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ABSTRACT 
A common mechamsm to pcrlorm hat-dware-based pl-efetching for 
regular accesses to arrays and chained lists is based on a Load/Store 
cache (LSC). An LSC associates the address of a Id/SC instruction 
with Its individual hchavior at every entry. WC show that the 
implementation cost of the LSC is rather high, and that using it is 
Ineff’icicnt. We aim to decrease the cost of the LSC but not its 
pcrl’ormancc. This may he done preventing useless instructions 
from hemg stored in the LSC. We propose eliminatmg those 
inslructions that never miss, and those that follow a sequential 
pilttWl1. This may be carried out by insertin, 0 a lci/ it inslruction in 
the 1,SC whenever it misses in the data cache (on-miss insertion), 
and issuing sequential prefetching simultaneously. After having 
analy~d the perf’ormancc of this proposal through a cycle-by-cycle 
simulation ovet- a set 01. 25 benchmarks selected from SPEC9.5, 
SPEC92 and Perfect Club, we conclude that an LSC of only 8 
entries, which combines on-miss insertion and sequential 
prettching, performs hetter than a conventional LSC of 5 I2 
entries. We think thal the low COSI of the proposal makes it worth 
being taken into account for the development of future 
microprocessors. 

1. INTRODUCTION 
Every effort to decrease cycle time or increase Instruction Level 
Parallelism when designing a high performance microprocessor, 
may he neutralized by a slow memory subsystem [2, 31. A large 
number of techniques have been developed to minimize the latency 
impact of a data reference, reducing either the number of misses 
(e.g. hardware and software based prefetching) or their cost (e.g. 
non-blocking caches, multithreading, decoupling). 

S&ware hased data preielching techniques use special PREFETCH 
instructlons to bring a block into the cache memory in advance. Most 
contemporary architectures include this instruction, and many 
compilers can transform simple loops in order to decrease their miss 
ratio substantially. However, these software techniques sometimes 
perform poorly with respect to hardware prefetching [4, 231. 

Moreover, hardware based prefetching does not need to recompile, 
and cloes not increase code size. A typical approach consists in 
pret’etching one or more consecutive blocks in a sequential way 
121 1, and it is l‘requently used on the instruction stream. In recent 
years (Ol-97), altcrnativc approaches have been proposed to predict 
non-sequential accesses or to issue prcfetching at the right time. 
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Nevertheless, most 01 the current microprocessors do not 
implement hardware prefetching. An exception to this is the 
sequential tagged prcfetching mechanism between the HP-PA 7200 
processor and its external cache memory. 

In this paper WC show a way of improving hardware-based preietching 
in regular accesses to arrays and chained lists. Particularly, we focus on 
the Load/Store Cache (LX). a mechanism driven by the address 
stream generated by each id/St instruction. The LSC associates the 
PC-address of a Id/St instruction with its individual behavior. Every 
time a Id/St instruction that is not present in the LSC is executed (LSC 
nzm), it is inserted into the LSC. Once a pattern has heen recognized 
and the instruction executes apam, a prefetch address will be computed 
and issued. 

Previous work proposes a dil-cct-mapped LSC with a number of 
entries between I28 and 5 I2 [I, IO, 16, 171. It will be shown later 
that the cost of a LSC with 5 I2 entries is similar to that of a double- 
ported cache memory with a size between 6 and I2 KB. This may 
decline the USC of the LSC in l’avor of more important resources. 

Our purpose is to improve the use of the LSC entries in order to 
decrease their number. We want to achieve similar (or even better) 
performance while reducing the cost. 

As lar as we know, no previous reference considers both, the LSC 
performance [ 10, 161 and the behavior of the Id/St instructions 
regarding their addressing patterns 18, 171. and the workloads they 
consider arc not very extensive. Our first contribution goes in that 
direction, and is based on the analysis of 25 programs (taken from 
SPEC92, SPEC95 and Perfect Club). From this characterization we 
can advance the following results: a) the miss ratio for a direct- 
mapped LSC with 5 I2 entries is too high for many applications, 
b) most ot’the instructions follow scalar or sequential patterns, and 
c) most ol‘the Id/St instructions hardly miss. 

In this paper we propose preventing some instructions from being 
stored in the LSC in order to reduce its number 01. entries. By 
considering the former results, we identify and discard instructions 
that: a) induce the preletch 01. blocks that are already in the cache, 
or b) show a sequential addressing pattern. This can be done by 
combining two strategies: 

- Storing Id/St instructions in the LSC only when they miss in the 
data cache (on-nziss imrrfron) 

- Performing sequential prefctching in parallel. In particular, we use 
One-Block-Lookahead sequential tagged prefetching (OBLst) [2I]. 

To understand the key aspects of prefetching, we use a performance 
model that takes into account the cache lookup pressure, the data 
CPI, the shift from CPU misses to correctly prel’etched misses, and 
other useful characterizations of the prefetching dynamics. Through 
this model, we compare our appi-oath with the conventional LSC 
by means 01’ a detailed cycle-level simulation, varying parameters 
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SLICII as LSC and data cache sizes. A noticeable point is that 
perf’ormance holds when the number of LSC entries are reduced: 
wc show that an LSC of only 8 entries, managed by on-miss 
inscl-tion aid combmed with sequential prefetching, performs 
hctter than a conventional LSC of 5 I2 entries. 

This paper is organized as follows. Section 2 reviews related 
works. Section 3 presents the workload, the methodology we have 
followed and the characterization of the Id/St stream behavior 
relevant to the LSC operation. Section 4 introduces the insertion- 
m1s5 policy and the combination with sequential data prefetching 
in detail. Sections 5 and 6 describe the performance model, give 
experimental results and discuss implementation costs. Finally, 
Sccrion 7 st~mmarizes the main points of this contribution. 

2. PREVIOUS WORK 
Noti-sequential data prefetching was firstly introduced by Haer and 
Chcn [I] under the term Prcloading. The LSC used in that work was 
called Refbrence Prctliction Table (RPT). An RPT is organized as a 
cache indexed by a Look Ahead Program Counter (LA-PC), whose 
value is based on some branch prediction policy. LA-PC varies from 
the current PC value to a limit imposed by a constant named prefetch 
distance which is proportional to the latency of the following level. If 
LA-PC hits in the m, and the state of the selected entry indicates a 
stride pattern, the addition of the latest address issued by the 
correspondmg ~d:st plus the stride is prefetched. Prefetched blocks 
are directly added to the data cache. 

Stride-directed prefetching [I OJ and speculative prefetching [ 161 use a 
G~iilar table, but now indexed by the PC. Every time a ld/st 

Instruction is executed, the table is searched. Ii the instruction is found 
in the table, the corresponding prefetchcd block will be used in the 
next iteration. LJnder stride-directed prefetching, target blocks are 
loaded directly into the data cache. Under speculative prefetching, the 
prcfetched blocks are loaded into a small separate cache. 

Finally, [17] suggests an addition to the previous approaches in 
order to detect a linear traversal of a chained list made up of 
records. It is assumed that each record has a next-address field that 
points to the next record. This mechanism detects the Id instruction 
that l-cads the next-address field, and uses that value plus/minus a 
constant as the prefetch address. This paper also considers the 
pattern that appears when traversing sparse arrays whose non-zero 
elements are chained by an index (e.g. spice). 

Besides these papers about prefetching based on the classification 
of ICI/S~ instructions, another big group which directly deals with 
the global sequence 01‘ addresses (or first-level cache misses) can 
hc considered. The approach presented in [I 1 J and used in [8] is 
based on keeping a list of common strides by calculating the 
strides hetween each reference and the previous sixteen references. 

In 1201 the minimum delta scheme (also used in [9]) and the 
partition scheme are introduced. The former calculates the stride as 
the minimum difference between a missed address and the last II 

missed addresses. The latter splits memory into zones, and 
calculates the stride between the last two references to the same 
zone. In [ 141 Markov Chains are used to prefetch multiple 
rclerence predictions from the memory subsystem. These schemes 
arc proposed I’or off-chip environments, in which the address of the 
instruction to be included in the LSC is not available. 

Finally, some approaches try to issue the prei’ctch as sow as 

possible, or even to determine which is the optimal time to do it, 
supposing very large latencies (c.g. to fill in advance off-chip 
caches in shared memory multiprocessors). Thus, [I 51 proposes 
the use of stream buffers, which issue several requests in sequence 

instead of issuing a single WC and store the requests until they are 
referenced. The purpose of this policy is to increase the prefetch 
distance, i.e. to request blocks even earlier. In [20, 91 this idea is 
also applied to streams with stride accesses, Adaptive sequential 
prcfetching is proposed in [6,7]. In [X] the same idea is extended to 
non-sequential stride prefetching, and a comparison between the 
sequential and not sequential cases is carried out. Adaptive 
prefetching modifies the prefetch distance dynamically, according 
to the latency of the system and to the loop size. Prefetched blocks 
are stored in the cache. 

There are many papers dealing with software-based prefetching which 
we do 1101 mention here, for they lay beyond of our scope. We should 
mention [I’,], however. because it concludes that most misses are 
caused by Id instructions with stride and list patterns, and this is a key 
idea in our work, as we have exposed in Section 1. However, it must 
be pointed out that [ 191 considers sequential prefetching as a particular 
case of stride prcfetching. The authors propose a compilation 
algorithm that reorders the code to eliminate dependencies between 
the instructions that load values and the instructions that use those 
values, and analyze I2 benchmarks of SPEC92. 

3. PATTERN CHARACTERIZATION AND 
LSC USAGE 
In order to take advantage ol’the insertion of a Id/St into the LSC, 
the following conditions must hold: 

Cl. The instruction must remain some time in the LSC before 
being useful, because we need several executions in order to fix the 
prefetch condition. 

C2. The instruction must access to memory following one of the 
regular patterns that can bc recognized. 

C3. The datum that is being accessed by the instruction must not 
reside in the data cache, since prefetching is not necessary in that case. 

Previous work based on the use of an LSC [ 1, IO, 14, 171 does not 
consider the optimization of the LSC in these terms, and gives no 
detailed characterization of the relative importance of the different 
patterns recognized. 

3.1 Workload and tracing methodology 
The chosen workload is a set of 25 programs taken from SPEC95 
(8 integer and IO floating point), SPEC92 (spice) and from Perfect 
Club (6 tloating point). This workload has been targeted to a 
SPARC V7 architecture. The user-mode execution traces have 
been obtained dynamically by means of Shade, a utility from SUN 
microsystems [5]. 

Figure I shows the complete evolution of CPI for a single issue 
SPARC processor executing Spice on a sample system. A transient 
behavior up to 4,000 million instruction can be observed. From 
this point on, a steady state appears with low variation in the mean 
value. The majority of the papers referred to in Section 2 assume a 
transient state of some tens OF million instructions at most, and take 
a single observation after this point. This may not be representative 
of the whole program behavior. 

In this section, we have simulated 2000 million consecutive 
instructions beyond the end of the transient state, rounded to a 
billion instructions. This transient state has been determined by 
plotting the temporal behavior of each program. 

The advantage of this methodology arises when the locality in the 
transient state is quite different from that in the steady state. From 
a programmer’s point of view, the transient behavior corresponds 
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Figure 1. CPI evolution while executing Spice on a sample system. 

typically to the initialization of data structures hy using very 
smrple -almost sequential- access patterns. 

‘T’ahle I shows the following data (from left to right): program input, 
number 01. mstmctions. total number of loads and star-es of the full 
execution, number of instructions of the transient phase and number of 
instructions skipped until statistics begin to be computed. All the 
numbers arc in billions. Programs labeled as irregular do not have a 
clear transient phase. To compute the means, we consider the three 
groups that are differentiated on the table (we include Spice from 
SPEC 92 inside the SPEC95-fp group). 

Table 1: Dynamic counts, transient intervals and number of 

skipped instructions (x 109). 

3.2 LSC misses 
WC define the miss ratio in the LSC as: 

I~~,~,~~ = (#misses in LSC)/N 

whcrc N is the number of memory references, and a miss is counted 
ever-y time the PC-address of a Id/St instruction is not found in the 
LSC directory. This miss ratio is related to the condition Cl, because 
the average number of times that a l.d/st instruction is executed 
hcforc being replaced is just the inverse of mLSC, 

Table 2 presents the average values of mLSC for a direct-mapped 
LSC with a different number of entries. If we analyze the 
individual behavior of each program, it can be observed that in 
order to achieve a value of mtdsc less than or equal to lo%, we 
need at least 1024 entries in 10 out of 25 benchmarks. With 
m,,=]O’%, a ld/st instruction remains in the LSC for ten 
consecutive instances in average. Whenever the instruction is 
replaced, 3 executions are needed to detect a pattern before 
triggering the prefetch. Therefore, the ratio (#prefetches/ 
#references) is 70%. With a miss ratio of 25%~~ that ratio drops to 
2.5%. 

Table 2: mLsc, average miss ratio of a direct-mapped LSC in % 

Even though we do not know the r-elation between mLSC and the 
reduction of the effective access trme due to prefetching, those data 
suggest a higher number of entries with reference to previous 
papers [I, 10, 16, 171. 

3.3 Pattern Distribution 
Even supposing an ideal behavior of the LSC (mt.SC = 0), some 
pattern is needed to trigger prefetching (condition C2). We have 
looked in our workload for five patterns that can be recognized by 
hardware techniques. This has been done by tracking the following 
equalities for each Id/St instruction: 

SCAlar: Ai = Al.1 
SEQuential: A, = A,- t + x 0 -c s I Bsize 
STRide: A,=Ai-t +S S > Bsize II S < 0 
PoinTeR list:Ai = Di-l + d d is a record displacement 
INDex list’: Ai = 4’lDi-, + K 4 = integer index size 

K= Base Address of the Index Anay 
Ai IS the address generated by a ld/st during its execution i, Di is 
the value read by a load instruction during its execution i, and 
Bsize is the block size. Stores can only follow the first three 
patterns. 

The groups presented in Table 3 are disjoints. If an instance of a 
Id/St instruction matches sever-al patterns at once, it is firstly 
classified according to the pattern recognized in the previous 
instance. If several patterns arise repeatedly, the following 
priorities are applied: SCAlar, PoinTeR list, INDex list, STRide or 
SEQuential. 

Most of the accesses are scalar or sequential. Few of them follow 
stride or chained list patterns, and they concentrate over a few 
benchmarks. The higher percentages in the Remaining column are 
mainly due to integer programs whose access patterns we do not 
detect. 

’ An example of the pattern IND is accessing to a non-compressed 
sparse array by means of another array with the indexes of the non- 
zero elements; “INDex list” models the reference to the Index Array. 
The program spice2g6 shows a large percentage of this behavior. 
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Table 3: Classification of accesses according to their patterns. 

A lot of research on the matter reports a high number of stride 
accesses, because sequential accesses are considered as a particular 
case of stride acccsscs. An exception is [8], where sequential and 
stride patterns arc separately studied in programs of the SPLASH-l 
suite, in a multiprocessor environment. The distributions given in 
that paper are vel-y similar to those we have t’ound in SPEC95 and 
Pcriect Club. 

The h-cqucnc SEQuential pattern, when considcrcd as a particular 
case of the STRide pattern, ensures the utility of any LSC prepared 
lor detecting strides. However, sequential prefetching is simpler 
(no LSC is required) and cheaper (at most one hit per block). 

On the other hand, prefetching SCAlar patterns is useless when 
LSC is indexed through the PC, because a variable is accessed and 
prefetched at the same time. However, this may be useful when 
indexing the LSC through the LA-PC. 

The sum of stride and list patterns (STR, PTR and IND columns) is 
small hut noticeable: the average values for Perfect, SPEC95-int 
and SPECYS-fp are 10.X%, 4.6% and 8.35% respectively. 
Ncvcrtbeless, in some programs most of the accesses follow these 
patterns (ARC2D. TRFD, applu, spice2g6) and a high benefit from 
prctetching may bc obtained. 

3.4 Execution and miss frequencies correlation. 
Whatever piltlerrls they follow, it is of no use to keep Id/St 
instructions that never miss in the LSC (condition C3). 

Up to now we have considered that a Id/St instruction is inserted in 
the LSC when it is executed and misses in the LSC. We call this 
strategy tr/wtry.s insertion. Under nlwa~~ insertion and in the absence 
of conflicts, the probability for a Id/St instruction of being in the LSC 
is proportional to its frequency of execution. However, the set of Ed/ 
St Instructions we arc keeping in the LSC (the most frequently 
cxccuted) may not be the most suitable set (the set that would cause 
more cache miascs if prefetching were turned off). 

In order to study the correlation between executions and misses we 
simulate a direct-mapped cache of XKB and Bsize = 16B with 
tagged sequential prefetching. For each individual Id/St we record 
the number of executions and misses. Then, we put all the Id/St 

instructions into two lists: the first one ordered by number of 
executions, and the second one ordered by number of cache 
misses. Finally, we take the necessary last to cover 90% 01. 
executions from the top of the first list, and from the second list the 
necessary Id/St to cover Y~%I of misses. By doing so, we can 
distribute Id/St. into one of four disjoint classes: 

A) id/ St that represent less than 10% of total executions and misses. 

B) Id/ s t that represent Y()% of executions, hut not 90% oi-misses. 

C) Id/St that represent YO% of misses, but not 90% of executions. 

D) Id/s t that represent YO% of executions u&misses. 

Table 4 presents the average number 01. Id/St instructions in each 
class for each workload group. 

Table 4: Number of Id/St instructions for each Class. 

The Id/St we want to store in the LSC belong to classes C and D, 
yet those which are really filling the table belong to classes B and 
D. It can he observed that BUD is greater than CUD by a factor of 
5, 2 and 5.4 for Perfect, SPEC95-int and SPEC95-fp respectively. 

Instructions belonging to class C have a low probability of being in 
the LSC. However, they yield many misses and in consequence, it 
would be convenient to keep them in the LSC. On average, they 
represent 25% of the set with more misses, CUD. 

On the other hand, ld/st instructions of class B have a high 
probability of being in the LSC. However, they hardly miss in the 
cache and it is of no use to keep them in the LSC. On average, they 
account for 78.6% of the most executed set, BUD. 

4. ON-MISS INSERTION PLUS SEQUEN- 
TIAL-TAGGED PREFETCHING 
From the pattern distribution and the correlation between 
execution and miss frequencies, we propose a combined 
prefetching strategy, in which addresses are computed by two 
independent prefetching mechanisms working in parallel: a) LSC 
with on-miss insertion (LSCmi) prefetching, and b) One Block 
Lookahead sequential tagged (OBLst) prefetching [21]. 

Under on-nziss insertron, a bit in the LSC involves the same actions 
as under &V~!JJS inscrt~o~z (updating the state, the data field, etc.). 
But in cast of a LSC miss, insertion is performed only when there 
has been a miss in the data cache too. 

This way, the probability of finding a Id/St instruction in LSC is 
proportional to its miss frequency in the data cache, and not to its 
frequency of execution. If two or more Id/St instructions are 
mapped to the same LSC entry, they do not contend for that entry 
if they hit in the data cache, increasing the stability of those 
instructions that miss. 

We add OBLst prefetching to prevent the Id/St instructions which 
follow a SEQuential pattern from contending for LSC entries. 
Moreover, sequential prefetching can determine sequential 
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relations among d$/. ‘ivent loads, adding useful prefetching streams 
which an LSC would not be able to generate. 

By way of example, let us consider a chained list at‘s true ts greater 
than the block size. The Id instruction which reads the pointer field is 
classified by the corresponding detector. However, Id inslructions 
which access the remaining fields do not follow a regular pattern; 
OBLst prefetching can perform successfully in this case. 

In Table 5 we show the replacement ratio for an LSCmi, defined as 
the number of ~1st entries evicted divided by the total number of 
references. This ratio is comparable with that of Table 2 in the 
sense that its inverse is the average number of times that a given 
instruction is executed while remaining in the LSC until it is 
rcplacetl. It is noticeable the one/two order of magnitude shift 
hctween the two tables. 

Table 5: Average replacement ratio of a direct-mapped ISCmi. 

5. PERFORMANCE ANALYSIS FOR A SIN- 
GLE PROCESSOR-MEMORY SYSTEM 

5.1 Workload and tracing methodology 
The evaluation has been carried out by using the workload 
descrihcd in subsection 3.1. However, we assume now a 
multiprogramming environment with a quantum of I million 
instructions. We also assume a multiprogramming degree high 
enough to empty the first-level caches between every two bursts of 
the same process completely. 

Given the high temporal cost of the cycle level simulation and the 
big number of benchmarks that have been analyzed, it is not 
possible to proceed with the same number of instructions that was 
used in Section 3. A limit of 20 million instructions has been fixed. 
However, to improve the representativeness of sampling, we 
scatter the 20 quanta (observations) over a certain interval. For 
each application this interval starts at the end of the transient phase 
we showed in Table I, and its size varies according to the 
benchmark behavior (e.g. a lot of benchmarks follow some 
periodical behavior; the size of their intervals matches the size of 
their periods). Similar studies confirm that this kind of sampling is 
much better than the contiguous selection of the observations [ 131. 

5.2 System model 
Figure 2 shows the system modeled. The processor is a single issue 
in-order SPARC, similar to that used in related papers [8, 121. We 
consider a level one (Ll) on-chip split cache memory, and a level 
two (L2) off-chip unified cache. Block size is 32B in both cases. In 
all experiments, we fix a 32KB direct-mapped Ll instruction cache 
with OBLst prefctching. L2 is ideal in the sense that it always hits, 
and has a pipelined interface for L I block requests of I :7:2 cycles 
for address transfer, access and data return, respecrively. 

The LI data cache (LldC) is also direct-mapped, hut its size and 
prefetching capabilities are varied (sizes: X KB, 32 KB and 
I2XKB; prefetching: OBLst and/or LSC, with LSC indexed by PC 
or LA-PC). The LSC detects PoinTeR list, INDex list, STRide and 
SEQuential patterns by using the policy exposed in subsection 3.3, 

Data 
Address 

( CPU ‘J 

lookupbuffer 
4 

Figure 2. System model. The Data Prefetch box can include 
MC-based and OBLst prefetchers. 

which is similar to the one used 111 1171. Demand fetches and 
prefetches (low priority) have 1o contend for a single cache port. 
Therefore, a high prefctching lookup pressure may degrade the 
system performance. When sequential and LSC prefetching work 
in parallel it is possible to issue up to two prefetches per reference, 
which are temporally held in the lookup buffer. 

As in other papers, a I6-entry victim cache is added [ 22,141. This 
way, we focus on the benefits prefetching offers for the elimination 
of capacity and compulsory misses, and not on its ability for 
dealing with conflict misses. Some benchmarks experience a large 
fraction of conflict misses, in particular appiu, apsi, su2cor, swim, 
tomcatv and wave!5 from the SPEC95 suite. 

ORL (Outstanding Request List) is an address buffer which 
supports pending prefetches and gives information about the 
blocks currently being read in L2. 

5.3 Performance model 
Global measures such as CPl retlect global effects, but they do not 
capture critical aspects of prefeetching. To isolate them, we suggest 
a model (Figure 3) which is partially based on [22] and which 
considers the following quantities : 

Address ’ 
I I I I 

Ll Data 1 Request forwarding 1 Next level 
generamn 1 cache access access 

Figure 3. Quantities considered in the performance model. 

N, P: Total number of CPU data references and issued prefetches. 
LldC misses are looked up in the ORL; if they are not found a 
search is issued on the L2. 
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cc Number of CPU misses that are currently being serviced in L2. 
They are not affcctecl by the full miss latency: WC term them&r 
/rri.r.cr.s. A: Number of acccsxcs to L2 triggered by CPU misses in 
L, I dC’. We call them L/~VIZLI&HS ~iss~~.c, since they arc caused by 
demand, and atlending them is cl-itical. 

13: Number 01’ misses causctl by the prcl&hcr currently bcinp scrvicctl 
in L2. B: Number of acccsscs to 12 triggered by prcfekh misses. 

n, 6. Decomposition ol‘ prcltitchccl blocks into II.sc/~~/ and lfseiess 
(1.e. I-cplaccd withoul Irelerence); H = I) + 6. 

Fi.om these quantities wc define: a) Number of prefelches per- 
rcterence (f/N): h) Full-latency miss ratio (md = ill/V); c) Partia- 
latency miss ratio (ml-= CfIN); d) Conventional miss ratio (172 = (A+(X)/ 
N = f7zcl + r7lt-); and c) Prd‘ctch miss rat10 (I/I,’ = H/N). that can be 
Iirthcr splil in ~c~/rss and 2/.se/ztl prcfetch miss ratio (1~7~1 = f)/N and 
IJZ,,~. = UN). Noio that mp + rlzd is the L2 access ratio. That is, the 
number or acccsscs to L2 per rcferencc; this is ;I mcasurc 01 the 
prc5surc put on L2 by Ll dC ilnd the prcfctchiny mechanism toghcthcr. 

Tlic generic go,11 ol preletchin, (T is Lo clccrcase tlie convcntlonal 
miss ratio (171, and especially the fraction /JIM) with ii minimum 
prcssurc over I> I (minimum I’/&‘) and a minimum L2 accesb ratio 
increment (minimum f~zp)‘. 

These three aspects must he bnlanccd l.or each particular system. 
Thus, obtaining a mlnimum nz can depend on the miss penalty at 
the following memory level, whereas obtaining a minimum PIN 
can he essential depending on the number of ports in the cache. 
Finally, ohtaininp a minimum nzp can bc crltical if the Ll/L2 
l~;inclwidlh is limited. 

Fisurc 4 displays a representation of the model. The right side 01 
the bar shows the processor activity, while the left side shows the 
prctetching activity. Tbc ratio I’lN appears numerically on the Id‘t, 
;t11(1 Ihe data Cl’1 appears on the right. A good prcli-tch system 
should shill a grcal number or IIUSS~S (dc~mrrndr~rg and ,/trsl) i’rom 
the right side to the Icli side, increasing nelthcr the total siLc 01 lhe 
IW (L2 access ratio), nor Lhc number of cache accesses per 
rcl’erence ( I + IV/V). 

1” 5 0 5 10 

Figure 4. (A-aphical representation of the performance model. 

5.4 Results 
The pcrfortnancc 01‘ conventional LSC prcl‘etching (LSCconv), 
LSCmi prcl’etching, and LSCmi prcletching combined with OBLst 
(OHLat + LSCmi), is interpreted from our model m Figs. 5, 6 and 
7. The LldC size is set a( 32KB md, in each plot, the number (11 
entries of the L,SC is from the top towards the bottom: 8, 16, 32, 
12X and 512. The two bars at the bottom show the behavior 

williout prefctchin> 7 and with OBLst prcfctching only. In each 

’ Ft-om this model, the terms c’ovc’rrr,qc’ and (,c(‘llf’(~c\’ proposed in 
1 141 could alter-natively he quant~l~icd xs: covr',uyc' = /l/(,4+/1) and 

ccc'c'lfrtrc',' = I)/( Il+d). 

figure, the average values for SPECYS-fp and SPEC95-int groups 
are displayed separately. The hehavmr of the Perfect Club group is 
fairly similar Lo that of SPEC9Sfp. We will omit futhcr references 
to this workload due to space limitations. 

By observing the three l’igurcs as a whole, it is noticeahlc the 
difference between lloating point and integer applications. 
SPECKS-int is almost inscnsltivc to the kind of prefetching, and the 
reduction in 171 (conventional miss ratio) due to prcfetching is very 
low, varying Ii-om 7. I %f (OBLst prct’ctching) lo 19.2% (OBLst + 
LSCm-S12entr.). This result can he hctter understood if we 
consider the characterization given in subsection 3.3., since scalar 
and irregular patterns prevail hcrc. However, SPEC95-fp is yuite 
sensitive to the kind of prcletching and m decreases between 
27.5% (OBLst prel’ctcbing) and 86.3% (OBLst + LSCmi-512entr). 

Another global observation deals with the poor c~ccurucy of OBLst 
prct’etching in the integer workload. Defining UCCU~L~CY as W(fI+&), 
we can see the great waste experienced in SPECOS-int: 0.23. In 
SPECYS-cp the OBLbt accuracy raises to 0.77. 

It can be observed in Figure 5 that the floating point workload benefits 
Irom sequential prefetchin g, and it is quite sensitive to the size of the 
LSCconv. Only with a hp LSC (5 12, 12X entries) do we obtain a 
better data CPI than with OBLst prclctching. The main reduction in m 
appeal-s in LSCconv-5 12cntr prefetching, which eliminates 8 I %J of 
misses, whcrcas OBLst prcfctching removes 67.4%~ of misses. 

The lookup pressure perl’ormed by LSCconv on LldC (i.e. f/N) is 
high. For LSCconv-S l2cntr, I’lN reaches hl.2%, i.e. the number of 
xccsscs to LldC is multiplied by I .6l. On the other hand, OBLst 
only loads LldC with 7.3% extra lookup activity. 

Figure 6. On-miss insertion LSC prefetching (LSCmi). 

Let us now analyze separately the performance of LSCmi 
prefctching (Figure 6). 

In SPEC95-fp on-miss insertion significantly decreases the lookup 
pressure (PIN). With an 1,SCmi ot 12X-512 entries, 35% 01 
prel’etches gcneratcd hy an LSCconv prefetching arc removed. 
With Iwer entries in LSCIJC, the lookup pressure increases with 
respect to L,SCconv hccausc in that case LSCconv hardly issue 
pre<ctchrs. 
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On the other hand, the number of pret‘etch misses forwarded to Id2 
(I,‘) incl-cases with respect to LSCconv prefetching (()%I, 4%1, 20%, 
52% and X2% lor 5 12. 128, 32, 16 and 8 entries respectively). In 
the presence 01. II regular pattern, those preletch misses are useful, 
and m(LSCml) i m(LSCconv). Only with a 5 12.entry LSC does 
//f(LSCmi) incrcasc 0.8%. For the rest of cabes, It always 
&creases: 9.X%. 27.X%, 37.1 %I and 28.8Y0 for a LSC with 128, 32, 
I6 and 8 entries. 

With regard to performance, LSCmi prefetching reduces the data 
CPI of a syslem without prefetch from 43% (8 entries) to 68% (5 12 
entries). The behavior of LSCconv prcfetching is always worse: 
LSCmi reduces the data CPI of a system with LSCconv from 3.6%~ 
(5 12 entries) to 30.5% ( 16 entries). 

In SPEC95-int we can notice the same tendency, although the 
differences between LSCconv and LSCmi pretetching are smaller. 
Moreover, the reduction in data CPI relative to a system without 
pl.cfetching is SUlilller ( 1% 14%). 

Figure 7. On-miss insertion LX prefetching combined with 
OBL sequential-tagged prefetching (LSCmi + OBLst). 

In 1:igul.c 7 WC analyze the performance of the concurrent work 01 
LSCmi and OBLst. In SPECS)S-l’p the number of lookups in LldC 
([‘/IV) incrcascs slightly with relation to LSCmi, but it is always 
kept below the number required by LSCconv. With an LSC of 5 I2- 
12X entries, there arc about 25% less prefetches than with insertion 
&ILI)G. On the whole, the number of prefetch misses (H) increases 
largely with respect to a LSCconv system: from 34% (5 12 entr.) to 
26% (X entr.). The miss ratio decrease is also noticeable: between 
2 I %) (5 I2 entr.) and 70% (8 entr.). Data CPI decreases are between 
2.4% (5 I2 entr.) and 56%~ (8 entr.). 

In SPECOS-int, results are qualitatively but nor quantitatively 
similar. The accuracy decrease is noticeable due to the concurrent 
activity of OBLst prcfctcbing. 

On the whole, the most relevant fact is the very Iow sensitivity of 
tbc miss rat10 and the data CPI with respect lo the size of LSC. 
When moving li-om 5 12 to 8 entries the loss in performance is only 
3.75%) in data CPI lor SPEC95-fp. 

As Table 6 shows for SPEC95-fp, LSCmi-Xentr + OBLst prefetching 
achieves belter ratios in almost all the metrics with respect lo 
LSCconv-5 12entr. It reduces the lookup pressure (J’/N decreases 
S&4%), increases the prefctch miss ratio (28.7% more in R/N), and so 
dccreascs the miss ratio (10.3%). As a ncgativc effect, a loss of 
accuracy --U/(U+6)- appears due to the use 0fOBLst. In both cases 
data CPI is almost the same, but with a cost 64 times lower. 

LSCconv-512 
LSCmi-8 +OBLst 

% P/N % B/N % m data-CPI D/(D+6) 
61.2 586 1.72 0.082 0.978 
26.7 7.54 1.54 0.063 0.785 

Table 6: SPECYS-fp comparison between LSCconv-512entr 
and LSCmi-Xentr + OBI,st. 

5.4. I Results on programs which fbllow regubr patterns 
To observe the performance of our proposal when applied to 
programs with an outstanding presence of. stride and list patterns, 
we have carried out a sclcction over the whole workload. 

Figure 8 shows the means for applu, apsi and wave5 from SPEC95 
FP, spice from SPEC92 and arc2d and trfd from Perfect Club. Results 
for LSCconv appear on the left, and LSCml + OBLst on the right. 

It can be observed in Table 7 that for these benchmarks, an 
LSCmi-Xcntr.+OBLst performs bcttcr than an LSCconv-5 12entr. 
with regard to data-CPI, which dccrcases 14.5%. 

% PIN % BIN % m data-CPI D/(D+F) 
LSCconv-512 56.7 4.90 3.05 0.165 0.956 
LSCmi8 +OBLst 21.1 7.80 2.80 0.141 0.665 

Table 7: LSCconv-SlZentr vs. LSCmMentr + OBLst for 
applu, apsi, waves, spice (SPEC), arc2d and trfd (Perfect). 

Although the Ics~dts discussed here arc based on a 32KB LldC, we 
have simulated other cache sizes too (XKB and 12XKB). The same 
conclusions arc valid for these sizes, yet the advantages of our method 
increase with the cache size. Eventually, we issue prefetches by using 
an LA-PC as in [I 1, and with a prefetch distance equal to I .5 times the 
memory latency. In this case the lookup pressure (P/N) increases, 
because the method tries to prefetch SCAlars too. Therefore, the 
advantage of our method is greater since most of these scalar Id/s t hit 
in LldC and are not inserted in the LSCmi. 

6. COST ANALYSIS 
Executing a lwst instruction requires at least two accesses to the 
LSC. The first access reads inlbrmation about that instruction which 
will be used later for detecting the pattern and for calculating the new 
state. The second access writes the updated information after the 
Instl-uction has been executed. With a simple pipeline, the reading 
could be performed during the ALU stage, after the Id/St instruction 
has been decoded. The computations for pattern recognition and for 
generating the new state could he carried out during memory access. 
Writing should be done in the final stage. 

Such a simple implementation requires a writing port and a reading 
port in the LSC. If prefetches are driven by LA-PC, a third additional 
reading port is needed in orther to check if the instruction addressed by 
LA-PC is a ~d/st., and if it matches some pattern. 

Every entry in the LSC contains a variable number of fields, 
depending on the patterns that we want to recognize. If we intend 
to detect strides only, four fields are required: PC’, Ai, Si and state. 
32-bit addressing yields 12 bytes per entry (stute needs only a few 
bits). If we intend to detect accesses to lists chained by address and 
index, we should add three more liclds (I%, di and Ki), and every 
entry would take 24 hytca. 
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To sum up, a direct-mapped LSC with 5 I2 entries stores between 
6KB and 12KB, uses a decoder with 5 I2 entries (similar to that of 
a direct-mapped cache of 8KB with blocks of IbB), and requires 
two ports at least, since it must be tested and updated in a single 
cycle. Therefore, an LSC is comparable in size to a first-level data 
cache. Replacing such an expensive 512-entry LSCconv by a 8- 
entl-y LSCmi + OBLst divides its storage costs by a factor of 64. It 
is difficult to apply an area model in order to take into account the 
I’ixed cost of the control unit due to the great inaccuracy of such 
models when computing area for very small caches [ 181. 

7. CONCLUSIONS 
It1 111is paper we have analyzed the performance of a load/store 
cache as a base for dil‘lerent proposals of hardware-based data 
preletching with patterns other than the sequential one. We have 
found that in order to perform better than with sequential 
preietching, it is necessary to provide as much storage area as for a 
lirst-level data cache. This is due to two key facts: a) regular 
patterns different from the sequential pattern are uncommon; and 
b) most of the instructions that occupy the LSC entries do not miss 
(i.e. the involved prefetching is useless). 

Decreasing the cost of the LSC with no efficiency loss, implies that 
useless instructions must be removed from the LSC. To do that we 
propose applying on-miss insertion in the LSC (LSCmi) working 
in parallel wit11 tagged sequential prefetching. 

On-miss insertwn introduces new instructions in the LSC only if 
they miss in the data cache. This way, instructions tI1at can take 
profit from prefctching will be more likely included in the LSC. 
On the other hand, sequential prefetching reinforces this point 
because it prevents the Id/St instructions whicli follow this pattern 
from contending for the LSC entries. 

For numerical workloads (SPEC95fp and Perfect Club) our 
proposal achieves a great increment in performance for every 
cache size, specially for the small ones. We believe that the 
relevant point here is that the performance of an LSCmi decreases 
only 3.75%) in terms of data-CPI when the number of entries 
decreases born 512 to 8. An LSCmi with 8 entries working in 
combination wit11 an OBLst prefetching achieves a performance 
comparable to that of a conventional LSC with 5 I2 entries (with a 
storage cost 64 times lower). 

FOI- non-numerical workloads (SPEC95-int) the performance of an 
LSC is rather limited because of the absence of recognizable 
regular patterns. In this context, it makes little sense improving its 
management, Anyway, since our method reduces the number of 
entries strongly, it is possible to increase the number of fields of 
each entry (for detecting new patterns) with little cost. 
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