. Table II shows the routing delay, the bank latency
and size, and the total NUCA size of several state-of-the-art
proposals. In NUCA’s seminal work [7], small bank sizes were
employed in order to keep routing delay along a bank just within
a clock cycle. Subsequent designs increased the bank size and
thus the corresponding routing delay for improving perfor-
mance in this large LLCs environment [9], [10], [13]–[17],
[19], [21], [24]. L-NUCA places a small yet fast distributed
victim cache between L1 and LLCs to exploit temporal locality.
Its aim is to close the latency gap between speed-optimized L1
cache and capacity-optimized LLCs, offering at the same time
low-latency access to recently used blocks, virtually behaving
as an L1 capacity extension mechanism. Hence, the L-NUCA
cache works equally well whether the LLC is a conventional or
a NUCA cache [18].

Most previous NUCA designs rely on conventional routers
to convey messages. On the contrary, L-NUCA exploits the fact

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GRACIA et al.: LP-NUCA: NETWORKS-IN-CACHE FOR HIGH-PERFORMANCE LOW-POWER EMBEDDED PROCESSORS 3

TABLE II
ROUTING DELAY, BANK LATENCY AND SIZE, AND TOTAL SIZE OF SEVERAL

NUCA PROPOSALS. L-NUCA DOES NOT TARGET LLC AND IS PLACED

BETWEEN L1 AND A LARGE LLC

Fig. 1. Four-level L-NUCA. The numbers inside tiles represent the tile hit la-
tency seen by the processor assuming single-cycle tiles.

that traffic patterns within caches are quite regular by using three
specialized networks-in-cache that simultaneously reduce con-
trol overhead and energy consumption through the minimization
of the network activities.

III. L-NUCA ORGANIZATION

Here, we first provide an overview of L-NUCA, including
router organization and message types, and then it details the
networks-in-cache.

A. Basic Microarchitecture

L-NUCAs extend the conventional first-level cache capacity
by surrounding it with one or more levels of small cache tiles
interconnected by specialized networks, as shown in Fig. 1. The
cache size of a tile is chosen so that the L-NUCA cycle time
(cache access plus one hop routing) is the same as the processor
cycle. Since the L1 cache SRAM macros often dominate the
critical path of high-end processors [25], we can make two key
observations: First, caches inside the L-NUCA tiles will have
lower size, or lower associativity, or lower number of ports, or a
combination of all previous conditions than their corresponding

Fig. 2. L-NUCA tile main components.

L1.3 Second, L-NUCA network delay will be constrained to the
remainder of the cycle after the cache access completes.

In order to interface with the L-NUCA fabric, the first-level
cache is slightly modified to become the so called root tile
(r-tile). The rest of tiles behave as a large distributed victim
cache filled with the r-tile evictions [22]. Tiles are in exclusion
among them, and do not impose any mapping constraints to
blocks.

Fig. 2 shows the tile internals. Apart from the cache, we dis-
tinguish the three routers interfacing with the specialized net-
works-in-cache, one for each cache operation: Search, Trans-
port, and Replacement. All of their mechanisms are indepen-
dent of the caches they connect, and the only requirement is that
caches have to support load hits under previous noncompleted
store hits as conventional caches do.

A load missing in the r-tile starts a miss wave that propagates
across the Search network. When a tile experiences a hit (ei-
ther from the cache or from an in-transit Replacement block),
the requested block is directly sent through the Transport net-
work back to the r-tile that at the same time can be conveying
hits from other tiles. Assuming single-cycle tiles, the numbers
inside tiles of Fig. 1 represent the latency seen by the processor
if that tile hits. For instance, if tile caches were direct-mapped,
a block could be stored in a way at a round-trip latency of one
cycle (r-tile), in three ways at three-cycle latency (tiles labeled
“3”), in two more at four-cycle latency (tiles labeled “4”), etc.
Eventually, when the miss wave reaches the last level, if all of
the tiles have missed, a global miss arises, and the next memory
level is requested. The block coming from the next level is di-
rectly written into the r-tile.

The Replacement network handles the eviction traffic. When a
tile receives a victim block, it first evicts another block to an ad-
jacent tile so that the Search-Transport round-trip latency of the
block is increased by one cycle.4 Then, it writes the victim that
has been waiting in the buffers of the replacement router. For
instance, both tiles labeled “4” evict the victim block through
diagonal links to the tiles labeled “5.” This operation resembles
a fall of dominoes and ends when a receiving tile offers an empty

3Also, tile cache control is simpler because tiles only provide whole blocks
and not precise words as L1 caches.

4The increment is larger than one between the r-tile and the second level tiles.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

TABLE III
NETWORK MESSAGES. LAST COLUMN REPRESENTS THE LINK WIDTH OF EACH

NETWORK AND IS COMPUTED ASSUMING 32-B BLOCKS, 43-BIT ADDRESSES,
AND UP TO 16-ENTRIES MISS STATUS HOLDING REGISTERS IN THE r-TILE.

EXTRA THREE BITS ARE INCLUDED TO PROVIDE COHERENCE SUPPORT

Fig. 3. Conventional router and L-NUCA timing diagram.

way or a block is eventually evicted from the whole L-NUCA.
Thanks to this block ordering, miss waves start visiting the most
recently evicted blocks and continue towards the least recently
evicted ones, similarly to a serial associative cache [26].

Each network transfers fixed size messages, detailed in
Table III. The message destination is implicit in all of the
networks, and topologies ensure that all output links are valid
for every message. L-NUCA employs headerless messages,
thus reducing both routing delay (there is no need to read
and manage headers) and the size of buffers and crossbars. In
addition, link width matches the size of messages in order to
avoid the delay overhead of fragmentation.

In order to provide latency-size adaptability and the minimum
request round-trip delay, the delays of the search router, the
cache, and the transport router (tile access) have to be fixed to
a single processor cycle. This strict timing requirement leaves
a short delay for routing and is the rationale behind the net-
work specialization. Nevertheless, neither the network special-
ization nor the wide-links are enough to perform tile accesses
back-to-back within a cycle. Single-cycle operation is possible
only if part of both tasks is done in parallel.

Fig. 3 shows the timing of a conventional router, similar to
those used in all previous NUCA designs, and of an L-NUCA
tile. A network-in-cache made from conventional routers would
raise the tile latency to nine cycles: four to process the search
request, one to access the cache, and four more for the transport
message. High-performance routers can process a message in
a single cycle in the best case [27], [28], so, with conventional
routers, tile latency cannot be lower than three cycles. Clearly,
it is very hard to fit a cache access and one hop of routing in a
single cycle without removing some router stages.

L-NUCAs achieve this objective first by using small caches
(8–32 KB). Second, the Search network directly drives caches,

Fig. 4. Search network topology and its components. (a) Broadcast-tree
topology. (b) Components.

removing the search request routing.5 Third, most block trans-
port router stages are avoided or performed in parallel with
the cache. Neither decoding nor routing are necessary because
all output links are valid for all messages within a network.
Wide-message links negate the need for virtual channels and
their allocation stage. The stages left are switch allocation and
switch and link traversal. Switch allocation needs to know only
which inputs are ready to be served and not the data to be sent;
therefore, when the tag comparisons finish, allocation can pro-
ceed in parallel with the rest of the data array access. Finally,
the use of a switch with few ports enables the integration of the
cache access and one-hop routing in a single cycle.

B. Networks-in-Cache

The three networks use point-to-point links between adjacent
tiles to minimize link delay and ease scalability—wires that
shorten at scaling do not change their relative delay to gates
[29]—although each network has a different topology to sat-
isfy their different needs. The Search and Transport networks
focus on low latency and high bandwidth, while the Replace-
ment one focuses on ordering blocks according to temporal lo-
cality. In what follows, we explain the networks for a three-level
L-NUCA example.

1) Search: As shown in Fig. 4(a), search messages proceed
through a broadcast-tree with minimum degree.6 This topology
ensures that all tiles receive a miss requests on a number of
cycles less than or equal to the number of L-NUCA levels, which
is three cycles or less in our example.

Search routing is simple yet effective. When a tile receives a
request and misses, it forwards the requests to all its child tiles.
This “wired” multicast is much simpler than multicast in con-
ventional routers because it avoids the complexity of message
replication [8]. To simplify the Search network even more, it
does not use any flow control mechanism. When a request leaves
the r-tile, it proceeds through the rest of tiles in a fixed number
of cycles, equaling the number of levels. In the rare case that
a tile experiences a hit, and all its transport links are busy, it
marks the request with a congestion control bit, and the global
miss logic retries the access from the r-tile. The remaining three
control bits of search messages encode whether the request is a
load or a store and, in the latter case, its size (see Table III).

5Cache control signals are generated in the previous cycle of the tile access
with information from both the tile itself and the parent tile in the Search net-
work.

6The degree of a node is the number of input and output links.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GRACIA et al.: LP-NUCA: NETWORKS-IN-CACHE FOR HIGH-PERFORMANCE LOW-POWER EMBEDDED PROCESSORS 5

Fig. 5. Transport network topology and its components. (a) 2-D mesh topology.
(b) Components.

Another key feature for reducing the Search network delay
is to couple the router with the cache. As depicted in Fig. 4(b),
the Search network is directly connected to the cache and only
requires the Miss Address Register (MAR) and STore Data
Register (STDR) to save the address and the store data for r-tile
write misses. R buffers (R bf) of the Replacement network
are included in the lookup, because otherwise either blocks in
transit could be overlooked or search operations would have to
wait (increasing latency) until the insertion from the R buffers
completes.

After looking up all of the L-NUCA tiles, the global miss
signal is determined by logically ANDing the miss signals
coming from all the last-level tiles. The delay added by the
largest wire ending up in the AND gate does not increase the
L-NUCA cycle. Section VI-A on miss-wave stopping elabo-
rates more on this issue.

2) Transport: The Search network can inject a new request
every cycle, so we can expect bursts of hits to be transported
to the r-tile, demanding lots of bandwidth. A 2-D mesh was se-
lected for the Transport network [see Fig. 5(a)] because it pro-
vides a high bandwidth with its multiple returns paths to the
r-tile.

The Transport network follows a distributed routing mech-
anism, where each node selects an output link reducing con-
gestion; consecutive messages with same origin and destination
take a different route on the contrary to dimension-order routing.
We have tested random and round-robin allocation policies with
good results, making unnecessary more complex policies.

Flow control signals buffer availability with an On/Off
protocol. Each buffer stores up to two messages because the
round-trip delay between tiles is 2. Larger buffers are undesir-
able since they would increase delay, area, and energy. Most
importantly, gains would be marginal because the number of in
flight misses is limited by the size of the Miss Status Holding
Register. Fig. 5(b) depicts the components of the Transport
network. Since lookups can hit either in the data cache or in the
R buffers, all of them, as well as the tile’s T buffers (T bf) are
inputs to the crossbar switch.

Transport routers are serially accessed after caches, so their
delay is critical. Two components make up this delay: the allo-
cator and the switch. The first grants outputs to requests, and the
second routes the granted inputs to the outputs.

The complexity of the allocator can be reduced based on two
architectural observations. First, since cache content among tiles

Fig. 6. Replacement network topology and its components. Numbers represent
the tile latency assuming one-cycle tiles. Tile latency includes search, tile access,
and transport delay. (a) Latency-driven topology. (b) Components.

is in exclusion, the lookups in the cache and in the two replace-
ment buffers always return zero or one hit. Therefore, only 3 re-
questers can be active for the two outputs at maximum. Second,
the allocator prioritizes Search (younger) requests that hit in the
tile (cache or replacement buffers) over transport buffers (older
requests). Otherwise, it would require an extra buffer for the hit
and another input port in the allocator to route the hit in a sub-
sequent cycle. This priority scheme does not starve requesters
because in the worst-case scenario, older requests will proceed
when the Miss Status Holding Register becomes full. At that
time, the insertion of new misses into the L-NUCA is stopped.
Request signals almost drive output grants, which are imple-
mented with 5-b one-hot vectors to remove decoding in the con-
trol switch. With previous optimizations, the allocator critical
path only requires three gate levels with a maximum delay of
0.36 ns. As we will see in Section IV, this delay is sufficiently
short to proceed in parallel with the data array access.

3) Replacement: Fig. 6(a) shows the Replacement network.
It follows an irregular topology with node degree varying
between 2 and 4. Links connect adjacent tiles whose latency
(round-trip delay from the r-tile) differs by one cycle (two
cycles for links starting in the r-tile) and go in chess king
directions.

By following the replacement paths, evicted blocks become
ordered in a kind of global LRU list: most recently evicted
blocks remains close to the r-tile and the tiles with the highest
latency (seven cycles) store less recently evicted blocks. More-
over, the Replacement network tries to maintain blocks in the
L-NUCA as much as possible; hence, when a level is added, all
eviction paths increase their length by three hops.

Replacement takes three nonconsecutive cycles: one to re-
ceive an evicted block into the input R buffers [see Fig. 6(b)],
another to access the cache for selecting the target way, and
the last one to write the block into the target way. During the
second cycle, if the selected way contains a valid block, it is
evicted to an output R buffer, and the neighbor tile repeats this
“domino-like” operation.

Since transport and replacement are completely decoupled,
when a tile hits and the r-tile is full, the chain of evictions may
not immediately reach an empty way; it may instead have to
evict a block to a higher latency tile. Nevertheless, the global
associativity, tile associativity number of tiles, of L-NUCAs
is so high that average access time is almost unaffected.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

TABLE IV
PLACEMENT AND ROUTING SUMMARY

Like the Transport network, the Replacement network uses
dynamic routing. However, replacement messages hop only
once to reach their destination. When a tile has to evict a block,
it selects the output channels with a round-robin policy and
writes into the destination buffer without passing through any
switch. The choice of the incoming R buffers is done in the
same way, via a 2-to-1 multiplexer, as shown in Fig. 6(b).

Finally, L-NUCA networks-in-cache are deadlock-free be-
cause the r-tile is always a sink node and there are no cyclic
dependencies among messages.

IV. VLSI IMPLEMENTATION

Here, we present an L-NUCA VLSI implementation in order
to evaluate three main aspects: complexity, feasibility of wide
links, and networks-in-cache overheads in terms of area, power
consumption, and timing. The design flow employed the fol-
lowing tools: Synopsys Design Compiler (synthesis), Cadence
SOC-Encounter (placement and routing), and Mentor Graphics
ModelSim (simulation). The technology library is a low-power
90-nm technology available to European universities, featuring
nine metal layers.

In each tile, we consider a two-way set associative 32-KB
cache with 32-B blocks and least-recently-filled (LRF) replace-
ment. LRF works as follows: when a tile receives an evicted
block, it evicts the oldest block in the same set or the least re-
cently filled one. Parallel access to tag and data arrays is em-
ployed to shorten the critical path delay. This is a configuration
commonly seen for a first-level cache in the high-end embedded
market, except for the associativity, which is usually higher in
commercial caches; e.g., four ways in the IBM PowerPC 476FP
and eight ways in the Freescale e500mc/e5500 [2], [6]. The
Transport and Replacement networks implement round-robin
allocation policy because it minimizes area.

L-NUCAs of any size can be built with two tile types, dif-
fering only in the transport network; one for the middle column
(three input and one output transport links), and the other one
for the rest of tiles (two input and two output transport links).
In both designs, most connections match when tiles are placed
side by side. Therefore, building an L-NUCA with the desired
number of levels is very easy. Since both tile types involve the
same design complexity, here we focus on the second and the
most common one. Table IV shows a summary of placement
and routing statistics and Fig. 7 a layout of a tile located at the
left of the r-tile. Note that the layout for a tile to the right of the
r-tile can be obtained by mirroring its left counterpart.

The networks-in-cache require 2458 data pins and 40 more to
enable permissions and flow control. Each side of a tile contains
up to 677 pins routed in M3 and M4 layers.

For the cache memory, we chose single-port SRAM macros
with 512 entries of 64 b, which can be written at byte

Fig. 7. L-NUCA tile layout with pin placement.

Fig. 8. Main modules area distribution.

granularity. The two cache ways are mapped onto eight SRAM
macros, whereas the whole tag directory fits in a single one
(assuming 43-b addresses, a tag has 29 b and there are still three
free bits to implement an hypothetical coherence protocol).
The SRAM macros occupy the largest portion of the tile. The
replacement and status bits (LRF, dirty, and valid) are stored in
separate flip-flops. This allows trivial multiported access to the
tags, for example to invalidate a block sent to the r-tile in the
previous cycle while simultaneously probing another access
this cycle.

A. Area

Fig. 8 shows the area breakdown by module. The nine SRAM
macros of the data and tag array dominate, accounting, respec-
tively, for 68% and 8% of the total. The write buffer, valid, LRF,
and dirty bits occupy 10%.

The network-in-cache overhead is small, representing only
11% of the total area (5% for the Transport and 6% for the Re-
placement network). Even though the Transport router includes
the output switch, the Replacement router area is larger because

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GRACIA et al.: LP-NUCA: NETWORKS-IN-CACHE FOR HIGH-PERFORMANCE LOW-POWER EMBEDDED PROCESSORS 7

Fig. 9. Statistical power distribution.

Fig. 10. Tile critical path.

its buffers are bigger and it contains four address comparators
and four write mergers for handling load and store hits in the R
buffers.

B. Power

The global static power and the dynamic power for each
main module is reported in Fig. 9. The pie chart comes from a
statistical-based power distribution assuming an activity factor
of 0.2 at the maximum operation frequency and typical case
conditions. The total average power is 32.3 mW, comprising
22.67 mW of switching power, 8.89 mW of internal power, and
0.7 mW of leakage, representing only 2% of the total thanks to
the used low-power technology.

The cache memory access represents most of the dynamic
consumption (53%, including data and tag arrays, LRF, status
bits and write buffers), while the Replacement and Transport
networks consume only 25%. The cache control logic is mostly
responsible of the Rest piece that also includes a small frac-
tion due to the Search network (miss propagation to the child
tiles). This breakdown implies that in order to reduce the overall
L-NUCA power it is necessary to reduce the number of tile ac-
cesses triggered by r-tile misses. Section VI presents two tech-
niques aimed at this objective.

C. Timing

As expected, the longest paths are two: evicting the victim
block through the Replacement network and sending the hit
block to the transport buffer of a neighbor tile. Fig. 10 shows
the second one, which is the critical path.

TABLE V
SIMULATOR MICRO-ARCHITECTURAL PARAMETERS. BS, AM, LAT, AND INIT

STAND FOR BLOCK SIZE, ACCESS MODE, LATENCY, AND INITIATION RATE,
RESPECTIVELY

The critical path closed timing at 3 ns with 0.116 ns of slack.
Data delay involves SRAM reading followed by write merging,
while tag delay involves SRAM reading followed by address
comparison. The data array delivers a block 2.7 ns after the rise
of the clock, while the hit/miss signal is available 0.5 ns ear-
lier (2.7–2.19). The early arrival of the hit/miss signal enables
switch allocation to occur in parallel with the data access. After
allocation, traversing the switch and writing the transport buffer
requires 0.173 and 0.011 ns, respectively, accounting for less
than 10% of the cycle time.

So, from a practical standpoint, we conclude that the pro-
posed networks-in-cache enable both cache-access and single
hop routing in one processor cycle.

V. PERFORMANCE COMPARISONS

Here, we describe our detailed simulation environment and
compare the performance of the implemented L-NUCA cache
with an L2 cache representative of the high-end embedded
marked and a Static NUCA (S-NUCA) [7] as a possible
low-power alternative.

A. Experimental Framework

We have heavily extended SimpleScalar 3.0d for Alpha [30],
including accurate models for Light and Static NUCAs. The
baseline processor mimics the two-way out-of-order core of the
IBM/LSI PowerPC 476FP [2], [3], [31].

Table V summarizes the simulation parameters for the ref-
erence processor and cache hierarchy, including the same L1
and L3 caches and either a conventional L2, a S-NUCA, or an
L-NUCA. All caches use LRU replacement except L-NUCA
that employs LRF, least-recently-filled, and they all have a
single read/write port.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

TABLE VI
BENCHMARK SELECTION. THE L1 MPKI CORRESPOND TO THE L1 CACHES

OF TABLE V

The S-NUCA is organized in a 2 2 2-D mesh with 128-KB
banks. This configuration was selected after exploring the
S-NUCA design space. Larger number of banks do not improve
performance because network overhead becomes very high
even if the latency of the wormhole router is set to one processor
cycle. Bidirectional links were doubled from the original 16
bytes to 32 to match the size of L-NUCA transport links.

Unfortunately, the latency and the initiation rate of the Pow-
erPC 476FP L2 and L3 caches are unknown, so we optimisti-
cally estimate them with the High Performance model of Cacti
6.5 [32]. For example, the dedicated L2 of the ARM Cortex-A8
has a cache latency of 6 cycles, 50% larger than our L2 [33].
Additionally, the L2 tag and data arrays are sequentially ac-
cessed, as in the PowerPC 476FP, because parallel access does
not significantly improve performance; a 0.6% instruction per
cycle (IPC) improvement at the cost of increasing dynamic and
static energy, 19% and 4.5%, respectively. L2 latency decreases
from four to three cycles, but initiation rate increases from two
to three cycles.

Table VI shows the workload selection that includes 13
benchmarks from SPEC CPU2000 and CPU2006 [34], [35].
All of them commonly employed in the embedded domain:
gaming, image recognition, or compression. Table VI also
includes Misses Per Kilo-Instruction (MPKI) for the L1 cache.
MPKI is an useful metric allowing the architect to get an insight
on which applications LP-NUCA is expected to show its full
potential; those with a higher L1 MPKI fit better to LP-NUCA.
Simulations consist of a 100-million instruction run after a
warm-up of 200 million instructions following the SimPoint
guidelines [36].

Finally, the simulations were also used to validate the
L-NUCA HDL description. We extracted memory traces up to
150 000 references long from the architectural simulator and
fed the Verilog simulations to verify the outputs were equal.

B. IPC and AMAT Comparison

Fig. 11(a) shows the harmonic mean of Integer and Floating
Point IPCs for the reference L2, S-NUCA, and L-NUCA caches.

L-NUCA performs better than L2 and S-NUCA regardless
of the benchmark group. Gains range among 2.5% to 8.1%.
L-NUCA gains are larger in Floating Point benchmarks because
their average L1 MPKI doubles that from Integer. L-NUCA

Fig. 11. Performance comparison of L2, S-NUCA, and 3-level L-NUCA.
(a) IPC. (b) AMAT.

improvements are consistent among benchmarks; e.g., they
range between 0.5% (458.sjeng CINT2006) and 10.3% (179.art
CFP2000) relative to the second best configuration, the refer-
ence L2. Please note that 458.sjeng and 179.art are among the
benchmarks having the lowest and highest L1 MPKI, as shown
in Table VI.

Network overhead is the cause behind S-NUCA results.
As shown in Section II, S-NUCA network mechanism was
designed for large last level multimegabyte caches, and the
three required hops per access (on average) double the effective
cache latency.

Fig. 11(b) shows the average memory access time (AMAT)
for all configurations. Although AMAT combines miss rate,
miss penalty, and hit latency, it should be analyzed with care
in out-of-order processors because AMAT does not reflect the
latency overlap among misses [37]. L-NUCA reduces AMAT
about 5% relative to L2 and S-NUCA in both benchmark
groups. The IPC and AMAT gains offered by L-NUCA mostly
come from hit-and-miss time reductions than from miss rate
decrements.

Interestingly, S-NUCA, despite having a lower AMAT, has an
IPC worse than L2 in Floating Point benchmarks. Two bench-
marks cause this effect: 482.sphinx3 and 177.mesa. S-NUCA
IPC decreases 8% and 9.2%, respectively, because the S-NUCA
write buffer is filled during a larger fraction of time, stalling the
commit of stores even though loads complete faster.

Finally, AMAT differences are larger than their IPC coun-
terpart because our processor model exploits memory level
parallelism with its out-of-order core and the large Miss Status
Holding Registers. With simpler in-order cores, IPC gains
would be larger.

VI. LOW-POWER ENHANCEMENTS

Here, we describe Light-Power NUCA (LP-NUCA), the
improved low-power L-NUCA. Next, it quantifies its dynamic
energy savings with estimations from the 90-nm VLSI imple-
mentation. Finally, in two possible 32-nm application domains,
it compares LP-NUCA energy consumption and energy-delay
against an L2 cache, representative of the high-end embedded
market, and a Static NUCA [7], as another low-power alterna-
tive.

Reducing dynamic energy consumption in L-NUCAs re-
quires lowering the number of tile accesses. L-NUCA can do
this reactively by recognizing and stopping unnecessary activity
already in progress, and proactively by trying to minimizing
activity before it starts. We present one reactive technique,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GRACIA et al.: LP-NUCA: NETWORKS-IN-CACHE FOR HIGH-PERFORMANCE LOW-POWER EMBEDDED PROCESSORS 9

(a) (b)

Fig. 12. L-NUCA unnecessary accesses after a second level hit and LP-NUCA
with a level-2 hit detection gate. (a) Extra accesses in the third level. (b) Hit
detection gate between the second and third levels.

Miss Wave Stopping, and another proactive, Sectoring. They
both have low complexity and take advantage of the network
organization to save energy without degrading performance.

A. Miss Wave Stopping

One source of energy waste is the unnecessary lookups per-
formed by the search operation after a hit in a lower level. In
the base L-NUCA, tiles do not share hit information, and they
only stop miss waves to their child tiles. For example, Fig. 12(a)
shows a hit in a level-2 tile. Seven of the nine level-3 tiles look
for a block that they surely do not have (because data is exclusive
across all tiles and one tile has already hit). These extra lookups
can be avoided if tiles propagate the search request only when all
the tiles of a level miss. Fortunately, as shown in Fig. 10, hit/miss
signals are ready after around two thirds of the tile latency. The
remaining time can be used for computing a wave-stop signal
by “ORing” all the hit signals of a level. Fig. 12(b) shows a
three-level LP-NUCA with a hit detection gate in level 2. When
the wave-stop signal is set, all the level-3 tiles discard the search
operation.

At first glance, Miss Wave Stopping seems to reduce the mod-
ularity and scalability of L-NUCA because it introduces wires
that connect multiple tiles. Nevertheless, their length—and
delay—scales when technology shrinks [29], and increasing
the number of levels beyond 4 does not get additional benefits
[18]. So this technique does not increase the complexity of the
L-NUCA implementation.

Note that this technique cannot affect performance because
the number of hits is the same and, only extra accesses are
removed.

B. Sectoring

Sectoring is a proactive technique limiting the activity in the
Search and Replacement networks by restricting block place-
ment. One end, a cache block can be mapped in a fixed unique
NUCA tile, such as in Static NUCA [7]. The other end, blocks
can be mapped in any tile such as L-NUCA. Sectoring is in be-
tween and maps blocks to clusters of tiles, sector, based on the
Search network branches. The idea is similar to the D-NUCA
sparse sets [7], but differs in that if sparse sets share a single
bank, then all cache banks are -way set associative while the
L-NUCA sectors do not impose any restriction on the cache con-
figuration. Blocks are mapped to sectors based on a hash func-
tion of their addresses. As a simple and efficient hash function,
we use that of the skewed-associative caches [38].

Fig. 13. Three-level sectored LP-NUCA. For each sector, red crosses mark the
disabled links in the Search and Replacement networks; “H” tiles have repli-
cated the r-tile hash function to ensure blocks do not leave their sector.

Fig. 13 shows a three-level sectored LP-NUCA with four sec-
tors. When the r-tile misses, it hashes the block address to obtain
a 2-b sector number. Depending on the value, the search request
is propagated to all the second level tiles (sectors 01 and 10), or
only to the two tiles on the left (sector 00) or on the right (sector
11). The miss wave propagation proceeds as usual except in the
tiles marked with “H”, which compute again the hash function
and forward the miss request according to the sector number. In
this way, sectors 00 and 11 will experience at most six lookups
instead of 14. The r-tile also evicts blocks according to sector
number.

Sectoring changes global associativity. For instance, in the
implemented 3-level LP-NUCA, we depart from the homo-
geneous 28-way set associative structure (tile associativity
number of tiles) to end up with different associativities: 28 and
12 for sectors 01–10 and 00–11, respectively. In any case, the
associativity is still big, and the key factor for maintaining per-
formance is to equally evict blocks among sectors. Assuming
the hash function evenly distributes blocks among sectors,
the eviction policy has to equalize the traffic among the three
replacement links: all 00-blocks leave the r-tile through its West
replacement link (West-rl), all 11-blocks through its East-rl, and
for the remainder 50% blocks, two thirds are evicted through
the North-rl and one third is halved between West-rl and East-rl.
The extra hardware for this technique is only a counter and two
3-b flip-flops instead of the current 2-b round-robin flip-flop.

C. Energy Estimation in 90 nm

Tile energy consumption is estimated by extracting the post-
layout netlist and simulating the tile behavior for at least 1024
consecutive operations with random data. Operations include:
read hit, read miss, write hit, write miss, fill with eviction, fill
without eviction, and transport. Then, for every tile, the average
energy per operation is multiplied by the corresponding tile ac-
tivity counter, previously obtained with the microarchitectural
simulator.

As previously stated, sectoring is an effective technique when
it is able to distribute blocks evenly among sectors and reduce
tile accesses. Table VII shows the total number of tile accesses
for a three-level LP-NUCA with sectoring and an L-NUCA
without it. Accesses are reduced by 36.5% and 35.3% for In-
teger and Floating Point, respectively. More important, the hash

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

TABLE VII
SECTORING IMPACT ON TRAFFIC DISTRIBUTION FOR THE WHOLE WORKLOAD

IN A THREE-LEVEL LP-NUCA

Fig. 14. LP-NUCA energy savings in 90 nm. L-NUCA represents the original
organization, MWS and Sect add miss wave stopping and sectoring, respec-
tively, and LP-NUCA combines both.

function distributes blocks almost perfectly for Integer bench-
marks—a perfect hashing would be 37.5, 25, and 37.5—and a
bit worse for Floating Point.

Miss Wave Stopping is effective because most LP-NUCA hits
occur in the second level tiles, namely, 78% and 62% for Integer
and Floating Point programs. As a consequence, most time only
5 of the 14 tiles perform any activity, and these 5 tiles ensure
that the network consumption is low: requests do not propagate
to all fabric (Search), hit service only requires one or two hops
(Transport), and the empty ways leaved by these hits are im-
mediately filed with r-tile evictions stopping the domino effect
(Replacement). Finally, although the number of requests to the
second level caches is small—on average the r-tile injects a re-
quest in three out of 100 cycles—its service latency is crucial in
performance because out-of-order cores tolerate the latencies of
first level caches but not those of the second one.

LP-NUCA does not hurt performance. On one hand, Miss
Wave Stopping cannot affect performance by construction. On
the other hand, Sectoring causes a negligible hit ratio reduction,
but the extra latency is hidden by out of order execution.

As far as the power consumption of our design is concerned,
Fig. 14 shows the results for a baseline L-NUCA, an L-NUCA
enhanced with Miss Wave Stopping (MWS), an L-NUCA en-
hanced with Sectoring (Sect), and an LP-NUCA that comprises
both techniques. The plot represents the sum of the energies
spent for all the benchmarks. Each bar represents the leakage
consumption stacked over the dynamic, which is the target of
our techniques.

MWS is effective whether it applies to L-NUCA or Sectoring.
Relative gains in dynamic energy are very similar in both cases,
but its effectiveness is larger for the Integer set because these
benchmarks exhibit the highest hit ratio, and this technique is
useless for misses.

With respect to Sectoring, it saves more energy than Miss
Wave Stopping, whether it applies to L-NUCA or MWS.

Savings are larger for two reasons. First, it reduces the energy
in two operations: search (lookup is performed in fewer tiles),
and replacement (blocks pass through fewer tiles to leave the
LP-NUCA), while MWS only decreases the search energy.
Second, Sectoring is effective for both hits and misses in
contrast with MWS, which only targets hits.

If we look separately at dynamic and static energy, the static
contribution is not negligible as one could expect from Fig. 9.
Averaging all programs together, the static energy represents
9.4% of the total in the L-NUCA configuration because tile ac-
tivity is not very high. For instance, if we assume a r-tile miss
rate of 10%, only one in ten cycles there is dynamic consump-
tion, whereas leakage is active the ten cycles. Of course, as the
dynamic activity decreases, the relative static contribution in-
creases because the execution time is almost constant in all con-
figurations.

Finally, we can consider all programs together to quantify the
impact of Wave Miss Stopping and Sectoring on the total en-
ergy consumption. With respect to L-NUCA, Miss Wave Stop-
ping saves 8.7%, Sectoring saves 25.4%, and their combination,
LP-NUCA, rises the savings up to 32.1%.

We do not include any energy measurements regarding the
conventional L2 cache and the S-NUCA organization, because
we do not have any place & routed designs available for them
in our 90-nm implementation technology. Also, mixing real im-
plementation measurements with Cacti estimations at 90 nm is
not a good option because our 90-nm technology does not match
well with the 90-nm technology assumptions of Cacti. Instead,
we chose to perform the energy comparison of the three cache
organizations under a common framework employing Cacti and
32-nm technology models. Next, the obtained results along with
the technology parameters employed are discussed.

D. Technology Scaling to 32 nm

LP-NUCA offers three main advantages over conventional or
S-NUCA second level cache organizations. First, its tiled or-
ganization allows changing cache size by just replicating the
LP-NUCA tiles as many times as needed. The tile’s area, delay,
and power characteristics, and thus its scaling to smaller tech-
nologies are mainly determined by the size and the character-
istics of the SRAM banks inside each tile. For acceptable per-
formance, the total SRAM size per tile can be as low as 8 KB
[18]. Second, it requires smaller total memory size compared to
a conventional or S-NUCA L2 cache in order to perform equally
well, in terms of IPC and average memory access time as shown
in Fig. 11. From our experiments, equal performance is achieved
when the total size of LP-NUCA is 12.5% less than L2 state of
the art. Third, the proposed networks-in-cache rely on simple
customized switches and on local wire connections, linking only
neighbor tiles. The length of the corresponding wires do not ex-
ceed the layout area of the SRAM banks used in each tile. For
example, in the 90-nm implementation with 32 KB of SRAM
banks the longest inter-tile wires span 1.37 mm.

Two main issues that arise when scaling are wire delay and
power consumption. Regarding the former, LP-NUCA is ex-
pected to scale well to smaller technologies, assuming a con-
stant capacity per tile. All inter-tile wires are short, and their
length is solely determined by the area of small SRAM banks
used per tile. Therefore, if capacity per tile is sufficiently small,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GRACIA et al.: LP-NUCA: NETWORKS-IN-CACHE FOR HIGH-PERFORMANCE LOW-POWER EMBEDDED PROCESSORS 11

LP-NUCA is guaranteed to behave in terms of latency the same
as the 90-nm implementation.

Additionally, if we keep the total cache area constant, in-
stead of the total cache size, which is 26.3 mm for a three-level
LP-NUCA at 90 nm (r-tile not included), then the empty space
left can be filled with more LP-NUCA levels. In this case, in-
creased size conventional L2 caches have to face some serious
issues arising from long wires [29] that may negatively affect
their initiation rate. On the contrary, by construction, the initia-
tion rate in LP-NUCA remains constant.

The power consumption of LP-NUCA is also expected to
scale well to smaller technologies, assuming again a constant
capacity per tile and the same number of tiles. LP-NUCA would
benefit from the smaller capacitances offered by smaller de-
vices, while at the same time its activity reduction techniques
would again reduce any unnecessary power consumption. Also,
LP-NUCA implicitly saves static power when compared to con-
ventional or S-NUCA caches, since: 1) it provides a similar level
of performance with lower cache sizes and 2) it reduces the total
execution time [18].

To verify these qualitative arguments, we have simulated an
LP-NUCA, a conventional L2, and a S-NUCA at 32 nm using
Cacti 6.5, keeping cache sizes constant. At 32 nm, there are a
lot of options regarding the operating voltage, the transistor’s
threshold as well as the per m current ratio [39]. All
of these parameters can be tuned depending on the application
domain. For high-performance low-power processors, we can
identify two main domains: mains-powered and battery-pow-
ered. To the first category, we find high-end networking systems,
storage servers, or set-top boxes requiring the maximum perfor-
mance with limited power consumption, while the second cat-
egory covers systems that are designed for delivering desktop-
level performance with very low energy consumption such as
smartphones, eReaders, or mobile internet devices.

At 32 nm, for high-performance cores, the voltage ranges be-
tween 0.8 and 1 V, the transistor’s threshold is between 0.2 and
0.3 V while the per m ratio approaches 15 [39]–[41].
The model of Cacti 6.5 that best matched these cases is the
Low Operational Power (LOP) one after increasing the voltage
from 0.6 to 0.9 V7 [32]. Therefore, in the mains-powered
domain, we employed the modified LOP model, whereas, in
the battery-powered domain, the LSTP (Low STandby Power)
for the SRAM core and the modified LOP for the rest. In the
LSTP model both threshold voltage and ratio are
increased in order to guarantee that the static (leakage) power
is always around 10%–20% of the total. Since Cacti does not
model the proposed networks-in-cache, in order to estimate
their consumption we assume the following: 1) tile capacity
(32 KB) remains constant and 2) SRAM, logic transistors,
and wires scale equally well. Hence, the relative module con-
sumption does not change with scaling. Due to scaling, tile
and processor frequency increase from 333 MHz to 1.2 GHz
and 1 GHz for the mains-powered and the battery-powered
domains, respectively. Finally, as a lower bound on the power

7When caches operate at a voltage close to 0.5 V, special circuit techniques are
required, such the migration from 6T to 8T cells, which would guarantee SRAM
cell stability. The high-performance model of Cacti is not used in the compar-
isons since it is far more optimistic regarding the threshold voltage scaling and
� current per �m relative to current technologies from industry [39]–[41]. At
the same time, this model significantly overestimates the � per �m current.

Fig. 15. Energy comparison of conventional L2 (L2), static NUCA (S-N), and
LP-NUCA (LP-N) in the two application domains at 32 nm. (a) Mains-powered.
(b) Battery-powered.

consumption of the S-NUCA interconnection network we take
that of the LP-NUCA transport network.

Fig. 15 shows the total energy consumption of the three
cache organizations for the two application domains at 32 nm.
LP-NUCA always requires the smallest static power consump-
tion regardless the domain due to the reduction in the cache
size and in the execution time. As far as the total consumption
is concerned, in Integer benchmarks, LP-NUCA overpasses L2
and S-NUCA with gains ranging between 23% and 111%. In
Floating Point programs, LP-NUCA is the best option in the
mains-powered domain, whereas S-NUCA is the best in the
battery-powered domain. Although LP-NUCA significantly
saves dynamic power of more than 30% in the majority of the
Floating Point benchmarks there is one benchmark, 179.art,
that stresses the energy behavior of LP-NUCA. This benchmark
has the highest L1 MPKI and causes a lot of activity in the
intermediate cache level. Its dynamic power represents 50%
of the total dynamic power in L2 and S-NUCA organizations,
while it reaches 88% in the LP-NUCA case. LP-NUCA reacts
well to 179.art demands and services more hits that the L2 and
the S-NUCA; however, 93% of them are serviced from the
last level tiles.8 Regarding total energy consumption, in both
domains, LP-NUCA wastes less energy with gains ranging
from 18% to 39%.

Finally, Fig. 16 compares the three cache organizations
using two system level metrics: Energy-Delay (ED) and
Energy-Delay ED . Both metrics have been computed by
taking the product of the total energy and execution time for
all programs together. Please note that the numbers reported
in Fig. 16 also include the energy contribution of L1 and
L3 caches. With this addition we want to show that even if
LP-NUCA reduces the energy of the second level cache, it still
does not increase the energy of the remaining cache hierarchy,
offering a complete energy-efficient solution.

Fig. 16 shows that LP-NUCA behaves well both in the
mains-powered and battery-powered domains, where its sav-
ings are larger. LP-NUCA gains are bigger in Integer programs
ranging between 2% (battery-powered, Floating Point relative
to S-NUCA) and 21% (mains-powered, Integer relative to
S-NUCA). Overall, we can conclude that LP-NUCA achieves
both better performance and less energy consumption than
conventional and S-NUCA caches.

8On average, each hit in 179.art causes 14 tile lookups (both tag and data
arrays), transport messages of three hops on average, and four or five domino
replacements, all of which increases the overall power consumption.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 16. ED and ED for the conventional L2 (L2), Static NUCA (S-N), and
light power NUCA (LP-N). Both ED and ED comprise level 1, L2 or S-N or
LP-N, and level 3 cache energies. (a) Mains-powered. (b) Battery-powered.

VII. COHERENCE MANAGEMENT AND REAL TIME

A. Coherence Management

Next, we analyze the feasibility of integrating L-NUCA
within a multicore chip in a coherent memory system, which
essentially does not differ from that of conventional caches.
Thereafter, we assume at least one private cache such an
L-NUCA inside each core, addressing processor requests, and
a single shared last-level cache (LLC) in charge of write serial-
ization and coherence handling. The LLC replies to processor
requests by issuing corresponding commands accordingly
to the content management policy among caches (inclusive,
exclusive, noninclusive) and to the scheme for locating cache
blocks on cores (from full-map directories to snoopy-like
management). These principles are commonly followed by
high-end multicore chips.9

An LLC can monitor both the contents of a conventional
L1, L2 pair of caches and an L-NUCA. In both cases, the
LLC controls block refills and evictions. Thus, regardless of
contents management and block location policies, we can focus
on the inner management of the external coherence commands
entering an L-NUCA cache, such as invalidations, requests for
ownership, or remote load misses. These external commands
would be a new class of messages in the Search Network, and
blocks would be evicted through the Replacement Network
when necessary. In both cases, almost no extra wiring is re-
quired, and only the control logic has to be enhanced to process
the new coherence messages.

Evaluating the tradeoffs involved in designing a system with
coherent L-NUCA is an interesting open work beyond the scope
of this paper. From our results, we can guess that coherence
traffic should not affect very much the performance of L-NUCA
and even may be a cause of further improvement compared to
a conventional L1-L2 hierarchy. While on average the Search

9The shared L2 cache of the UltraSPARC T2 System-on-a-Chip is an ex-
ample of an inclusive shared LLC featuring a full-map scheme [42], the shared
L2 cache of the low-power ARM Cortex-A9 MPCore processor is an example of
snoopy last-level exclusive cache [2], and the shared L3 cache of the third-gener-
ation multicore AMD Opteron processors is an example of a noninclusive cache
featuring a limited directory scheme [43].

Network is idle10 more than 97% of the time (91% in the worst
case, 179.art), the serial L2 cache is idle 83% of the time, not
taking into account the write misses refills that do not occur in
the LP-NUCA because it is no-write-allocate.

B. Real Time

In multitasking hard real-time systems, all tasks must com-
plete execution before their deadlines. In order to perform a
schedulability analysis is required to compute the worst case
execution time (WCET) of each task and the effects of interfer-
ences between tasks as well. Several analysis tools have been
proposed to compute useful upper WCET bounds in reasonable
time based on modeling the dynamic cache behavior [44]–[46].
Nevertheless, computing tight WCET bounds of real-time ap-
plications executing with data cache hierarchies is still an open
problem [47].

Regarding modeling their dynamic behavior, L-NUCAs re-
semble conventional high-associativity caches, with the added
difficulty of the round-robin tile eviction. Sectored LP-NUCAs,
by restricting block location may soften the modeling difficulty.

Regardless of the modeling tool, two cache features may ease
analysis and improve bounds: data locking and partitioning [48],
[49].

LP-NUCAs accept in a natural way two partitioning and
locking granularities, namely tile and sector. One or more
tiles (or a sector) can be devoted to a given task, avoiding (or
reducing) inter-task interferences. Furthermore, tiles can be
preloaded and locked (at system startup or at context switches)
with blocks from one or more tasks. Both partitioning and
locking in LP-NUCAs have a negligible hardware complexity
and cost. So, we think that LP-NUCAs with partitioning and
locking capabilities are good candidates for real-time data
caches, and their modeling and experimentation deserve further
research.

VIII. CONCLUSIONS

In this paper, we propose, implement, and evaluate
light-power NUCA (LP-NUCA), a large distributed victim
cache made of small cache tiles. It aims at high-end low-power
processors for SoCs and is based on L-NUCA. LP-NUCA lever-
ages three specialized networks-in-cache featuring block-wide
links for exploiting short-term temporal locality. To prove
its feasibility, we have fully implemented a tile in a 90-nm
standard-cell based technology, drawing several conclusions.

First, it is very easy to build LP-NUCA with different sizes by
just replicating two tile layouts. Second, all of the networks-in-
cache proposed in LP-NUCA involve minimum overhead. The
area, energy, and delay of LP-NUCAs are dominated by the
SRAM macros filling each tile and not by the interconnection
itself. In a 32-B block size, 32-KB tile, LP-NUCA’s low-com-
plexity routing and migration policies require 10% of the tile
cycle time and 11% of its area and consume at most 25% of the
tile power. Third, LP-NUCA introduces two techniques for re-
ducing dynamic energy consumption, namely Miss Wave Stop-
ping and Sectoring. The former reduces the number of lookups
after a hit, and the latter restricts block placement and search.

10Number of cycles where the Search links between the r-tile and the second
level tiles are idle divided by total number of cycles.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GRACIA et al.: LP-NUCA: NETWORKS-IN-CACHE FOR HIGH-PERFORMANCE LOW-POWER EMBEDDED PROCESSORS 13

In order to evaluate performance and energy, we run represen-
tative embedded workloads and feed a detailed cycle-by-cycle
simulator with the energy costs from the different layout vari-
ants in 90 nm and models in 32 nm. Both techniques together
decrease the dynamic consumption by one third with regard to
L-NUCA without degrading performance. LP-NUCA enables
both faster execution and lower energy consumption compared
with a slightly larger conventional or S-NUCA L2 cache. Hence,
LP-NUCA offers a complete energy-delay efficient solution for
high-performance low-power embedded processors.

ACKNOWLEDGMENT

The authors would like to thank B. Greskamp and the staff
of CARV-FORTH, particularly G. Passas, and the anonymous
reviewers for providing helpful comments on this paper.

REFERENCES

[1] “Intel Xeon Processor C5500/C3500 Series: Datasheet-Volume 1,”
Intel Embedded, 2010 [Online]. Available: http://edc.intel.com/Link.
aspx?id=3179

[2] T. R. Halfhill, “The rise of licensable SMP,” Microprocessor Rep., vol.
24, no. 2, pp. 11–18, 2010.

[3] “PowerPC Processor (476FP) Embedded Core Product Brief,” LSI
Corp., 2010 [Online]. Available: http://www.lsi.com/Distribution-
System/AssetDocument/PPC476FP-PB-v7.pdf

[4] “MIPS32 1004K Coherent Processing System (CPS),” MIPS
Technol., 2010 [Online]. Available: http://www.mips.com/media/
files/MIPS32_1004K_410.pdf

[5] T. R. Halfhill, “Netlogic broadens XLP family,” Microprocessor Rep.,
vol. 24, no. 7, pp. 1–11, 2010.

[6] T. R. Halfhill, “Freescale P5 raises QorIQ’s I.Q,” Microprocessor Rep.,
vol. 24, no. 7, pp. 15–22, 2010.

[7] C. Kim, D. Burger, and S. W. Keckler, “An adaptive, non-uniform
cache structure for wire-delay dominated on-chip caches,” in Proc. 10th
Int. Conf. Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS’02), 2002, pp. 211–222.

[8] Y. Jin, E. J. Kim, and K. H. Yum, “A domain-specific on-chip network
design for large scale cache systems,” in Proc. 13th Int. Symp. High
Performance Comput. Architecture (HPCA’07), 2007, pp. 318–327.

[9] N. Muralimanohar and R. Balasubramonian, “Interconnect design con-
siderations for large nuca caches,” in Proc. 34th Int. Symp. Comput.
Architecture (ISCA’07), 2007, pp. 369–380.

[10] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Op-
timizing NUCA organizations and wiring alternatives for large
caches with CACTI 6.0,” in Proc. 40th Int. Symp. Microarchitecture
(MICRO’07), 2007, pp. 3–14.

[11] P. Foglia, D. Mangano, and C. A. Prete, “A nuca model for embedded
systems cache design,” in Proc. 3rd Workshop Embedded Syst. Real-
Time Multimedia (ESTImedia’05), 2005, pp. 41–46.

[12] B. M. Beckmann and D. A. Wood, “Managing wire delay in large
chip-multiprocessor caches,” in Proc. 37th Int. Symp. Microarchitec-
ture (MICRO’04), 2004, pp. 319–330.

[13] S. Cho and L. Jin, “Managing distributed, shared l2 caches through
os-level page allocation,” in Proc. 39th Int. Symp. Microarchitecture
(MICRO’06), 2006, pp. 455–468.

[14] M. Awasthi, K. Sudan, R. Balasubramonian, and J. Carter, “Dynamic
hardware-assisted software-controlled page placement to manage ca-
pacity allocation and sharing within large caches,” in In Proc. 15th Int.
Symp. High-Performance Comput. Architecture, 2009, pp. 250–261.

[15] M. Chaudhuri, “PageNUCA: Selected policies for page-grain locality
management in large shared chip-multiprocessor caches,” in Proc. 15th
IEEE Int. Symp. High-Performance Comput. Architecture, 2009, pp.
227–238.

[16] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Reactive
NUCA: Near-optimal block placement and replication in distributed
caches,” in Proc. 36th Int. Symp. Comput. Architecture (ISCA’09),
2009, pp. 184–195.

[17] J. Merino, V. Puente, P. Prieto, and J. A. Gregorio, “SP-NUCA: A
cost effective dynamic non-uniform cache architecture,” SIGARCH
Comput. Archit. News, vol. 36, no. 2, pp. 64–71, 2008.

[18] D. Suárez, T. Monreal, F. Vallejo, R. Beivide, and V. Viñals, “Light
NUCA: A proposal for bridging the inter-cache latency gap,” in Proc.
12th Des., Autom. Test in Europe Conf. and Exhibition (DATE’09),
2009, pp. 530–535.

[19] J. Lira, C. Molina, and A. Gonzalez, “LRU-PEA: A smart replacement
policy for non-uniform cache architectures on chip multiprocessors,”
in Proc. IEEE Int. Conf. Comput. Design, 2009, pp. 275–281.

[20] S.-H. Chou, C.-C. Chen, C.-N. Wen, Y.-C. Chan, T.-F. Chen, C.-C.
Wang, and J.-S. Wang, “No cache-coherence: A single-cycle ring in-
terconnection for multi-core L1-NUCA sharing on 3-D chips,” in Proc.
46th Des. Autom. Conf., 2009, pp. 587–592.

[21] J. Merino, V. Puente, and J. Gregorio, “ESP-NUCA: A low-cost adap-
tive non-uniform cache architecture,” in Proc. 16th Int. Symp. High Per-
formance Comput. Architecture (HPCA’10), 2010, pp. 1–10.

[22] N. P. Jouppi, “Improving direct-mapped cache performance by the ad-
dition of a small fully-associative cache and prefetch buffers,” in Proc.
17th Int. Symp. Comput. Architecture, 1990, pp. 364–373.

[23] P. Gratz, C. Kim, R. McDonald, S. W. Keckler, and D. Burger, “Im-
plementation and evaluation of on-chip network architectures,” in Proc.
24th Int. Conf. Comput. Design, 2006, pp. 1625–1628.

[24] J. Lira, C. Molina, and A. González, “The auction: Optimizing banks
usage in non-uniform cache architectures,” in Proc. 24th Int. Conf. Su-
percomputing, 2010, pp. 37–47.

[25] D. W. Plass and Y. H. Chan, “IBM POWER6 SRAM arrays,” IBM J.
Res. Devel., vol. 51, no. 6, pp. 747–756, 2007.

[26] R. E. Kessler, R. Jooss, A. Lebeck, and M. D. Hill, “Inexpensive im-
plementations of set-associativity,” in Proc. 16th Int. Symp. Comput.
Architecture, 1989, pp. 131–139.

[27] R. Mullins, A. West, and S. Moore, “Low-latency virtual-channel
routers for on-chip networks,” in Proc. 31th Int. Symp. Comput.
Architecture, 2004, pp. 188–197.

[28] A. Kumar, P. Kundu, A. P. Singh, L.-S. Pehy, and N. K. Jha, “A 4.6
Tbits/s 3.6 GHz single-cycle noc router with a novel switch allocator
in 65 nm CMOS,” in Proc. 25th Int. Conf. Comput. Design, 2007, pp.
63–70.

[29] R. Ho, K. W. Mai, and M. A. Horowitz, “The future of wires,” Proc.
IEEE, vol. 89, no. 4, pp. 490–504, Apr. 2001.

[30] T. Austin and D. Burger, “SimpleScalar Tutorial (for Tool Set Release
2.0),” SimpleScalar LCC, 1997.

[31] “PowerPC 476FP L2 Cache Core Databook. Version 1.3 Preliminary,”
IBM, 2011.

[32] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “CACTI
6.0: A tool to model large caches,” HP Labs, HP Lab. Tech. Rep. HPL-
2009-85, Apr. 2009.

[33] R. Grisenthwaite, “ARM cortex A8 processor,” in Proc. IEE Cam-
bridge One Day Seminar. Processor Cores Putting Silicon IP to Work,
2005, pp. 1–25.

[34] J. L. Henning, “SPEC CPU2000: Measuring cpu performance in the
new millennium,” IEEE Computer, vol. 33, no. 7, pp. 28–35, Jul. 2000.

[35] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” SIGARCH
Comput. Archit. News, vol. 34, no. 4, pp. 1–17, 2006.

[36] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “Simpoint 3.0: Faster
and more flexible program analysis,” in Proc. Workshop Modeling,
Benchmarking and Simulation, 2005, pp. 25–30.

[37] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-
tative Approach, 4th ed. San Mateo, CA: Morgan Kaufmann, 2007.

[38] A. Seznec, “A case for two-way skewed-associative caches,” in Proc.
20th Int. Symp. Comput. Architecture, 1993, pp. 169–178.

[39] M. Bohr, “The new era of scaling in an SoC world,” in Dig. Tech. Papers
ISSCC, 2009, pp. 23–28.

[40] B. Greene et al., “High performance 32 nm SOI CMOS with high-k/
metal gate and 0.149 mm SRAM and ultra low-k back end with eleven
levels of copper,” in Proc. Symp. VLSI Technol., 2009, pp. 140–141.

[41] P. Packan et al., “High performance 32 nm logic technology featuring
2nd generation high-k + metal gate transistors,” in Proc. Int. Electron
Devices Meeting, 2009, pp. 1–4.

[42] M. Shah, J. Barren, J. Brooks, R. Golla, G. Grohoski, N. Gura, R.
Hetherington, P. Jordan, M. Luttrell, C. Olson, B. Sana, D. Sheahan,
L. Spracklen, and A. Wynn, “UltraSPARC T2: A highly-treaded,
power-efficient, SPARC SOC,” in Proc. Asian Solid-State Circuits
Conf., 2007, pp. 22–25.

[43] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and B.
Hughes, “Cache hierarchy and memory subsystem of the AMD
opteron processor,” IEEE Micro, vol. 30, no. 2, pp. 16–29, 2010.

[44] T. Lundqvist and P. Stenström, “A method to improve the estimated
worst-case performance of data caching,” in Proc. 6th Int. Conf. Real-
Time Computing Syst. Applications, 1999, pp. 255–262.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

[45] J. Staschulat and R. Ernst, “Worst case timing analysis of input depen-
dent data cache behavior,” in Proc. 18th Euromicro Conf. Real-Time
Syst., 2006, pp. 227–236.

[46] H. Ramaprasad and F. Mueller, “Bounding preemption delay within
data cache reference patterns for real-time tasks,” in Proc. 12th Real-
Time Embedded Technol. Applications Symp., 2006, pp. 71–80.

[47] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D.
Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström, “The worst-case
execution-time problem-overview of methods and survey of tools,”
ACM Trans. Embed. Comput. Syst., vol. 7, pp. 36:1–36:53, 2008.

[48] X. Vera, B. Lisper, and J. Xue, “Data cache locking for higher program
predictability,” in Proc. Int. Conf. Meas. Modeling Comput. Syst., 2003,
pp. 272–282.

[49] V. Suhendra and T. Mitra, “Exploring locking and partitioning for pre-
dictable shared caches on multi-cores,” in Proc. 45th Annu. Design
Autom. Conf., 2008, pp. 300–303.

Darío Suárez Gracia (S’08) received the M.S. de-
gree in computer engineering from the Universidad
de Zaragoza, Zaragoza, Spain, in 2003, where he is
currently working toward the Ph.D. degree.

His interests include memory microarchitecture
and implementation, low-power design, on-chip
networks, multicore and multithreaded processors,
and efficient simulation.

Mr. Suárez Gracia is a student member of the
Association for Computing Machinery and the IEEE
Computer Society.

Giorgos Dimitrakopoulos (M’07) received the
Dipl.-Ing in computer engineering, M.Sc. degree
in integrated hardware-software systems, and Ph.D.
degree from the University of Patras, Patras, Greece,
in 2001, 2003, and 2007, respectively.

The next two years he was a Postdoctoral Re-
searcher with the Institute of Computer Science of the
Foundation for Research and Technology—Hellas
(FORTH). During that period, he also taught dig-
ital-design-related courses to the Computer Science
Department of the University of Crete. In September

2009, he moved to the Informatics and Communication Engineering Depart-
ment, University of West Macedonia, Kozani, Greece, where he is now a
Lecturer and is actively involved in the design of low cost on-chip interconnec-
tion networks architectures.

Teresa Monreal Arnal received the M.S. degree in
mathematics and Ph.D. degree in computer science
from the University of Zaragoza, Zaragoza, Spain, in
1991 and 2003, respectively.

She is an Associate Professor with the Computer
Architecture Department, Universitat Politécnica de
Catalunya, Catalunya, Spain. Her research covers
register files, memory hierarchy, and high-perfor-
mance architectures. Until 2007, she was with the
Informática e Ingeniería de Sistemas Department,
University of Zaragoza, Zaragoza, Spain. She col-

laborates actively with the Grupo de Arquitectura de Computadores from the
University of Zaragoza (gaZ).

Manolis G. H. Katevenis received the Ph.D. degree
from the University of California, Berkeley, in 1983.

After a brief term on the faculty of Computer
Science, Stanford University, Stanford, CA, he is
currently a Professor with the University of Crete
and with FORTH, Heraklion, Crete, since 1986.
After RISC, his research has been on interconnec-
tion networks and interprocessor communication.
In packet switch architectures, his contributions
since 1987 have been mostly in per-flow queueing,
credit-based flow control, congestion management,

weighted round-robin scheduling, buffered crossbars, and non-blocking
switching fabrics. In multiprocessing and clustering, his contributions since
1993 have been on remote-write-based, protected, user-level communication.

Dr. Katevenis was the recipient of the ACM Doctoral Dissertation Award
in 1984 for his thesis on “Reduced Instruction Set Computer Architectures for
VLSI.”

Víctor Viñals Yúfera (M’92) received the M.S.
degree in telecommunications and Ph.D. degree in
computer science from the Universitat Politècnica
de Catalunya, Catalunya, Spain, in 1982 and 1987,
respectively.

He was an Associate Professor with the Fac-
ultat d’Informàtica de Barcelona (UPC) during
1983–1988. Currently, he is a Full Professor with the
Informática e Ingeniería de Sistemas Department,
University of Zaragoza, Zaragoza, Spain. His re-
search interests include processor microarchitecture,

memory hierarchy, and parallel computer architecture.
Dr. Yúfera is a member of the Association for Computing Machinery and

the IEEE Computer Society, as well as the Computer Architecture Group of the
University of Zaragoza.

