
38

ACDC: Small, Predictable and High-Performance Data Cache

JUAN SEGARRA, Universidad de Zaragoza
CLEMENTE RODRÍGUEZ, Universidad del Paı́s Vasco
RUBÉN GRAN, LUIS C. APARICIO, and VÍCTOR VIÑALS, Universidad de Zaragoza

In multitasking real-time systems, the worst-case execution time (WCET) of each task and also the effects
of interferences between tasks in the worst-case scenario need to be calculated. This is especially complex in
the presence of data caches. In this article, we propose a small instruction-driven data cache (256 bytes) that
effectively exploits locality. It works by preselecting a subset of memory instructions that will have data cache
replacement permission. Selection of such instructions is based on data reuse theory. Since each selected
memory instruction replaces its own data cache line, it prevents pollution and performance in tasks becomes
independent of the size of the associated data structures. We have modeled several memory configurations
using the Lock-MS WCET analysis method. Our results show that, on average, our data cache effectively
services 88% of program data of the tested benchmarks. Such results double the worst-case performance of
our tested multitasking experiments. In addition, in the worst case, they reach between 75% and 89% of
the ideal case of always hitting in instruction and data caches. As well, we show that using partitioning on
our proposed hardware only provides marginal benefits in worst-case performance, so using partitioning is
discouraged. Finally, we study the viability of our proposal in the MiBench application suite by characterizing
its data reuse, achieving hit ratios beyond 90% in most programs.

Categories and Subject Descriptors: B. [Hardware]; B.3 [Memory Structures]; B.3.2 [Design Styles]:
Cache memories; C. [Computer Systems Organization]; C.3 [Special-Purpose and Application-Based
Systems]: Real-time and embedded systems

General Terms: Design, Performance

Additional Key Words and Phrases: Worst-case analysis

ACM Reference Format:
Juan Segarra, Clemente Rodrı́guez, Rubén Gran, Luis C. Aparicio, and Vı́ctor Viñals. 2015. ACDC: Small,
predictable and high-performance data cache. ACM Trans. Embedd. Comput. Syst. 14, 2, Article 38 (February
2015), 26 pages.
DOI: http://dx.doi.org/10.1145/2677093

This work was supported in part by grants TIN2007-60625 and TIN2010-21291-C02-01 (Spanish govern-
ment and European ERDF), gaZ: T48 Research Group (Aragón government and European ESF), Consolider
CSD2007-00050 (Spanish government), and HiPEAC-2 NoE (European FP7/ICT 217068).
It is strictly prohibited to use, to investigate or to develop, in a direct or indirect way, any of the scientific
contributions of the authors contained in this work by any army or armed group in the world, for military
purposes and for any other use which is against human rights or the environment, unless a written consent
of all the authors of this work is obtained, or unless a written consent of all the persons in the world is
obtained.
Authors’ addresses: J. Segarra, R. Gran, L. C. Aparicio, and V. Viñals, Universidad de Zaragoza, Edificio Ada
Byron, C/ Marı́a de Luna, 1, 50018 Zaragoza, (SPAIN); emails: {jsegarra, rgran, luisapa, victor}@unizar.es;
C. Rodrı́guez, Universidad del Paı́s Vasco, Manuel Lardizabal, 1, 20018 Donostia-San Sebastián, (SPAIN);
email: acprolac@ehu.es.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 1539-9087/2015/02-ART38 $15.00

DOI: http://dx.doi.org/10.1145/2677093

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 38, Publication date: February 2015.

http://dx.doi.org/10.1145/2677093
http://dx.doi.org/10.1145/2677093

38:2 J. Segarra et al.

1. INTRODUCTION

Real-time systems require that tasks complete their execution before specific dead-
lines. Given hardware components with a fixed latency, the worst-case execution time
(WCET) of a single task could be calculated from the partial WCET of each basic
block of the task. However, to improve performance, current processors perform many
operations with a variable duration. A memory hierarchy made up of one or more cache
levels takes advantage of program locality and saves execution time and energy con-
sumption by delivering data and instructions with an average latency of a few processor
cycles. Unfortunately, the cache behavior depends on past references, and generally it
is necessary to know the previous access sequence to calculate the latency of a given
access in advance. Resolving these intratask interferences is a difficult problem in its
own right. Moreover, real-time systems usually work with several tasks that may in-
terrupt each other at any time. This makes the problem much more complex, since the
cost of intertask interferences must also be identified and bounded. Furthermore, both
of these problems cannot be accurately solved independently, since the path that leads
to the worst case of an isolated task may change when considering interferences.

In this article, we propose a small data cache that effectively exploits locality. In-
stead of a conventional data-driven data cache, we propose an instruction-driven data
cache, where selected memory instructions are associated with particular data cache
line frames. These data cache line frames can only be replaced by their associated
instructions—that is, only such instructions have data cache replacement permission.
Since each memory instruction replaces its own data cache line frame, it prevents
pollution (i.e., conflicts that evict highly reusable content), and its performance is inde-
pendent of the size of the data structures in tasks. Assuming that all instructions have
data cache replacement permission, the number of hits and misses in our proposed
data cache can be estimated using the data reuse theory [Wolf and Lam 1991]. Next,
any WCET optimization method can be used to decide which instructions have such
permissions, depending on the cache size, the intertask interferences, and so forth.
To obtain such instructions, we extend the Lock-MS WCET analysis method [Aparicio
et al. 2010, 2011].

Compared to a conventional data cache, the novel features of our data cache design
are the following:

—High-performance achievement: Contents are replaced in a similar way to in conven-
tional caches, maintaining its dynamic behavior.

—Predictability and no pollution: Only selected instructions can replace data cache
lines. This is achieved by static indexed-based replacement, with the advantage that
the usual replacement overhead (e.g., control and state bits of LRU) is eliminated.

—Small cache size (256 bytes), independent of the size of the data structures in tasks:
Each data structure requires a single data cache line at most, so in many cases, even
with this small size, several cache lines are left unused.

—The number of misses is estimated using data reuse theory as developed for
conventional caches [Wolf and Lam 1991]: This enables references to unknown ad-
dresses (e.g., pointers) to be analyzed, which is not possible with other methods (e.g.,
Li et al. [1996]; White et al. [1997]).

Compared to scratchpad memories, the performance of our proposed design does not
depend on program data size, it has no specific problems when analyzing pointers, and
it does not require data addresses to be tuned [Whitham and Audsley 2010].

The rest of this article is organized as follows. Section 2 reports related background
on caches. Our proposed data cache is described in Section 3. Section 4 shows how to
specify its behavior as an ILP model, including details of how the number of misses
can be estimated by applying the data reuse theory. Sections 5 and 6 describe the

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 38, Publication date: February 2015.

ACDC: Small, Predictable and High-Performance Data Cache 38:3

real-time experimentation environment and the worst-case performance results ob-
tained. Section 7 extends experiments to larger programs without real-time require-
ments. Finally, Section 8 presents our conclusions.

2. RELATED WORK

As outlined previously, caching is a difficult problem in real-time systems. Many studies
have been reported on instruction caches and their analysis. They can be divided into
those that analyze the normal behavior of the instruction cache and those that restrict
its behavior to simplify the analysis. The first approach involves attempting to model
each task and system as accurately as possible considering the dynamic behavior of
the cache [Li et al. 1996; White et al. 1997; Lundqvist and Stenström 1999; Theiling
et al. 2000; Aparicio et al. 2008]. Since this analysis is complex, interferences between
tasks are not usually considered, with tasks being analyzed in isolation. This means
that complementary methods (analysis of cache-related preemption delays) are needed
to adapt the WCET of each isolated task to multitasking systems (e.g. Altmeyer et al.
[2010]). On the other hand, cache-locking techniques restrict instruction cache behav-
ior, disabling cache replacement, a possibility offered by many commercial processors
[Martı́ Campoy et al. 2001; Puaut and Decotigny 2002; Suhendra and Mitra 2008]. With
specific contents locked in cache, the timing calculations are easier, so these methods
can enable the full system to be analyzed (i.e., several tasks on a real-time scheduler).
Cache-locking techniques can also be divided into static and dynamic cache locking.
Static locking methods preload the cache content at system start-up and fix this con-
tent for the whole system lifetime so that it is never replaced [Martı́ Campoy et al.
2001; Puaut and Decotigny 2002]. Dynamic cache locking, on the other hand, allows
tasks to disable and enable the cache replacement. Although there are studies that
allow instruction cache reloading at any point [Puaut 2006], most restrict reloading to
context switches [Martı́ Campoy et al. 2003a, 2003b; Aparicio et al. 2010, 2011]. These
approaches require per-task selection of contents, with the drawback that preloading
is performed every time a task starts/resumes its execution. Locking instructions in a
cache can be complemented with a line buffer, which effectively captures spatial local-
ity [Puaut and Decotigny 2002; Aparicio et al. 2011]. Instruction prefetch components
can also improve performance [Aparicio et al. 2010]. Further, to avoid interferences be-
tween tasks in real-time multitasking systems, cache partitioning may be used [Reddy
and Petrov 2007].

Data caching is much more complex than instruction caching, as references may
present very different behaviors: scalar versus nonscalar, global versus local, stack
frame (i.e., subroutine context), dynamic memory, and so forth. Most proposals use the
memory model of C: local and temporary variables and parameters stored on the stack,
global variables and (some) constants in the global static data region, and dynamic
variables on the heap. Thus, instead of a single component (data cache) exploiting
them all, some approaches specialize in exploiting particular access patterns in sep-
arate caching structures. One of the most straightforward specialization is exploiting
spatial and temporal locality into two separate caches [González et al. 1995]. The in-
struction address of the memory access (load/store) and a hardware predictor allow
prediction of the type of locality. The size of such caches is higher than 8KB, and
they have no pollution for references to nonscalar variables. Early approaches focused
on a stack cache [Ward and Halstead 2002]. Other authors have suggested hardware
modification to include a register-based structure for storing part of the stack frame
[Gonzalez-Alberquilla et al. 2010]. There are also proposals to store accesses to the heap
in a small cache (2KB) or a large cache (32KB) [Geiger et al. 2005]. Finally, one study
proposed three caches to manage the three memory regions (stack, global, and heap)
[Lee and Tyson 2000]. Additionally, this avoids conflicts between regions and provides
the required size for each: small for the stack and global, and large for the heap.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 38, Publication date: February 2015.

38:4 J. Segarra et al.

All previous techniques have a low energy consumption due to their small size.
They do, however, suffer from the problem of pollution to some extent, especially when
accessing local structures with spatial locality. Their results show marked variations
depending on the size of such structures.

It is worth mentioning the proposal of Tyson et al. [1995], which has some similarities
to our proposal. They suggest an instruction-driven, selective allocation policy for the
data cache. After a miss, allocation is allowed or not by the memory instruction causing
it, either statically or dynamically. The static approach selects instructions after an
application profiling of individual miss ratios and requires an extended instruction set,
whereas the dynamic approach relies on a hardware prediction table that records the
hit/miss behavior of each load instruction. However, they focus on improving statistical
performance using large structures and do not associate cache lines with memory
instructions as in our replacement policy.

Locking data caches and scratchpad memories are alternatives intended to capture
temporal locality and avoid pollution in real-time systems [Puaut and Decotigny 2002;
Puaut and Pais 2007]. However, exploiting spatial locality is still a problem. Since
different data structures may be used in different parts of a task and they may be
too large to fit into a locked data cache, some authors propose a dynamic locking
mechanism where tasks include code to lock/unlock the data cache, and also to preload
its contents at runtime [Vera et al. 2003; Xue and Vera 2004; Vera et al. 2007; Whitham
and Audsley 2010]. The selection of data memory lines (or scratchpad content) is based
on estimations of the number of misses for different chunks of code. The number of
misses can be predicted using cache miss equations [Ghosh et al. 1999], based on the
data reuse theory for LRU replacement in conventional data caches [Wolf and Lam
1991]. Therefore, if preloading and locking the data cache with a given selection of
data reduces the number of misses in the worst case, the required preload/lock/unlock
instructions are inserted into the code. In general, whole data structures are preloaded
to guarantee hits if they fit in the cache. Otherwise, the data cache may also be locked to
reduce pollution. This technique is particularly sensitive to optimizations that increase
locality (padding and tiling), as it is very dependent on the size of the referenced data
structures. In addition, it is usually combined with partitioning techniques to avoid
intertask interferences (e.g., Reddy and Petrov [2007]). Similarly to the cache miss
equations [Ghosh et al. 1999], in this article we use a specialized version of the reuse
theory to estimate the number of misses. However, our proposed hardware allows us to
perform whole program analysis, whereas cache miss equations on conventional data
caches are limited to perfectly nested loops without conditional expressions.

Our proposal does not lock specific data but dynamically caches the data used by
selected instructions. This avoids pollution; performance is independent of the data
size and allows the analysis of references to unknown addresses based on their reuse.
Further, being a single hardware component, it is more efficient than structures spe-
cialized on different access patterns. Morever, modification of task code is not required,
and compiler optimizations are not so important. Last, with our proposal, the cache-
related preemption delay of any task is constant (based on its setup) and independent
of the rest of the tasks.

3. ACDC STRUCTURE

Our proposed data cache is able to take advantage of temporal and spatial locality.
Usually, data caches are data driven—that is, their behavior (and thus their WCET
analysis) is based on which data addresses are requested and their request order. Our
proposed data cache is instruction driven, which means that its behavior depends on
the instructions accessing the data—that is, on how the data are accessed.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 38, Publication date: February 2015.

ACDC: Small, Predictable and High-Performance Data Cache 38:5

Fig. 1. Data memory architecture and access procedure. AC contains addresses of instructions with data
cache replacement permission and the index to their associated DC line.

3.1. Hardware Description

Our proposed data cache structure, Address-Cache/Data-Cache (ACDC), is a small
fully associative data cache with a static, instruction-driven, replacement policy. We
assume a write-back policy, as it involves less traffic than write-through. Since the
replacement policy is external to the DC, no replacement mechanism, such as LRU
or PLRU, is needed, unlike in conventional caches. Thus, on read hits it provides the
data, and on write hits it updates the data. On cache misses, it is checked whether
the accessing instruction, either a load or a store instruction, has data replacement
permission. If so, its associated data cache line is replaced with the missing data from
main memory. Otherwise, the data cache is not modified, and the missing data is
read/written from/to memory. Since each instruction with replacement permission is
only allowed to replace a predefined data cache line frame (simply “cache line” from
now on) for its references, there is no pollution.

This behavior can be implemented in many ways. We describe an implementation
that does not modify the instruction set and relies on two cooperating structures, the
Address Cache (AC) and the Data Cache (DC), in Figure 1(a). The DC is a small
data cache supporting fully associative read/write word lookup and direct block write,
which is indexed by data addresses (addr in Figure 1(a)). Hence, the DC could be
a conventional fully associative data cache with its automatic replacement circuitry
disabled. The AC is a table whose entries keep the instruction addresses (tag-PC field)
that can replace DC lines and the specific DC lines they can replace (DC-idx field).
Each instruction in the AC is associated to exactly one DC line. We assume an AC
with fully associative lookup of the tag-PC field (PC indexing in Figure 1(a)) and direct
field writing. During the execution of a given task, no replacement is needed, so once
written, the AC can be viewed as a locked cache.

In context switches, the task starting/resuming the execution stores in the AC its
own set of instruction addresses with replacement permission along with the index of
the DC line they are allowed to replace. Then, data accesses are made as depicted in
Figure 1(b). The DC is accessed with the desired data address (addr). On hits, the DC

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 38, Publication date: February 2015.

38:6 J. Segarra et al.

reads or writes the requested data and the access completes (box 1©). On misses, data
in main memory are requested, and it must be determined whether the requested data
line must replace a currently stored memory line in the DC or not. With our proposed
implementation, the AC is accessed with the current memory instruction address (PC).
On an AC miss, the DC will not be replaced (box 2©). On AC hits, the data access has
replacement permission (DRP), and the DC line to replace is indicated by the index
stored in the AC (DC-idx). In this case, having a write-back policy, if the currently
stored victim line u is dirty, it will be written back to memory (box 4©). Otherwise, the
DC will be refilled without writing back (box 3©). It is important to note that since the
DC is the first component to be looked up, replacements can only occur if the accessed
data are not cached, so it is not possible to duplicate lines in the DC.

As outlined previously, the AC permission table can be implemented in many ways.
For instance, it could be completely removed by enhancing the instruction set with
specific load/store instructions with replacement permission on particular DC lines.
Alternatively, the permission table could be implemented in the DC by adding to each
cache line a list of instruction addresses allowed to replace this cache line. Although
implementation alternatives and their performance are not studied in this paper, note
that the implementation overhead of the described AC component is very small com-
pared to a conventional cache. In our experiments, each AC entry stores 4 bits, whereas
each entry in DC (or in a conventional cache) has between 128 and 512 bits. Even con-
sidering the corresponding tag space in AC, its area would hardly suffice to add more
capacity to a conventional cache (e.g., having an addressable space of 1GB and memory
lines of 64 bytes, the whole AC would require 512 bits, whereas a single DC entry would
be larger than 540 bits).

Once understood, the operation of ACDC and reviewing its associativity features
may be interesting. Associativity in a conventional cache determines two quantities
that match: first in how many places a line must be looked up, and second in how many
places a line can be placed. Let us consider now the ACDC. From a search standpoint,
DC is clearly fully associative. However, from a placement standpoint (after miss), we
can speak of a direct mapping between a high-level variable or data structure and one
or more entries in the DC (through one or more AC entries).

3.2. Locality Exploitation

In our proposed ACDC, only specific memory instructions are allowed to replace a given
cache line, each of them having a predefined DC line to work with. This allows WCET
minimization/analysis to be carried out relatively easily, without limiting the benefits
coming from spatial and temporal reuse. Although there are many situations in which
such reuse can be exploited, in this article we consider only the most common cases.
Such cases cover most situations and can be modeled in a simple way. In addition,
although our actual analysis is performed on binary code, for clarity let us use source
code to explain how reuse would be exploited.

Temporal reuse. Memory references present temporal reuse when they access the
same memory address repeatedly during program execution. In this article, only ac-
cesses to scalar variables are considered for temporal reuse. Although array reuse
generally is better described by spatial reuse (see later), temporal reuse in very small
arrays can be exploited if they are managed as a very small series of scalar variables.
When scalar variables are accessed, if the same memory line has been accessed be-
fore only by the same instruction, there is what can be referred to as self-temporal
reuse [Wolf and Lam 1991] of the reference in this instruction. Otherwise, if the same
line has been accessed before but by another instruction, this is described as group-
temporal reuse. Figure 2 shows an example of the temporal reuse of different structures,
namely global (static) variables, local variables (within the function scope), and function

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 38, Publication date: February 2015.

ACDC: Small, Predictable and High-Performance Data Cache 38:7

Fig. 2. Example of temporal locality in code, memory layout, and the ACDC structure. PC1, PC2, and PC3
are the program counters of the first load/store instructions accessing the lines L containing the reused
variables.

parameters. For variables not stored in registers, their location in memory (in specific
memory lines L) will determine their associated temporal reuse. To exploit such reuse,
the first reference to each of these memory lines will be given replacement permission
so that they can be cached—that is, its PC will be included in the AC with an associated
DC line to cache this data line. For instance, there will be only a single miss for refer-
ences to the global small array variable ga (the first access), as all references to this
variable will access the same memory line. Furthermore, assuming that the function
sub always works with the same stack addresses (roughly speaking, it is always called
from the same nesting level), all of its accesses will have temporal locality, with a sin-
gle miss on the first access to each memory line. If sub is called from n different stack
addresses, there will be n misses for each line with temporal locality instead of a single
one. This would be the behavior for a task being executed without context switches.
If context switches are allowed, as in our experiments that follow, each context switch
will require preloading the AC and also saving and restoring the DC content. As we
show later, even with a high number of context switches, these costs are relatively
small due to the small size of our proposed structure.

Spatial reuse. There is spatial reuse of memory references when they access close
memory addresses during program execution [Wolf and Lam 1991]. In this article,
only sequential accesses (those with stride 1 element) are considered (independently
of the size of this element), because other strides are unusual in real-time applications
and formulas would become less clear. Nevertheless, considering other constant strides
would be trivial. As earlier, if a given case of spatial reuse involves a single instruction,
it is considered to be self-spatial reuse, whereas it is referred to as group-spatial reuse
when several instructions are involved.

Let us illustrate the spatial locality in matrix multiplication codes (Figure 3)
using our proposed ACDC structure. We present three cases, namely the matrix
multiplication code of the matmul benchmark [Seoul National University Real-Time
Research Group 2008] (NonOpt), an optimized version using a cumulative tempo-
ral variable (Opt1), and a more highly optimized version changing the i, j, k nesting
to i, k, j (Opt2). In all cases, matrices are stored in row-major order. For each case,
Table I shows the locality type (self-temporal T, self-spatial S, or group G including
both temporal and spatial); the ACDC behavior (instruction addresses to include in AC
and data lines dynamically cached in DC); and the number of accesses, misses, and
write-backs. To simplify the mathematical notation, we assume n × n aligned arrays,

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 38, Publication date: February 2015.

38:8 J. Segarra et al.

Fig. 3. Matrix multiplication codes.

Table I. Data References in Matrix Multiplication (Figure 3)

NonOpt T S G AC DC Accesses Misses Write-Backs
ld A � � – � � n3 n2/b n2/b
st A – – � – � n3 0 0
ld B – � – � � n3 n3/b 0
ld C – – – – – n3 n3 0

Opt1 T S G AC DC Accesses Misses Write-Backs
ld A � � – � � n2 n2/b n2/b
st A – – � – � n2 0 0
ld B – � – � � n3 n3/b 0
ld C – – – – – n3 n3 0

Savings (NonOpt − Opt1): 2n3 − 2n2 0 0

Opt2 T S G AC DC Accesses Misses Write-Backs
ld A – � – � � n3 n3/b n3/b
st A – – � – � n3 0 0
ld B – � – � � n2 n2/b 0
ld C – � – � � n3 n3/b 0

Savings (NonOpt − Opt2): n3 − n2 n3 − n3/b (−n3 + n2)/b

with n being a multiple of the cache line size b. Further, we place the write-back cases
in the instruction that replaces the dirty lines.

It can be seen that Opt1 reduces the number of memory accesses (hits) and Opt2
provides a reduction in the number of misses. Using our proposed architecture, for the
NonOpt and Opt1 codes, the instructions ld A (spatial and temporal reuse) and ld B
(spatial reuse) would be given DC replacement permission—that is, their PC would be
stored in the AC. This would allow them to use the data cache, and since st A (group-
spatial reuse) is always executed after ld A, it would always hit. In these two codes, the
C matrix is accessed by columns, which translates into no locality for small caches, and
therefore no replacement permission is given to ld C. For the Opt2 code, all accesses
have stride 1, so all loads would have replacement permission and all accesses would
benefit from the data cache. As can be seen, the required size of the ACDC is small:
2 AC entries and 2 DC lines for the NonOpt and Opt1 cases, and 3 AC entries and 3 DC
lines for the Opt2 case. Further, since each instruction with replacement permission
can only replace its associated DC line, there is no pollution.

All of these benefits can be obtained by carefully selecting the specific instructions
able to replace the data cache. To identify the optimal selection, we have extended
Lock-MS, a previously proposed method for analysis and minimization of WCET.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 38, Publication date: February 2015.

ACDC: Small, Predictable and High-Performance Data Cache 38:9

4. LOCK-MS EXTENSION

In this section, we demonstrate how the proposed ACDC can be analyzed. Although
many WCET analysis methods could be adapted, we have extended Lock-MS because
it was designed for lockable instruction caches and fits very well to ACDC.

The aim of Lock-MS is to identify a selection of instruction lines from memory such
that when locked into the instruction cache, the schedulability of the whole system
is maximized [Aparicio et al. 2010, 2011]. For this, Lock-MS considers the resulting
WCET of each task, the effects of interferences between tasks, and the cost of preloading
the selected lines into cache. This method is based on integer linear programming
(ILP) [Rossi et al. 2006]. Specifically, all requirements are modeled as a set of linear
constraints and then the resulting system is minimized. In a similar way, our proposed
ACDC requires a selection of instructions with permission to replace an associated line
in the data cache. Thus, this extension allows us to analyze the worst-case behavior
of any program when using our proposed ACDC. Note also that the analysis time of
Lock-MS scales very well for large programs [Aparicio et al. 2011].

Previous work on Lock-MS has grouped all costs of a given instruction memory line
in costs on instruction cache hit and miss. Considering the detailed costs in the case of
our ACDC, we use the following organization for the instruction memory line k of path
j of task i:

lineCosti, j,k = fetchi, j,k + execi, j,k + memoryi, j,k. (1)

In this way, the fetch cost (fetch) includes exclusively the cost of retrieving the instruc-
tion, the memory access cost (memory) is the possible stalling of memory operations,
and the execution cost (exec) is the remaining cost of the instruction. With this or-
ganization, the fetch and execution costs of a given memory line would be a literal
translation of those in previous papers on Lock-MS [Aparicio et al. 2010, 2011]. Next
we describe the constraints related to the data memory cost for the ACDC.

4.1. Constraints for the Hardware Structures

A memory instruction is modeled by the identifiers pc and ref. pc is the address of the
instruction and ref represents its access(es) to a given data structure recognizable at
compile time. In general, the memory reference does not appear in the code (source
or compiled) as a constant address but rather as a series of operations to obtain the
address. For instance, an access to an array inside a loop may have a memory reference
based on the array base address, the size of elements, and the array index (based on
the loop iteration). The association 〈pc, ref〉 cannot change—that is, a given memory
instruction pc always accesses memory using a given reference ref. However, several
memory instructions reusing the same data structure may have the same reference
identifier. The theoretical basis used by compilers to match a data address expression
with a reference and thus determine whether it is new or a data structure is being
reused is outlined in Section 4.3.

We use binary variables to set whether an instruction has data cache replacement
permission (DRPpc,ref = 1) or not (DRPpc,ref = 0). For a task i, the number of instructions
with replacement permission must fit in the AC, and the number of data references to
cache must fit in the DC:

MemIns∑
pc=1

DRPpc,ref = nInsDRPi ≤ AClines

MemRefs∑
ref=1

DRPpc,ref = nRefsDRPi ≤ DClines.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 38, Publication date: February 2015.

38:10 J. Segarra et al.

As well, the additional (ACDC) costs for each context switch must be considered. The
costs regarding the AC would be those required to load the preselected PCs (those with
data cache replacement permission) into the AC. The costs regarding the DC would
be those needed to save the DC of a task being preempted and restore it when this
task resumes its execution. Saving the DC means storing its tags and writing back the
dirty contents, and restoring the DC means restoring the saved tags and refilling their
corresponding data content. We consider the save and restore cost in all reuse cases:

ACDCswitchCosti = ACpreloadCost · nInsDRPi + DCsave restCost · nRefsDRPi.

This ACDC context switch cost (ACDCswitchCosti) times the maximum possible num-
ber of context switches in the selected scheduling policy is added to the WCET.

4.2. Memory Timing Constraints

The detailed data access cost can be described as the sum of the cost of each possible
situation multiplied by the number of times that it occurs. The situations considered
are data cache hits (DChit); data cache misses (DCmiss), with or without replacement;
and line write-backs (DCWB). Since our proposed method of data cache management
is instruction driven, we identify the accessed data by the instruction lines accessing
these data (i.e., line k of path j of task i), and the resulting data memory cost is added
to the line cost constraint (Equation (1)). A single memory line can, however, contain
several memory instructions, and in such cases, data access costs must be considered
separately. We use nIns to account for the number of instructions in a memory line, as
in previous Lock-MS studies [Aparicio et al. 2011]:

memoryi, j,k =
nInsi, j,k∑

m=1

(DChitCost · nDChiti, j,k,m

+ DCmissCost · nDCmissi, j,k,m + DCWBCost · nDCWBi, j,k,m).

Considering fixed costs for the distinct possible cases of a data access, the only variables
to define are those accounting for the number of such occurrences for a particular
instruction m in a given memory line. Moreover, such occurrences are closely related.
The number of hits is always the number of accesses (nfetch) to the instruction memory
line (i.e., the number of times that the load or store instruction is executed) minus the
number of data cache misses:

nDChiti, j,k,m = nfetchi, j,k − nDCmissi, j,k,m.

Further, the number of line write-backs depends on whether all of the instructions
using the accessed data are loads or not. If all of them are loads, the number of write-
backs is clearly 0, as the data are never modified. If, on the other hand, there is at least
one store instruction using the accessed data, there will be write-backs. Since write-
backs are performed on replacements, there will be as many write-backs as times the
data line is replaced—in other words, the number of write-backs is equivalent to the
number of data cache misses generated by those instructions with data replacement
permission (e.g., see Table I):

nDCWBi, j,k,m = 0 if all instructions performing ref are loads
nDCWBi, j,k,m = nDCmissi, j,k,m · DRPpc(i, j,k,m),ref if at least one instruction

performing ref is a store.

For clarity, this constraint shows a multiplication of variables, but it can be easily
rewritten as a linear constraint by combining and simplifying it with the following
constraint.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 38, Publication date: February 2015.

ACDC: Small, Predictable and High-Performance Data Cache 38:11

Considering any data cache, the number of misses of a given memory access depends
on whether it has been cached before and has not been replaced. With our proposed
ACDC, only instructions with data replacement permission can cache and replace,
whereas those without DRP will always (nfetch) miss. Hence, the resulting constraints
are

nDCmissi, j,k,m = ACDCmissesi, j,k,m · DRPpc,ref + nfetchi, j,k · (1 − DRPpc,ref),

where the DRPpc,ref will refer to the current instruction (pc(i, j, k, m)) in cases of self-
temporal or self-spatial reuse and will refer to the previous reference in the case of
group reuse. The only remaining value is the constant describing the number of misses
in ACDC assuming data replacement permission, ACDCmissesi, j,k,m.

4.3. Determine the Number of ACDC Misses

To determine the number of ACDC misses, we distinguish between references to scalar
variables and to nonscalar variables. The number of misses for a given scalar variable
depends exclusively on whether its address changes during program execution. For a
global variable, the total number of misses is 1, corresponding to the first time it is
referenced. For the remaining scalar variables, having a subroutine sub that is called
nStacksub times using a stack frame address different from that of its previous call, the
total number of misses is nStacksub.

To calculate the number of misses of nonscalar variables, we consider loop nest data
reuse and locality theory, briefly introduced later [Wolf and Lam 1991]. Each iteration
in the loop nest corresponds to a node in the iteration space. In a loop nest of depth n,
this node is identified by its iteration variables vector �i = (i1, i2, . . . , in), where i j is the
iteration value of the jth loop in the nest, counting from the outermost to innermost
loops. Let d be the dimensions of an array A. The reference A[�f (�i)] is said to be uniformly
generated if �f (�i) = H�i + �c, where �f is an indexing function Zn → Zd, the d × n matrix
H is a linear transformation, and �c is a constant vector. Row k in H represents the
linear combination of the iteration variables corresponding to the kth array index. We
consider this type of reference only. Next, the different types of reuse considered and
their equations are described.

Self-Temporal Reuse (STR). It happens when a reference A[H�i+�c] accesses the same
data element in iteration �i1 and �i2—that is, A[H�i1 + �c] = A[H�i2 + �c]. The solution of the
equation is the self-temporal reuse vector space ker(H). If it shows a vector �ei with all
elements equal to 0 except one equal to 1 in position i, it means that there is temporal
reuse in i (i.e., the iteration variable of loop i does not appear in any index function). In
our case, a reference cannot have STR only, as it would mean that it is a scalar variable.

Self-Spatial Reuse (SSR). Let HS be H with all elements of its last row re-
placed by 0—that is, a truncated H discarding the information about its last index:
A[in1, in2, . . . , ind−1]. The self-spatial reuse vector space is then ker(HS). If one of the
solutions of this operator is a vector �en with all elements equal to 0 except one equal to 1
in position n, with n being the last dimension of the iteration space, it means that there
is spatial reuse. In other words, this vector indicates that the iteration variable of loop
n does not appear in any other index function, so there will be accesses in sequence
in the last dimension of A. In this article, we do not consider accesses with strides
different from 1 or -1 element, so other strides would be accounted as misses.

Group-Temporal Reuse, Group-Spatial Reuse (GSR). In our particular case, two dis-
tinct references A[H�i + �c1] = A[H�i + �c2] have both group-temporal and group-spatial
reuse if and only if �c1 = �c2—that is, if both memory references are identical. One such
reference will be SSR as well, so we classify it as SSR.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 38, Publication date: February 2015.

38:12 J. Segarra et al.

Table II. Reuse Matrices of Matrix Multiplication (Figure 3, Table I)

NonOpt It. Sp. H STR SSR Ac. Miss

ld A(i,j) (i,j,k)

(
1 0 0
0 1 0

)
(0 0 1)

(0 1 0)
(0 0 1)

n3 n2

b

st A(i,j) (i,j,k)

(
1 0 0
0 1 0

)
GSR GSR n3 0

ld B(i,k) (i,j,k)

(
1 0 0
0 0 1

)
(0 1 0)

(0 1 0)
(0 0 1)

n3 n3

b

ld C(k,j) (i,j,k)

(
0 0 1
0 1 0

)
(1 0 0)

(1 0 0)
(0 1 0)

n3 n3

Opt1 It. Sp. H STR SSR Ac. Miss

ld A(i,j) (i,j)

(
1 0
0 1

)
∅ (0 1) n2 n2

b

st A(i,j) (i,j)

(
1 0
0 1

)
GSR GSR n2 0

Opt2 It. Sp. H STR SSR Ac. Miss

ld A(i,j) (i,k,j)

(
1 0 0
0 0 1

)
(0 1 0)

(0 1 0)
(0 0 1)

n3 n3

b

st A(i,j) (i,k,j)

(
1 0 0
0 0 1

)
GSR GSR n3 0

ld B(i,k) (i,k)

(
1 0
0 1

)
∅ (0 1) n2 n2

b

ld C(k,j) (i,k,j)

(
0 1 0
0 0 1

)
(1 0 0)

(1 0 0)
(0 0 1)

n3 n3

b

Table II shows the different references of the matrices for the three versions of ma-
trix multiplication. It shows the iteration space, the H matrix, the self-temporal reuse
vector space ker(H), and the self-spatial reuse vector space ker(HS) for each reference.
The number of accesses is obtained by multiplying the dimension of each index in the
iteration space based on the lower and upper bounds of iteration variables in the loops.
The last column shows the resulting DC misses ACDCmisses. For nonscalar references
classified as GSR, the accessed addresses are identical to those of a previous reference
(classified as SSR), and therefore they will already be cached, so ACDCmisses = 0. Al-
gorithm 1 shows how to obtain the number of misses for nonscalar references classified
as STR or SSR by exploring their reuse type on the different nesting levels of loops.
Note that results in Table II are consistent with those in Table I, which were derived
intuitively.

4.4. Structure-Based ILP

Previous constraints correspond to a path-based ILP model, as they specify all variables
with subindexes for the path j in the task i. We use such notation to make them easier
to understand. In general, however, the path information is not relevant, because
data reuse is found in a given path most of the time. Hence, as long as the memory
instructions are executed in the modeled sequence, previous constraints can be used
in a structure-based ILP model by simply removing the path information (subindex j).
The structure-based ILP model is much more compact and easy to resolve [Aparicio
et al. 2011].

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 38, Publication date: February 2015.

ACDC: Small, Predictable and High-Performance Data Cache 38:13

Fig. 4. Simple example of cooperative reuse involving different paths.

ALGORITHM 1: Algorithm to get ACDCmisses for STR/SSR nonscalar references
Input: H, memLines(A) # transformation matrix, data structure size
Output: ACDCmisses
1: if en ∈ Ker(Hs) then # if ref has SSR (may have STR)
2: i ← 0
3: Hi ← H
4: while en−i ∈ Ker(Hi) do # while ∃ STR
5: i ← i + 1
6: Hi ← trunc(Hi−1) # truncate column
7: end while # SSR in loop of depth i
8: nmiss ← memLines(A)
9: for all ek ∈ Ker(Hi) do # ∀ outer loops repeating accesses
10: nmiss ← nmiss × loopIter(k)
11: end for
12: return nmiss
13: else # ref without reuse: always miss
14: return always
15: end if
Function memLines() returns the number of memory lines occupied by a given structure.
Function loopIter() returns the number of iterations of a given loop depth.

To detect and optimize the most basic data reuse cases involving different paths, we
can generalize the previous constraints. Such basic cases involving different paths are
those locality situations that may be found through different paths where the locality
effects are the same independently of the followed path. In other words, all alternative
paths have equivalent memory instructions accessing the same references. This means
that different instructions may have data replacement permission on the same DC line.
However, since these instructions are equivalent, they work cooperatively and do not
pollute each other’s cached data. Since the cache accesses are the same regardless of
the path, previous constraints are valid, and they can be used in a structure-based ILP
model. Figure 4 shows a simple example (references to array A) of this situation. In
addition, the benchmark integral in the experiments that follow presents this behavior.

Finally, note that the proposed indexed ACDC structure allows an independent num-
ber of entries for the AC and the DC. This means that, anticipating the existence of
such cooperative paths in tasks, the AC design could be larger than the DC. Since the
AC latency is hidden by the main memory latency, the size of the AC can be increased,
even if it implies more latency. As well, although for simplicity we assume a fully
associative AC, its implementation is open to other configurations (direct mapped/set
associative) with minor changes in the constraints for the AC hardware structure.

5. EXPERIMENTATION ENVIRONMENT

All of our experiments consist of modeling each task and system as linear constraints,
optimizing the model and simulating the results in a rate-monotonic scheduler. Linear

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 38, Publication date: February 2015.

38:14 J. Segarra et al.

Table III. Task Sets “Small” and “Medium”

Dir-Mem Period Data Data Temporal (%) Spatial (%) Data DC
Task WCET (cy) (Cycles) Size (B) Access (%) Self Group Self Group Cached (%) Lines

sm
al

l

jfdctint 18,808 40,432 348 17.6 33.8 0 18.5 40.7 93.06 11
crc 213,221 478,560 1,157 13.6 41.0 27.4 15.9 9.0 93.29 6
matmul 834,359 2,169,448 4,828 29.8 0 0 51.2 23.8 74.94 5
integral 1,587,329 6,534,486 168 42.1 13.3 86.6 0 0 99.91 1

m
ed

iu
m minver 16,793 43,902 4,752 33.0 9.3 25.4 28.7 5.4 68.88 16

qurt 21,644 61,908 180 38.2 13.8 74.1 0.5 1.1 89.54 10
jfdctint 18,808 62,066 348 17.6 33.8 0 18.5 40.7 93.06 11
fft 4,742,498 14,792,660 528 22.9 11.4 75.7 5.7 0 92.82 12

constraints follow the Lock-MS model to minimize the WCET [Aparicio et al. 2011].
The feasibility of such a system can be tested in a number of ways [Sha et al. 2004].
Response time analysis is one of these mathematical approaches, and it is used as
our main multitask metrics. This approach is based on the following equation for
independent tasks:

Rn+1
i = Ci +

i−1∑
j=1

⌈
Rn

i

Tj

⌉
Cj, (2)

where Ri is the response time, Ci is the WCET plus the overheads due to context
switches in the worst case, and Ti is the period of each task i. It is assumed that
tasks are ordered by priority (the lower the i, the higher the priority). This equation
provides the response time of each task after a few iterations. A task meets its real-time
constraints if Ri ≤ Ti.

Table III lists the two sets of tasks used in our experiments. Benchmarks include
JPEG integer implementation of the forward DCT, CRC, matrix multiplication, in-
tegral computation by intervals, matrix inversion, computation of roots of quadratic
equations, and FFT from the SNU-RT Benchmark Suite for Worst Case Timing Anal-
ysis [Seoul National University Real-Time Research Group 2008]. The “small” and
“medium” task sets have been used in previous studies with similar periods [Puaut
and Decotigny 2002; Aparicio et al. 2011]. Sources have been compiled with GCC
2.95.2 -O2 without relocating the text segment (i.e., the starting address of the code of
each task maps to cache set 0). Our ILP models the resulting binary code. The option
-O2 implies fomit-frame-pointer (the frame pointer is not used). In addition, the stack
can grow only once in each routine (Stack Move Once policy).

The “Dir-Mem WCET” in Table III refers to a system without caches or buffers,
having direct access to separate embedded SRAMs (eSRAMs) for instructions and
data, and it has been computed without context switches. For this cacheless system,
task periods have been set so that the CPU utilization is 1.5 for the small task set and
1.35 for the medium task set. These values have been slightly increased with respect
to the original source by Puaut and Decotigny [2002] to constrain the schedulability of
a/our more powerful memory hierarchy (ACDC+IC+LB+Prefetch). Data size, in bytes,
includes the static data size and the maximum size reached by the stack. The remaining
columns in this table show different percentages of data access and locality, as well
as the data cached and the required DC lines when using our proposed ACDC. These
values are discussed in Section 6.2.

The target instruction set architecture considered in our experiments is ARMv7 with
instructions of 4 bytes. We use separate instruction and data paths, each one using its
own 128 KB eSRAM as main memory. The cache line size is 16 bytes (4 instructions).
The instruction cache (IC) size is varied from 64 bytes (4 sets) to 1KB (64 sets), all

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 38, Publication date: February 2015.

ACDC: Small, Predictable and High-Performance Data Cache 38:15

Table IV. Timing (Cycles) Considered in Different Operations (Figure 1(b))

Fetch hit 1 (IC/LB/PB access)
Fetch miss 1+6 (IC/LB/PB + memory access)
Fetch by prefetch 1 to 6
Data access without ACDC 1+6 (addr. computation + memory)
1© ACDC hit 1+1 (addr. + ACDC access)
2© ACDC miss without replacement 1+1+6 (addr. + ACDC + memory)
3© ACDC miss and replacement without write-back 1+1+6 (addr. + ACDC + memory)
4© ACDC miss and replacement with write-back 1+1+6+6 (ACDC miss + memory)

direct mapped. All tested memory configurations include an instruction line buffer (LB)
keeping the most recently fetched line, and some of them include a form of sequential-
tagged instruction prefetch that keeps a single prefetched line in a prefetch buffer
(PB) as in previous studies [Puaut and Decotigny 2002; Aparicio et al. 2010, 2011]. It
is important to note that a careful modeling of the instruction supply is essential to
study the real impact of the ACDC on the system, because instruction fetch delays and
interactions with data references set the worst path and its WCET. Our proposed ACDC
structure is composed of a 16-way fully associative data cache (DC) with 16 bytes per
line and a 16-way fully associative address cache (AC) with 4 bits per entry, plus their
required tags (Figure 1(a)). To compute memory circuit delays, we have used Cacti v6.0
[Muralimanohar et al. 2007], a memory circuit modeling tool, assuming an embedded
processor built in 32nm technology and running at a processor cycle equivalent to 36
FO4.1 All tested caches meet the cycle time constraint. Further, the access time of each
eSRAM is 6 cycles if we choose to implement it with low standby power transistors.
The specific cost of the instruction fetch and data access (associated with the specific
behaviors detailed in Figure 1(b)) can be seen in Table IV. Note that on data misses,
our proposed data cache performs worse than a system without data cache. Moreover,
a data hit is only four times better than a data miss. In other words, we assume a base
system with a very good performance to truly test our ACDC. Other studies consider
off-chip main memories and assume a higher miss penalty, such as 38 cycles [Vera
et al. 2003] or 64 cycles [Gonzalez-Alberquilla et al. 2010]. Clearly, in these systems,
the room for improvement is much higher. Thus, our results may be seen as a lower
bound on performance, which would rise if the Tmiss/Thit ratio were increased.

6. REAL-TIME RESULTS

In this section, we combine our proposed data cache structure (Figure 1(a)) with the
instruction fetch components (lockable instruction cache, line buffer, and instruction
prefetch) [Aparicio et al. 2010, 2011]. Figure 5 shows the response time (Equation (2))
speed-up of the lowest-priority task relative to a baseline system with an instruction LB
but no caches (first bar of group 0). As a reference, this baseline is schedulable, and its
response times are 0.85 and 0.60 times the largest period for the small and medium task
sets. The tested memory configurations combine the previously introduced components
and policies, namely LB, PB, IC, and our proposed data cache (ACDC). The IC is a
dynamically locked instruction cache with contents selected using the Lock-MS method
[Aparicio et al. 2010, 2011]. The first bar group (labeled 0) assumes no IC, and the
remaining four bar groups vary the IC size from 64 to 1,024 bytes. The ACDC size
(256 bytes) is not varied, because even with such small size, tasks use only a subset
of its lines. The first bar (LB+DC Lock-MU) represents a system with an instruction

1A fan-out-of-4 (FO4) represents the delay of an inverter driving four copies of itself. A processor cycle of
36 FO4 in 32nm technology would result in a clock frequency of around 2.4GHz, which is in line with the
market trends [Microprocessor-Report 2008].

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 38, Publication date: February 2015.

38:16 J. Segarra et al.

Fig. 5. Response time speed-up of the lowest priority task for several memory configurations (normalized
to a cacheless LB-only system).

LB and a statically locked data cache of the same size (256 bytes) using the Lock-MU
method on data [Puaut and Decotigny 2002]. Such a configuration exploits temporal
locality but not spatial locality, whereas ACDC exploits both locality types. Finally, bar
Always hit represents an ideal system always hitting in both instructions and data.
Response times of this ideal system are 0.12 and 0.10 times the largest period for
the small and medium task sets. This is an unreachable bound but provides an easily
reproducible reference. Performance of the considered systems is discussed later.

6.1. Instruction Cache and Prefetch

Regardless of task set size, systems with instruction prefetch (LB+PB, LB+PB+ACDC)
are relatively insensitive to IC size, whereas those without prefetch (LB, LB+ACDC)
depend much more on it. As expected, the benefit of prefetching decreases as the IC
size grows. Thus, instruction prefetch is especially interesting to improve systems with
small instruction cache sizes. In addition, it improves tasks with large sequences of
instructions executed a few times. Adding our ACDC improves any memory configura-
tion. Independent of the IC size, the speed-up roughly doubles (LB vs. LB+ACDC and
LB+PB vs. LB+PB+ACDC) for the small task set, whereas for the medium task set the
speed-up is roughly 1.5.

6.2. ACDC Analysis

As outlined earlier, across all considered memory configurations and task sets, ACDC
enhances worst-case performance by a factor of 1.5 to 2. To obtain further insight into
how individual tasks benefit from spatial and temporal ACDC reuse, we can consider
Table III again. Note that the percentage of data that has permission to be placed in the
DC (“Data Cached (%)” column) is high. The average is 90.30% for the small task set and
86.08% for the medium. For the small task set, the only task for which not particularly
high efficiency is achieved (74.94%) is the matrix multiplication. It accesses a matrix
by columns (stride > 1), which prevents any small data cache from being effectively
exploited. The matmul benchmark specifies an i, j, k loop nesting without a temporal
variable outside the deepest loop for calculating the row times column multiplication.
As described earlier, a better implementation would set an i, k, j loop nesting with
a temporal variable outside the deepest loop. Implementing such an optimization,
our ACDC would cache much more accesses (99.01%), as all matrix references would
have stride 1. Similarly, the medium task set has also a matrix benchmark (matrix
inversion) with stride > 1. Despite these two tasks, our results reach 88% and 75% of
the always-hit case for the small and medium task sets having a DC of just 256 bytes.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 38, Publication date: February 2015.

ACDC: Small, Predictable and High-Performance Data Cache 38:17

The specific number of data cache lines used by each benchmark can be seen in the
last column of Table III (“DC Lines”). For instance, 99.91% of data is captured with
a single DC line (128 bits) for the integral benchmark and 93.29% with six DC lines
(96 bytes) for the crc benchmark. Note that this number is very small, especially when
considering that it is independent of the size of the data structures in the task. In
general, each data structure should require a single DC line. Additionally, remember
that DC lines are shared between tasks, and therefore an optimal sizing would only
consider the more demanding task (e.g., 11 lines for the small task set). Furthermore,
although we assume (and apply) a context switch penalty on each and every context
switch, note that a clever distribution of the DC lines used by each task could avoid
(several of) such penalties, using the ACDC as if it were partitioned. Thus, our proposed
data cache is very suitable for embedded systems, where size may matter.

Additionally, the sixth column of Table III (“Data Access (%)) shows the percentage of
data accesses over the total memory accesses (data+fetch) for each task. It can be seen
that between 13% and 42% of memory accesses are data accesses, which represents an
important factor in the WCET calculation. The seventh and eighth columns (“Temporal”
and “Spatial”) show the percentage of data accesses managed by ACDC, divided into
self- and group locality. As can be seen, some tasks have temporal locality or spatial
locality only, but most of them have both types. This means that efficiency when using a
unified data cache is higher than other structures intended to manage them separately.

Our results use a timing with a Tmiss/Thit ratio of 4. Experiments would not be
schedulable using a ratio of 38, which prevents direct comparisons with other methods
[Vera et al. 2003]. On the other hand, processor utilization values can be compared.
The static locking system (LB+DC Lock-MU) provides utilization values of 1.74 and
1.25 for the small and medium task set, whereas the utilization for LB+ACDC system
without IC (0.86 and 0.72) is similar to that found where tasks can lock/unlock the
data cache dynamically [Vera et al. 2003]. However, our results are achieved with a
much smaller data cache, without modifying the code of tasks and without partitioning.
Moreover, in the case of tasks using many data structures (and requiring more than our
current 16 DC lines), we could easily follow a similar dynamic locking behavior—that
is, specifying different data replacement permissions (AC contents) for different task
phases. Such an approach is explored in Section 7.3.

6.3. Partitioning

In this section, we analyze how much improvement would come from partitioning re-
sources (i.e., without costs on context switches). To focus on the effects of intertask
interferences, instead of partitioning a predefined size for the instruction and data
caches, we replicate all buffers and caches for each task. In this way, we avoid the
problems associated with selecting adequate partitions and just provide an upper per-
formance bound. In other words, any partitioning technique will perform as well as or
less well than a per-task hardware replication.

Figure 6 shows the same memory configurations as earlier. In this case, the verti-
cal axis shows the response time speed-up due to full replication (shared/replicated).
In other words, values of the response time with shared hardware include costs of
saving/restoring the ACDC at context switches, whereas values with full replicated
hardware do not. Note that without such penalties, the resulting replicated system can
use the proposed hardware much more effectively—that is, lines that were not cached
because their associated penalties on context switches were too large can be cached
now. Nevertheless, Figure 6 shows very marginal benefits when replicating hardware.
Both for the small and medium task sets, results show improvements of less than
or around 10%. Improvements are smaller (<2% and <8% for the small and medium
task sets, respectively) when prefetch is enabled. Differences between the small and

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 38, Publication date: February 2015.

38:18 J. Segarra et al.

Fig. 6. Response time speed-up of full resource per-task replication of several memory configurations.

Table V. MiBench Programs Used in Our Experiments

Auto./Industrial Consumer Office Network Security Telecomm.
basicmath jpeg (enc) ispell dijkstra blowfish (enc) adpcm (enc)
bitcount jpeg (dec) rsynth patricia blowfish (dec) adpcm (dec)
quicksort mad stringsearch (blowfish) rijndael (enc) fft
susan (corners) tiff2bw (sha) rijndael (dec) fft-inv
susan (edges) tiffdither sha
susan (smooth) tiffmedian

medium task sets can be attributed to the fact that the medium task set involves much
more context switches, so the associated penalties are also higher.

As outlined earlier, replication offers the highest performance bound on partitioning,
because partitioning techniques without increasing the ACDC size would appear to
have a much smaller structure for each task, which would result in a lower hit ratio.
Thus, taking cost into account, it seems that such marginal benefits are not worth
replication or partitioning.

7. USING ACDC FOR LARGE EMBEDDED PROGRAMS

Previous experiments and results show the worst-case performance of the ACDC with
real-time benchmarks. Such results show that the small ACDC size is enough for real-
time kernels. In this section, we analyze the data reuse of several embedded programs
to foresee how they would perform if translated into real-time tasks.

We use the programs in Table V (MiBench embedded benchmark suite
[Guthaus et al. 2001]) for this analysis. This suite is composed of a set of commer-
cially representative programs. They include unbounded loops, which means that they
cannot be analyzed for worst-case performance, as in our previous sections. As pointed
out by the authors of MiBench, embedded applications generally have small data mem-
ory segments, but programs in MiBench present large variations in their data segment
due to the large number of immediate values (constants) embedded in source code.
These large data segments should stress the ACDC considerably. Moreover, MiBench
programs sometimes have large data tables for lookups (i.e., arrays accessed by a data-
dependent index) or interpolation, which are inherently nonpredictable. Furthermore,
some of these programs contain manual optimizations in their source code, which may
be inconvenient for specific targets, as they obscure the intended semantics. For in-
stance, loop unrolling may harm performance in processors with a zero-overhead loop
buffer [Uh et al. 1999] and may demand more ACDC lines than those required using
a loop construct. Although some programs include preprocessor directives to adapt the

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 38, Publication date: February 2015.

ACDC: Small, Predictable and High-Performance Data Cache 38:19

Fig. 7. Reuse types found in the data accesses of MiBench programs.

generated executable, we use the statically linked ARM binaries provided by MiBench.
All of these programs include two input samples (small and large) and specific options
for their execution. Our experiments use those samples and options. Finally, all data
memory accesses have been considered in our experiments, except those in input/output
functions.

7.1. Reuse Characterization

Figure 7 shows the percentage of the different reuse types in the data accesses of
the analyzed programs, considering that memory is organized in lines of 16 bytes.
Each bar, representing a particular program, is divided (from bottom to top) into
self-temporal, group-temporal, self-spatial, and group-spatial reuse. Essentially, self-
temporal reuse represents accesses to scalar variables by a single load/store instruction.
Group-temporal reuse represents accesses to scalar variables by multiple load/store
instructions—that is, one instruction caches a scalar variable, and other instructions
find it already cached. Self-spatial reuse essentially shows array walks performed
by a single instruction. For instance, an array walk caches a memory line contain-
ing n elements and hits in n − 1 elements in this memory line. Finally, group-spatial
reuse represents array walks with several instructions involved—that is, an instruction

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 38, Publication date: February 2015.

38:20 J. Segarra et al.

caches a memory line containing n elements, and several instructions access these ele-
ments. The remaining distance until 100% contains those accesses not having spatial or
temporal reuse, as described earlier. Bars are ordered by increasing temporal reuse in
Figure 7(a) and follow the same order in Figure 7(b) for an easier comparison.

First of all, note that the programs present a wide variability in reuse types, from
programs with almost no temporal reuse to programs showing 96% of temporal reuse.
In addition, note that there is significant variability between self- and group spatial
reuse, whereas most temporal reuse is group reuse. This means that array walks can
be used by a single instructions or by several instructions, depending on the algorithm,
but scalar variables are commonly used by many instructions and not a single one.
For instance, the source code of basicmath contains several scalar variables that are
being reused continuously along the code and a small array of three elements (dou-
ble floats, occupying two memory lines). This is translated into a major percentage of
group-temporal reuse. On the other hand, spatial reuse depends much more on par-
ticular implementations. For instance, the algorithms implemented in susan-corners
and susan-edges are very similar to that of susan-smooth. Whereas susan-smooth im-
plements an array walk by means of a loop containing a memory access, the other two
algorithms implement it by a long sequence of explicit memory accesses in the source
code. Although both options produce similar array walks, such accesses are classified
as self-spatial in susan-smooth and group spatial in susan-corners and susan-edges.

Figure 7 shows that programs present a very similar percentage of reuse types
independently of the size of the input sample. Such percentages can be seen as a
reuse fingerprint of the program, showing that data reuse depends mainly on the
algorithms (instructions) and not on the data. Apparently, quicksort shows different
percentages between the small and large input samples, but actually two different pro-
grams (qsort_small and qsort_large) are used in MiBench, as our results suggest. Thus,
capturing the data reuse by means of the instructions, as our ACDC does, generally
should provide very good results. Additionally, it confirms that results are indepen-
dent of the size of the data structures in tasks, as they are managed by the same
instructions—that is, they work with the same reuse patterns.

7.2. Impact of the ACDC Line Size

Although most benchmarks present a high percentage of data reuse, exploiting it (i.e.,
translating it into data hits) depends on the cache structure. In general, each parameter
in a cache has its own trade-offs. For instance, designs of fully associative caches with
more than 16 ways are possible, but they would require a careful adjust to the processor
cycle time. Considering our ACDC proposal, enlarging the line size benefits spatial
locality and has no significant drawbacks. Moreover, the worst-case analysis with a
larger line size would be simpler and faster, as the granularity is coarser.

The reuse percentages considering memory lines of 16 bytes, as calculated previously,
always increase when using larger sizes. Strictly speaking, reuse should be associated
to memory elements (variables, elements in arrays, etc.) considering the specific size
of each element. Such reuse analysis would be independent of the considered line
size. However, it would not accurately reflect the actual reuse that caches can exploit,
because caches work with memory blocks fitting in lines of a fixed size. The top marks
in Figure 8 show the reuse bounds calculated as earlier (height of bars in Figure 7) but
considering a memory organization in lines of 64 bytes. This provides an upper bound
on data reuse—that is, the hit ratio that would be achieved using an ideal ACDC with
unlimited DC lines of 64 bytes each.

To see the actual ACDC behavior, bars in Figure 8 show the hit ratio that can be
achieved by our proposed ACDC (16 DC lines) with line sizes of 16, 32, and 64 bytes—
that is, with a total ACDC size of 256, 512, and 1024 bytes. In this case, results depend

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 38, Publication date: February 2015.

ACDC: Small, Predictable and High-Performance Data Cache 38:21

Fig. 8. ACDC hit ratio of MiBench programs for different ACDC line sizes (always with 16 DC lines).

much more on the programs. Whereas some of them, such as bitcount, dijkstra, or sha,
are able to achieve a hit ratio very close to the reuse bound, others, such as jpeg, mad,
and rijndael, are quite far. Moreover, it is hard to say in advance if a program will
achieve a high hit ratio, because those with worse results do not seem to present any
particular reuse fingerprint (Figure 7).

To provide further insight into how to reach the reuse bound, Table VI shows the
number of DC lines that would be required to achieve a hit ratio equal or higher than
90% of the reuse bound. For each program, it shows the required number of DC lines
considering sizes of 16, 32, and 64 bytes, both for the small and large input samples.

As outlined previously, increasing the line size improves results. This means that
when the line size increases, less DC lines are required to achieve a similar hit ratio,
as can be seen in Table VI. However, note that the reuse bound may also increase
when enlarging this size (differences between the height of bars in Figure 7 and top
marks in Figure 8). Hence, when the hit ratio is very close to the reuse bound (e.g., in
bitcount, adpcm) or when the increment of the reuse bound is large (e.g., in blowfish),
the number of DC lines to reach 90% of the reuse bound may also grow, as the amount
of hits in absolute numbers is also increased.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 38, Publication date: February 2015.

38:22 J. Segarra et al.

Table VI. Number of DC Lines Required to Achieve a Hit Ratio Equal or Higher Than 90% of the Reuse Bound,
for the Small and Large Input Samples, Using Different ACDC Line Sizes

16B 32B 64B
Program sml lrg sml lrg sml lrg
basicmath 38 32 24 19 15 14
bitcount 13 13 9 10 14 14
quicksort 14 20 13 17 12 14
susan-corner 39 33 28 27 18 24
susan-edges 40 40 27 33 16 28
susan-smooth 5 5 6 6 7 7
jpeg-enc 51 55 39 43 30 28
jpeg-dec 57 53 40 35 32 29
mad 115 73 83 55 64 44
tiff2bw 4 4 4 4 5 4
tiffdither 23 35 18 25 18 19
tiffmedian 15 13 14 12 14 12
ispell 68 84 52 52 35 32

16B 32B 64B
Program sml lrg sml lrg sml lrg

rsynth 49 48 28 28 16 16
stringsearch 13 12 11 9 10 9
dijkstra 7 7 6 5 6 5
patricia 13 13 10 10 10 11
blowfish-enc 16 16 45 45 49 49
blowfish-dec 16 16 44 45 49 49
rijndael-enc 243 243 148 149 59 58
rijndael-dec 245 245 148 149 60 60
sha 13 13 12 12 8 8
adpcm-enc 7 6 7 7 11 11
adpcm-dec 4 4 5 5 10 12
fft 43 38 31 29 21 18
fft-inv 44 42 28 29 21 18

One of the key points of the ACDC is that its performance is independent of the
size of the data structures in tasks. Indeed, contrary to conventional caches, it is not
rare to see the ACDC performing better when the size of such structures is large. This
counterintuitive behavior can clearly be seen in basicmath, jpeg-dec, mad, tiffmedian,
stringsearch, and fft, as well as in other programs to a lesser extent, where the large
input sample requires fewer DC lines than the small input sample.

In general, values equal to or lower than 16 in Table VI mean that reuse can be
effectively exploited with the (static) ACDC—that is, a selection of PCs stored in AC for
the whole program runtime. On the other hand, larger values correspond to programs
with a low hit ratio in Figure 8 and indicate that it would require an ACDC with more
DC lines. However, programs with values larger than 16 should be studied further,
as they probably present several phases in their execution and may require dynamic
ACDC reconfigurations.

7.3. Dynamic ACDC Reconfigurations

Programs usually present different phases in their execution. Each phase may have its
own data access patterns and may work with different data structures. Thus, in such
cases, each program phase could use a specific ACDC configuration. Such an approach
has been used previously on instruction caches [Vera et al. 2003; Puaut 2006].

MiBench suite contains complete programs, which include phases of processing input
options, data initialization, data processing, output processing, and so forth. Hence,
some of these programs could benefit from reconfiguring the ACDC during the program
execution. This would increase the hit ratio and reduce the required ACDC lines in
each phase.

To adjust the ACDC for program phases, the programmer/compiler should place
a mark whenever the program changes its data access behavior. Such marks would
trigger the ACDC reconfiguration—that is, replace the PCs currently stored in the AC
(those with data cache replacement permission) by a new set of PCs more suitable for
the next phase. In general, studying program phases is encouraged for any program
with a low hit ratio. For instance, the hit ratio achieved by the jpeg encoding program is
far from its corresponding reuse bound (Figure 8), so it is a good candidate for testing
dynamic ACDC reconfigurations. To perform fair and reproducible experiments, we
avoid marking the program manually. Instead, dynamic ACDC reconfigurations are
applied at regular intervals of a specific number of memory accesses. Shorter intervals

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 38, Publication date: February 2015.

ACDC: Small, Predictable and High-Performance Data Cache 38:23

Fig. 9. ACDC hit ratio in the jpeg-enc program with dynamic ACDC reconfigurations at regular intervals.

imply more specific AC contents for each interval. Hence, if the program has phases,
this should be translated into more hits in each interval.

Figure 9 shows the resulting ACDC hit ratio when using dynamic ACDC reconfigu-
rations in the jpeg encoding program at regular intervals of data accesses. The ACDC
considered has 16 DC lines of 16 bytes each, and the ACDC configuration of each in-
terval has been obtained in a heuristic way. Decreasing the length of the intervals
means more specific ACDC configurations. Hence, performance should improve even
more with shorter intervals, converging to a point where the latency of all reconfigu-
rations equals the benefits of using these specific ACDC configurations. The rightmost
6 million accesses in Figure 9(a) and the rightmost 25 million in Figure 9(b) are very
similar independently of the ACDC reconfiguration intervals. This means that reduc-
ing the ACDC reconfiguration interval provides minor benefits. In general, in these
situations, a static ACDC should achieve good results and reconfigurations would not
be required. On the other hand, at the beginning of execution, results depend heavily
on the ACDC reconfiguration interval. Without dynamic ACDC reconfiguration, these
transient phases are ignored because they have a low impact when considering the
whole program. However, they account for one third of memory accesses, and ignoring
them has a significant impact on the average hit ratio. Hence, dynamic reconfiguration
enables the ACDC to adapt to this initial changing behavior.

Figure 10 presents experiments similar to Figure 8 but shows the best ACDC hit ratio
when including experiments with dynamic ACDC reconfigurations at regular intervals.
The largest tested interval performs an ACDC reconfiguration at each 1 million data
accesses. Additional intervals have been tested by halving this length over and over, as
in Figure 9, but this time until reaching intervals of 3,906 data accesses. Nevertheless,
to obtain the best results, ACDC reconfiguration triggers should be placed by the
programmer/compiler at phase changes.

In approximately one third of the programs (those with good results in Figure 8),
ACDC reconfigurations are not needed. On the other hand, 9 programs using the small
input sample and 11 programs using the large input sample achieve their best hit
ratio with a medium-grain interval (31,250 data accesses). Finally, jpeg-enc, jpeg-dec,
mad, tiffdither, ispell, and rsynth (also tiffmedian with the large input sample) perform
better with reconfigurations using the finest-grain tested intervals.

In most cases, the achieved hit ratio goes beyond 90% and many times reaches the
reuse bound. There are three programs (mad, blowfish, and rijndael) whose achieved
hit ratio remains between 65% and 80%. Both blowfish and rijndael use large (4KB)
lookup tables, which account for around 30% of the data accesses in each program,
and mad uses similar structures. References to such data structures are inherently
nonpredictable, so they are hard to manage. This can be seen in Table VI, where

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 38, Publication date: February 2015.

38:24 J. Segarra et al.

Fig. 10. Best ACDC hit ratio for each MiBench program, allowing dynamic ACDC reconfigurations.

these programs appear to require many more DC lines than the others. To achieve
predictability and a higher hit ratio, they would require that the temporal locality
to the whole data structures would be captured at the same time in a large cache
structure, because they have no regular access pattern. Thus, possible approaches
could be mapping such structures to a scratchpad, specific cache designs for this type of
accesses, and so forth. Evaluation of such approaches will be addressed in future work.

8. CONCLUSIONS

In this article, we propose a small instruction-driven data cache (ACDC) that effectively
exploits both the temporal and the spatial locality. It works by preloading at each task,
switching a list of instructions with data cache replacement permission, which are
assigned their own data cache line. Since each memory instruction replaces its own
data cache line, pollution is avoided and performance is independent of the size of
the data structures in tasks. In general, each data structure should require a single
data cache line. Moreover, by its nature, it guarantees that data cache lines cannot
be replicated. Worst-case performance with this ACDC is relatively easy to analyze
(similar level of difficulty to a locked instruction cache) but maintains its dynamic
behavior, because contents are replaced similarly to conventional caches. Further, since
the selection of instructions with replacement permission is based on the reuse theory,

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 38, Publication date: February 2015.

ACDC: Small, Predictable and High-Performance Data Cache 38:25

explicit sequences of data access addresses are not required and references to unknown
addresses can be analyzed.

We have extended the WCET analysis/minimization method Lock-MS to include the
ACDC. To study the real impact of the ACDC in the system, experiments include
different combinations of instruction cache, instruction line buffering, and instruction
prefetch, whose interaction with ACDC sets the worst path and its WCET. Our results
show a high percentage of cached data on the studied benchmarks (around 93% in most
cases), reaching 99.9% in the integral calculation benchmark and values of around 70%
in inefficiently programmed matrix benchmarks. Such results are obtained with an
ACDC of 256 bytes, although most tested benchmarks do not fully use such capacity.
This small size makes our proposal especially interesting for embedded devices. In our
experiments, worst-case performance with the ACDC is roughly double that without the
ACDC, approaching (75% to 89%) the ideal case of always hitting in both instructions
and data. These values are similar to those reported for methods where tasks can
lock/unlock the data cache dynamically, but our results are achieved with a much
smaller data cache, without modifying the codes of tasks and without partitioning.

We repeated our real-time experiments assuming that each task had its own repli-
cated hardware to bound the benefits of using ACDC in a partitioned environment. Our
results show only marginal improvements (of less than or around 10%), stating that the
added cost of partitioning makes this option uninteresting if ACDC is implemented.

Finally, a reuse characterization has been performed on MiBench programs. Results
show that such programs present a high reuse in general, which translates into a high
ACDC hit ratio in most cases. We also show how to increase such hit ratio both by
increasing the ACDC line size and by performing dynamic ACDC reconfigurations.

As future work, temporal reuse of nonscalar variables is still an unsolved problem.
Such reuse includes regular patterns, such as accessing by columns a row-major ordered
matrix, and accesses with nonregular patterns, such as lookup tables. Those with
regular patterns present a high miss ratio, even with conventional data caches, and
irregular patterns imply nonpredictable accesses.

REFERENCES

S. Altmeyer, C. Maiza, and J. Reineke. 2010. Resilience analysis: Tightening the CRPD bound for set-
associative caches. ACM SIGPLAN Notices 45, 4, 153–162.

L. C. Aparicio, J. Segarra, C. Rodrı́guez, J. L. Villarroel, and V. Viñals. 2008. Avoiding the WCET overesti-
mation on LRU instruction cache. In Proceedings of the IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications. 393–398.

L. C. Aparicio, J. Segarra, C. Rodrı́guez, and V. Viñals. 2010. Combining prefetch with instruction cache
locking in multitasking real-time systems. In Proceedings of the IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications. 319–328.

L. C. Aparicio, J. Segarra, C. Rodrı́guez, and V. Viñals. 2011. Improving the WCET computation in the pres-
ence of a lockable instruction cache in multitasking real-time systems. Journal of Systems Architecture
57, 695–706.

M. Geiger, S. McKee, and G. Tyson. 2005. Beyond basic region caching: Specializing cache structures for
high performance and energy conservation. In Proceedings of the International Conference on High-
Performance and Embedded Architectures and Compilers. 102–115.

S. Ghosh, M. Martonosi, and S. Malik. 1999. Cache miss equations: A compiler framework for analyzing and
tuning memory behavior. ACM Transactions on Programming Languages and Systems 21, 4, 703–746.

A. González, C. Aliagas, and M. Valero. 1995. A data cache with multiple caching strategies tuned to different
types of locality. In Proceedings of the International Conference on Supercomputing. 338–347.

R. Gonzalez-Alberquilla, F. Castro, L. Pinuel, and F. Tirado. 2010. Stack filter: Reducing L1 data cache power
consumption. Journal of Systems Architecture 56, 12, 685–695.

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown. 2001. MiBench: A
free, commercially representative embedded benchmark suite. In Proceedings of the IEEE International
Workshop on Workload Characterization. 3–14.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 38, Publication date: February 2015.

38:26 J. Segarra et al.

H. S. Lee and G. S. Tyson. 2000. Region-based caching: An energy-delay efficient memory architecture for
embedded processors. In Proceedings of the International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems. 120–127.

Y. T. S. Li, S. Malik, and A. Wolfe. 1996. Cache modeling for real-time software: Beyond direct mapped
instruction caches. In Proceedings of the IEEE Real-Time Systems Symposium. 254–264.

T. Lundqvist and P. Stenström. 1999. An integrated path and timing analysis method based on cycle-level
symbolic execution. Real-Time Systems 17, 2–3, 183–207.

A. Martı́ Campoy, Á. Perles Ivars, and J. V. Busquets Mataix. 2001. Static use of locking caches in multitask
preemptive real-time systems. In Proceedings of the IEEE Real-Time Embedded System Workshop.

A. Martı́ Campoy, Á. Perles Ivars, F. Rodrı́guez, and J. V. Busquets Mataix. 2003a. Static use of locking caches
vs. dynamic use of locking caches for real-time systems. In Proceedings of the Canadian Conference on
Electrical and Computer Engineering.

A. Martı́ Campoy, S. Sáez, Á. Perles Ivars, and J. V. Busquets Mataix. 2003b. Performance comparison
of locking caches under static and dynamic schedulers. In Proceedings of the 27th IFAC/IFIP/IEEE
Workshop on Real-Time Programming.

Microprocessor-Report. 2008. Chart watch: High-performance embedded processor cores. Microprocessor
Report 22, 26–27.

N. Muralimanohar, T. Balasubramonian, and N. P. Jouppi. 2007. Cacti 6.0: A Tool to Understand Large
Caches. Technical Report. University of Utah and Hewlett Packard Laboratories.

I. Puaut. 2006. WCET-centric software-controlled instruction caches for hard real-time systems. In Proceed-
ings of the Euromicro Conference on Real-Time Systems. 217–226.

I. Puaut and D. Decotigny. 2002. Low-complexity algorithms for static cache locking in multitasking hard
real-time systems. In Proceedings of the IEEE Real-Time Systems Symposium. 114.

I. Puaut and C. Pais. 2007. Scratchpad memories vs locked caches in hard real-time systems: A quantitative
comparison. In Proceedings of the Design, Automation Test in Europe Conference Exhibition. 1–6.

R. Reddy and P. Petrov. 2007. Eliminating inter-process cache interference through cache reconfigurability for
real-time and low-power embedded multi-tasking systems. In Proceedings of the International Conference
on Compilers, Architecture, and Synthesis for Embedded Systems. 198–207.

F. Rossi, P. V. Beek, and T. Walsh. 2006. Handbook of Constraint Programming. Elsevier.
Seoul National University Real-Time Research Group. 2008. SNU-RT benchmark suite for worst case timing

analysis.

L. Sha, T. Abdelzaher, K.-E. Årzén, A. Cervin, T. Baker, A. Burns, G. Buttazzo, M. Caccamo, J. Lehoczky, and
A. K. Mok. 2004. Real time scheduling theory: A historical perspective. Real-Time Systems 28, 101–155.

V. Suhendra and T. Mitra. 2008. Exploring locking & partitioning for predictable shared caches on multi-
cores. In Proceedings of the 45th Design Automation Conference. 300–303.

H. Theiling, C. Ferdinand, and R. Wilhelm. 2000. Fast and precise WCET prediction by separated cache and
path analyses. Real-Time Systems 18, 2–3, 157–179.

G. Tyson, M. Farrens, J. Matthews, and A. R. Pleszkun. 1995. A modified approach to data cache management.
In Proceedings of the 28th Annual International Symposium on Microarchitecture (MICRO-28). IEEE,
Los Alamitos, CA, 93–103.

G.-R. Uh, Y. Wang, D. Whalley, S. Jinturkar, C. Burns, and V. Cao. 1999. Effective exploitation of a zero
overhead loop buffer. ACM SIGPLAN Notices 34, 7, 10–19.

X. Vera, B. Lisper, and J. Xue. 2003. Data caches in multitasking hard real-time systems. In Proceedings of
the IEEE Real-Time Systems Symposium. 154–166.

X. Vera, B. Lisper, and J. Xue. 2007. Data cache locking for tight timing calculations. ACM Transactions on
Embedded Computing Systems 7, 1, 1–38.

S. A. Ward and R. H. Halstead. 2002. Computation Structures. Kluwer Academics.
R. White, F. Mueller, C. Healy, D. Whalley, and M. Harmon. 1997. Timing analysis for data caches and

set-associative caches. In Proceedings of the IEEE Real-Time Technology and Applications Symposium.
192–202.

J. Whitham and N. Audsley. 2010. Studying the applicability of the scratchpad memory management unit. In
Proceedings of the IEEE Real-Time and Embedded Technology and Applications Symposium. 205–214.

M. E. Wolf and M. S. Lam. 1991. A data locality optimizing algorithm. ACM SIGPLAN Notices 26, 30–44.
J. Xue and X. Vera. 2004. Efficient and accurate analytical modeling of whole-program data cache behavior.

IEEE Transactions on Computers 53, 5, 547–566.

Received June 2012; revised September 2013; accepted December 2013

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 38, Publication date: February 2015.

