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Abstract 

Speculative thread-level parallelization is a promising way to 
speed up codes that compilers fail to parallelize. While several 
speculative parallelization schemes have been proposed for differ- 
ent machine sizes and types of codes, the results so far show that it 
is hard to deliver scalable speedups. Often, the problem is not true 
dependence violations, but sub-optimal architectural design. Con- 
sequently, we attempt to identify and eliminate major architectural 
bottlenecks that limit the scalability of speculative parallelization. 
The solutions that we propose are: low-complexity commit in con- 
stant time to eliminate the task commit bottleneck, a memory-based 
overflow area to eliminate stall due to speculative buffer overflow, 
and exploiting high-level access patterns to minimize speculation- 
induced traffic. To show that the resulting system is truly scalable, 
we perform simulations with up to 128 processors. With our opti- 
mizations, the speedups for 128 and 64 processors reach 63 and 48, 
respectively. The average speedup for 64 processors is 32, nearly 
four times higher than without our optimizations. 

1 Introduction 
While shared-memory multiprocessors have become widespread 
and microprocessors are being designed with multiprocessing sup- 
port, many applications are still being developed with sequential 
machines in mind. Moreover, explicitly-parallel applications, like 
many web and database systems, are typically developed at a very 
high cost. This state of affairs is mainly due to the higher difficulty 
of programming, debugging, and testing parallel programs. 

To address this problem, automatic compiler parallelization has 
been tried. Unfortunately, this approach is usually ineffective for 
codes with unknown or complicated dependence patterns. Exam- 
ples of such codes are those with pointer-based accesses, indirect ac- 
cesses to arrays, irregular control flow, accesses to structures across 
complicated procedure calling patterns, and accesses whose pattern 
depends on input data. 

One way to extract parallelism from these codes is to use spec- 
ulative thread-level parallelization [1, 5, 7, 8, 9, 11, 13, 15, 17, 19, 
20, 21,22, 23, 24, 26, 27]. In this technique, the computation in the 
program is divided into tasks and assigned to different threads. The 
threads execute in parallel, optimistically assuming that sequential 
semantics will not be violated. As the threads run, their control flow 
and the data that they access are tracked. If a dependence violation 
is detected, the offending threads are stopped and a repair action is 
initiated. Such a repair action involves re-executing offending tasks, 
possibly after recovering some old, safe state. 

Speculative parallelization can be done purely in software [8, 19, 
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20]. In this case, the run-time checking for dependence violations is 
performed by code inserted by the compiler. 

To reduce the software overhead of this technique, hardware sup- 
port can be added to detect dependence violations, help repair the 
state, or speed up other operations. For example, data dependence 
violations may be detected by enhancing the cache coherence proto- 
col support, which already tracks accesses from different processors 
to ensure data coherence. State repair may use hardware support to 
speed up the detection of tasks that need to be re-executed and the 
destruction of the incorrect state in their caches. 

In recent years, many schemes with hardware support for specu- 
lative parallelization have been proposed [1, 5, 7, 9, 11, 13, 15, 21, 
22, 23, 24, 26, 27]. Among other issues, they differ in their target 
machine size and type of code, as well as in their relative emphasis 
on hardware and software support. 

Some of these schemes have focused on architecting a solution 
for scalable machines [5, 22, 26, 27]. The evaluation of such so- 
lutions for up to 16 processors has shown that it is hard to deliver 
scalable speedups. This is the case even for applications with large 
task sizes and few true cross-task dependences, which suggests that 
the reason may be sub-optimal architectural design. Since we be- 
lieve that scalable machines will eventually incorporate some form 
of support for speculative parallelization, uncovering and removing 
the bottlenecks to the scalability of this technique is very important. 

In this paper, we attempt to identify generic architectural bottle- 
necks to the scalability of speculative parallelization and provide 
general solutions to eliminate them. The solutions that we propose 
are: low-complexity commit in constant time to eliminate the task 
commit bottleneck, a memory-based set-associative overflow area 
to eliminate stall due to speculative buffer overflow, and exploiting 
high-level access patterns to minimize speculation-induced traffic. 
With these three supports, we find that speculative parallelization is 
truly scalable. To show it, we use simulations with up to 128 proces- 
sors. With the optimizations, the speedups for 128 and 64 processors 
reach 63 and 48, respectively. The average speedup for 64 proces- 
sors is 32, nearly four times higher than without the optimizations. 

This paper is organized as follows: Section 2 overviews specula- 
tive parallelization and lists architectural bottlenecks to scalability, 
Section 3 proposes solutions to eliminate them, Section 4 discusses 
our evaluation setup, Section 5 evaluates the solutions, and Section 6 
discusses related work. 

2 Background 
2.1 Speculative Thread-Level Parallelization 
Speculative thread-level parallelization consists of extracting tasks 
of work from sequential code and executing them on parallel 
threads, hoping not to violate sequential semantics. The control 
flow of the sequential code imposes a control dependence relation 
between the tasks. This relation establishes an order of the tasks, 
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and we can use the terms predecessor and successor to express this 
order. The sequential code also yields a data dependence relation 
on the memory accesses issued by the different tasks that parallel 
execution cannot violate. 

A task is speculative when it may perform or may have performed 
operations that violate data or control dependences with its prede- 
cessor tasks. Otherwise, the task is non-speculative. 

When a non-speculative task finishes execution, it is ready to 
commit. The role of commit is to inform the rest of the system 
that the data generated by the task are now part of the safe, non- 
speculative program state. Among other operations, committing al- 
ways involves passing the non-speculative status to a successor task. 
This is because we need to maintain correct sequential semantics 
in the parallel execution, which requires that tasks commit in order 
from predecessor to successor. If a task reaches its end and is still 
speculative, it cannot commit until it acquires non-speculative status. 

Memory accesses issued by a speculative task must be handled 
carefully. Stores generate speculative versions of data that cannot be 
merged with the non-speculative state of the program. The reason is 
that they may be incorrect. Consequently, these versions are stored 
in a speculative buffer local to the processor running the task. Only 
when the task becomes non-speculative can its versions be allowed 
to merge with the non-speculative program state. 

Loads issued by a speculative task try to find the requested datum 
in the local speculative buffer. If they miss, they fetch the closest 
predecessor version from the speculative buffers of other tasks. If 
no such version exists, they fetch the datum from memory. 

As tasks execute in parallel, the system must identify any viola- 
tions of cross-task data dependences. Typically, this is done with 
special hardware or software support that tracks, for each individual 
task, the data written and the data read without first writing it. A 
data dependence violation is flagged when a task modifies a version 
of a datum that may have been loaded earlier by a successor task. At 
this point, the consumer task is squashed and all the data versions 
that it has produced are discarded. Then, the task is re-executed. 

With less sophisticated schemes, it is possible that other types of 
data-dependent accesses also induce task squashes. For example, 
consider a system that only tracks accesses on a per-line basis. It 
cannot disambiguate accesses to different words in the same mem- 
ory line. In this case, false sharing can also trigger squashes. An ex- 
ample is a write preceded by a read by a successor task to a different 
word in the same line. Furthermore, if there is no support to keep 
multiple versions of the same datum in the speculative buffers of 
the system, cross-task WAR and WAW dependence violations also 
cause squashes [5]. 

Finally, while speculative parallelization can be applied to vari- 
ous code structures, it is most often applied to loops. In this case, 
tasks are typically formed by a set of consecutive iterations and are 
dynamically scheduled on the processors of the system. In general, 
such an environment is mostly concerned with not violating data de- 
pendences. The only control dependence violation to check for is 
speculative tasks executing past the loop exit. For this reason, this 
paper focuses exclusively on checking for data dependences. 

2.2 Scalability Bottlenecks 
We have tried to identify architectural mechanisms in speculative 
parallelization that induce overheads that. are both large and likely to 
increase with the number of processors. We briefly list them here. 

Task Commit. When a task commits, before it passes the non- 
speculative status to a successor, it typically performs certain op- 
erations designed to ensure that the committing data can be later 
located by the cache coherence protocol. These operations depend 
on the protocol. For example, they may consist of writing the data 
generated by the task back to main memory [5, 9] or asking for its 

ownership [22]. In any case, since tasks must commit in order, these 
operations are serialized across tasks. As the number of tasks exe- 
cuting in parallel increases, committing them eventually becomes a 
bottleneck. 

Speculative Buffer Overflow. Typically, if the memory state of a 
speculative task is about to overflow the buffer that holds it, the pro- 
cessor stalls. Otherwise, we could lose record of what data has been 
accessed by the task and could even pollute memory with incor- 
rect data. Unfortunately, even modest stalls in an environment with 
many processors can cause serious slowdowns. Indeed, the stall of 
one task may force its successors to remain speculative for a longer 
time. This, in turn, causes speculative buffers to accumulate more 
speculative state and greatly increases the risk of further stalls. 

Speculation-Induced Traffic. The false sharing of data between 
tasks in a speculation environment can lead to squashes, as ac- 
cesses appear to violate dependences. To eliminate these unnec- 
essary squashes, we need to disambiguate accesses at a finer grain 
than memory lines. For this reason, most speculation schemes keep 
at least some access information on a per-word basis [5, 7, 9, 13, 21, 
22, 24, 26, 27] instead of only per line. Unfortunately, protocols with 
full per-word dependence tracking cause more traffic: an invalida- 
tion or dependence-checking message for one word does not elimi- 
nate the need for a similar message for another word in the same line. 
In general, as the number of processors increases, the total number 
of messages in the system per unit time tends to increase faster than 
the memory system bandwidth, eventually creating a scalability bot- 
tleneck. If, in addition, we use a protocol with per-word dependence 
tracking, we are likely to reach this bottleneck sooner. 

Other. Other architecture-related overheads include spawning 
threads at the beginning of the application, barrier synchronization 
and related operations performed at each speculative section entry 
and exit, and dynamically scheduling speculative tasks to threads. 
For the environment considered in this paper, we find these over- 
heads to be negligible. Specifically, for our applications running on 
64 processors, the combination of these overheads accounts for an 
average of only 0.7% of the total execution time. 

Finally, another important overhead is processor stall at the end of 
each speculative section due to load imbalance. While this overhead 
is sometimes significant, it is not speculation-specific. Furthermore, 
it is probably best dealt with in software, through improved task 
partitioning and scheduling. Therefore, in this paper, we focus only 
on the three architectural bottlenecks described above. 

3 Removing Scalability Bottlenecks 
In this section, we propose architectural mechanisms to address the 
three main bottlenecks identified above. 

3.1 Task Commit 
While tasks can execute in parallel, they commit necessarily in se- 
quence, since a task can commit only after all its predecessors have 
done so. This serialization may become a bottleneck when the num- 
ber of processors is large. For example, consider tasks that take E 
cycles to execute and C cycles to commit in the background (Fig- 
ure 1). Individual processors overlap the commit of a task with the 
execution of the next task. When the number of processors is 1?,/C, 
commit has become the bottleneck, and the application will not run 
faster with more processors. 

Increasing the task size does not postpone this bottleneck if com- 
mit is done in a way that takes a time largely proportional to the 
amount of data generated by a task. Indeed, bigger tasks (longer 
E) will usually generate more data, which in turn will take longer 
to commit (longer C). The result will again be as shown in Fig- 
ure 1. Instead, for true scalability, task commit needs to complete in 
constant time, irrespective of the task size. 
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Figure 1 : Commit serialization is a scalability bottleneck. 

In existing speculation schemes, task commit typically consists of 
two steps. The first one is designed to ensure that the data generated 
by the task survive the commit and can be located by the coherence 
protocol in the future. The second step is to pass the non-speculative 
status to another task. Typical operations performed in the first step 
are writing back to memory the cache lines or data elements updated 
by the task [5, 9] or requesting ownership of the cache lines updated 
by the task that can be in other caches [22]. Unfortunately, these 
operations tend to grow longer with task size and, therefore, make 
commit not scalable. 

The one proposed directory-based scheme with constant commit 
time is [26]. Task commit only involves advancing a shared vari- 
able (last-commit) that contains the ID of the last committed task. 
This operation informs the rest of the system of the change in non- 
speculative status. At all times, versions of data from committed 
tasks can remain in the caches and are treated as usual: a request 
from a reader obtains the version created by the closest producer 
predecessor. 

Since write-backs or ownership requests at commit time are not 
required in [26], caches only need to write dirty data back to mem- 
ory lazily, on displacement. In [26], main memory accepts displaced 
data that has been generated by committed or uncommitted tasks. 
This is in contrast to all other schemes, which do not allow uncom- 
mitted (and therefore, unsafe) data to be written to main memory. 

One advantage of protocols with lazy write-back is that traffic 
from each individual processor to main memory is spread over a long 
time. This is unlike other schemes, which transfer data or change 
their state eagerly at commit [5, 9, 22]. A second advantage of lazy 
write-back is that the total volume of data written back to memory is 
potentially lower than in eager protocols. Indeed, assume that a node 
has two committed versions of the same variable, generated by two 
tasks. In this case, only the newer version needs to be sent to main 
memory on displacement. The older one can be silently discarded 
from the cache, as it is made obsolete by the newer one. 

To avoid WAW violations, any speculation scheme must guaran- 
tee that the different versions of a given variable are merged with 
the main memory state in the correct order. In most protocols, this is 
trivially ensured by the eager write-back or ownership request oper- 
ations, which are performed on all the variables generated by a task 
when the task commits. However, in a lazy protocol like [26], other 
mechanisms are required. 

In [26], WAW dependences are satisfied by keeping at the home, 
for each shared word in memory, the ID of the task that generated 
the data version currently held in memory. With this support, the 
order in which data are sent back to main memory is irrelevant. The 
home updates memory selectively, i.e., only when the task ID for the 
arriving data is higher than the task ID for the data it already has. 

Overall, the protocol in [26] commits in constant time but also has 
two shortcomings. First, allowing uncommitted data to be written to 
main memory introduces many complications, especially when re- 
covering from dependence violations. Second, the protocol requires 
keeping, for each shared word in main memory, the ID of the task 
that produced it. More details are found in Section 6. 

3.1.1 Low-Complexity Commh in Constant Time 
We want to commit a task in constant time irrespective of its size, 
without the complexity of having to keep a version number for each 
location in main memory. To commit in constant time, we follow the 
approach in [26]: commit only involves advancing the last-commit 
shared variable; the dirty cache lines generated by the committed 
task are lazily written back to memory on displacement or external 
request, potentially much later. To eliminate the need for version 
numbers in memory, we guarantee that, for any given line, all its 
cached versions in the multiprocessor are always written back to 
main memory in the correct order. Only then can we be sure that no 
older version of the line overwrites a newer one already in memory. 

The support required to eliminate from the commit any eager data 
transfers or state changes is similar to [26]. The directory keeps a 
bit vector of sharers for each line and, when necessary, queries them 
all. It uses the version numbers in the returned lines to choose the 
correct data version. 

The support required to guarantee that the versions of any given 
line are always written back to main memory in order requires en- 
forcing two new conditions: 

First, only lines belonging to committed tasks are allowed to be 
displaced and written back to memory. If we allowed write-backs of 
lines from uncommitted tasks, we would risk out-of-order updates 
when a line from an older, yet-to-complete task is subsequently writ- 
ten back. To enforce this condition, each cache hierarchy has a copy 
of the last-commit variable, which is kept largely up-to-date by the 
local processor. A line displacement is allowed only if the task ID 
of the line is not higher than the local copy of last-commit. 

The second condition is that, when a write-back occurs, the di- 
rectory controller at the home collects from all other caches their 
own older versions of the line. These are all merged before updating 
memory. This condition ensures that the home will not later receive 
any write-back of an older version of the line. Consequently, when 
a task T suffers the displacement of a dirty line, the message sent 
to the home includes T 's  1D and the dirty words in the line. The 
home then asks the sharer processors to write back all the versions 
of the same line that were written by tasks older than T. Each re- 
ply message includes the writer task ID and the dirty words in the 
line. If a node has more than one version of the line that needs to be 
sent to memory, the node combines them so that the reply message 
includes, for each word, only the last version and its task ID. The 
home then combines the initial message with all the replies into a 
single line that contains the newest version of each word. Finally, 
all the dirty words in this line are written to memory. With this ap- 
proach, memory is always updated with newer versions. 

Overall, with constant-time commit, our scheme (and [26]) can 
potentially speed up a program over a conventional eager scheme 
like [5, 9, 22]. The major potential speedup comes from remov- 
ing any data transfer or state change from the critical path of the 
commit. A second-order potential speedup comes from the benefits 
of lazy write-back. Specifically, the memory system contention is 
moderated by two effects: the write-back traffic from an individual 
processor is not bursty and, thanks to version combining, potentially 
smaller. 

Implementation 
To enforce in-order write-back of committed versions to memory, 
we use Version Combining Registers (VCR) in the directory con- 
troller of each node. A VCR contains as many words as a memory 
line (Figure 2). Each word is associated with a task ID and a validity 
bit. When a line write-back reaches the home (message 1 ), an avail- 
able VCR is allocated. Then, all dirty words in the line and their 
task 1D(s) are copied into this VCR. As the subsequent replies arrive 
(messages 3), the VCR is updated with the newest versions. After 
all the replies have been received, the valid words in the VCR are 
copied to memory and the VCR is released. 
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Figure  2: The eviction of  a line from processor O's cache 
(left) triggers a transaction in three steps (1-3) that fills a 
VCR as shown. TID, R, W, and V stand for task 1D, read, 
write, and valid, respectively. A word is dirty if its W is 1. 

Since a home may have to process write-backs for several lines 
concurrently, each directory controller contains a few VCRs, for ex- 
ample 8-16. To avoid complications and races, two concurrent write- 
backs of  the same memory line are not allowed. Consequently, if 
two nodes displace two cache lines with the same address, only the 
message that arrives first at the home allocates a VCR. The second 
one is negatively acknowledged. After the first transaction is fully 
completed, the second one is undertaken if it is still necessary. 

VCRs are also useful to supply data on demand in a multi-version 
coherence protocol. To see how, consider the case when differ- 
ent words of a given memory line have been written by different 
tasks in different caches, and a successor task reads the line. The 
line returned to the reader must contain the correct version of  each 
word, namely the version generated by the closest predecessor to the 
reader. To combine the different word versions from potentially dif- 
ferent caches into a single line, the home uses a VCR. Note that, in 
this case, the combined line may contain some words obtained from 
uncommitted tasks. Consequently, the contents of the VCR cannot 
be written to memory, nor can the versions supplied be marked as 
clean in the caches. 

3.2 Speculative Buffer Overflow 
The memory state of  a speculative task is often stored in hardware 
buffers like caches, write buffers, or victim caches [5, 7, 9, 13, 22, 
24]. This state includes versions of  variables generated by the task 
and, often, a record of  what variables the task has read. If this state is 
about to overflow, the task must stop to prevent the loss of  informa- 
tion and the possible pollution of  memory. Typically, the processor 
remains stalled until the task becomes non-speculative. Since tasks 
commit in order, stopping a task may force its successors to remain 
speculative for a longer time. In this case, speculative buffers ac- 
cumulate more speculative state, which can cause further stalls. In 
systems with many processors, these stalls may be a serious bottle- 
neck. 

In many applications, two levels of  caches and victim caches can 
easily hold the working set of  a task. For other applications, how- 
ever, this is false. For example, to amortize large communication 
latencies, tasks in scalable multiprocessors are likely to have coarse 
grains and, therefore, large working sets. Furthermore, due to com- 
mit serialization or load imbalance, individual caches may end up 
holding the state of  several speculative tasks. This effect further in- 
creases the volume of  data to be buffered. 

Ideally, we would like to have an unlimited-sized area for the 
cache to safely overflow into, so that tasks never have to stop or 
overwrite memory. Such an overflow area must be able to hold state 
from several tasks. Further, it is possible that these several tasks 
have created multiple versions of  the same variable. This scenario 
is likely in applications with privatization-like access patterns: each 
task that accesses the variable writes it first, therefore creating a new 
version, but the compiler cannot rule out the existence of  true depen- 
dences. Consequently, the overflow area must be designed to hold 

multiple versions of  the same variable. 

The design proposed in [26] allocates an overflow area in the lo- 
cal memory of  a NUMA machine. The processor can access the 
area through an address translation step at the page level. While 
such a scheme does the job, it requires significant address transla- 
tion hardware. Furthermore, it uses the overflow area eagerly, which 
increases the overhead. More details are found in Section 6. 

3.2.1 Overflowing Speculative Data Into Memory 
We propose to use an unlimited-sized overflow area in the local 
memory o f a  NUMA machine that is both relatively simple and spar- 
ely accessed. The overflow area functions as a set-associative victim 
buffer that grows in. the local memory. It stores data from uncom- 
mitted tasks that are either displaced from L2 or that are about to be 
overwritten by a new task. For higher speed, it is managed by a hard- 
ware cache controller, which can be either stand-alone (Figure 3-(a)) 
or part of  the memory controller. It is organized and accessed like 
a cache, with line granularity and no page-level address translation. 
However, unlike a cache, it stores both tag and data in the same ar- 
ray. In addition, it cannot overflow: if it runs out of space, a software 
interrupt handler resizes it. 

~ 40verf low 
Counters 

Overflow Area ~ 
Controller ~ -- I 

/ 

I 
Overflow I _ 

Area T I Local 
Memory 

(a) Node organization 

Table Area Chaining 
Area 
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/ Tag Array Info for Line j 
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Chaining Area . . . . . . .  
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F igure  3: Organization of  the overflow area. 

The organization of  the overflow area is shown in Figure 3-(b). It 
is composed of  two data structures: the Table area, which functions 
as the victim buffer proper, and the Chaining area, which will be 
described later. When a line from an uncommitted task is displaced 
from L2, the Table takes it in. Then, when an access by the local 
or a remote processor misses in L2, the Table is accessed. If it has 
the requested line, it provides it. To minimize unnecessary accesses 
to the Table, each set of  L2 keeps an Overflow Counter with the 
number of  lines mapped to this set that are currently in the overflow 
area (Figure 3-(a)). If this counter is zero, the Table is not accessed 
and the miss proceeds normally. 

We organize the Table as a set-associative cache where, like in 
S3.mp [16], the tag array information of  each set is stored in an 
additional line. Specifically, Figure 3-(c) shows one set of  a 3-way 
set-associative Table. The first line contains the address tags, access 
bits, and other information for the three lines that currently reside in 
the set. To be able to access the Table, the overflow area controller 
keeps in registers the base address and size of  the Table. With these 
registers and the physical address of  the desired line, the controller 
can identify the correct set in the Table. If we are attempting to insert 
a new line and the set is full, a software interrupt handler doubles the 
size of  the Table and reorganizes the data in the process. 
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As indicated before, it is possible that several tasks executed by 
the processor create multiple versions of  the same line. If a version 
created by an uncommitted task is still in the cache hierarchy of  the 
processor when another task generates a new version, both versions 
have to be kept locally. Rather than custom-designing L1 or L2 to 
hold several lines with the same address tag and different task lDs, 
it is better to move any such complexity to the overflow area. 

Our approach is to allow in each of  LI and L2 only one version 
of  the line. These are the most recent local versions, which are the 
most likely ones to be needed in the future. Any other uncommit- 
ted versions of  the line are sent to the overflow area right before the 
processor is about to overwrite them. In the overflow area, all the 
versions of the line are kept in a linked list, in order from the newest 
one to the oldest one. They are available in case a dependence vi- 
olation occurs and a software routine needs to roll back the state to 
old versions. By keeping them in a linked list, we can get the most 
recent versions first. Furthermore, if at any time a version in the 
overflow area is found to belong to a task already committed, that 
version and all the older versions in the list can be combined and 
written back to the home memory, and the list can be truncated. 

The linked list for a given memory line is organized as follows. 
The line at the head of the list is kept in the Table. As part of  the tag 
array information for the line, we have a VersionPtr pointer (Fig- 
ure 3-(c)). The latter points to the next version of  the line in the 
Chaining area (Figure 3-(b)). That entry contains tag array informa- 
tion, the line version, and a pointer to the next version of  the line, 
also in the Chaining area (Figure 3-(b)). Lists are truncated and freed 
up when versions are found to belong to tasks already committed, 
which keeps them short. To speed up allocation and deallocation of  
linked-list nodes, all free nodes in the Chaining area are linked in a 
free list. The overflow area controller keeps the address of  the free 
list head. 

In our design, we assume that the basic management of  the over- 
flow area is done in hardware by its controller. While it is important 
to have an overflow area to prevent costly processor stalls, the area 
is likely to be accessed infrequently compared to L2. Furthermore, 
most of its accesses are not in the critical path of  the processor, as 
they are largely triggered by cache displacements. Consequently, 
much of  the support for the overflow area could be implemented 
with software handlers with little performance impact. 

3.3 Speculation-Induced Traffic 
Speculation protocols tend to generate more traffic than plain cache 
coherence protocols. The two main reasons are the need to track de- 
pendences at a fine grain and, to a lesser extent, the need to identify 
the correct data version to access. We consider each issue in turn. 

Speculation protocols typically track dependences by recording 
which data were written and which data were read by exposed loads 
in each task. An exposed load is a load not preceded by a store to 
the same datum by the same task. This information is often encoded 
in extra bits added to the cached data. Without loss of  generality, 
we assume that it is encoded with the usual Write bit (W) and an 
additional Exposed-Read bit (R). 

This access information can be kept per line or at a finer grain (per 
word). In protocols that keep state per line (Figure 4-(a)), tasks can 
falsely share data. In coherence protocols, false sharing only causes 
cache misses. In contrast, false sharing in speculation protocols may 
lead to false dependence violations and, therefore, squashes. For 
example, in Figure 4-(b) the two tasks access different words, but 
the store by Ti triggers the squash of  Ti+l.  It has been shown that 
false violations can be common [5]. 

To eliminate these unnecessary squashes, most speculation 
schemes keep some or all access information on a per-word ba- 
sis [5, 7, 9, 13, 21, 22, 24, 26, 27]. An example is shown in Fig- 
ure 4-(c). With full per-word information and multi-version support, 

TIDRW Wrd0 Wrdl 

(a) lnfo per Line 

TID RWWrd0 RW Wrdl 

I 1111 III I 
(c) lnfo per Word 

Task Ti+l:  Load Wrdl Task Ti: Store Wrd 1 
Task Ti: Store Wrd0 Task Ti: Store Wrd0 

(b) (d) 

Figure  4: Keeping access information at the grain of  a line 
(a) or a word (c). TID stands for Task ID. 

only true violations (i.e., same-word RAW violations) need to trig- 
ger squashes [5]. 

Unfortunately, protocols with full per-word dependence tracking, 
even while keeping per-line directory state, induce extra traffic: an 
invalidation or dependence-checking message for one word does not 
necessarily eliminate the need for a similar message for another 
word in the same line. For example, in Figure 4-(d) Ti writes to 
two words. In each case, a message is issued to the directory to 
check for premature reads. 

This additional traffic due to per-word dependence tracking can 
be very large. As an example, we took the applications and the base- 
line protocol presented in Section 4 and ran them with 16 processors, 
using a word- and a line-based protocol. A line has 16 4-byte words. 
Both protocols have multi-version support, and the line-based proto- 
col is unrealistically enhanced to suffer only the squashes present in 
the word-based one. We count the messages created in the memory 
hierarchy below the L2 cache. The word-based protocol creates on 
average 5.4 times more such messages than the line-based one. As 
the number of  processors is increased, in most systems the number 
of  messages per unit time is likely to increase faster than memory 
system bandwidth. If, in addition to that, a per-word protocol is 
used, traffic becomes a scalability bottleneck much sooner. 

The second source of  additional traffic in multi-version specula- 
tion protocols is the need to identify the correct data version to ac- 
cess. Specifically, a node typically generates a message every time 
a given variable is accessed for the first time by the currently exe- 
cuting task. Even if the variable is found in the node's  cache, most 
protocols cannot immediately determine if that version is the correct 
one, especially when it is still speculative. Thus, a message is sent to 
the directory to identify the correct version and, in some protocols, 
to record the access. Note that this additional traffic appears in both 
word- and line-based protocols, albeit with different intensity. 

Overall, to alleviate the traffic bottleneck, we want a protocol that 
limits squashes to true violations (like word-based schemes) while 
eliminating both sources of  additional, speculation-induced, traffic. 

3.3.1 Exploiting High-Level Access Patterns 
Our approach is to select certain very common data access patterns 
that, strictly speaking, do not need cross-task communication. We 
then enhance a word-based protocol with support to anticipate these 
patterns at run time. If one of  these patterns is found for a whole line, 
our protocol puts the line in a No-Traffic state in the cache. This state 
allows tasks to access the line locally without inducing any traffic at 
all while the pattern holds. 

The line can remain in caches in this state across task commits 
and initiations. As a result, processors can execute many tasks with- 
out the line causing even a single message since the time the pattern 
was identified. If, at any time, the accesses do not conform to any 
of the patterns that we can anticipate, the line reverts to the default 
word-based scheme seamlessly. In the following, we describe the 
access patterns that we select and the protocol support required. 

High-Level  Access Patterns  
We select three common access patterns that, strictly speaking, 
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Own read 

Own read when:  / / ~  ~ ~ t h e r  
(rd,wr= 1,0) 
OR 
(rd,wr=l,l) AND (UER but no UDD) 

Bit Vector rd wr=D CRCWTID RW RW RW RW 

I I I I I I I I I I D D  ~ [ - - ]  I11 III III 111 I 
Directory Entry Cache Tag Cache Line 

{rd,wr} = Anticipated Pattern Bits {CR,CW I = Permission Bits 

(a) New bits added (shaded pattern) 
Own write or 
unexposed read 

Own write when: 
(rd.wr=0,1) 
OR 

Own write 
or read 

OWn(rd,wr__0,0)read/write w h e n : / ~  ~ ~ r : a d  

OR 
(rd,wr=x.x) AND (no UDD and no UER) 

(d) No-Sharing state 

1 ~ Own/other 
/ ~ c'w-1 ] exposed read 

(rd,wr=l,l) AND(UDD but no UER) 

(b) No-Writer state (c) No-Exposed-Reader state 

Figure 5: Exploiting high-level access patterns: new bits added to the directory and the tag array in the caches (a) and 
transition diagrams to lock a line in and out of the three No-Traffic states (b)-(d). In the figure, UDD and UER stand for 
Uncommitted Dirty Data and Uncommitted Exposed Reader, respectively. 

do not need cross-task communication: No-Exposed-Reader, No- 
Writer, and No-Sharing. In No-Exposed-Reader, each task writes 
the data before reading them. This pattern occurs in data that are 
privatizable. No-Writer occurs in data structures that are not modi- 
fied, while No-Sharing occurs when the data are accessed by a sin- 
gle processor. Of course, we are interested in the cases when the 
compiler cannot identify these patterns statically. Consequently, our 
hardware dynamically anticipates the situations when tasks start ac- 
cessing lines with these patterns and when they stop. 

Protocol Support 

To support our protocol, we add one bit per memory line in the di- 
rectory and two bits per line in the tag array of every cache (Fig- 
ure 5-(a)). The new directory bit (rd) records whether any of the 
current sharers has issued an exposed read to any word of the line. 
We also relabel the conventional D bit in the directory to wr (Fig- 
ure 5-(a)), which indicates whether any of the current sharers (po- 
tentially several in a multi-version speculation protocol) has writ- 
ten the line. These rd and wr bits we call the Anticipated Pattern 
bits. Their meaning is as follows: (rd, wr=-l,O) denotes No-Writer 
and (rd, wr=O,1) represents No-Exposed-Reader, while a sharer bit 
vector in the directory entry with a single bit set indicates the No- 
Sharing pattern. 

The two new bits per cache line in the tag array are called the 
Permission bits (Figure 5-(a)): CanRead ( CR) and CanWrite ( CW). 
They indicate in which of the three No-Traffic states (if any) the line 
is in. They are set by our hardware as it anticipates a certain access 
pattern for the line. 

Specifically, if the No-Exposed-Reader pattern is anticipated, 
(CR,CW) are set to (0,1), the No-Exposed-Reader No-Traffic state. 
Tasks in this processor can issue writes and unexposed reads to any 
word of the line without generating traffic, for as long as the pattern 
holds across the machine. Likewise, if the No-Writer pattern is an- 
ticipated, (CR,CW) are set to (1,0), the No-Writer No-Traffic state. 
Tasks in this processor can read the cached line without generating 
traffic. Finally, if the No-Sharing pattern is anticipated, (CR,CW) get 
set to (1,1), the No-Sharing No-Traffic state. Tasks in this processor 
can read and write the line without generating any traffic at all. 

Figures 5-(b) to (d) show the transition diagrams to lock a line in 
and out of the three No-Traffic states. Since they are symmetric, we 
only explain the diagram for the No-Exposed-Reader (Figure 5-(c)). 

Edge 1 in Figure 5-(c) shows how a processor write (Own write) 
takes a line to the No-Exposed-Reader state. There are two cases. In 
the simpler case, the write finds that other processors have already 
anticipated the No-Exposed-Reader pattern and set the Anticipated 

Pattern bits in the directory to (rd, wr=O,l). In this case, the return 
message from the directory sets the Permission bits to (CR, CW=O, 1 ). 
From now on, the processor can issue writes and unexposed reads to 
any word in the line without causing any traffic (Edge 2). Note that 
writes still set the W bit of the updated word. The line exits this 
state when any processor (Own~other) breaks the pattern by issuing 
an exposed read to a word of the line (Edge 3). In this case, the 
Permission bits cannot filter out the request, which has to go to the 
home to obtain the most recent version of the word. In the home, the 
directory sets the rd bit and sends messages to all sharers to get their 
version of the data. As sharers receive the message, they get the line 
out of the state by clearing the line's CW bit. We have seamlessly 
reverted to the baseline word-based protocol. 

Suppose that, later, the task that issued the exposed read com- 
mits and the pattern returns to No-Exposed-Reader. Our line will 
transition to the No-Traffic state seamlessly. In this case, the first 
processor that issues a write will be the first one to anticipate the 
pattern. It will follow the second case in Edge 1. Indeed, the write 
finds (rd, wr=-1,1) in the directory. Following the conventional proto- 
col, the directory sends a message to all the sharers to see which ones 
need to be squashed. However, in the acknowledgment message, no 
sharer indicates that it has an uncommitted task with exposed reads 
(R bit set) to any word of the line ~. Consequently, the directory re- 
sets the rd bit and replies to the initiating processor that it can take 
the line to the No-Exposed-Reader state. 

With this support, while a line exhibits one of these patterns, it 
causes no traffic beyond cold misses and re-fetches after displace- 
ments. As per the previous discussion, the traffic should decrease 
dramatically without increasing the number of squashes. 

3.4 Summary 
As a way of summary, Table 1 shows which types of applications 
should benefit the most from our optimizations. 

4 Evaluation Setup 
To evaluate our optimizations, we use simulations driven by several 
applications. In this section, we describe the simulation environment 
and the applications. 

Iof course, at least one sharer must indicate that it has an uncommitted 
task with dirty data (W bit set for at least one word). Otherwise we would be 
transitioning to the No-Sharing state of Figure 5-(d). This is why Figure 5-(c) 
has the condition UDD but no UER, which means Uncommitted Dirty Data, 
but no Uncommitted Exposed Reader. 
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Processor Memory System Support for Scalability 
4-issue dynamic IGHz 
Int.fp,ld/st FU: 4,2,2 
Inst. window: 64 
Pending ld,st: 8,16 
Branch penalty: 4 cycles 
Int,fp rename regs: 64,64 

LI: 32-KB size, 4-way assoc. 64-B line, write back 
L2:512-KB size, 4-way assoc, 64-B line, write back 
Victim cache: full assoc, 32 64-B lines 
RTrip: 1 (LI), 8 (L2), 57 (local mem), 137 (neighbor mem) cycles 
Dir controller latency: 21 cycles (pipelined at 1/3 CPU freq) 
Network: 2-D toms, virtual cut-through, msg marshaling = 60 
cycles, msg transfer (line) = 4 * # hops + 14 cycles 

# VCR: 16 per node, timing same as dir controller 
TID size: 20 bits. Overflow counter size: 4 bits 
Overflow area controller latency: 4 cycles 
Overflow area controller to overflow area: 49 
cycles round trip 
Table area: 512-KB size, 3-way assoc 
# of Chaining area entries: 512 

Table 2: Architectural characteristics o f  the modeled CC-NUMA. RTrip stands for contention-free round-trip latency 
from the processor. All cycle counts are in processor cycles. 

Optimization ~ Types of Applications [1 

Low-Complexity Tasks that generate data to commit at a high rate 
Commit in (measured as data to commit produced per in- 
Constant Time struction executed) 

Tasks with large working sets or severe cache 
Overflow Into a conflicts. Stalls or load imbalance that cause in- 
Memory-Based dividual caches to hold the state of several spec- 
Victim Buffer ulative tasks (especially if these tasks generate 

multiple versions of the same line) 
Exploiting Accesses with spatial locality to non-analyzable 
High-Level data that are mostly: read-only, per-processor 
Access Patterns private, or privatizable (no exposed reads) 

Table 1: Types of  applications that benefit the most from 
our optimizations. 

4.1 Simulation Environment 
We use an execution-driven simulation environment based on an ex- 
tension to MINT [25] that includes a dynamic superscalar processor 
model [12]. The environment supports dynamic spawn, interrupt, 
and roll-back of  light-weight threads. The architecture modeled is a 
CC-NUMA multiprocessor with up to 128 nodes. Each node con- 
tains a fraction of  the shared memory and the directory, as well as 
a processor with a two-level cache hierarchy. The processor is a 
4-issue dynamic superscalar with register renaming, branch predic- 
tion, and non-blocking memory operations. Each level of  cache can 
hold only one version of  a given line. However, each cache has a vic- 
tim cache that can contain multiple versions of  the same line. These 
victim caches are accessed with one additional cycle. Table 2 lists 
the characteristics o f  the architecture. All cycle counts in the table 
are in processor cycles. Contention in the entire system is accurately 
modeled. 

Since many accesses to shared data are not compiler-analyzable, 
shared data pages are allocated round-robin in the memory modules 
of  the participating processors. Private data are allocated locally. 

The system uses a directory-based cache coherence protocol 
along the lines of  DASH [ 14] with the support for speculative thread- 
level parallelization sketched in Section 2. In the baseline specula- 
tion protocol, task commit involves eagerly writing back to memory 
all the dirty lines generated by the task. Only after the operation 
is complete can the non-speculative status be passed on to the next 
task. When a line accessed by a speculative task is about to overflow 
both caches and victim caches, the processor stalls until the task 
becomes non-speculative. Finally, while the directory keeps only 
per-line state, caches keep per-word access information, making the 
protocol word-based. Other details are described in [18]. 

On top of this protocol, we optionally enable the optimizations 
presented in Section 3. For them, we use the parameters shown in 
the last column of  Table 2. The table shows the size of  the task ID 
field (TID), which is a design choice that we have not explored. By 
default, we use a value much larger than needed by our applications. 

As for the support for the overflow area, we assume that the over- 
flow counters in L2 are checked in hardware when L2 is accessed 

and, therefore, do not add any additional latency. The overflow area 
controller needs at least two accesses to the overflow area to obtain 
a line, since the first access reads the tags (Section 3.2.1). Every ac- 
cess takes a full round trip to the local memory. However, since the 
overflow area is accessed relatively infrequently, the overall applica- 
tion performance is not very sensitive to modest  changes in such a 
round-trip latency. 

The Table area is large enough (Table 2) to need no resizes. The 
Chaining area is large enough to hold all the lines conflicting in the 
Table area. The overflow area controller follows the chains in the 
Chaining area in hardware, paying a full round trip to memory for 
each link in the chain. Given the modest number of  accesses to 
the Chaining area in our applications, if we implemented link chas- 
ing with a software handler, we would not significantly increase the 
overall overhead seen by the applications. 

4.2 Applications 
We execute a set of  scientific applications where much of  the code 
has dependence structures that are not fully analyzable by a paral- 
lelizing compiler. The reason for the non-analyzability is that the de- 
pendence structure is either too complicated or dependent on input 
data. Specifically, the codes often have doubly-subscripted accesses 
to arrays, possible dependences across complex procedure calling 
patterns, and complex control flow. One example of  the latter is a 
loop with a conditional that depends on array values and that jumps  
to a code section that modifies the same array. Non-analyzable sec- 
tions of  code are not parallelized by the compiler and, therefore, we 
do so speculatively. 

The applications that we use are: Apsi from SPECfp2000 [10], 
Bdna and Track from Perfect Club [3], Euler from HPF-2 [6], and 
Tree from Univ. o f  Hawaii [2]. We use the standard input set for 
the applications except for Apsi, where we scaled it down from 
l 1 2 x l 1 2 x l 1 2  to 6 4 x 6 4 × 6 4  to reduce simulation time. To de- 
termine the sections of  these applications that are non-analyzable, 
clearly parallel, or clearly serial, we use Polaris, a state-of-the-art 
parallelizing compiler  [4]. 

Columns 2-4 of  Table 3 show the breakdown of  the sequential 
execution time (Tseq) of  these applications, with I/O time excluded. 
The version that we profile is a fully optimized sequential version 
running on a single-processor Sun Ultra 5 workstation. The parallel 
portion includes any loop that Polaris marks as parallel, accounts for 
at least 1% of  Tseq, and has at least 128 iterations. 

From the breakdown, we see that ~ the non-analyzable portion 
dominates the execution time of  these applications. On average, it 
accounts for 75.6% of  the sequential execution time. The parallel 
portion accounts for the next biggest chunk of time. On average, it 
accounts for 12.5% of  the sequential execution time. Consequently, 
if these applications were executed in parallel, we expect the relative 
weight o f  the non-analyzable portion to increase. 

The next column, labeled Execution Time Simulated shows the 
fraction of  the execution time that we simulate in our experiments.  
Usually, this number is equal to the fraction of  non-analyzable code 
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Appl. Execution Time 
Breakdown (% of Tseq) 

Non- I Parallel [ Serial 
Analyzable 

Execution Names of 
T i m e  Non-Analyzable 

Simulated Loops 
(% of Tseq) 

Apsi 93.5 1.3 5.2 53.8 

Bdna 44.2 51.1 4.8 

Euler 89.8 5.2 5.0 

Track 58.1 2.5 39.4 
Tree 92.2 2.5 5.3 

II Average I1 75.6 I 12.5 I 11.9 II 

run_do[20,30,40,50, 
60,70,100] 
dtdtz_do40,dudtz_do40, 
dvdtz..do40,dcdtz_do40, 
wcont.do40, 
dkzmh ~lo [ 30, 60] 

4 4 . 2  acff'or-do2 40 
dflux_do[comb( lO0), 
comb(200)] 

8 9 . 8  psmoo-do[comb(20)] 
eflux~do[comb( lO0), 
200,3001 

58. I nlfilt_do300 
9 2 . 2  accel_do l O 

67.6 

Avg .  Written + W r i t t e n  Ownership Req 
Tasks Spec Read Data at Commit per 
per Data per Task per Task Task (Lines) 

Invoc. (Lines) (Lines) 

63 1632 1170 330 

1499 605 582 368 

1871 287 287 256 

502 59 33 24 
4096 14 14 11 

1 1 6 0 6 1  519 1 4 1 7 1  198 II 

Table 3: Application characteristics. All times refer to sequential execution. Averages are arithmetic ones. In Apsi, the 
loops that we simulate are printed in boldface. In Euler, each task consists of 32 consecutive iterations. 

in the application, since we only simulate the non-analyzable por- 
tion. However, since Apsi has such a large problem size, we can 
only simulate a part of its non-analyzable portion. In the rest of the 
paper, we focus exclusively on the code in this column. We apply 
speculative parallelization to and report speedup numbers for only 
the code in this column. 

Characteristics of the Non-Analyzable Code 

The non-analyzable portion of the applications consists of loops. 
The remaining columns in the table show the loop names, the av- 
erage number of tasks per loop invocation, and some information on 
the working set sizes of the tasks. Unless otherwise indicated, each 
task is one iteration of the loop. For a given loop, each processor 
runs a single thread that dynamically picks up tasks to execute. 

The working set size information is collected through simulation 
of a 64-processor system, by tracking how much data are written and 
speculatively read by each task. For comparison, we also give the 
number of cache lines that are not only dirty at task commit time, 
but would also induce ownership requests in a protocol like [22]. 

In each of these loops, the compiler identifies references to vari- 
ables that are read-only, private, or profitably privatizable. The rest 
of the references are marked by the compiler as speculative, since 
they can cause violations. These references are recognized by our 
simulator and trigger our speculation protocol. 

Dependence Structure of the Non-Analyzable Code 

We end this section by describing the non-analyzable portion of each 
application. 

Each loop in Apsi has multiple arrays with non-analyzable access 
patterns. At run time, several of these arrays turn out to have a priva- 
tization access pattern: loop iterations access overlapping data, but 
each iteration generates the values before using them. The rest of 
the arrays are either read-only or there is no overlap between ac- 
cesses from different iterations. Consequently, there are no same- 
word RAW dependences. 

Bdna has multiple arrays with non-analyzable access patterns. At 
run time, all of them have a privatization access pattern and, there- 
fore, there are no same-word RAW dependences. 

The loops in Euler perform compiler-verifiable reductions on an 
array. However, the access pattern to the array is very sparse. As a 
result, transforming the reduction at compile time for parallelization 
results in loop slowdowns due to the high cost of the accumulation 
step at the end. At run time, however, many of the accesses hap- 

pen without same-word RAW dependence violations, so we run the 
loops under speculative parallelization. Still, the number of same- 
word RAW dependences in this application is very high, and many 
of them are violated at run time. 

Euler was also analyzed in [5], where no same-word RAW depen- 
dences were reported. In [5], only inner loops were simulated. Such 
loops do not have same-word RAW dependences, but are too small 
to run with more than 16 processors. In this paper, we coalesce the 
inner and the outer loops. The resulting loops have more iterations 
but have dependences. The coverage of the non-analyzable code 
barely changes. 

Track has one array with non-analyzable access patterns. In most 
cases, iterations only read some of the elements. However, some- 
times they write and, in five cases, they cause a same-word RAW 
dependence. At run time, three of these five dependences are vio- 
lated. These violations are spread over different loop invocations. 

In Tree, the one array under test is used as a stack, with each iter- 
ation leaving the stack empty. However, the compiler cannot deter- 
mine that the stack array is privatizable due to the complex control 
flow. At run time, there are no same-word RAW dependences. 

All these applications have some false sharing. Thus, they suffer 
frequent squashes in line-based protocols. The number of depen- 
dences in Bdna and Track is shown in Table 4 of [5]. That table 
counts dependences to the same word and to different words of a 
line assuming per-word disambiguation support. In multi-version 
line-based protocols, all these RAWs and WAWs (both same-word 
and false) cause squashes if they occur out of order. In fact, some of 
the false WAWs in Table 4 of [5] will also appear as RAW violations 
due to the inability to disambiguate at word level. 

5 Evaluation 
5.1 Application Potential 
To assess how amenable our applications are to the optimizations, 
we measure the characteristics listed in Table 1 for each application. 
The results are shown in Table 4. 

Based on Table 4, we can place each application on a qualitative 
3-D chart (Figure 6). Each dimension of the chart shows whether or 
not an optimization is expected to be beneficial. The origin corre- 
sponds to no benefit from any optimization. From the figure, we see 
that our applications cover a wide range of behaviors. 
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]1 Optimization 

Low-Complexity 
Commit in 
Constant Time 
Overflow Into a 
Memory-Based 
Victim Buffer 
Exploiting High-Level 
Access Patterns 

II Amenable Applications 

Apsi, Bdna: Tasks generate data to commit at a high rate 

Bdna: Tasks have large working sets and individual caches often 
hold the state of several spec tasks. Tree: Cache conflicts 

Apsi, Bdna, Tree: No-Exposed-Reader and No-Writer. Euler 
(lesser): No-Sharing. Track: No-Sharing and mostly No-Writer. 

Non-Amenable Applications 

Track, Tree: Tasks generate data to commit at a lower 
rate. Euler: Rate is unimportant; performance is limited 
by violations 
Apsi: Tasks have large working sets but individual caches 
rarely hold the state of several spec tasks. Euler, Track: 
Tasks have small working sets 

Tab le  4: Potential of  our applications to benefit from the optimizations.  

II Configuration Description 

II Opt All 3 proposed optimizations are enabled 

Constant-time commit disabled; overflow area and exploiting access patterns enabled. 
OptNoCT At commit, all dirty lines in caches and overflow area are written back to memory. Each level of the 

hierarchy finds the lines using an ideal hardware table accessed in no time that points to the dirty lines 
OptNoCTL1 Same as OptNoCT, but LI does not have the table and needs to be traversed to find the dirty lines 
OptNoCTL12 Same as OptNoCT, butLl and L2 do not have the table and need to be traversed to find the lines 

OptNoOvfL2 Overflow of speculative data from L2 disabled; constant-time commit and exploiting access patterns enabled 
OptNoOvlL1 Overflow of speculative data from LI disabled; constant-time commit and exploiting access patterns enabled 

OptNoPat Exploiting access patterns disabled; constant-time commit and overflow area enabl,.d 
OptNoPatA Same as OptNoPat, but with Aggressive loads [5] implemented 
OptLine Same as OptNoPat, but using a line-based protocol instead of a word-based one 

NoOpt All 3 optimizations disabled. Writes back all dirty lines at commit time without any cache traversals (as 
OptNoCT), cannot overflow from L2 (as OptNoOvJL2), and uses Aggressive loads (as OptNoPatA) 

Tab le  5: System configurations used in the evaluation. 

Exploiting High-Level 
Access Patterns , ,~ ,  . . . . . . .  -,,0, Tree 

/ I Track / I 

l ~ e r  ~L / 

Apsi • . . . . .  - I ---O Bdna • L i Overnow 
Into a Memory 

/ / ~ o  ] / / "  Based Victim 
Low-Complexity / Opt / Buffer 
Commit in ~ . . . . . . . .  j ~  
Constant Time 

F i g u r e  6: Which applications are likely to benefit from 
which optimizations.  

5.2 Impact of the Optimizations 
To evaluate our three optimizations, we start by comparing a system 
without any of  them (NoOpt) to one that supports the three of  them 
(Opt). Then,  we evaluate each optimization by comparing Opt to 
a sys tem in which the optimization in question is suppressed. Ta- 
ble 5 describes the configurations used, ordered according to which 
optimization we disable. 

To compare systems,  we use the speedups delivered by different 
numbers  of  processors.  The speedups are always relative to the ex- 
ecution of  the plain, compiler-optimized sequential version of the 
code. Such a version includes no extra instructions or data copies 
due to parallelization, it is simulated as running on a single node o f  
the N U M A  machine,  with all the data allocated locally. There are, 
therefore, no remote accesses. 

5.2.1 Combining the Optimizations 

Figure 7 compares  the sys tem with the three optimizations (Opt) to 
the one without any (NoOpt). We show the speedups for up to 64 or 
128 processors.  Note that both axes are logarithmic. 

As expected from Figure 6, Apsi, Bdna, Track, and Tree benefit 
from the optimizations significantly. The optimizations only benefit 
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F i g u r e  7: Compar ing  the sys tem with the three optimiza-  
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Euler moderately because Euler has many dependence violations. In 
most applications, the impact of the scalability bottlenecks of Sec- 
tion 3 does not appear until 16 processors or more. From that point 
on, the Opt and NoOpt curves diverge, with Opt continuing to scale. 

In the following sections, we examine which optimizations are 
responsible for the much higher speedups in Opt. 

5.2.2 Low-Complexity Commit in Constant Time 
We first consider eliminating the optimization of low-complexity 
commit in constant time. We consider three schemes from Table 5: 
OptNoCT, OptNoCTL1, and .OptNoCTL12. OptNoCT is somewhat 
unrealistic for our applications. It assumes hardware tables in LI, 
L2, and overflow area, which know the lines to write back. As we 
can see from Table 3, some of our applications have tasks that need 
to write back (or, depending on the protocol, ask for ownership of) 
hundreds of lines. Therefore, the table would have to be too large. 

For our applications, it is more realistic to use OptNoCTLI, where 
LI is traversed, and L2 and the overflow area have tables. For larger 
applications, OptNoCTL12 (where both LI and L2 are traversed) is 
more realistic. Figure 8 compares all these scenarios. 
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Figure 8: Effect of eliminating the optimization of low- 
complexity commit in constant time. 

Since OptNoCT includes no cache traversal overhead, if we com- 
pare it to Opt, we see the true impact of the serialization induced by 
a commit that is not done in constant time. For a few processors, 
there is no difference. However, as the machine scales up, the two 
curves diverge for Apsi and Bdna. This was expected from Figure 6. 
For Track and Tree, we would need more processors to see a differ- 
ence. For high-traffic Euler, the gains come indirectly from the fact 
that Opt reduces the burstiness of the traffic. 

If we also include the cache traversal overheads, we get lower 
performance. Traversing LI only (OptNoCTL1) does not slow down 

the system much, except for applications with short-running tasks 
like Track. Traversing both LI and L2 (OptNoCTL12) can take very 
long due to the large size and low speed of L2. 

With some hardware support, the traversal of the caches need not 
take as long as a full linear scan. In this case, the performance of 
the system would be between that of OptNoCTand OptNoCTL1 (or 
OptNoCTL12, for larger working sets). 

5.2.3 Overflowing Speculative Data Into Memory 
We now consider eliminating only the optimization of overflowing 
speculative data into a memory-based victim buffer. Figure 9 com- 
pares Opt to a system where no speculative data can be displaced 
from L2 (OptNoOvfL2). For reference, the figure also shows a sys- 
tem where speculative data cannot even be displaced from L1 (Opt- 
NoOvfL1). Note that the number of processors in the system does 
not affect task sizes. 
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Figure 9: Effect of eliminating the optimization of over- 
flowing speculative data into a memory-based victim buffer. 
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By comparing Opt to OptNoOvfL2, we see that Bdna benefits the 
most from the overflow area. For a few processors, the two curves 
overlap because a task in Bdna largely fits in L2. However, with 64- 
128 processors, various processor stalls force individual processors 
to hold the state of more than one speculative task in the cache. In 
these cases, L2 may overflow, which causes the processor to stall in 
OptNoOvfL2. 

Apsi's tasks have a larger working set than Bdna's. However, 
because Apsi's loops have only 63 tasks, caches rarely hold the 
state of multiple tasks and, therefore, do not overflow. If we used 
Apsi's standard input set, however, OptNoOvfL2 would perform 
much worse because there would be more tasks and each task would 
have a working set of 400 Kbytes. 

In Tree, OptNoOvfL2 is slower due to many L2 conflicts between 
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the state of speculative tasks. The reason is Tree's privatization- 
like patterns, whereby each task creates its own version of the same 
variable. The rest of the applications have too small working sets to 
overflow, as indicated in Figure 6. 

Overall, we conclude that our optimization can be useful for some 
applications. We also see that OptNoOvfL1, which simulates what 
happens in most speculative CMPs, has a low performance. 

5.2.4 Explo i t ing  H igh-Leve l  A c c e s s  Pat terns  

Finally, we consider eliminating only the optimization of exploit- 
ing high-level access patterns. The resulting system is OptNoPat. 
Figure 10 compares Opt and OptNoPat. It also shows OptNoPatA, 
which is OptNoPat enhanced with Aggressive loads [5]. These are 
per-task first-time accesses to a word that do not perform a version- 
correctness check in the directory before returning the data to the 
processor. Instead, the data is returned from the cache immediately 
and the check is performed in the background. This speeds up ex- 
ecution, but does not reduce traffic. Finally, we show OptLine, a 
line-based protocol. 
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Figure l 0: Effect of eliminating the optimization of exploit- 
ing high-level access patterns. 

By comparing Opt and OptNoPat, we see that all applications 
benefit significantly from this optimization, especially Bdna. Al- 
though Figure 6 predicted that Euler is relatively less amenable to 
this optimization, it still benefits significantly. 

Most of the overhead of OptNoPat comes from issuing more re- 
mote accesses than Opt. With OptNoPatA, some of these accesses 
are acknowledged to the processor locally, but still perform a remote 
check operation. However, the figure shows that, while OptNoPatA 
gets closer to Opt in some applications, there is still a significant gap 
for large numbers of processors. Consequently, our proposed opti- 
mization is required for scalability. We also note that OptLine per- 

forms poorly because it suffers many false dependence violations. 

Overall, summarizing the whole evaluation, we conclude that we 
need all of the three optimizations to achieve scalability. Exploiting 
access patterns is the most widely-applicable optimization, while 
committing in constant time and overflowing speculative data into 
memory are important for applications that generate data to commit 
fast, and that have tasks with large working sets, respectively. With 
the three optimizations, 128-processor executions reach speedups of 
over 63, while 64-processor executions reach speedups of up to 48 
and, on average, 32. 

6 R e l a t e d  W o r k  

Architectures for Speculative Thread-Level Parallelization. 
Many architectures have been proposed, including an early sys- 
tem [11], small-scale systems [1, 7, 9, 13, 15, 21, 23, 24], and scal- 
able systems [5, 22, 26, 27]. Our work has been inspired by the 
bottlenecks found in scalable systems. 

Low-Complexity Commit in Constant Time. The only other 
scheme that supports constant-time commit is [26]. It has two main 
drawbacks: it keeps a version number (task ID) associated with each 
shared word in memory, and it complicates the protocol by allowing 
uncommitted data in memory. 

Keeping per-word version numbers in memory eliminates the 
need for VCRs because data can be safely sent to main memory out 
of order. However, per-word version numbers take space. Further- 
more, memory needs logic to compare the version number of each 
incoming write-back to its own, and potentially discard the write- 
back. 

Allowing the write-back of uncommitted data to main memory 
speeds up the eventual merging of data at the home. However, it 
makes memory unsafe, which complicates the recovery procedure 
in case of a violation. In addition, when a dirty line is written back 
to memory, a copy usually needs to be saved locally in the node, 
in case the version in memory is later overwritten by an incorrect, 
uncommitted version. 

Overflowing Speculative Data Into Memory. The only other 
scheme that supports unlimited buffering in memory is [26]. It is 
different from our scheme in two ways: it needs more hardware sup- 
port because it requires a page-level address translation step, and it 
uses the overflow area eagerly. 

On a L2 miss, an address translation module associated with the 
directory controller intercepts the request and translates the shared 
address into a local address. The corresponding page in the over- 
flow area is accessed. Cache displacements also follow this route. 
Sometimes, this scheme suffers fragmentation. 

The eager use of the overflow area is mostly a result of the 
lazy commit protocol used, which allows uncommitted data in main 
memory. Since the data in main memory may be unsafe, when a 
processor is about to overwrite a dirty local version or to displace it 
to main memory, it often saves a copy of that version locally. This is 
true even for committed versions. The version goes to the overflow 
area. In our scheme, we only send data to the area if the version that 
is about to be overwritten or displaced is uncommitted. Therefore, 
our overflow area is accessed less frequently. 

Exploiting High-Level Access Patterns. Our support combines 
even lower traffic than line-based protocols with the fine-grain de- 
pendence disambiguation of word-based protocols. Under a No- 
Writer or No-Sharing pattern, line-based protocols may get close 
to the low traffic of our scheme. Indeed, while many line-based 
protocols would still induce traffic every time a task accesses the 
line for the first time, an optimized protocol like the baseline in [22] 
keeps the traffic as low as in our scheme. However, under a No. 
Exposed-Reader pattern, all line-based protocols suffer much more 
traffic than our scheme. The reason is that any out-of-order (same- 
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word or false) WAW present in the pattern forces them to squash 
threads. 

Line-based protocols cannot perform fine-grain dependence dis- 
ambiguation.  Consequently,  false sharing may cause squashes,  The 
protocol in [22] has a clever extension where it adds some per-word 
state (Fine-Grain SM bits). The resulting hybrid protocol handles 
the No-Exposed-Reader pattern without squashes  and el iminates 
nearly as much  traffic as our scheme. However, since it is not a 
full word-based protocol, it still suffers some  additional squashes.  
For example,  it squashes under false RAWs,  as when task i reads 
and writes word i and task j reads and writes word j of  the same line. 

7 Conclusions 
The contribution of  this paper is twofold: it proposes several archi- 
tectural supports to eliminate key scalability bottlenecks to specu- 
lative parallelization, and reports speedups  for runs on up to 128 
processors. The paper shows that, by using our solutions to three 
bottlenecks, and by combining them into a single system, we deliver 
architectural scalability for 64-128 processor systems.  

The speedup of  our applications on 128 and 64 processors reaches 
up to 63 and 48, respectively. Furthermore,  the average speedup for 
64 processors is 32, which is nearly four t imes higher than with- 
out our optimizations. Of  the three supports,  exploiting high-level 
access patterns is the most  widely-applicable one. The support  for 
low-complexity commit  in constant t ime is important for applica- 
tions that generate data to commit  at a high rate. Finally, the support 
for memory-based overflow can be useful for applications with large 
working sets, cache-conflicting data structures, or when individual 
caches end up holding the state of  several speculative tasks. Overall, 
the three supports are necessary since, if any one of  them is elimi- 
nated, at least one class of  applications suffers significantly. 
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