
Abstract

Register file access time represents one of the critical
delays of current microprocessors, and it is expected to
become more critical as future processors increase the
instruction window size and the issue width. This paper
present a novel physical register management scheme that
allows for a late allocation (at the end of execution) of
registers. We show that it can provide significant savings in
number of registers and thus, it can significantly shorter the
register file access time. The approach is based on virtual-
physical registers, which we presented in a previous work,
extended with a new register allocation policy. This policy
consists of an on-demand allocation in order to maximize
the register usage, combined with a stealing mechanism
that prevents older instruction from being delayed by
younger ones. This shortens the average number of cycles
that each physical register is allocated, and allows for an
early execution of instructions since they can obtain a
physical register for its destination earlier than with the
conventional scheme. Early execution is especially
beneficial for branches and memory operations, since the
former can be resolved earlier and the latter can prefetch
their data in advance.

1. Introduction

Dynamically-scheduled superscalar processors exploit
instruction-level parallelism (ILP) by overlapping the
execution of instructions in an instruction window. In spite
of being able to execute instructions out-of-order, the
amount of ILP that current superscalar processors can
exploit is significantly constrained by data dependences,
especially for non-numeric codes. The number of
instructions that can be executed in parallel is highly
dependent on the instruction window size and thus, wide
issue processors require a large instruction window [15].
However, a large instruction window has some implications
in other critical parts of the microarchitecture, such as the
complexity of the issue logic [10] and the size of the
physical register file [3]. In this work we are concerned with
the latter problem.

The access time of a register file is significantly affected
by its size, as well as its number of ports [3]. Since the
current trend of increasing the issue width and the

instruction window size has direct consequences on the
number of ports and registers respectively, it is very likely
that the register file access time will become one of the
longest delays of forthcoming microprocessors. In this case,
it will determine the clock cycle and thus, it will have a
severe impact on the processor performance, unless it is
pipelined.

However, pipelining a register file is not trivial and
besides, it has significant effects on the processor. In
particular, a multi-stage register file increases the branch
misprediction penalty and requires extra levels of bypass
logic [14]. Both issues, are critical for the performance of
superscalar processors.

On the other hand, current superscalar processors require
many more registers than those strictly necessary to store
the values of a program. This is due to the fact that registers
are allocated too early and released too late. Every
instruction allocates a physical register for its destination
operand much before its result is available (at decode), and
this register is released much after its last consumer
commits (when the following instruction with the same
logical destination register commits). In this paper, we
focus on the waste due to the former factor. Figure 1 shows
the average number of physical registers used by a
superscalar processor (written+non-written), and the
number of registers that are actually wasted because of the
early allocation (non-written). We assume here a processor
with 160 physical registers in each file. For other details
about the evaluation framework refer to Section 4.1. On
average, the early allocation of registers increases the
register requirements by 45% for integer and by 40% for
FP; for some programs such as li it is responsible for an 53%
average increase and in some particular cycles of the
execution this figure can be as much as 500%.

This paper focuses on a novel register management
scheme that allows the processor to delay the allocation of
physical registers until the values that they store are
available (at the end of the execution stage). We proposed
this scheme in previous work [4] [5] and referred to it as
virtual-physical registers. We observed on that work that
the approach to allocating physical registers was critical to
performance. In this paper, we present a novel register
allocation approach that outperforms the former scheme.
We show that virtual-physical registers with this allocation

Delaying Physical Register Allocation Through
Virtual-Physical Registers

Teresa Monreal†, Antonio González*, Mateo Valero*, José González* and Victor Viñals†

*Departament d’Arquitectura de Computadors
Universitat Politècnica de Catalunya

e-mail: {antonio,mateo,joseg}@ac.upc.es

†Departamento de Informática e Ing. de Sistemas
Centro Politécnico Superior - Univ. de Zaragoza
e-mail: {tmonreal,victor}@posta.unizar.es

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 08:10 from IEEE Xplore. Restrictions apply.

scheme provide a significant saving in physical registers.
For instance, we show that for 5 SpecFP95 benchmarks, a
virtual-physical register organization with 77 FP registers
achieves about the same performance as a conventional
register organization with 101 registers, in terms of
instructions committed per cycle (IPC). Note that if the
processor cycle is determined by the register file access
time, the reduction in number of registers will imply an
increase in instruction throughput.

The rest of this paper is organized as follows. Section 2
reviews the virtual-physical register renaming scheme. The
new allocation policy for this scheme is presented in
Section 3. Section 4 discusses the performance of the
proposed approach. Finally, Section 5 outlines some related
work and Section 6 summarizes the main conclusions of
this work.

2. Virtual-Physical Registers

The virtual-physical register architecture is motivated by
the fact that instructions do not require a storage location for
their results until they are available. However, current
dynamic register renaming schemes allocate such a storage
in the decode stage, much earlier than the result is available.
The reason is that a physical register is used for two
different purposes: to store a value and as an identifier of the
result, in order to keep track of dependences. Only the latter
objective requires the register to be allocated at decode.
Thus, the allocation of a storage location can be delayed if
the processor uses another artifact to keep track of
dependences. Such an artifact is what we call virtual-
physical registers (VP registers for short).

VP registers are merely tags and do not require any
physical storage. When an instruction is decoded, its
destination logical register is mapped to a VP register
obtained from a pool of free VP registers. Later on, when
the instruction is in the last cycle of the execution stage, the

VP register is mapped to a physical register taken from the
pool of free physical registers. When an instruction
commits, the VP and physical registers allocated by the
previous instruction with the same logical destination
register are released to their respective free pools.

This register management scheme requires two map
tables: the general map table (GMT), which indicates for
each logical register its latest VP association and the latest
physical mapping of this VP register, if any, and the
physical map table (PMT), which denotes for each VP
register its latest physical mapping, if any. More details
about the operation of this approach can be found in [4] [5].

Since VP registers are just tags, a processor should
typically be provided with the maximum required amount,
namely the number of logical registers plus the maximum
number of instructions in-flight. However, the physical
register file should be dimensioned to the smallest size that
provides a performance not much lower than an infinite
number of registers in order to keep its access time low. It
is thus not guaranteed that every instruction in-flight finds a
free physical register when it finishes the execution stage.
Therefore, the policy used to allocate physical registers to
instructions is critical to performance.

In fact, a conventional renaming scheme could be
defined as a scheme that allocates the available physical
registers in program order and forces the processor to stall
the decoding of instructions when it runs out of physical
registers. The virtual-physical register scheme could
achieve the same behavior with an adequate policy for
register allocation, i.e., by allocating physical registers to
the oldest instructions in the window, with the additional
advantage that it does not require the decode of instruction
to be stalled when physical registers have been used up.
However, other allocation policies are possible, and may be
more effective.

When an instruction finishes its execution and there is
not any free physical register, the instruction is kept in the
instruction queue and executed later on, with the
expectation that some physical registers will have been
freed in the meantime. However, if this instruction was the
oldest instruction in the window, no instruction would
commit and thus, no physical register would be freed. To
avoid this deadlock situation the allocation policy proposed
in [4] guarantees that a given number of oldest instructions
in the window (NRR) will obtain a register when they reach
the write-back stage, where NRR is an implementation
parameter. In other words, that allocation scheme assigns
NRR registers to the oldest instructions in the window that
have a destination operand, whereas the rest of physical
registers are allocated on-demand, that is, they are assigned
to the instructions that first reach the write-back stage.

Figure 1. Register usage (written + non-written) and register
waste (non-written) due to early allocation.

i
nte

ge
r r

eg
ist

ers

0

20

40

60

80

100

120

compr gcc go li perl Amean

non-written

written

F
P r

eg
ist

ers

0
20
40
60
80

100
120
140

mgrid tomcatv applu swim hydro2d Amean

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 08:10 from IEEE Xplore. Restrictions apply.

3. A New Register Allocation Approach for
Virtual-Physical Registers

We realized in our previous work that the performance of
the processor was very sensitive to the value of NRR. The
optimal value of NRR for different programs is quite
distinct, and even for a single program, varying the value of
NRR across different sections of the execution may provide
significant benefits. Such a scheme for a dynamic tuning of
the NRR parameter was concluded to be critical and this is
what has motivated this work. For instance, Figure 2 shows
the IPC for li and applu when NRR is varied from 1 to 32,
assuming 64 physical registers in each file. Other details
about the evaluation framework can be found in section 4.1.
Note that the optimal value for NRR for li is 16 whereas for
applu it is 32.

For the whole benchmark suite, the value of NRR that
has the best average performance is 32, which is its
maximum value for 64 physical registers. A virtual-
physical scheme with maximum NRR is conceptually
similar to the renaming scheme of the Power3, as discussed
in Section 5, and it is one of the schemes that we use for
comparison in this work.

Note that in fact this previous register allocation scheme
is not the only approach that may guarantee a deadlock
avoidance. On the other hand, finding the optimal register
allocation policy seems to be an unsolvable problem even
with a perfect knowledge of future register references. We
have then to rely on some heuristics that try to approximate
such an optimal scheme. The approximation we propose is
based on the following two rules:
• Registers should be allocated to the instructions that can

use them earlier. In this way, the average number of
unused registers is minimized.

• Given any two instructions, if the execution of one of
them should be delayed by the lack of registers, the most
appropriate candidate is the youngest instruction, since
delaying the execution of the oldest would delay its
commit, which in turn would also delay the commit of
the youngest one.
These two criteria can be met by the following scheme.

Every instruction allocates a physical register in the last
cycle of the execution stage (just before write-back) if there
are free registers. This meets the first criterion since

registers will be allocated by the instructions that first finish
execution. If an instruction reaches the last cycle of the
execution stage and there is not any free physical register, it
is checked whether there is any younger instruction that has
already allocated a register. If this is the case, it is better to
stall the younger instruction rather than the older one, based
on the second criterion. As suggested in [7], this can be
achieved by stealing the register allocated by the younger
instruction and assigning it to the older one. If there are
more than one younger instruction with a register already
allocated, the youngest one will be chosen. We refer to this
register allocation scheme as on-Demand with Stealing
from Younger (DSY).

3.1. Implementing the DSY Register Allocation
Scheme

Identifying whether there is a younger instruction with an
allocated register is done by inspecting the reorder buffer,
searching for any younger entry with the execution-
complete bit set. If several are found, the youngest one is
chosen. Let us refer to the instruction that demands a
register as i1, and to the instruction from which the register
is stolen as i2. The VP register identifier allocated by i2 is
obtained from the reorder buffer (this additional field in the
reorder buffer is an overhead of the virtual-physical policy)
and the physical register identifier is obtained from the
PMT table. Let us refer to the VP destination register of i1,
the VP destination register of i2 and the physical destination
register of i2 as VP1, VP2 and P2 respectively (see Figure
3.a). When i1 steals the physical register of i2, the PMT table
is updated to reflect that now VP1 is mapped to P2 and VP2
is not longer associated to P2 (see Figure 3.b).

The instruction i2 must be re-executed in the future. A
simple approach to achieving this is to keep instructions in
the instruction queue until they retire, with a flag that
indicates whether they have been issued. By marking i2 as
not issued, the issue logic will choose it again for issue in
the future (Figure 3.c).

Figure 2. Effect of varying NRR for two particular programs.

li

2,9

2,95

3

3,05

3,1

3,15

1 4 8 16 24 32

IP
C

NRR

applu

1

1,5

2

2,5

3

3,5

1 4 8 16 24 32

IP
C

NRR

Figure 3. Example of virtual-physical renaming with DSY
allocation.

i1

i2

i3

ROB

Sr
c1

 re
ad

y
Ph

ys
 S

rc
1

i1

i2
i3 1

r1<-

r2<-

GMT
r1
r2

vp1
vp2 p2

PMT

vp2
p2

p2

aIs
su

ed

1

C
om

pl
et

ed

0

1
0

Iqueue

GMT
r1
r2

vp1
vp2

PMT
vp1

p2 p2

b

vp2
nil

ROB

Sr
c1

 re
ad

y
Ph

ys
 S

rc
1

C
om

pl
et

ed

i1

i2
i3

1

0
00

Is
su

ed

0

Iqueue

c

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 08:10 from IEEE Xplore. Restrictions apply.

Since i2 has been executed in the past, the consumers of
VP2 (i.e. instructions with a source operand renamed to
VP2) have marked this operand as ready. However, it is not
ready anymore since its associated physical register has
been stolen. Turning this operand into not ready can be done
by using the buses that are used to awake instructions, as
described below.

In a conventional processor, when an instruction
completes execution1, it broadcasts the identifier of its
physical destination register to all the entries in the
instruction queue. Every entry checks if any of its source
operand identifiers correspond to the broadcast one, and
those that match are marked as ready. For virtual-physical
registers, each entry in the instruction queue identifies each
source operand by means of both a VP register and a
physical register identifiers. When an instruction
completes, both the VP and physical identifiers of the
destination register are broadcast to the instruction queue.
Each entry compares the VP identifiers of its source
operands against the broadcast one, and in case of a match,
the broadcast physical identifier is copied in the
corresponding field of the matching operand, and this
operand is marked as ready. On the other hand, when the
physical destination register of an instruction is stolen, its
corresponding VP tag (VP2 in the example) is broadcast to
the instruction queue in order to mark as NOT ready any
matching source operand (Figure 3.c).

Note that some of the instructions that have VP2 as a
source operand may have been issued at the time when this
operand becomes not ready. These instructions have read a
correct source operand and thus, the result that they will
produce will be correct. At the time they finish, if there are
free physical registers they will be able to store their result
and dependent instructions will be allowed to be issued.
However, instruction i2 will eventually be executed again
and will allocate a new physical register (let us denote it by
P3) for its destination. At that moment, the VP2 and P3
identifiers will be broadcast to the instruction queue, and
those instructions that consume VP2 will copy the new
physical mapping and will be re-issued if not yet completed
(i.e. it has been executed and allocated a physical register
for its destination). The same happens to consumers of these
re-issued instructions: they will be issued no matter if they
have already been issued in the past.

3.2. Implicit Benefits of the DSY scheme

As described above, the DSY scheme may cause multiple
executions of some instructions and all the re-executions of
the same instruction will produce the same result. In this
section, we point out that these multiple executions

implicitly have a very positive effect on the control
speculation mechanism as well as the data cache memory.

Among the multiple times that an instruction is executed,
all of them except the last one could be regarded as
premature executions, that would not occur at that time if
the processor allocated physical registers from oldest to
youngest instructions. Indeed, the physical register of an
instruction i is stolen only when in the instruction window
there are more instructions older than it that require a
physical register. A conventional renaming mechanism
would assign all physical registers to the older instructions
and instruction i would have not even been fetched. On the
other hand, with virtual-physical registers, this instruction
gets a physical register because it finishes execution earlier
than some older instructions. However, when an older
instruction completes its execution and finds no free
physical registers, it steals the register from i, which forces
its later re-execution.

The preliminary execution of some instructions have two
important benefits:
• A preliminary execution of a branch instruction will

validate its prediction and in case of misprediction, the
instructions of the wrong path will be squashed and the
fetching from the correct path will be started
immediately. In the conventional renaming scheme,
such validation would occur much later, since the
instruction would be delayed by the lack of registers.

• A preliminary execution of a load instruction that misses
in cache would fire the fetching of the data. When the
instruction is definitely re-executed this data element
may be already in cache and result in a cache hit. In other
words, the early (preliminary) execution of memory
instructions acts as a small-distance data prefetching
scheme, hiding the memory latency of some cache
misses.
Finally, note that the latency as well as resource

consumption of re-executed instructions can be
significantly reduced by means of a reuse mechanism [11].
Instructions that are to be re-executed could keep their
results in a reuse buffer and later on, when physical registers
are available, these results could be directly copied into the
new physical registers. In this way, re-executed instructions
would not increase the contention in the functional units. In
the analysis presented in this paper, such an instruction
reuse mechanism is not considered.

4. Performance Evaluation

4.1. Experimental Framework

The virtual-physical register renaming approach has been
evaluated by means of a cycle-based timing simulator of a
dynamically-scheduled processor derived from the
SimpleScalar v3.0 tool set [2]. The sim-outorder simulator
has been modified to include physical register files (integer

1. In fact, it is done some cycles before in order to overlap the latency of
the issue and read logic with the last cycles of the execution.

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 08:10 from IEEE Xplore. Restrictions apply.

and FP) where the results of all instructions are stored
(instead of temporarily storing them in the RUU and
moving them to the architected register file at commit). This
is the approach used by some current microprocessors such
as the MIPS R10000 and the Alpha 21264. The main
parameters of the microarchitecture we use in our
simulations are presented in Table 1. We refer to such
microarchitecture as a conventional processor. Then, the
simulator has been extended to include the proposed virtual-
physical renaming, leaving the remaining architectural
parameters unchanged.

We used ten benchmarks from the Spec95 suite: five
integer programs (compress, gcc, go, li and perl) and five
FP programs (mgrid, tomcatv, applu, swim and hydro2d).
All programs were simulated to completion, excepting
tomcatv, for which the initial part that reads a huge input file
was skipped. Table 2 lists the inputs and the number of
executed instructions. The programs were compiled with
the Compaq/Alpha Fortran and C compilers with the
maximum optimization level (-O5).

4.2. Performance Statistics

Figure 4 shows the average number of instruction
committed per cycle (IPC) for each benchmark as well as
the harmonic mean for integer and FP programs, assuming
64 physical registers in both the integer and FP files. Three
different register management schemes are compared: the
conventional one (conv), virtual-physical registers with the
original register allocation policy (vp-ori), and virtual-

physical registers with the DSY allocation policy presented
in this paper (vp-dsy). We can observe that the benefits of
virtual-physical registers for FP codes are much more
significant than for integer programs. This is an expected
result since FP programs in general cause a much higher
register pressure. The virtual-physical organization
significantly outperforms the conventional organization,
providing an average speed-up of 5% and 24% for integer
and FP codes respectively. The difference between the
original and the DSY allocation policies is noticeable, DSY
provides an average speedup of 2% and 7% for integer and
FP codes respectively.

For the DSYconfiguration, the percentage of instructions
that have their destination physical register stolen is 5.26%
for integer programs and 11.76% for FP codes, which
results in a 9.79% and a 57.75% of instructions re-executed
respectively. This is due to the different behavior of these
applications. FP programs exhibit more ILP and a low
branch miss rate, and thus the instruction window is usually
filled up. Thus the VP scheme can assign physical registers
to instructions far away from the oldest instructions in the
window, increasing the ILP extracted and thus the
performance, at the expense of a higher number of re-
executions. On the other hand, integer applications
experience a much higher branch miss ratio, which implies
that the instruction window cannot be completely filled up,
and then, the VP scheme cannot yield so much performance
benefits by exploiting ILP.

Figure 5 shows the impact of preliminary executions of
load instructions. It depicts the percentage of loads that miss
in cache and among them, the percentage that have been re-

Table 1. Processor microarchitectural parameters

Parameter Value
Fetch width 8 instructions (up to 2 taken branches)
L1 I-cache 32 KB, 2-way set-associative, 32 byte lines, 1 cycle hit time

Branch predictor 18-bit Gshare with speculative updates
Window size 128 entries

Functional units
(latency)

8 Simple int (1); 4 int mult (7); 6 simple FP (4); 4 FP mult (4);
4 FP div (16); 4 load/store

Load/Store queue 64 entries with store-load forwarding
Issue mechanism out-of-order issue. Loads may execute when prior store

addresses are known
Physical registers 48-160 int / 48-160 FP

L1 D-cache 32 KB, 2-way set-associative, 64 byte lines, 1 cycle hit time
L2 unified cache 1 MB, 2-way set-associative, 64 byte lines, 12 cycles hit time
Main memory infinite size, 50 cycles access time
Commit width 8 instructions

Table 2. Benchmarks

Program Input #dyn. inst. (M)
compress 40000 e 2231 170

gcc genrecog.i 145
go 9 9 146
li 7 queens 243

perl scrabbl.in 47
mgrid test (modifying the two first lines to 5 and 18) 169

tomcatv test 191
applu train (modifying dt=1.5e-03 and nx=ny=nz=13) 398
swim train 431

hydro2d test (modifying ISTEP=1) 472

Figure 4. Performance of the virtual-physical renaming
versus the conv. scheme for a 64 physical registers. Two
different register allocation policies are shown for virtual-
physical renaming: the original and the DSY.

FP

1

1,4

1,8

2,2

2,6

3

3,4

Hmean

IP
C

conv
vp-ori
vp-dsy

Integer

1

1,4

1,8

2,2

2,6

3

3,4

Hmean

IP
C

compr gcc go li perl

mgrid tomcatv applu swim hydro2d

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 08:10 from IEEE Xplore. Restrictions apply.

executed. We can observe that FP applications experience a
reasonable degree of prefetch (28% on average), especially
the tomcatv, which also obtains the best speedup (it re-
executes the 35% of loads that miss in cache).

Analyzing the effect of a varying number of registers on
the processor performance may be more interesting than
just looking at a particular register file size. In general a
processor designer would be interested in finding the best
trade-off between number of registers and performance.

Figure 6 illustrates how the processor performance varies
as a function of the number of physical registers for both the
conventional and the virtual-physical organization. For the
latter, the original register allocation policy as well as the
DSY one are shown. Virtual-physical registers with DSY
allocation is always better than virtual-physical registers
with the original allocation policy, which in turn is better
than the conventional renaming scheme. Note also that the
difference among the three schemes is more significant for
FP codes and increases as the number of physical registers
decreases. We can observe that virtual-physical registers
can provide significant savings in number of registers. A
candidate design point for the number of registers to be
implemented in a processor would be the lowest number of
registers that provides a performance close to that of an
infinite size register file (i.e. as many registers as reorder
buffer entries plus number of logical registers). For
instance, if we could afford about 10% IPC degradation
with respect to the maximum IPC, we would choose 61
integer and 101 FP registers for the conventional scheme,
whereas for virtual-physical registers 45 and 77 would
suffice respectively. This implies a saving of 26% and 24%
respectively, which directly translates in savings in the
register file access time and area, since both are
significantly affected by the number of registers [3].

5. Related Work

Register renaming is an old concept that first appeared in
the FP unit of the IBM 360/91 [13]. Nowadays it is used by
all dynamically scheduled processors. Different schemes
basically differ in the organization of the storage location
for the register values. Some processors keep non-
committed values in the reorder buffer and copy these
values to the register file at commit (e.g. Intel P6 [6]); others

have a register file for non-committed values and another
for committed results (e.g. PowerPC 620 [9]); finally, some
processors have a single register file (one for integer and
another for FP) that holds both non-committed and
committed data (e.g. Alpha 21264 [8]). The virtual-physical
organization that we have proposed in this paper can be
applied to the two last schemes and we have assumed the
last one for the presented evaluation.

The virtual-physical register renaming scheme presented
in this paper builds upon the approach that we presented in
[4]. The main contribution of this paper is a novel register
allocation scheme that allocates physical registers at the end
of the execution stage, using an on-demand policy with
stealing from younger instructions.

Another approach for delaying the allocation of physical
registers was proposed by Wallace and Bagherzadeh [16].
Their motivation was to have a multiple-banked
organization with just one write port per bank. Delaying the
allocation of physical registers until result write time
allowed the processor to avoid conflicts in the banks. Their
scheme had the same type of deadlock hazard as virtual-
physical registers have. Their solution was based on shifting
the processor to a special mode when the oldest instruction
was unable to issue or complete. In this special mode, only
the oldest instruction was allowed to execute and its result
was stored in the register that this instruction would release
at commit. Note that this is very similar to our former
approach with one reserved register (NRR=1). In fact, this
scheme does not reserve any register, but uses one that is
sure to be released right away.

Finally, the Power3 implements what they call virtual
renaming [1] [12]. Like the PowerPC 620 [9], this processor
has two register files: one for committed values, which is
referred to as architected register file, and another for non-
committed values that is called rename buffers. In this
processor, there are 16 rename buffers for integer and 24 for
FP data. However, an operand is identified by one bit more
than those required by a rename buffer identifier. This
additional bit is called the virtual bit. This allows up to two

Figure 5. Percentage of loads that miss on cache and
their data is prefetched through re-execution.

0
10
20
30
40
50

misses

prefetch

Pe
rc

en
ta

ge

co
m

pr
es

s
gc

c go li pe
rl

m
gr

id

to
m

ca
tv

ap
plu sw

im

hy
dr

o2
d

FP

1

1,4

1,8

2,2

2,6

3

3,4

48 64 80 96 128 160
physical registers

conv
vp-ori
vp-dsy

Integer

2

2,2

2,4

2,6

2,8

48 64 80 96 128 160
physical registers

IP
C

IP
C

Figure 6. Performance as a function of number of physical
registers for the conv. register organization and the virtual-
physical scheme with the two different allocation policies.

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 08:10 from IEEE Xplore. Restrictions apply.

in-flight instructions to use the same rename buffer for its
result. The older assignment is considered to be the ‘real’
one whereas the younger is called the ‘virtual’ one. They are
distinguished by the value of the virtual bit. Only
instructions with real operands (source and destinations) are
allowed to be issued. When an instruction commits, its
destination rename buffer is switched from real to virtual,
and that of the younger instruction that uses the same
physical buffer is switched from virtual to real. The
processor allows up to 32 instructions in-flight (due to the
size of the reorder buffer) but, unlike our proposal, only the
16/24 oldest instructions with an integer/FP destination
register respectively are allowed to be issued. In fact, these
scheme is conceptually very similar to our original proposal
when the number of reserved registers is set to the number
of rename buffers.

To summarize, Wallace and Bagherzadeh and the
Power3 schemes represent two extreme points in the design
space. The former allocates physical registers almost on
demand, with the exception of the oldest instruction,
whereas the latter assigns all physical buffers to the oldest
instructions that have a destination operand. The former can
execute instruction far beyond the actual commit point
much earlier than the latter. However, when the oldest
instructions run out of registers, the former scheme has very
low performance since instructions are executed
sequentially. Our proposal, virtual-physical registers with
DSY allocation, can be as aggressive as the latter, but when
it realizes that old instructions are progressing slowly due to
the lack of registers, it steals some registers from the
younger instructions and give them to the older ones.

An orthogonal approach to reducing the register pressure
was proposed by Jourdan et al. [7]. Their scheme takes
advantage of instruction repetition. The idea is to identify
instructions that produce the same result and allocate the
same physical register for all of them.

6. Conclusions

In this paper we have presented a novel register renaming
scheme that allows for the late allocation of physical
registers. In particular, physical registers are allocated at the
end of the execution stage, rather than at decode time as
conventional processors do. The direct advantage of this
scheme is a significant reduction in the register pressure.
For instance, we have evaluated that it can provide a 26%
and 24% reduction in the number of integer and FP
registers, and achieve the same IPC rate as a conventional
scheme. This reduction in number of registers translates
into a shorter access time to the register file, which is likely
to be a critical issue of forthcoming microprocessors, and
thus, it may significantly increase performance.

The proposed scheme has also important indirect
advantages. In particular, it allows branches to be resolved

earlier and load/store instructions to prefetch their data. In
addition, the re-execution of instructions caused by the
stealing feature can be done very effectively by means of a
reuse mechanism.

The novel register allocation policy has been shown to be
more effective than previous proposals for late register
allocation. The on-demand allocation with stealing from the
younger provides maximum look-ahead when ILP is
limited but this look-ahead never penalizes older
instructions.

7. Acknowledgments

This work has been supported by contracts CYCIT TIC98-
0511 and ESPRIT 24942, by the Programa Europa de
Investigación (CAI CONSI + D), by the grant 1996FI-
03039-APDT, and by the CEPBA.

8. References
[1] P. Bose and J. Moreno. Private communication, June 1999
[2] D. Burger and T.M. Austin. “The SimpleScalar Tool Set v2.0”,

Technical report 1342, University of Wisconsin-Madison, CS
Department, June 1997

[3] K.I. Farkas, N.P. Jouppi and P. Chow. “Register File Consider-
ations in Dynamically Scheduled Processors”, in Proc. of 2nd.
Int. Symp. on High-Performance Computer Architecture, pp.
40-51, 1996

[4] A. González, J. González and M. Valero. “Virtual-Physical
Registers”, in Proc. IEEE 4th. Int. Symp. on High-Performance
Computer Architecture, pp. 175-184, 1998

[5] A. González, M. Valero, J. González and T. Monreal. “Virtual
Registers”, in Proc. of Int. Conf. on High-Performance Com-
puting, pp. 364-369, 1997

[6] L. Gwennap. “Intel’s P6 Uses Decoupled Superscalar Design”,
Microprocessor Report, pp. 9-15, Feb. 1995

[7] S. Jourdan et al. “A Novel Renaming Scheme to Exploit Value
Temporal Locality through Physical Register Reuse and Unifi-
cation”, in Proc. of 31st. Int. Symp. on Microarchitecture, pp.
216-225, 1998

[8] R.E. Kessler. “The Alpha 21264 Microprocessor”, IEEE
Micro, 19(2):24-36, March 1999

[9] D. Levitan, T. Thomas and P. Tu. “The PowerPC 620 Micro-
processor: A High-Performance Superscalar RISC Micropro-
cessor”, in Proc. of 40th. IEEE Computer Society International
Conference, pp. 285-291, 1995

[10] A.S. Palacharla, N.P. Jouppi and J.E. Smith. “Complexity-
Effective Superscalar Processors”, in Proc. of 24th. Int. Symp.
on Computer Architecture, pp. 206-218, 1997.

[11] A. Sodani and G.S. Sohi. “Dynamic Instruction Reuse”, in
Proc. of 24th. Int. Symp. on Computer Architecture, pp. 194-
205, 1997

[12] P. Song. "IBM’s Power3 to Replace P2SC", Microprocessor
Report, 11(15): 23-27, Nov. 1997

[13] R.M. Tomasulo. “An Efficient Algorithm for Exploiting Multi-
ple Arithmetic Units”, IBM Journal of Research and Develop-
ment, 11(1), pp. 25-33, Jan. 1967.

[14] D.M. Tullsen et al. “Exploiting Choice: Instruction Fetch and
Issue on an Implementable Simultaneous Multithreading Pro-
cessor”, in Proc. of the 25th. Int. Symp. on Computer Architec-
ture, pp. 191-202, 1996

[15] D.W. Wall. “Limits of Instruction-Level Parallelism”, Techni-
cal Report WRL 93/6 Digital Western Research Laboratory,
1993.

[16] S. Wallace and N. Bagherzadeh. “A Scalable Register File
Architecture for Dynamically Scheduled Processors”, in Proc.
1996 Conf. on Parallel Architectures and Compilation Tech-
niques, pp. 179-184, 1996

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 08:10 from IEEE Xplore. Restrictions apply.

