
Characterization and Improvement of Load/Store
Cache-based Prefetching”

Pablo Ib&iez, Victor Vifials, Jo& L. Briz and Maria J. Garzarh
Depto. lnformatica e Ing. de Sistemas, Univ. Zaragoza

c/ Ma. de Luna, 3 - 50015 ZARAGOZA (SPAIN)

{imarin,victor,briz,garzaran}@posta.unizar.es

ABSTRACT
A common mechamsm to pcrlorm hat-dware-based pl-efetching for
regular accesses to arrays and chained lists is based on a Load/Store
cache (LSC). An LSC associates the address of a Id/SC instruction
with Its individual hchavior at every entry. WC show that the
implementation cost of the LSC is rather high, and that using it is
Ineff’icicnt. We aim to decrease the cost of the LSC but not its
pcrl’ormancc. This may he done preventing useless instructions
from hemg stored in the LSC. We propose eliminatmg those
inslructions that never miss, and those that follow a sequential
pilttWl1. This may be carried out by insertin, 0 a lci/ it inslruction in
the 1,SC whenever it misses in the data cache (on-miss insertion),
and issuing sequential prefetching simultaneously. After having
analy~d the perf’ormancc of this proposal through a cycle-by-cycle
simulation ovet- a set 01. 25 benchmarks selected from SPEC9.5,
SPEC92 and Perfect Club, we conclude that an LSC of only 8
entries, which combines on-miss insertion and sequential
prettching, performs hetter than a conventional LSC of 5 I2
entries. We think thal the low COSI of the proposal makes it worth
being taken into account for the development of future
microprocessors.

1. INTRODUCTION
Every effort to decrease cycle time or increase Instruction Level
Parallelism when designing a high performance microprocessor,
may he neutralized by a slow memory subsystem [2, 31. A large
number of techniques have been developed to minimize the latency
impact of a data reference, reducing either the number of misses
(e.g. hardware and software based prefetching) or their cost (e.g.
non-blocking caches, multithreading, decoupling).

S&ware hased data preielching techniques use special PREFETCH
instructlons to bring a block into the cache memory in advance. Most
contemporary architectures include this instruction, and many
compilers can transform simple loops in order to decrease their miss
ratio substantially. However, these software techniques sometimes
perform poorly with respect to hardware prefetching [4, 231.

Moreover, hardware based prefetching does not need to recompile,
and cloes not increase code size. A typical approach consists in
pret’etching one or more consecutive blocks in a sequential way
121 1, and it is l‘requently used on the instruction stream. In recent
years (Ol-97), altcrnativc approaches have been proposed to predict
non-sequential accesses or to issue prcfetching at the right time.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for protit or commercial advantage and that
copies bear this notice and the fidl citation on the fti page. To copy
othtise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICS 98 Meboume Australia
Copyright ACM 1998 0-89791-998-x/98/ 7...$5.00

Nevertheless, most 01 the current microprocessors do not
implement hardware prefetching. An exception to this is the
sequential tagged prcfetching mechanism between the HP-PA 7200
processor and its external cache memory.

In this paper WC show a way of improving hardware-based preietching
in regular accesses to arrays and chained lists. Particularly, we focus on
the Load/Store Cache (LX). a mechanism driven by the address
stream generated by each id/St instruction. The LSC associates the
PC-address of a Id/St instruction with its individual behavior. Every
time a Id/St instruction that is not present in the LSC is executed (LSC
nzm), it is inserted into the LSC. Once a pattern has heen recognized
and the instruction executes apam, a prefetch address will be computed
and issued.

Previous work proposes a dil-cct-mapped LSC with a number of
entries between I28 and 5 I2 [I, IO, 16, 171. It will be shown later
that the cost of a LSC with 5 I2 entries is similar to that of a double-
ported cache memory with a size between 6 and I2 KB. This may
decline the USC of the LSC in l’avor of more important resources.

Our purpose is to improve the use of the LSC entries in order to
decrease their number. We want to achieve similar (or even better)
performance while reducing the cost.

As lar as we know, no previous reference considers both, the LSC
performance [10, 161 and the behavior of the Id/St instructions
regarding their addressing patterns 18, 171. and the workloads they
consider arc not very extensive. Our first contribution goes in that
direction, and is based on the analysis of 25 programs (taken from
SPEC92, SPEC95 and Perfect Club). From this characterization we
can advance the following results: a) the miss ratio for a direct-
mapped LSC with 5 I2 entries is too high for many applications,
b) most ot’the instructions follow scalar or sequential patterns, and
c) most ol‘the Id/St instructions hardly miss.

In this paper we propose preventing some instructions from being
stored in the LSC in order to reduce its number 01. entries. By
considering the former results, we identify and discard instructions
that: a) induce the preletch 01. blocks that are already in the cache,
or b) show a sequential addressing pattern. This can be done by
combining two strategies:

- Storing Id/St instructions in the LSC only when they miss in the
data cache (on-nziss imrrfron)

- Performing sequential prefctching in parallel. In particular, we use
One-Block-Lookahead sequential tagged prefetching (OBLst) [2I].

To understand the key aspects of prefetching, we use a performance
model that takes into account the cache lookup pressure, the data
CPI, the shift from CPU misses to correctly prel’etched misses, and
other useful characterizations of the prefetching dynamics. Through
this model, we compare our appi-oath with the conventional LSC
by means 01’ a detailed cycle-level simulation, varying parameters

grants TIC98-05 I I-CO2 and TIC% I 127

369

SLICII as LSC and data cache sizes. A noticeable point is that
perf’ormance holds when the number of LSC entries are reduced:
wc show that an LSC of only 8 entries, managed by on-miss
inscl-tion aid combmed with sequential prefetching, performs
hctter than a conventional LSC of 5 I2 entries.

This paper is organized as follows. Section 2 reviews related
works. Section 3 presents the workload, the methodology we have
followed and the characterization of the Id/St stream behavior
relevant to the LSC operation. Section 4 introduces the insertion-
m1s5 policy and the combination with sequential data prefetching
in detail. Sections 5 and 6 describe the performance model, give
experimental results and discuss implementation costs. Finally,
Sccrion 7 st~mmarizes the main points of this contribution.

2. PREVIOUS WORK
Noti-sequential data prefetching was firstly introduced by Haer and
Chcn [I] under the term Prcloading. The LSC used in that work was
called Refbrence Prctliction Table (RPT). An RPT is organized as a
cache indexed by a Look Ahead Program Counter (LA-PC), whose
value is based on some branch prediction policy. LA-PC varies from
the current PC value to a limit imposed by a constant named prefetch
distance which is proportional to the latency of the following level. If
LA-PC hits in the m, and the state of the selected entry indicates a
stride pattern, the addition of the latest address issued by the
correspondmg ~d:st plus the stride is prefetched. Prefetched blocks
are directly added to the data cache.

Stride-directed prefetching [I OJ and speculative prefetching [161 use a
G~iilar table, but now indexed by the PC. Every time a ld/st

Instruction is executed, the table is searched. Ii the instruction is found
in the table, the corresponding prefetchcd block will be used in the
next iteration. LJnder stride-directed prefetching, target blocks are
loaded directly into the data cache. Under speculative prefetching, the
prcfetched blocks are loaded into a small separate cache.

Finally, [17] suggests an addition to the previous approaches in
order to detect a linear traversal of a chained list made up of
records. It is assumed that each record has a next-address field that
points to the next record. This mechanism detects the Id instruction
that l-cads the next-address field, and uses that value plus/minus a
constant as the prefetch address. This paper also considers the
pattern that appears when traversing sparse arrays whose non-zero
elements are chained by an index (e.g. spice).

Besides these papers about prefetching based on the classification
of ICI/S~ instructions, another big group which directly deals with
the global sequence 01‘ addresses (or first-level cache misses) can
hc considered. The approach presented in [I 1 J and used in [8] is
based on keeping a list of common strides by calculating the
strides hetween each reference and the previous sixteen references.

In 1201 the minimum delta scheme (also used in [9]) and the
partition scheme are introduced. The former calculates the stride as
the minimum difference between a missed address and the last II

missed addresses. The latter splits memory into zones, and
calculates the stride between the last two references to the same
zone. In [141 Markov Chains are used to prefetch multiple
rclerence predictions from the memory subsystem. These schemes
arc proposed I’or off-chip environments, in which the address of the
instruction to be included in the LSC is not available.

Finally, some approaches try to issue the prei’ctch as sow as

possible, or even to determine which is the optimal time to do it,
supposing very large latencies (c.g. to fill in advance off-chip
caches in shared memory multiprocessors). Thus, [I 51 proposes
the use of stream buffers, which issue several requests in sequence

instead of issuing a single WC and store the requests until they are
referenced. The purpose of this policy is to increase the prefetch
distance, i.e. to request blocks even earlier. In [20, 91 this idea is
also applied to streams with stride accesses, Adaptive sequential
prcfetching is proposed in [6,7]. In [X] the same idea is extended to
non-sequential stride prefetching, and a comparison between the
sequential and not sequential cases is carried out. Adaptive
prefetching modifies the prefetch distance dynamically, according
to the latency of the system and to the loop size. Prefetched blocks
are stored in the cache.

There are many papers dealing with software-based prefetching which
we do 1101 mention here, for they lay beyond of our scope. We should
mention [I’,], however. because it concludes that most misses are
caused by Id instructions with stride and list patterns, and this is a key
idea in our work, as we have exposed in Section 1. However, it must
be pointed out that [191 considers sequential prefetching as a particular
case of stride prcfetching. The authors propose a compilation
algorithm that reorders the code to eliminate dependencies between
the instructions that load values and the instructions that use those
values, and analyze I2 benchmarks of SPEC92.

3. PATTERN CHARACTERIZATION AND
LSC USAGE
In order to take advantage ol’the insertion of a Id/St into the LSC,
the following conditions must hold:

Cl. The instruction must remain some time in the LSC before
being useful, because we need several executions in order to fix the
prefetch condition.

C2. The instruction must access to memory following one of the
regular patterns that can bc recognized.

C3. The datum that is being accessed by the instruction must not
reside in the data cache, since prefetching is not necessary in that case.

Previous work based on the use of an LSC [1, IO, 14, 171 does not
consider the optimization of the LSC in these terms, and gives no
detailed characterization of the relative importance of the different
patterns recognized.

3.1 Workload and tracing methodology
The chosen workload is a set of 25 programs taken from SPEC95
(8 integer and IO floating point), SPEC92 (spice) and from Perfect
Club (6 tloating point). This workload has been targeted to a
SPARC V7 architecture. The user-mode execution traces have
been obtained dynamically by means of Shade, a utility from SUN
microsystems [5].

Figure I shows the complete evolution of CPI for a single issue
SPARC processor executing Spice on a sample system. A transient
behavior up to 4,000 million instruction can be observed. From
this point on, a steady state appears with low variation in the mean
value. The majority of the papers referred to in Section 2 assume a
transient state of some tens OF million instructions at most, and take
a single observation after this point. This may not be representative
of the whole program behavior.

In this section, we have simulated 2000 million consecutive
instructions beyond the end of the transient state, rounded to a
billion instructions. This transient state has been determined by
plotting the temporal behavior of each program.

The advantage of this methodology arises when the locality in the
transient state is quite different from that in the steady state. From
a programmer’s point of view, the transient behavior corresponds

370

0 I - -ti--l--l+-+t
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920

Billions of Instructions

Figure 1. CPI evolution while executing Spice on a sample system.

typically to the initialization of data structures hy using very
smrple -almost sequential- access patterns.

‘T’ahle I shows the following data (from left to right): program input,
number 01. mstmctions. total number of loads and star-es of the full
execution, number of instructions of the transient phase and number of
instructions skipped until statistics begin to be computed. All the
numbers arc in billions. Programs labeled as irregular do not have a
clear transient phase. To compute the means, we consider the three
groups that are differentiated on the table (we include Spice from
SPEC 92 inside the SPEC95-fp group).

Table 1: Dynamic counts, transient intervals and number of

skipped instructions (x 109).

3.2 LSC misses
WC define the miss ratio in the LSC as:

I~~,~,~~ = (#misses in LSC)/N

whcrc N is the number of memory references, and a miss is counted
ever-y time the PC-address of a Id/St instruction is not found in the
LSC directory. This miss ratio is related to the condition Cl, because
the average number of times that a l.d/st instruction is executed
hcforc being replaced is just the inverse of mLSC,

Table 2 presents the average values of mLSC for a direct-mapped
LSC with a different number of entries. If we analyze the
individual behavior of each program, it can be observed that in
order to achieve a value of mtdsc less than or equal to lo%, we
need at least 1024 entries in 10 out of 25 benchmarks. With
m,,=]O’%, a ld/st instruction remains in the LSC for ten
consecutive instances in average. Whenever the instruction is
replaced, 3 executions are needed to detect a pattern before
triggering the prefetch. Therefore, the ratio (#prefetches/
#references) is 70%. With a miss ratio of 25%~~ that ratio drops to
2.5%.

Table 2: mLsc, average miss ratio of a direct-mapped LSC in %

Even though we do not know the r-elation between mLSC and the
reduction of the effective access trme due to prefetching, those data
suggest a higher number of entries with reference to previous
papers [I, 10, 16, 171.

3.3 Pattern Distribution
Even supposing an ideal behavior of the LSC (mt.SC = 0), some
pattern is needed to trigger prefetching (condition C2). We have
looked in our workload for five patterns that can be recognized by
hardware techniques. This has been done by tracking the following
equalities for each Id/St instruction:

SCAlar: Ai = Al.1
SEQuential: A, = A,- t + x 0 -c s I Bsize
STRide: A,=Ai-t +S S > Bsize II S < 0
PoinTeR list:Ai = Di-l + d d is a record displacement
INDex list’: Ai = 4’lDi-, + K 4 = integer index size

K= Base Address of the Index Anay
Ai IS the address generated by a ld/st during its execution i, Di is
the value read by a load instruction during its execution i, and
Bsize is the block size. Stores can only follow the first three
patterns.

The groups presented in Table 3 are disjoints. If an instance of a
Id/St instruction matches sever-al patterns at once, it is firstly
classified according to the pattern recognized in the previous
instance. If several patterns arise repeatedly, the following
priorities are applied: SCAlar, PoinTeR list, INDex list, STRide or
SEQuential.

Most of the accesses are scalar or sequential. Few of them follow
stride or chained list patterns, and they concentrate over a few
benchmarks. The higher percentages in the Remaining column are
mainly due to integer programs whose access patterns we do not
detect.

’ An example of the pattern IND is accessing to a non-compressed
sparse array by means of another array with the indexes of the non-
zero elements; “INDex list” models the reference to the Index Array.
The program spice2g6 shows a large percentage of this behavior.

371

Table 3: Classification of accesses according to their patterns.

A lot of research on the matter reports a high number of stride
accesses, because sequential accesses are considered as a particular
case of stride acccsscs. An exception is [8], where sequential and
stride patterns arc separately studied in programs of the SPLASH-l
suite, in a multiprocessor environment. The distributions given in
that paper are vel-y similar to those we have t’ound in SPEC95 and
Pcriect Club.

The h-cqucnc SEQuential pattern, when considcrcd as a particular
case of the STRide pattern, ensures the utility of any LSC prepared
lor detecting strides. However, sequential prefetching is simpler
(no LSC is required) and cheaper (at most one hit per block).

On the other hand, prefetching SCAlar patterns is useless when
LSC is indexed through the PC, because a variable is accessed and
prefetched at the same time. However, this may be useful when
indexing the LSC through the LA-PC.

The sum of stride and list patterns (STR, PTR and IND columns) is
small hut noticeable: the average values for Perfect, SPEC95-int
and SPECYS-fp are 10.X%, 4.6% and 8.35% respectively.
Ncvcrtbeless, in some programs most of the accesses follow these
patterns (ARC2D. TRFD, applu, spice2g6) and a high benefit from
prctetching may bc obtained.

3.4 Execution and miss frequencies correlation.
Whatever piltlerrls they follow, it is of no use to keep Id/St
instructions that never miss in the LSC (condition C3).

Up to now we have considered that a Id/St instruction is inserted in
the LSC when it is executed and misses in the LSC. We call this
strategy tr/wtry.s insertion. Under nlwa~~ insertion and in the absence
of conflicts, the probability for a Id/St instruction of being in the LSC
is proportional to its frequency of execution. However, the set of Ed/
St Instructions we arc keeping in the LSC (the most frequently
cxccuted) may not be the most suitable set (the set that would cause
more cache miascs if prefetching were turned off).

In order to study the correlation between executions and misses we
simulate a direct-mapped cache of XKB and Bsize = 16B with
tagged sequential prefetching. For each individual Id/St we record
the number of executions and misses. Then, we put all the Id/St

instructions into two lists: the first one ordered by number of
executions, and the second one ordered by number of cache
misses. Finally, we take the necessary last to cover 90% 01.
executions from the top of the first list, and from the second list the
necessary Id/St to cover Y~%I of misses. By doing so, we can
distribute Id/St. into one of four disjoint classes:

A) id/ St that represent less than 10% of total executions and misses.

B) Id/ s t that represent Y()% of executions, hut not 90% oi-misses.

C) Id/St that represent YO% of misses, but not 90% of executions.

D) Id/s t that represent YO% of executions u&misses.

Table 4 presents the average number 01. Id/St instructions in each
class for each workload group.

Table 4: Number of Id/St instructions for each Class.

The Id/St we want to store in the LSC belong to classes C and D,
yet those which are really filling the table belong to classes B and
D. It can he observed that BUD is greater than CUD by a factor of
5, 2 and 5.4 for Perfect, SPEC95-int and SPEC95-fp respectively.

Instructions belonging to class C have a low probability of being in
the LSC. However, they yield many misses and in consequence, it
would be convenient to keep them in the LSC. On average, they
represent 25% of the set with more misses, CUD.

On the other hand, ld/st instructions of class B have a high
probability of being in the LSC. However, they hardly miss in the
cache and it is of no use to keep them in the LSC. On average, they
account for 78.6% of the most executed set, BUD.

4. ON-MISS INSERTION PLUS SEQUEN-
TIAL-TAGGED PREFETCHING
From the pattern distribution and the correlation between
execution and miss frequencies, we propose a combined
prefetching strategy, in which addresses are computed by two
independent prefetching mechanisms working in parallel: a) LSC
with on-miss insertion (LSCmi) prefetching, and b) One Block
Lookahead sequential tagged (OBLst) prefetching [21].

Under on-nziss insertron, a bit in the LSC involves the same actions
as under &V~!JJS inscrt~o~z (updating the state, the data field, etc.).
But in cast of a LSC miss, insertion is performed only when there
has been a miss in the data cache too.

This way, the probability of finding a Id/St instruction in LSC is
proportional to its miss frequency in the data cache, and not to its
frequency of execution. If two or more Id/St instructions are
mapped to the same LSC entry, they do not contend for that entry
if they hit in the data cache, increasing the stability of those
instructions that miss.

We add OBLst prefetching to prevent the Id/St instructions which
follow a SEQuential pattern from contending for LSC entries.
Moreover, sequential prefetching can determine sequential

372

relations among d$/. ‘ivent loads, adding useful prefetching streams
which an LSC would not be able to generate.

By way of example, let us consider a chained list at‘s true ts greater
than the block size. The Id instruction which reads the pointer field is
classified by the corresponding detector. However, Id inslructions
which access the remaining fields do not follow a regular pattern;
OBLst prefetching can perform successfully in this case.

In Table 5 we show the replacement ratio for an LSCmi, defined as
the number of ~1st entries evicted divided by the total number of
references. This ratio is comparable with that of Table 2 in the
sense that its inverse is the average number of times that a given
instruction is executed while remaining in the LSC until it is
rcplacetl. It is noticeable the one/two order of magnitude shift
hctween the two tables.

Table 5: Average replacement ratio of a direct-mapped ISCmi.

5. PERFORMANCE ANALYSIS FOR A SIN-
GLE PROCESSOR-MEMORY SYSTEM

5.1 Workload and tracing methodology
The evaluation has been carried out by using the workload
descrihcd in subsection 3.1. However, we assume now a
multiprogramming environment with a quantum of I million
instructions. We also assume a multiprogramming degree high
enough to empty the first-level caches between every two bursts of
the same process completely.

Given the high temporal cost of the cycle level simulation and the
big number of benchmarks that have been analyzed, it is not
possible to proceed with the same number of instructions that was
used in Section 3. A limit of 20 million instructions has been fixed.
However, to improve the representativeness of sampling, we
scatter the 20 quanta (observations) over a certain interval. For
each application this interval starts at the end of the transient phase
we showed in Table I, and its size varies according to the
benchmark behavior (e.g. a lot of benchmarks follow some
periodical behavior; the size of their intervals matches the size of
their periods). Similar studies confirm that this kind of sampling is
much better than the contiguous selection of the observations [131.

5.2 System model
Figure 2 shows the system modeled. The processor is a single issue
in-order SPARC, similar to that used in related papers [8, 121. We
consider a level one (Ll) on-chip split cache memory, and a level
two (L2) off-chip unified cache. Block size is 32B in both cases. In
all experiments, we fix a 32KB direct-mapped Ll instruction cache
with OBLst prefctching. L2 is ideal in the sense that it always hits,
and has a pipelined interface for L I block requests of I :7:2 cycles
for address transfer, access and data return, respecrively.

The LI data cache (LldC) is also direct-mapped, hut its size and
prefetching capabilities are varied (sizes: X KB, 32 KB and
I2XKB; prefetching: OBLst and/or LSC, with LSC indexed by PC
or LA-PC). The LSC detects PoinTeR list, INDex list, STRide and
SEQuential patterns by using the policy exposed in subsection 3.3,

Data
Address

(CPU ‘J

lookupbuffer
4

Figure 2. System model. The Data Prefetch box can include
MC-based and OBLst prefetchers.

which is similar to the one used 111 1171. Demand fetches and
prefetches (low priority) have 1o contend for a single cache port.
Therefore, a high prefctching lookup pressure may degrade the
system performance. When sequential and LSC prefetching work
in parallel it is possible to issue up to two prefetches per reference,
which are temporally held in the lookup buffer.

As in other papers, a I6-entry victim cache is added [22,141. This
way, we focus on the benefits prefetching offers for the elimination
of capacity and compulsory misses, and not on its ability for
dealing with conflict misses. Some benchmarks experience a large
fraction of conflict misses, in particular appiu, apsi, su2cor, swim,
tomcatv and wave!5 from the SPEC95 suite.

ORL (Outstanding Request List) is an address buffer which
supports pending prefetches and gives information about the
blocks currently being read in L2.

5.3 Performance model
Global measures such as CPl retlect global effects, but they do not
capture critical aspects of prefeetching. To isolate them, we suggest
a model (Figure 3) which is partially based on [22] and which
considers the following quantities :

Address ’
I I I I

Ll Data 1 Request forwarding 1 Next level
generamn 1 cache access access

Figure 3. Quantities considered in the performance model.

N, P: Total number of CPU data references and issued prefetches.
LldC misses are looked up in the ORL; if they are not found a
search is issued on the L2.

373

cc Number of CPU misses that are currently being serviced in L2.
They are not affcctecl by the full miss latency: WC term them&r
/rri.r.cr.s. A: Number of acccsxcs to L2 triggered by CPU misses in
L, I dC’. We call them L/~VIZLI&HS ~iss~~.c, since they arc caused by
demand, and atlending them is cl-itical.

13: Number 01’ misses causctl by the prcl&hcr currently bcinp scrvicctl
in L2. B: Number of acccsscs to 12 triggered by prcfekh misses.

n, 6. Decomposition ol‘ prcltitchccl blocks into II.sc/~~/ and lfseiess
(1.e. I-cplaccd withoul Irelerence); H = I) + 6.

Fi.om these quantities wc define: a) Number of prefelches per-
rcterence (f/N): h) Full-latency miss ratio (md = ill/V); c) Partia-
latency miss ratio (ml-= CfIN); d) Conventional miss ratio (172 = (A+(X)/
N = f7zcl + r7lt-); and c) Prd‘ctch miss rat10 (I/I,’ = H/N). that can be
Iirthcr splil in ~c~/rss and 2/.se/ztl prcfetch miss ratio (1~7~1 = f)/N and
IJZ,,~. = UN). Noio that mp + rlzd is the L2 access ratio. That is, the
number or acccsscs to L2 per rcferencc; this is ;I mcasurc 01 the
prc5surc put on L2 by Ll dC ilnd the prcfctchiny mechanism toghcthcr.

Tlic generic go,11 ol preletchin, (T is Lo clccrcase tlie convcntlonal
miss ratio (171, and especially the fraction /JIM) with ii minimum
prcssurc over I> I (minimum I’/&‘) and a minimum L2 accesb ratio
increment (minimum f~zp)‘.

These three aspects must he bnlanccd l.or each particular system.
Thus, obtaining a mlnimum nz can depend on the miss penalty at
the following memory level, whereas obtaining a minimum PIN
can he essential depending on the number of ports in the cache.
Finally, ohtaininp a minimum nzp can bc crltical if the Ll/L2
l~;inclwidlh is limited.

Fisurc 4 displays a representation of the model. The right side 01
the bar shows the processor activity, while the left side shows the
prctetching activity. Tbc ratio I’lN appears numerically on the Id‘t,
;t11(1 Ihe data Cl’1 appears on the right. A good prcli-tch system
should shill a grcal number or IIUSS~S (dc~mrrndr~rg and ,/trsl) i’rom
the right side to the Icli side, increasing nelthcr the total siLc 01 lhe
IW (L2 access ratio), nor Lhc number of cache accesses per
rcl’erence (I + IV/V).

1” 5 0 5 10

Figure 4. (A-aphical representation of the performance model.

5.4 Results
The pcrfortnancc 01‘ conventional LSC prcl‘etching (LSCconv),
LSCmi prcl’etching, and LSCmi prcletching combined with OBLst
(OHLat + LSCmi), is interpreted from our model m Figs. 5, 6 and
7. The LldC size is set a(32KB md, in each plot, the number (11
entries of the L,SC is from the top towards the bottom: 8, 16, 32,
12X and 512. The two bars at the bottom show the behavior

williout prefctchin> 7 and with OBLst prcfctching only. In each

’ Ft-om this model, the terms c’ovc’rrr,qc’ and (,c(‘llf’(~c\’ proposed in
1 141 could alter-natively he quant~l~icd xs: covr',uyc' = /l/(,4+/1) and

ccc'c'lfrtrc',' = I)/(Il+d).

figure, the average values for SPECYS-fp and SPEC95-int groups
are displayed separately. The hehavmr of the Perfect Club group is
fairly similar Lo that of SPEC9Sfp. We will omit futhcr references
to this workload due to space limitations.

By observing the three l’igurcs as a whole, it is noticeahlc the
difference between lloating point and integer applications.
SPECKS-int is almost inscnsltivc to the kind of prefetching, and the
reduction in 171 (conventional miss ratio) due to prcfetching is very
low, varying Ii-om 7. I %f (OBLst prct’ctching) lo 19.2% (OBLst +
LSCm-S12entr.). This result can he hctter understood if we
consider the characterization given in subsection 3.3., since scalar
and irregular patterns prevail hcrc. However, SPEC95-fp is yuite
sensitive to the kind of prcletching and m decreases between
27.5% (OBLst prel’ctcbing) and 86.3% (OBLst + LSCmi-512entr).

Another global observation deals with the poor c~ccurucy of OBLst
prct’etching in the integer workload. Defining UCCU~L~CY as W(fI+&),
we can see the great waste experienced in SPECOS-int: 0.23. In
SPECYS-cp the OBLbt accuracy raises to 0.77.

It can be observed in Figure 5 that the floating point workload benefits
Irom sequential prefetchin g, and it is quite sensitive to the size of the
LSCconv. Only with a hp LSC (5 12, 12X entries) do we obtain a
better data CPI than with OBLst prclctching. The main reduction in m
appeal-s in LSCconv-5 12cntr prefetching, which eliminates 8 I %J of
misses, whcrcas OBLst prcfctching removes 67.4%~ of misses.

The lookup pressure perl’ormed by LSCconv on LldC (i.e. f/N) is
high. For LSCconv-S l2cntr, I’lN reaches hl.2%, i.e. the number of
xccsscs to LldC is multiplied by I .6l. On the other hand, OBLst
only loads LldC with 7.3% extra lookup activity.

Figure 6. On-miss insertion LSC prefetching (LSCmi).

Let us now analyze separately the performance of LSCmi
prefctching (Figure 6).

In SPEC95-fp on-miss insertion significantly decreases the lookup
pressure (PIN). With an 1,SCmi ot 12X-512 entries, 35% 01
prel’etches gcneratcd hy an LSCconv prefetching arc removed.
With Iwer entries in LSCIJC, the lookup pressure increases with
respect to L,SCconv hccausc in that case LSCconv hardly issue
pre<ctchrs.

374

On the other hand, the number of pret‘etch misses forwarded to Id2
(I,‘) incl-cases with respect to LSCconv prefetching (()%I, 4%1, 20%,
52% and X2% lor 5 12. 128, 32, 16 and 8 entries respectively). In
the presence 01. II regular pattern, those preletch misses are useful,
and m(LSCml) i m(LSCconv). Only with a 5 12.entry LSC does
//f(LSCmi) incrcasc 0.8%. For the rest of cabes, It always
&creases: 9.X%. 27.X%, 37.1 %I and 28.8Y0 for a LSC with 128, 32,
I6 and 8 entries.

With regard to performance, LSCmi prefetching reduces the data
CPI of a syslem without prefetch from 43% (8 entries) to 68% (5 12
entries). The behavior of LSCconv prcfetching is always worse:
LSCmi reduces the data CPI of a system with LSCconv from 3.6%~
(5 12 entries) to 30.5% (16 entries).

In SPEC95-int we can notice the same tendency, although the
differences between LSCconv and LSCmi pretetching are smaller.
Moreover, the reduction in data CPI relative to a system without
pl.cfetching is SUlilller (1% 14%).

Figure 7. On-miss insertion LX prefetching combined with
OBL sequential-tagged prefetching (LSCmi + OBLst).

In 1:igul.c 7 WC analyze the performance of the concurrent work 01
LSCmi and OBLst. In SPECS)S-l’p the number of lookups in LldC
([‘/IV) incrcascs slightly with relation to LSCmi, but it is always
kept below the number required by LSCconv. With an LSC of 5 I2-
12X entries, there arc about 25% less prefetches than with insertion
&ILI)G. On the whole, the number of prefetch misses (H) increases
largely with respect to a LSCconv system: from 34% (5 12 entr.) to
26% (X entr.). The miss ratio decrease is also noticeable: between
2 I %) (5 I2 entr.) and 70% (8 entr.). Data CPI decreases are between
2.4% (5 I2 entr.) and 56%~ (8 entr.).

In SPECOS-int, results are qualitatively but nor quantitatively
similar. The accuracy decrease is noticeable due to the concurrent
activity of OBLst prcfctcbing.

On the whole, the most relevant fact is the very Iow sensitivity of
tbc miss rat10 and the data CPI with respect lo the size of LSC.
When moving li-om 5 12 to 8 entries the loss in performance is only
3.75%) in data CPI lor SPEC95-fp.

As Table 6 shows for SPEC95-fp, LSCmi-Xentr + OBLst prefetching
achieves belter ratios in almost all the metrics with respect lo
LSCconv-5 12entr. It reduces the lookup pressure (J’/N decreases
S&4%), increases the prefctch miss ratio (28.7% more in R/N), and so
dccreascs the miss ratio (10.3%). As a ncgativc effect, a loss of
accuracy --U/(U+6)- appears due to the use 0fOBLst. In both cases
data CPI is almost the same, but with a cost 64 times lower.

LSCconv-512
LSCmi-8 +OBLst

% P/N % B/N % m data-CPI D/(D+6)
61.2 586 1.72 0.082 0.978
26.7 7.54 1.54 0.063 0.785

Table 6: SPECYS-fp comparison between LSCconv-512entr
and LSCmi-Xentr + OBI,st.

5.4. I Results on programs which fbllow regubr patterns
To observe the performance of our proposal when applied to
programs with an outstanding presence of. stride and list patterns,
we have carried out a sclcction over the whole workload.

Figure 8 shows the means for applu, apsi and wave5 from SPEC95
FP, spice from SPEC92 and arc2d and trfd from Perfect Club. Results
for LSCconv appear on the left, and LSCml + OBLst on the right.

It can be observed in Table 7 that for these benchmarks, an
LSCmi-Xcntr.+OBLst performs bcttcr than an LSCconv-5 12entr.
with regard to data-CPI, which dccrcases 14.5%.

% PIN % BIN % m data-CPI D/(D+F)
LSCconv-512 56.7 4.90 3.05 0.165 0.956
LSCmi8 +OBLst 21.1 7.80 2.80 0.141 0.665

Table 7: LSCconv-SlZentr vs. LSCmMentr + OBLst for
applu, apsi, waves, spice (SPEC), arc2d and trfd (Perfect).

Although the Ics~dts discussed here arc based on a 32KB LldC, we
have simulated other cache sizes too (XKB and 12XKB). The same
conclusions arc valid for these sizes, yet the advantages of our method
increase with the cache size. Eventually, we issue prefetches by using
an LA-PC as in [I 1, and with a prefetch distance equal to I .5 times the
memory latency. In this case the lookup pressure (P/N) increases,
because the method tries to prefetch SCAlars too. Therefore, the
advantage of our method is greater since most of these scalar Id/s t hit
in LldC and are not inserted in the LSCmi.

6. COST ANALYSIS
Executing a lwst instruction requires at least two accesses to the
LSC. The first access reads inlbrmation about that instruction which
will be used later for detecting the pattern and for calculating the new
state. The second access writes the updated information after the
Instl-uction has been executed. With a simple pipeline, the reading
could be performed during the ALU stage, after the Id/St instruction
has been decoded. The computations for pattern recognition and for
generating the new state could he carried out during memory access.
Writing should be done in the final stage.

Such a simple implementation requires a writing port and a reading
port in the LSC. If prefetches are driven by LA-PC, a third additional
reading port is needed in orther to check if the instruction addressed by
LA-PC is a ~d/st., and if it matches some pattern.

Every entry in the LSC contains a variable number of fields,
depending on the patterns that we want to recognize. If we intend
to detect strides only, four fields are required: PC’, Ai, Si and state.
32-bit addressing yields 12 bytes per entry (stute needs only a few
bits). If we intend to detect accesses to lists chained by address and
index, we should add three more liclds (I%, di and Ki), and every
entry would take 24 hytca.

375

To sum up, a direct-mapped LSC with 5 I2 entries stores between
6KB and 12KB, uses a decoder with 5 I2 entries (similar to that of
a direct-mapped cache of 8KB with blocks of IbB), and requires
two ports at least, since it must be tested and updated in a single
cycle. Therefore, an LSC is comparable in size to a first-level data
cache. Replacing such an expensive 512-entry LSCconv by a 8-
entl-y LSCmi + OBLst divides its storage costs by a factor of 64. It
is difficult to apply an area model in order to take into account the
I’ixed cost of the control unit due to the great inaccuracy of such
models when computing area for very small caches [181.

7. CONCLUSIONS
It1 111is paper we have analyzed the performance of a load/store
cache as a base for dil‘lerent proposals of hardware-based data
preletching with patterns other than the sequential one. We have
found that in order to perform better than with sequential
preietching, it is necessary to provide as much storage area as for a
lirst-level data cache. This is due to two key facts: a) regular
patterns different from the sequential pattern are uncommon; and
b) most of the instructions that occupy the LSC entries do not miss
(i.e. the involved prefetching is useless).

Decreasing the cost of the LSC with no efficiency loss, implies that
useless instructions must be removed from the LSC. To do that we
propose applying on-miss insertion in the LSC (LSCmi) working
in parallel wit11 tagged sequential prefetching.

On-miss insertwn introduces new instructions in the LSC only if
they miss in the data cache. This way, instructions tI1at can take
profit from prefctching will be more likely included in the LSC.
On the other hand, sequential prefetching reinforces this point
because it prevents the Id/St instructions whicli follow this pattern
from contending for the LSC entries.

For numerical workloads (SPEC95fp and Perfect Club) our
proposal achieves a great increment in performance for every
cache size, specially for the small ones. We believe that the
relevant point here is that the performance of an LSCmi decreases
only 3.75%) in terms of data-CPI when the number of entries
decreases born 512 to 8. An LSCmi with 8 entries working in
combination wit11 an OBLst prefetching achieves a performance
comparable to that of a conventional LSC with 5 I2 entries (with a
storage cost 64 times lower).

FOI- non-numerical workloads (SPEC95-int) the performance of an
LSC is rather limited because of the absence of recognizable
regular patterns. In this context, it makes little sense improving its
management, Anyway, since our method reduces the number of
entries strongly, it is possible to increase the number of fields of
each entry (for detecting new patterns) with little cost.

REFERENCES
11 1 J.L. Baer and T.F. Chen. “An Effective On-chip Preloading

Scheme to Reduce Data Access Penalty”. In Supercomputing
‘)I, pp.l76-1X6, 1991.

121 K. Bolland and A. Dollas. “Predicting and Precluding Prob-
lems with Memory Latency”. IEEE Micro, vol. 14, no. 4,
Aug. 1994, ~~59-67.

13 1 D. Burger, J.R. Goodman and A. Kagi. “Memory Bandwidth
Limitations of Future Microprocessors“. In Proc. of 23th Int.
Symp. on Computer Architecture, pp.78-89, May 1996.

141 T.F. Chen and J.-L. Baer, “A Perlormance study of Software
and hardware Data Prefetching Schemes”, Proc. 2 I st Int.
Symp. Computer Architecture, 1994, pp. 223-232.

IS] H. Cmclik and D. KeppeI,“Shade: A Fast Instruction-Set Sim-

ulator for Execution Profiling”. Proc. of ACM SIGMETRICS,
May 1994, pp. 128- 137.

[6] F. Dahlgren, M. Dubois and P. Stenstrom, “Fixed and Adap-
tive Sequential Prefetching in Shared-Memory Multiproces-
sors”, Proc. 1993 Int. Conf. Parallel Processing, CRC Press,
Boca Raton, Fla., 1993, pp. 156-163.

(71 F. Dahlgren, M. Dubois and P. Stenstriim, “Sequential Hardware
Prefetching in Shared-Memory Multiprocessors”, IEEE Trans.
Parallel and Distributed Systems, July 1995, pp. 733-746.

[8] F. Dahlgren and P. Stenstrom, “Effectiveness of Hardware-
Based Stride and Sequential Prefetching in Shared Memory
Multiprocessors”, Proc. first IEEE Symp. High-Performance
Computer Architecture, 1995, pp. 6X-77.

[9] K. Farkas, N. Jouppi and P. Chow, “How useful are non-
blocking loads, stream buffers ant1 speculative execution in
multiple issue processors”, PI-oc. first IEEE Symp. High-Per-
lormance Computer Arcllitccture, 1995, pp. 78-89.

[IO] J.W.C. Fu, J.H. Pate1 and B. L. Janssens. “Stride Directed
Prefetching in Scalar Processors”. In Proc. of 25th Int. Symp.
on Microarchitecture (MICRO-25), ACM, pp. 102-I 10,
December 1992.

[I I] E. Hagersten. “Towards Scalable Cache Only Memory Architec-
tures”, PhD thesis, Swedish Inst. of Comp. Science, Oct. 1992.

[121 P. Ibariez and V. Viiials. “Performance Assessment of Con-
tents Management in Multilevel on-chip Caches”. In Proc. of
the 22nd Euromicro Conf. pp: 43 I-440, Sept. 1996.

[131 L. Jimeno, P. Ibahez and V. Viiials. “Warm Time-sampling:
Fast and Accurate Cycle-level Simulation of Cache Mem-
ory”. In Proc. of the 22nd Euromicro Conf. Short Contrib. pp:
39-44, Sept. 1996.

[I41 D. Josephand D. Grunwald, “Prefetclling Using Markov Pre-
dictors”, Proc. of 24th Int. Symp. Computer Architecture,
pp.252-263, June 1997.

[151 N.P. Jouppi. “Improving Direct-Mapped Cache Performance
by the Addition of a Small Fully-associative Cacl1e and
Prefetch Buffers”. In Proc. of 17th Int. Symp. on Comp.
Architecture, pp.364-373, May 1990.

161 Y. Jegou and 0. Temam. “Speculative Prefetching”. Proc. of
ICS-93, pp. I-I 1, Dec. 1992.

171 S. Mehrotra and L. Harrison. “Examination of a Memory
Access Classification Scheme for Pointer-Intensive and
Numeric Programs”. Proc. of ICS-96, pp. 133-140, 1996.

[181 J. M. Mulder, N. T. Quach and M. J. Flynn. “An Area Model
for On-Chip Memories and its Application”. IEEE Jour. of
Solid State Circuits 26 (2) Feb. I99 I, pp. 98- 106.

[191 T. Ozawa Y. Kimura and S. Nishizaki, “Cache miss heuristics
and preloading techniques lor general-purpose programs”.
Proc. 28th Int. Symp. Microarchitecture. 1995, pp. 243-248.

[20] S. Palacharla and R.E. Kessler, “Evaluating Stream Buffers as
secondary cache replacement”, Proc. of 21 th Int. Symp. Com-
puter Architecture, April 1994, pp.24.33.

[21] A.J. Smith. “Cache Mcmorics”. Computing Surveys,
14(3):473-530, Sept. 19X2.

[22] D.M. Tullsen and S.J. Eggers,“Effective Cache Prefetching
on Bus-Based Multiprocessors”. ACM Transactions on Com-
puter Systems, Vol. 13, No. I, February 1995, pp. 57-88.

[23] S. VanderWiel and D.J. Lilja. “When Caches Aren’t Enough:
data prefetching techniques”. IEEE Computer, Vol. 30, No. 7,
july 1997, pp. 23-30.

376

