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Abstract
We introduce a multi-level prefetching framework with three
setups, respectively aimed to minimize cost (Mincost), mini-
mize losses in individual applications (Minloss) or maximize
performance with moderate cost (Maxperf). Performance is
boosted in all cases by a sequential tagged prefetcher in L1,
with an effective static degree policy. In both L1 and L2, we
also apply prefetch filters. In L2 we place a brand-new adap-
tive policy that selects the best prefetching degree within a
fixed set of values, by tracking the performance gradient.
Mincost resorts to sequential tagged prefetching in L2 as
well. Minloss relies on PDFCM, an accurate, home-made,
correlating prefetcher. Maxperf maximizes performance at
the cost of slight individual losses, by integrating in L2 a
sequential tagged prefetcher with PDFCM.

1.  INTRODUCTION

Prefetching performance depends on both the applications
and the memory hierarchy. Thus, no prefetching method has
succeeded for every application so far. Aggressive sequential
or stream prefetchers usually boost the average performance
because they yield a good coverage, but useless blocks and
pollution may rocket for some unfriendly applications lead-
ing to severe performance losses. Adaptive mechanisms
used to cut losses and to reduce the pressure on the system
often make peak performance decrease [9]. More selective
approaches tend to exhibit meager coverage or timeliness. To
sum it up, designing or choosing a prefetching technique
means to set down clear objectives to guide unavoidable
trade-offs. Reasonable targets are to minimize cost, to cut
performance losses for any application, or to boost overall
performance. In this contribution we propose three
approaches, each of them addressing one of those targets.

All the three proposals share a common framework, where
we combine prefetching in the first (L1) and second (L2)
cache levels. Prefetched blocks are always stored in the
caches. In L1 we use a sequential tagged prefetching with a
degree policy we introduced in [9]. In L2 we use either an
adapted PDFCM, a sequential tagged or both. PDFCM
(Prefetching based on a Differential Finite Context
Machine) is a selective correlating prefetcher of our own
[10]. The prefetching degree in L2 is adaptive, but the mech-
anism is brand-new, based on performance gradient. Basic
prefetch filters are applied in both levels. 

The rest of the paper is organized as follows. Section 2 intro-
duces the related work. Section 3 explains the aforemen-
tioned common framework, and details the prefetching
engines, degree policies and filters. Section 4 sumarizes the
three proposals as variants of the common framework. Sec-
tion 5 gathers hardware costs, and proves how the proposals
follow the contest rules. Section 6 provides some results, and
the last Section draws with some conclusions.

2.  RELATED WORK

Sequential prefetching has been known for three decades. It
prefetches the block or blocks that follow the current
demanded block, and suits programs that reference consecu-
tive memory blocks [12]. Sequential tagged prefetching does
only issue a prefetch upon a cache miss or when a prefetched
block is referenced for the first time, and it needs an extra bit
per block. Sequential prefetching can be made more aggres-
sive by applying degree or distance. Let us consider a stream
of references a program is going to demand (ai, ai+1,
ai+2,...), where ai has been demanded by the program. Then
a prefetcher can dispatch ai+1,...ai+n, where n is the prefetch
degree. Alternatively, it is also possible to prefetch only ai+n,
and then we say that n is the prefetch distance. Power4 and
Power5 [6][15] profited from this idea, storing the
prefetched blocks along three cache levels. Using stream
buffers is a way of issuing several requests in a sequence [4].
It stores the prefetched blocks in dedicated buffers until they
are referenced. 

Sequential and stream prefetching trigger performance
losses in hostile benchmarks. Filtering mechanisms have
been proposed, but they all call for non negligible hardware,
like in Dynamic Data Prefetch Filtering [16]. SMS (Spatial
Memory Streaming) is a more recent prefetcher that avoids
loading into the cache useless blocks —an issue for sequen-
tial prefetching and stream buffers— at the cost of using
three tables plus some extra logic [13].

Losses can also be reduced by tuning degree or distance.
Sequential prefetching with adaptive degree was first pro-
posed in [2], on multiprocessors, focusing on prefetching
usefulness. Adaptive stream prefetching is explored in [14],
balancing usefulness, timeliness and pollution.

Correlating prefetchers (like SMS) are far more selective.
They associate predictions to histories stored in a history
table. In most of them the recorded history stales, mega-
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sized tables are needed, or the number of table accesses
multiplies. GHB-based prefetchers focused on the first two
problems [7]. The best performer in the family is PC/DC,
where the PC of the loads missing in L2 is used as the key to
index the history table. Performance is lower when using
miss address instead of load PCs as a key. For this case, an
adaptive mechanism was proposed that finds out an optimal
tag size and prefetch degree [8]. We introduced PDFCM and
compared it with PC/DC and other prefetchers in [10]. Like
in TLB Prefetching [5] and PC/DC, PDFCM is based on
deltas, but it takes fewer table references. It closely follows
the DFCM value predictor [3]. A key property of this pre-
dictor is that stride sequences (sequences of deltas with the
same value) take only one entry in the prediction table. We
use PDFCM with little change in this proposal. There are
some meaningful differences between the PDFCM
prefetcher and the DFCM value predictor [10]. For exam-
ple, whereas value prediction applies on every instruction in
the program, address prediction only applies to references
missing in L2, considerably lowering table sizes. 

We experimented several simple, cost-effective adaptive
strategies for distance or degree in [9], comparing them to
PDFCM and SMS, and adaptive methods based on [2] and
[14]. For this contribution we have picked up one of our
proposals for L1. However, the adaptive method we use in
L2 is brand-new. It dynamically monitors the performance
trend (IPC) of the workload by counting memory references
per cycle. A similar idea was used to distribute resources in
SMT processors [1]. We had not combined different
prefetchers at different cache levels before. Details on the
PDFCM and these two adaptive methods are provided in the
following sections.

3.  PREFETCHING FRAMEWORK 

Figure 1 shows the general setup of the prefetchers, valid
for both L1 and L2. We set three components at each level: a
prefetch engine, a degree controller and prefetch filters. The
prefetch engine in L1 is a sequential tagged prefetcher. In
L2 we use PDFCM, sequential tagged or both. The prefetch

filters are similar for both L1 and L2 setups, except for the
MSHRs, used only in L2. Whereas the degree follows a
static strategy in L1, an adaptive automaton is used in L2.
The next four subsections describe the prefetch engines, the
two degree policies, and the prefetch filters.

3.1. Sequential Tagged prefetch engines
The L1 sequential prefetcher is fed with addresses that are
either L1 misses or first references to a prefetched block in
L1.

The L2 sequential prefetcher is fed with addresses that are
either L2 misses or first references to a prefetched block in
L2, issued by either L1 demand misses or L1 prefetches.

Both loads and stores are taken into account in both levels.

Implementing degree in sequential prefetching.- The
degree automaton (Figure 2) increases the current block
address (ai) by one to generate the next prefetching address
(ai+1). When the prefetching degree is greater than 1, the
degree automaton executes for as many cycles as pointed
out by the degree counter, generating a single prefetch by
cycle. 

3.2. The PDFMC prefetch engine
Like any markovian predictor, PDFCM aims to predict the
next occurrence in a pattern. It considers sequences of differ-
ences (deltas, δ) between consecutive addresses issued by the
same memory instruction (load or store). In this contribution,
PDFCM is only trained with addresses that are either L2
misses or first references to a prefetched block in L2, issued
by demand (i.e. not triggered by L1 prefetches). In which fol-
lows, we call this kind of addresses training addresses. 

PDFCM uses the structures displayed on Figure 3.a. Each
History Table (HT) entry holds: a) the PC tag of a memory
instruction, b) the last training address (ai-1) issued by a pre-
vious instance of this memory instruction (LA), c) the hashed
sequence of deltas between recent training addresses issued
by this memory instruction (history), and d) confidence bits.
The history field is used to index the Delta Table (DT), in

Figure 1.  General organization of the prefetcher in a cache level. 
The MSHRs exists only in L2. PMAF: Prefetch Miss Address File.
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order to find out the following probable delta. 

PDFCM operation is as follows. When a memory instruc-
tion issues a training reference ai, HT is indexed with the
corresponding PC. If miss, the HT entry is replaced and the
operation ends. Otherwise, the PDFCM predictor is updated
in the following way. First δi is computed by subtracting
from ai the last training address of the same instruction (ai-1,
read from HT, see Figure 3.a, (1)). On the other hand, DT is
indexed with that HT entry’s history to read the delta pre-
dicted for that sequence. If this delta does not match δi, it is
replaced with δi (Figure 3.a (2)), and the confidence counter
is decreased. Otherwise, the confidence is increased. A new
history is now computed by hashing the last history and δi
(Figure 3.a (3)). The HT entry is next updated (Figure 3.a
(4)). All in all, each PDFCM update takes up one read and
one write in HT, plus one read and one write in DT. The pre-
diction takes place if the confidence read from the HT entry
is above a threshold. In that case the new history indexes
DT to get the next delta in the sequence (δι+1, Figure 3.b),
which is then used to produce the prefetching address ai+1.

We apply the same hashing function used in DFCM, FS
R-5, that yields the best results for finite context predictors

[11]. In this function the length of the history (order) is a
function of the logarithm of the number of DT entries
( , n = 9 in this proposal).

Implementing degree in PDFCM.- The degree automaton
(Figure 3.c) adds up the current address (ai) and the pre-
dicted delta (δi+1) to generate the next prefetching address
(ai+1). When the prefetching degree is greater than 1, the
degree automaton executes the following steps each proces-
sor cycle, for as many cycles as indicated by the degree.
The predicted delta (δi+1) is hashed with the content of the
History Register (HR, Figure 3). This yields a new (specu-
lative) history. The latter is used to select a new (specula-
tive) delta in DT. Taking ai+1 as the next current address, it
produces a new prefetching address. Note that only DT is
accessed (one access per processor cycle for degree cycles).

3.3. Degree controllers
3.3.1  Degree 1-x (L1)

We apply in L1 our static prefetching degree policy Degree
(1-x): On miss, prefetch with degree 1; on first use of a
prefetched block, prefetch with degree x [9]. In this imple-
mentation, x=4.

3.3.2  Adaptive degree by tracking performance 
gradient (L2)

The prefetching degree in L2 is dynamically tuned by track-
ing the program performance gradient. The rationale behind
the mechanism is that we keep the trend (either increasing
or decreasing the prefetching degree) as long as it helps per-
formance, and we change it otherwise. Since we don’t have
the instruction count, we have considered references (to L1)
issued per cycle as the performance metric. Other metrics
could be tried in a different environment. We use an autom-
aton with just two states (increasing degree and decreasing
degree).

A cycle counter determines the duration of an epoch (a fixed
number of cycles) whereas a reference counter records the
number of demand references (loads and stores) issued (to
L1) by the CPU over an epoch. A previous epoch register
holds the count of the previous epoch. At the end of an
epoch, the automaton switches the state between increasing
and decreasing if previous epoch > reference counter. Then,
it updates (increases / decreases) the prefetch degree as
pointed out by the state. Degree fluctuates non-linearly,
according to the following values: 0, 1, 2, 3, 4, 6, 8, 12, 16,
24, 32, 48, 64. We have tried different number of cycle
counts to define an epoch. Since we got little change in the
outcome, we have fixed it to 64 K cycles.

Figure 3.  Prefetch based on DFCM. HT: History Table; DT: 
Delta Table. LA: last address field in HT. HR: History Register.
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3.4. Prefetch Filters
The simulation environment given for this contest does not
provide any mechanism to filter secondary misses. Thus, n
references to the same missing block produce n references
to the next memory level, all of which will appear in the
stream of references that feeds the prefetcher. The aim of
using the MSHRs as a filter is to remove the secondary
misses from that stream. We don’t use MSHRs in L1, on
account of the limit imposed by the contest rules. Our
MSHRs hold up to 16 block addresses that have missed in
L2 and are being serviced from memory. Only references
that miss in both L2 and the MSHRs are allocated a new
MSHR (following a FIFO policy), and feed the prefetcher.

Cache Lookup and PMAF (Prefetch Memory Address File)
filter the output of the prefetcher. Cache Lookup eliminates
prefetches to blocks that are already in the cache. PMAF
eliminates prefetches to blocks that have already been
issued to the next memory level. We use a dedicated port in
both L1 and L2 directories for prefetch lookups, a possibil-
ity left open by the contest rules. PMAF is a FIFO structure
similar to the MSHRs. It holds up to 32 prefetch addresses
that have already been issued but have not been serviced
yet. Only prefetch addresses missing in the PMAF are allo-
cated a new PMAF entry and sent to the next memory level.
PMAF entries keep only a tag with the least significant 16
bits of the block address.

4.  THREE GOALS, THREE PROPOSALS

We sumarize here our three proposals as three different set-
ups of the framework introduced above, subject to our three
objectives. All of them share a Sequential Tagged prefetch
engine with degree policy 1-x in L1, adaptive degree by
tracking performance gradient in L2, and the filters
explained in subsection 3.4. Only the prefetch engine
changes.

• Minimizing cost (Mincost)— Sequential Tagged.
• Minimizing losses (Minloss)— PDFCM in L2
• Maximizing performance (Maxperf)— Since maximum

performance is targeted in the contest rules, we also sub-
mit an additional code setup where the prefetch engine
in L2 (Figure 1) comes with a PDFCM, along with a
conventional sequential tagged prefetcher. The rest of
the elements do not change in either level, excepting the
lookup and PMAF filters in L2, that call for an extra
port. Both the PDFCM and the sequential tagged
prefetcher in L2 follow the same prefetching degree,
managed by the adaptive degree controller used in L2
(subsection 3.3.2). This configuration yields a little more
average performance at an almost negligible cost, but it
might cause performance losses in some individual
applications.

5.  HARDWARE COST AND RULE 
COMPLIANCE

The two following subsections break down the cost of the
componentes used in the L1 and L2 prefetchers. The last
subsection sumarizes the overall cost for each one of the
three proposals.

5.1. L1 prefetcher (547 bits)
Sequential prefetch engine.- None.

Implementing 1-4 degree in sequential prefetch (35 bits).-
A counter for monitoring the degree (3 bits) and an address
register (32 bits).

Filtering mechanisms (512 bits).- There are no MSHR in
L1. L1 lookup needs no storage. PMAF1 entries keep only a
tag with the least significant 16 bits of each block address.
PMAF1 takes up 512 bits (32 entries, 16 bits per entry).

5.2. L2 prefetcher
PDFCM prefetch engine (19530 bits).- HT entry fields: PC
tags and LA (16 bits each); History (9 bits); Confidence (2
bits). 256 HT entries take up 11008 bits. DT has 512 entries
(deltas), each 16 bits long (8192 bits in all). The code that
implements this engine uses 14 local variables that add up
314 bits. Some of them could be shortened or even ruled out
in a hardware implementation, though.

Implementing degree in PDFCM (64 bits).- Counter for
monitoring the degree (7 bits), Address Register (32 bits),
Delta Register (16 bits) and History Register (9 bits).
Implementing degree in sequential prefetch (38 bits).-
Degree counter (6 bits) and address register (32 bits).

Adaptive degree by tracking performance gradient (131
bits).- Cycle counter (16 bits) instruction memory counter
(16 bits), instruction count of the last epoch (previous
epoch, 16 bits), array of degree values (13 entries x 6 bits),
index register of the array (4 bits) and one state bit (increas-
ing / decreasing degree).

Filtering mechanisms (512 bits).- We do not consider the
cost of the 16 MSHRs, as specified in the contest mail list.
L2 lookup needs no storage. PMAF2 entries keep only a tag
with the least significant 16 bits of each block address.
PMAF2 takes up 512 bits (32 entries, 16 bits/entry).

5.3. Overall budget per proposal
According to the previous details, the overall budget for
Mincost, Minloss and Maxperf respectively amounts to
1255 bits, 20784 bits, and 20822 bits.



6.  RESULTS

Figure 4 plots speedups obtained by our three proposals
with respect a baseline system without prefetching. We used
the environment provided by the DPC-1, and SPEC CPU
2006 as the workload. We apply a warming period of 40 bil-
lion instructions, and then the next 100 million instructions
are executed. The baseline system features the most
restricted configuration among the three ones considered in
the DPC-1 (512KB L2; one request per cycle from L1 to L2,
and a maximum of one request per every 10 cycles from L2
to Memory). The rightmost group of columns stands for the
geometric mean of speedups. Results for the other two con-
figurations considered in the DCP-1 are relatively similar.
As it could be expected, Mincost and Maxperf respectively
peak at just the lowest (28.3%) and highest (32.5%) speedup
figures in average, whereas Minloss performance situates
just in between (30.7%). It must be considered that there are
twelve applications whose global miss ratio falls below
0.2% in the baseline system (perlbench, gobmk, sjeng,
h264ref, gamess, gromacs, namd, deal II, povray, calculix,
tonto, and wrf). They roughly match the ones where
prefetching does not achieve great results or even shows
performance losses. Exceptions are h264ref and tonto,
where little improvements appear. Minloss only shows
losses in astar and povray, but they are really negligible.
Indeed, Minloss is the only option that virtually cuts any
losses in astar.

Figure 5 focuses on the effect of the adaptive degree policy

we propose for the L2 prefetcher. We only show results for
Maxperf. The cache and bandwidth configuration are the
same we used in the previous experiment. The adaptive
mechanism (bar Adaptive in Figure 5) achieves the higher
performance in average, and it helps cutting losses in
unfriendly cases. The rest of the bars (degree n = 1, 4, 16,
64) show the speedup of the same prefetching scheme but
applying a fixed prefetching degree n in L2. The optimal
degree fluctuates among the different benchmarks. Thus, the
best degree policy in astar, GemusFDT and leslie3d is
respectively 1, 4 and 16. The speedup achieved by the
Adaptive policy in all the benchmarks closely follows the
best speedup achieved by a fixed degree policy in each case.

7.  CONCLUSIONS

Prefetching performance depends on both the memory hier-
archy and the workload, so different targets lead to different
designs. Moreover, there are many applications where
prefetfching chances for improving performance are really
slim (SPEC CPU 2006 includes twelve applications out of
twenty nine with negligible L2 cache misses, for example).
However, if we boil it down to average results, prefetching
performs pretty well, since dramatic speedups can be
achieved in friendly applications. All in all, prefetching is
worth implementing especially if we keep cost low. 

For this reason, we propose in this contribution a common
multi-level prefetching framework that can fit three differ-

Figure 4.  Breakdown of application speedups for the three proposals. The rightmost group of bars shows geometric means.



ent engines, respectively targeted to minimize cost (Min-
cost), performance losses (Minloss) or to maximize
performance (Maxperf), although all of them keep cost
fairly low. Mincost yields the lower performance but it takes
just over 1 KB. Minloss closely follows Maxperf perfor-
mance, but cutting almost all performance losses. If average
maximum performance matters, Maxperf costs just one hun-
dred bits more than Minloss, but performance losses appears
in some applications. Last but not least, the new adaptive
policy we introduce to manage the prefetching degree at the
second cache level proves to be effective, and merely takes
131 bits.
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