
Light NUCA: a proposal for bridging the
inter-cache latency gap

Darı́o Suárez†, Teresa Monreal†, Fernando Vallejo‡, Ramón Beivide‡, and Vı́ctor Viñals†
†gaZ-DIIS-I3A ‡Computer Architecture Group

Universidad de Zaragoza, Spain Universidad de Cantabria, Spain
HiPEAC Network of Excellence

Email: {dario, tmonreal, victor}@unizar.es Email: {fernando.vallejo, ramon.beivide}@unican.es

Abstract—To deal with the “memory wall” problem, micro-
processors include large secondary on-chip caches. But as these
caches enlarge, they originate a new latency gap between them
and fast L1 caches (inter-cache latency gap). Recently, Non-
Uniform Cache Architectures (NUCAs) have been proposed
to sustain the size growth trend of secondary caches that is
threatened by wire-delay problems. NUCAs are size-oriented,
and they were not conceived to close the inter-cache latency gap.
To tackle this problem, we propose Light NUCAs (L-NUCAs)
leveraging on-chip wire density to interconnect small tiles through
specialized networks, which convey packets with distributed and
dynamic routing. Our design reduces the tile delay (cache access
plus one-hop routing) to a single processor cycle and places cache
lines at a finer granularity than conventional caches, reducing
cache latency. Our evaluations show that in general, an L-NUCA
improves simultaneously performance, energy, and area when
integrated into both conventional or D-NUCA hierarchies.

I. INTRODUCTION

As technology scales, the latency gap between the processor
and main memory widens forcing a size and latency increment
in secondary caches. So, at the same time these large caches
reduce their gap with respect to main memory, they widen an
inter-cache latency gap between them and fast L1 caches. To
bridge this gap, two main approaches can be adopted; either
reducing the latency of secondary caches or increasing the size
of first level caches without compromising their latency and
bandwidth.

Within the first approach, Kim et al. proposed Non-Uniform
Cache Architectures [1]. A NUCA connects individually ac-
cessible cache banks in a 2D-mesh. NUCA pioneers inter-bank
block migration techniques, but has solely focused on large
secondary caches. In respect of the second approach, Balasub-
ramonian et al. provided evidence of the latency/size trade-off
between L1 and L2 caches. They proposed a reconfigurable
cache able to dynamically adjust its size to the working set [2].
However, this scheme only supports single-ported cells, and it
may not be able to provide the high bandwidth that superscalar
processors require.

The present work tries to close the latency gap between
secondary on-chip caches and fast L1 caches by enlarging
the cache accessible by the processor at low latencies without
degrading bandwidth. Our proposal is based on a light dynamic
NUCA formed by small cache banks that benefits from the
fine granularity and working set adaptability of the Balasubra-
monian approach and from the non-uniform access time and

block-migration techniques of NUCAs. To make feasible this
idea, we have to fight against the reasons that, up to now, have
prevented NUCAs to be used with small cache banks.

To maximize performance, NUCA banks tend to be
large [3]. Since NUCA network mechanisms have been de-
signed for multi-megabyte caches, they focus on density rather
than latency and bandwidth; e.g., the 2D-mesh network with
wormhole routing requires at least one routing cycle before
and after accessing any bank. Besides, NUCAs employ a
single-injection point and shared banks with multiple cycle
initiation rate that can stall the network in miss bursts.

Since NUCA latency and bandwidth mostly depend on
its networking, L-NUCA focuses on improving topologies,
routing and packet delivery. In an L-NUCA cache, the L1
cache is surrounded by a set of small tiles connected by
three on-chip networks specially tuned for different cache
operations. L-NUCA tiles manage a cache access and one hop
routing within a single cycle. This allows to place blocks at
latencies inversely proportional to their temporal locality at a
finer granularity than conventional or NUCA hierarchies.

The rest of this paper is organized as follows. Section II
presents the main features of L-NUCAs. Section III details
the topologies, routing algorithms and flow control policies.
Sections IV and V describe the experimental methodology and
evaluate the results. Section VI comments on related work, and
Section VII concludes the paper.

II. L-NUCA OVERVIEW AND ITS INTEGRATION IN THE
CACHE HIERARCHY

We have studied L-NUCA in two representative environ-
ments: a conventional 3-level hierarchy in which an L-NUCA
replaces the L2 cache (Figs. 1(a) and 1(b)) and a D-NUCA
hierarchy in which an L-NUCA is placed between the L1 and
the D-NUCA (Figs. 1(c) and 1(d)).

The processor interfaces the L-NUCA through the root-tile
(r-tile), which is a conventional L1 cache extended with the
flow control logic required for sending and receiving blocks.
The rest of tiles surround the r-tile and are interconnected
only through local links in order to minimize wire delay.
To simplify block migration, all the tiles share the same
block size. Block search is efficiently performed by grouping
tiles into growing size levels. For example, the L-NUCA of
Fig. 1(b) has 4 levels, named Lei. The r-tile forms the first

 

978-3-9810801-5-5/DATE09 © 2009 EDAA 

 



L3
8MB

L2
256KB 

L1 
32KB

(a) Conventional

L3
8MB

L-NUCA
248KB

Le4
Le3

Le2
Le1

L-NUCA levels

r-tile

(b) L-NUCA + L3

L1 
32KB

D-NUCA
8MB

(c) D-NUCA

D-NUCA
8MB

L-NUCA
144KB

(d) L-NUCA + D-NUCA

Fig. 1. Cache hierarchies studied. L-NUCA levels from Le2 to Le4 are made
of 8KB tiles.

level (Le1), the 5 tiles surrounding it form the second one
(Le2), etcetera.

L-NUCA operation is simple but efficient. Tiles only have
knowledge of their local cache contents; hence, when the r-
tile misses, it propagates the miss outwards to the Le2 tiles.
If any of them hits, it sends the requested block back to the
r-tile and stops propagating the miss. At the same time, the
remaining Le2 missing tiles are sending out the miss request
to their Le3 leaf tiles. In the next cycle, the requested Le3
tiles will miss and propagate the request to Le4. Eventually,
when all Le4 tiles miss, the request is forwarded to the L3
cache. Incoming blocks from the L3 and tile hits are directly
sent to the r-tile. After completing enough requests the r-tile
becomes filled and in order to refill an incoming block from
the L3, the r-tile will evict a victim block to an Le2 tile. The
Le2 destination tile will repeat the eviction operation if the
corresponding set is full; therefore, L-NUCA tiles act like a
distributed victim cache similarly to the L2 in [4].

Because tile latency is set to one processor cycle, each L-
NUCA level can be looking up a different request during
the same cycle. Hence, contrary to conventional caches, the
number of in-flight requests increases with L-NUCA size
increments. This fact together with the reduction on average
cache latency—due to the better exploit of temporal locality—
are the key to success of L-NUCAs.

III. NETWORKS AND ROUTING IN L-NUCA

L-NUCA networks pursuit the following goals: (i) maximize
the hit ratio, (ii) minimize the hit time, (iii) minimize the miss
determination time, and (iv) match the miss rate bandwidth of
the r-tile and keep it even though L-NUCA size increases.

Concerning (i), L-NUCA capacity is maximized by man-
aging tile contents in exclusion. Conflict misses are reduced
by placing no restriction in block mapping into tiles. The
remaining goals impact the implementation of the three ba-
sic operations in L-NUCA: block search, block transport or
service, and block replacement. Search operation requires a
low-latency miss propagation network, (ii), along with a fast
method for determining global misses, (iii). Both requirements
together with goal (iv), call for integrating the tile cache access

and one-hop routing within a single processor cycle. Transport
operation requires a quick block delivery to the r-tile (ii). The
replacement operation must contribute to goal (i), exploiting
the temporal locality as much as possible.

A. Topologies

The small L-NUCA tiles (2 to 8KB) ensure a short inter-
tile distance, so small pitch metal layers can be used to route
a large number of wires among tiles. In order to leverage
this on-chip wire-availability [5], we advocate replacing the
NUCA 2D-mesh with 3 dedicated point-to-point networks
with unidirectional links, one for each cache operation: the
Search, Transport, and Replacement networks.

The Search network (Fig. 2(a)) uses a broadcast-tree for
propagating miss requests very fast with the minimum number
of links. Besides, the maximum distance is only increased by
one hop when adding an L-NUCA level. A NUCA 2D-mesh
network would double the number of required hops to reach
all the tiles, would increase the number of links by more than
50%, and would add 2 hops to the maximum distance when
adding a new level.

The Search network also collects global misses and for-
wards them to the next cache level. Global miss determination
requires only to gather the miss status of all last-level tiles
because when a tile experiences a hit it stops propagating the
Search message. Global misses may be efficiently determined
with a segmented miss-line similar to the hierarchical bit-lines
of SRAMs [6]. We assume that this operation takes one-cycle
after the last-level search.

The Transport operation (Fig. 2(b)) employs a 2D-mesh
that offers multiple return paths to the r-tile ensuring path
diversity and low contention even when the same tile hits
during consecutive cycles.

The Replacement network (Fig. 2(c)) connects tiles whose
latencies differ in one cycle, except for the r-tile, by means of
an irregular topology with the lowest degree possible1. This
topology tries to maintain blocks ordered by their temporal
locality and to keep them as much as possible; hence, when a
level is added the distance from the r-tile to the upper corner
tiles—the only tiles that evict blocks to the next cache level—
increases in 3 hops.

Transport and replacement are completely decoupled in L-
NUCAs. All hits are directly transported to the r-tile (multi-
hop messages), and evictions operate like a “domino” (single-
hop messages) among tiles. These evictions finish when an
empty way is found or a block is evicted to the next cache
level.

B. Headerless Messages, Distributed Routing, and Flow Con-
trol

Each network transfers its own message. Since the message
destination is implicit in all the networks, and their topologies

1The degree of a node is the sum of all its input and output links. Low
degrees reduce network complexity.



ROOT
TILE

cache portsLe3
Le2Le1

L-NUCA levels

global miss to L3 cache

local
miss
line

(a) Broadcast-tree Search network.

ROOT
TILE

cache ports

(b) 2-D mesh Transport network.

ROOT
TILE

cache ports

replaced blocks + write misses
to L3 cache

3 35 5

46 43 6

1

67 65 7

(c) Latency-driven Replacement network.

Fig. 2. Network topologies for a 3-level L-NUCA. All links are unidirectional. In (c), values represent the tile latency assuming 1-cycle tiles. Tile latency
includes search, tile access, and transport delay.

ensure that all output links are valid for every message, L-
NUCA employs headerless messages reducing routing delay
and the size of links, buffers, and crossbars.

Routing a Search message simply consists in sending it to
all tile leaves. This “wired” multicast avoids the complexity
of multicast in conventional routers [7].

Transport and Replacement networks route headerless mes-
sages with a dynamic distributed algorithm. Every node ran-
domly selects an output link. This algorithm reduces con-
tention in comparison to dimensional order routing where all
the messages with the same source and destination take the
same route.

In respect to flow control, it is not required by the Search
network because Search messages cannot be blocked. Trans-
port and Replacement networks rely on buffered flow control.
Since links are message-wide, the flow control digits (flits)
are the messages themselves. To avoid message dropping,
L-NUCAs use store-and-forward flow control with On/Off
back-pressure and two-entry buffers per link—round-trip delay
between tiles is two cycles [5].

Since hit blocks move down toward the r-tile and evicted
ones move up, we call respectively downstream (D buffers),
and upstream (U buffers), to the Transport and Replacement
flow control buffers.

The lack of cyclic dependencies among messages with the
guarantee of message consumption ensures that L-NUCAs are
deadlock-free, not requiring virtual channels.

C. Parallel Cache Access and One-Hop Routing in a Single-
Cycle

Now, we analyze the critical paths of Search, Transport,
and Replacement operations, examining carefully at the most
demanding timing path: the integration of a cache access plus
one-hop transport routing within a single processor cycle. In
the following, we will focus on the upper left corner tile in
the second L-NUCA level as it has the maximum number of
links a tile can require. Figures 3(a), 3(b) and 3(c) show the
network components.

a) Search operation: Fig. 3(a). It begins when a tile
receives a miss request in its Miss Address register (MA). The
requested address is looked up simultaneously in the tag array
and in the U buffers, which include an address comparator per
entry (up to 4 per tile). Looking up in the U buffers is enough
for finding blocks in transit across the Replacement network
(if any) avoiding false misses.

TAG +
DATA

U bf

U
 b

f

MA

MAMA

(a) Search network components.

TAG +
DATA

D
crossbar

D bf

D
 b

f

D
 b

f

on/o�
control links

D bf

U inc.
mux

U bf

U
 b

f

(b) Transport network compo-
nents.

TAG +
DATA

U
 b

f

U bf input

input

output

output

U inc.
mux

U bf

U
 b

f

(c) Replacement network compo-
nents.

DATA ARRAY

TAG ARRAY

SWITCH 
TRAVERSAL

SWITCH
ALLOCATION

MISS ADDRESS
LATCH DELAY

D BUFFER
SETUP DELAY

D
crossbarMA D bf

(d) Timing diagram of the critical
path.

Fig. 3. Tile organization with the components involved in each operation
for an example tile having the highest degree. MA, D bf, and U bf stand
for Miss Address register, Downstream (Transport) buffer, and Upstream
(Replacement) buffer, respectively.

If the cache or the U buffers hit, a Transport operation starts.
Otherwise, the request is propagated to the MA registers of
the neighbor leaf tiles. Tile look-up and miss propagation are
done in a single cycle because cache miss determination takes
less time than the whole cache access. For the small caches
and low-associativity employed in L-NUCA tiles, the delay
until the tag comparison represents roughly 80% of the total
delay measured with Cacti 5.3 [8].

b) Transport operation: Fig. 3(b). It consists on routing
hit blocks either from the tile D buffers or from the cache. In
both cases, blocks are sent through the D crossbar and stored
into a D buffer of a neighbour tile. In the rare event that a
tile hits and all its output D channels are Off, the tile sends
a contention-marked message through the Search network.
When the marked Search message arrives to the global miss
logic, it is returned to the r-tile restarting the Search operation.
We have observed that this event rarely occurs.

c) Replacement operation: Fig. 3(c). It is only carried
out during Search idle cycles and requires two, not necessarily
consecutive, cycles. In the first one, the control logic checks
whether any of the output U channels are On, if so a victim
block is read out from the tile cache, sent through the selected
output U channel, and stored in the corresponding output U



buffer. In the second cycle, the incoming block is written in
the cache from the input U buffer.

In summary, the critical timing path in an L-NUCA tile
is a hit search followed by a transport operation. Existing
caches and routers already accomplish both tasks sequentially
in a very low number of FO4s [6], [9]. Since our network
subsystem is much simpler and performs some routing tasks
in parallel with the cache access, we believe that both tasks
fit perfectly in a single cycle. To verify this assumption, let’s
consider the timing diagram of L-NUCAs, see Fig. 3(d), and
compare it with the multiple stages that a conventional virtual
channel router performs [10]:

Decoding and routing. Headerless messages allow to remove
this stage.

Virtual channel allocation. This stage is completely avoided
because L-NUCAs do not employ virtual channels.

Switch allocation. This stage assigns output channels to
input requesters. Its delay depends upon how many resources
have to be assigned and how complex the assignment algo-
rithm is. Since switch allocation depends only on the number
of occupied D buffers and on the results of the miss address
comparison (tag array access and U comparators), it can be
performed in parallel with the data array access; therefore, its
delay can be overlapped with the cache access.

Switch traversal. This stage sends messages through the
crossbars and is not demanding because the 5 crossbar inputs
(2 D buffers, 2 U buffers, and the cache) can be reduced to
3. Since content exclusion ensures that only a single copy
of each block exists, hits cannot simultaneously happen in
the cache and in the U buffers. This favors the use of a cut-
through crossbar reducing the number of inputs, latency, and
energy [11]. For measuring its delay, we have modeled this
crossbar with HSPICE and found that it is below 5 FO4s.

Summarizing, L-NUCAs only add a low-latency switch
traversal stage to the critical path, so we conclude that a cache
access and one-hop routing can both fit within one processor
clock cycle.

D. Coherence Support
To maintain coherence, L-NUCAs will require the same

apparatus as a conventional L1 cache. In any case, inclusion
has to be enforced; e.g., by explicit invalidations sent through
the search network. The coherency point would be the next
cache level—each core would have its own private L-NUCA—
and the directory of the next cache level would include status
vectors to check whether blocks are in the L-NUCA or not
(similar to the Piranha CMP [4]).

IV. EXPERIMENTAL FRAMEWORK

We have extended Simplescalar/Alpha 3.0d with: reorder
buffer, issue windows, speculative wake-up and selective re-
covery, payload and register file stages, accurate timing models
for caches, buses, network contention, and flow control. All
caches use LRU replacement, and the 8MB L3 is similar to the
Intel Core 2 [12]. D-NUCAs are modelled based upon the SS-
performance configuration in [1]. For the rest of parameters
see Table I.

We use all but one (483.xalancbmk2) SPEC CPU 2006
benchmarks with the input sets suggested in [13]. Simulation
comprises a run of 100 million instruction after a warm-up of
200 millions following the SimPoint guidelines [14].

As regards delay, energy, and area, we assume a cycle
time of 19 FO4s similar to the Intel Core2 Duo E8600 in
a 32 nm technology [15]. Cache area, delay, and energy
are estimated with Cacti 5.3 [8] improved to support access
time as an optimization objective. L3 caches employ Low
Operating Power (LOP) transistors and the rest of caches High
Performance (HP) ones. Within our cycle time constraints, the
largest configuration found for the one-cycle L-NUCA tile was
an 8KB-2Way-32B cache. The area and energy of routers have
been estimated with Orion [16]. The transport crossbar delay
was modelled with HSPICE to verify it satisfies the cycle time
constraints.

V. RESULT EVALUATION

To prove the effectiveness of L-NUCA caches, we evaluate
them in terms of area, performance, and energy in two
scenarios: backed by a conventional L3 and by a D-NUCA.

A. L-NUCAs vs. Conventional Hierarchies

The selected baseline configuration (L2-256KB) was the
one performing the most in our exploration of the L2 design
space for three-level conventional hierarchies. This baseline is
compared to three L-NUCAs (2, 3, and 4 levels).

TABLE II
CONVENTIONAL AND L-NUCA AREAS.

L1 + L2 /L-NUCA tile network area
area (mm2) area (mm2) percentage (%)

L2-256KB 0.91 — —
LN2-72KB 0.46 14.01

LN3-144KB 0.86 0.06 18.8
LN4-248KB 1.59 19.02

Regarding area (Table II), the L-NUCA low network over-
head with their small size keep area under control; e.g., LN3-
144KB saves a 5.5% compared to L2-256KB while overpassing
its performance.

Regarding performance, Fig. 4(a) shows the IPC for all
configurations. All L-NUCAs overpass L2-256KB with aver-
age gains ranging from 5.4% (LN2-72KB) to 6.22% (LN4-
248KB) in Integer and from 14.3% (LN2-72KB) to 15.4%
(LN4-248KB) in Floating Point. In L-NUCAs of 4 levels and
beyond, performance increments do not make up for the rise
in area.

L-NUCA gives consistent gains across benchmarks because
it reduces the average latency of cache hits. To give an insight
into this reasoning, left part of Table III shows the average per-
centage of L-NUCA read hits relative to the L2-256KB ones.
On average, 59.6% and 41% of L2 hits are serviced by the 5
Le2 tiles at a smaller latency, for Integer and Floating Point
respectively. Besides, these hits do not suffer from contention
as the right part of Table III proves. These two columns show

2Its execution produced a known stack overflow problem.



TABLE I
ARCHITECTURAL AND NETWORK PARAMETERS.

Fetch/Decode width 4, up to 2 taken branches Issue width 4(INT or MEM)+4 FP Store Buffer size 48
Branch predictor bimodal + gshare, 16 bit Commit width 4 L2/L3 Write Buffer size 32/32
ROB/LSQ size 128/64 MSHR L1/L2/L3 size 16/16/8 TLB miss latency 30

INT/FP/MEM IW size 32/24/16 MSHR sec. misses 4 Branch misspred. delay 8

L1 cache / r-tile 32KB, 4 Way, 32B block size, parallel access mode, 2-cycle completion, 1-cycle initiation, write-through, 2 ports, read
hit ener.: 21.2 pJ, leakage power: 12.8 mW

L2 cache 256KB, 8 Way, 64B block size, 4 cycle completion, 2 cycle initiation, serial access mode, copy-back, 1 port,
read hit ener.: 47.2 pJ, leakage power: 66.9mW

L-NUCA cache tile 8KB, 2 Way, 32B block size, parallel access mode, 1-cycle completion and initiation, copy-back, 1 port, read
hit ener.: 14 pJ, leakage power: 2.2 mW

L3 cache 8MB, 16 Way, 128B block size, 20-cycle completion, 15-cycle initiation, copy-back, 1 port, read hit ener.: 20.9
pJ, leakage power: 600 mW

D-NUCA cache 8MB, 8 sparse sets, 4 rows. Banks: 256KB, 2 Way, 128B block size, parallel access mode, 3-cycle completion
and initiation, 1 port, read hit ener.: 131.2 pJ, leakage power: 33.5 mW. Links: 256 bits

Main memory First chunk: 200 cycles, 4-cycle inter chunk, 16B wires

D-NUCA L-NUCA D-NUCA L-NUCA
Flit Size 32B 32B Flits per message 1-5 1

Buffer size per channel 4 (virtual) 2 (physical) Virtual channels 4 —
Routing latency 1 1 MSHR size 16 16

TABLE III
PERCENTAGE OF THE NUMBER OF READ HITS IN EACH L-NUCA LEVEL RELATIVE TO THE NUMBER OF READ HITS IN THE L2 OF L2-256KB AND

AVERAGE TO MINIMUM TRANSPORT NETWORK LATENCY RATIO.

Le2 / L2 (%) Le3 / L2 (%) Le4 / L2 (%) All levels / L2 (%) Avg / Min Transport Latency
Int. FP. Int. FP. Int. FP. Int. FP. Int. FP.

LN2-72KB 58.7 40.9 — — — — 58.7 40.9 1.014 1.009
LN3-144KB 59.9 41.0 21.2 29.4 — — 81.2 70.3 1.008 1.005
LN4-248KB 60.1 41.0 21.1 27.1 7.4 19.5 88.6 87.7 1.005 1.004

Average 59.6 41.0 21.2 28.3 7.4 19.5

 0.7

 0.9

 1.1

 1.3

Integer Floating Point

IP
C

L2-256KB
LN2-72KB

LN3-144KB
LN4-248KB

(a) IPC harmonic mean.

 0.4

 0.6

 0.8

 1

L2-256KB LN2-72KB LN3-144KB LN4-248KB

To
ta

l e
ne

rg
y 

no
rm

. t
o 

L2
-2

56
K

B

static L3
static L2-RESTT

static L1-RT
dynamic

(b) Total Energy.

Fig. 4. Average IPC and Total Energy for conventional and L-NUCA
configurations. RT stands for r-tile and RESTT for rest of tiles. Network
energy consumption is included for the L-NUCA configurations.

the ratio between the average transport latency (delay between
a tile experiences a hit until the Issue Window is notified about
the data availability) and the minimum transport latency (no
contention) for all tested benchmarks. These values (less than
1.5% of increment) prove the effectiveness of the proposed
topologies and the distributed dynamic routing.

Regarding energy, cache consumption is dominated by
static energy in current technologies [17]. Therefore, L-NUCA
performance improvements also entail energy savings because
the savings in static consumption overpass the small increment
in dynamic energy caused by inter-tile block migrations and
search broadcasts.

Fig. 4(b) shows the average energy consumption for all
benchmarks normalized to the L2-256KB configuration. As

expected, L3 static energy stands out above the rest, and the
execution time reduction coming from L-NUCA saves roughly
10% of static L3 energy. In the overall picture, all L-NUCA
configurations beat the baseline with savings ranging from
10.5% (LN4-248KB) to 16.5% (LN2-72KB).

Putting together area, performance, and energy results, the
replacement of a 256KB L2 by an 144KB L-NUCA saves a
5.5% in area, improves IPC by 6.1% and 15% for Integer and
Floating Point benchmarks, respectively, and reduces energy
by 14.24%.

B. Integrating L-NUCAs with D-NUCAs

The 8MB D-NUCA baseline (DN-4x8) was selected after
exploring its design space varying, among others, bank size,
link width, number of sparse sets, number of rows, asso-
ciativity, insertion policy, and injection bandwidth. DN-4x8
includes 32 banks as described in Table I.

Regarding performance, Fig. 5(a) compares Integer and
Floating Point IPC of all configurations. The combination of
L-NUCA + D-NUCA always improves performance, being the
achieved gains almost flat across the tested L-NUCAs, roughly
4.5% and 7% for Integer and Floating Point benchmarks,
respectively. Since D-NUCA organizations reduce the latency
gap when compared to conventional hierarchies, the number of
L-NUCA levels required to maximize performance decreases;
therefore, two levels are enough, and with a slight 1.2% area
increment, LN2 + DN-4x8 improves DN-4x8 by 4.2% and



6.8% for Integer and Floating Point, respectively. Besides,
gains are consistent across benchmarks and in 54% of them
IPC improves more than 10%.

 0.7

 0.9

 1.1

 1.3

Integer Floating Point

IP
C

DN-4x8
LN2 + DN-4x8
LN3 + DN-4x8
LN4 + DN-4x8

(a) IPC harmonic mean.

 0.4

 0.6

 0.8

 1

DN-4x8
LN2 +

DN-4x8
LN3 +

DN-4x8
LN4 +

DN-4x8
To

ta
l e

ne
rg

y 
no

rm
. t

o 
D

N
-4

x8

static D-NUCA
static RESTT

static L1-RT
dynamic

(b) Total Energy.

Fig. 5. Average IPC and Total Energy for L1 + D-NUCA and L-NUCA +
D-NUCA configurations.

Regarding energy, Fig. 5(b) shows the total energy con-
sumption relative to DN-4x8. Once again, the execution time
reduction helps to decrease the energy consumption from
4.25% (LN2 + DN-4x8) to 0.2% (LN4 + DN-4x8). Interest-
ingly, LN2 + DN-4x8 saves 19.8% of dynamic energy with
regards to DN-4x8 because the added activity in the L-NUCA
(8KB tiles, simple networking) requires less energy than the
dynamic activity removed in the D-NUCA (256KB banks,
virtual channel routing).

Summarizing, with a negligible 1.2% area increment, adding
an LN2-72KB to a D-NUCA hierarchy improves IPC by
4.2% and 6.8% for Integer and Floating Point benchmarks,
respectively and saves 4.25% in total energy consumption.

VI. RELATED WORK

In addition to the related work presented in Section I,
multiple authors have studied the on-die cache latency gap.
For example, Beckmann and Wood proposed the use of
transmission lines to reduce the wire delay [18]. Chishti et
al. proposed NuRAPID decoupling the placement between
tag and data [19]. Regarding NUCA improvements, Jin et
al. proposed a novel router, a replacement algorithm, and a
heterogeneous halo topology [7]. Muralimanohar and Bala-
subramonian introduced heterogeneity in the wires and in the
topology with a mixed point-to-point bus network [3]. All
these works focus on multi-megabyte caches, while L-NUCAs
focus on size-reduced caches.

VII. CONCLUSIONS

The inclusion of large secondary on-chip caches for closing
the latency gap between the processor and main-memory
causes another latency gap between those large caches and the
fast and small first level caches. This work tackles this problem
by extending the cache size reachable by the processor at very
low latencies. This objective is achieved by adapting NUCA
caches to size-reduced caches.

One of the main novelties of L-NUCAs is their interconnec-
tion system. Three different networks have been conceived for
the basic cache operations: search, transport, and replacement.
All of them are based on short and scalable local links.

Besides, it supports fast lookup and block delivery in a fully-
associate structure maximizing hit ratios. Routing is implicit
in all the networks minimizing cost and increasing message
delivery. With this interconnection fabric, L-NUCA performs
in parallel a cache access and one-hop routing in a single
cycle.

Our detailed simulations show that, in general, L-NUCA
improves simultaneously performance, energy, and area when
integrated into both conventional or D-NUCA hierarchies.

ACKNOWLEDGMENTS

The authors would like to thank Brian Greskamp, the
members of the gaZ research group, Noemı́ López, and the
anonymous reviewers for their suggestions on this paper. This
work was supported in part by the Gobierno de Aragón
grant “gaZ: Grupo Consolidado de Investigación”, the Spanish
Ministry of Education and Science under contracts TIN2007-
66423, TIN2007-68023-C02-01, and Consolider CSD2007-
00050, and the European Union Network of Excellence
HiPEAC-2 (FP7/ICT 217068).

REFERENCES

[1] C. Kim, D. Burger, and S. W. Keckler, “An adaptive, non-uniform cache
structure for wire-delay dominated on-chip caches,” in ASPLOS-X, 2002.

[2] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and
S. Dwarkadas, “Memory hierarchy reconfiguration for energy and
performance in general-purpose processor architectures,” in MICRO,
2000.

[3] N. Muralimanohar and R. Balasubramonian, “Interconnect design con-
siderations for large NUCA caches,” in ISCA, 2007.

[4] L. A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer,
B. Sano, S. Smith, R. Stets, and B. Vergheseemph, “Piranha: a scalable
architecture based on single-chip multiprocessing,” in ISCA, 2000.

[5] W. J. Dally and B. P. Towles, Principles and Practices of Interconnection
Networks. Morgan Kaufmann, 2004.

[6] D. W. Plass and Y. H. Chan, “IBM POWER6 SRAM arrays,” IBM J. of
Research and Development, vol. 51, no. 6, pp. 747–756, 2007.

[7] Y. Jin, E. J. Kim, and K. H. Yum, “A domain-specific on-chip network
design for large scale cache systems,” in HPCA, 2007.

[8] S. Thoziyoor, N. Muralimanohar, and N. P. Jouppi, “Cacti 5.0,” HP Labs,
Tech. Rep. HPL-2007-167, October 2007.

[9] A. Kumar, P. Kundu, A. P. Singh, L.-S. Pehy, and N. K. Jha, “A
4.6Tbits/s 3.6GHz single-cycle NoC router with a novel switch allocator
in 65nm CMOS,” in ICCD, 2007.

[10] L.-S. Peh and W. J. Dally, “A delay model and speculative architecture
for pipelined routers,” in HPCA, 2001.

[11] H. Wang, L.-S. Peh, and S. Malik, “Power-driven design of router
microarchitectures in on-chip networks,” in MICRO, 2003.

[12] S. Gochman, A. Mendelson, A. Naveh, and E. Rotem, “Introduction to
Intel Core Duo processor architecture,” Intel Tech. J., vol. 10, 2006.

[13] A. Phansalkar, A. Joshi, and L. K. John, “Analysis of redundancy and
application balance in the SPEC CPU2006 benchmark suite,” in ISCA,
2007.

[14] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “SimPoint 3.0: Faster
and more flexible program phase analysis,” J. of Instr.-Level Parallelism,
vol. 7, 2005.

[15] Intel Corporation, “Intel R© CoreTM2 Duo Processor E8600, http://ark.
intel.com/cpu.aspx?groupId=35605.”

[16] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik, “Orion: a power-
performance simulator for interconnection networks,” in MICRO, 2002.

[17] J. Wuu, D. Weiss, C. Morganti, and M. Dreesen, “The Asynchronous
24 MB On-Chip Level 3 Cache for a Dual-Core Itanium Architecture
Processor,” in ISSCC, 2005.

[18] B. Beckmann and D. Wood, “TLC: Transmission line caches,” in
MICRO, 2003.

[19] Z. Chishti, M. D. Powell, and T. N. Vijaykumar, “Distance associativity
for high-performance energy-efficient non-uniform cache architectures,”
in MICRO’03, 2003.


	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index




