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ABSTRACT

A common mechanism to perform hardware-based prefetching for
regular accesses to arrays and chained lists is based on a Load/Store
cache (LSC). An LSC associates the address of a 1d/st instruction
with its individual behavior at every entry. We show that the
implementation cost of the LSC is rather high, and that using it is
inefficient. We aim to decrease the cost of the LSC but not its
performance. This may be done preventing useless instructions
from being stored in the LSC. We propose eliminating those
instructions that never miss, and those that follow a sequential
pattern. This may be carried out by inserting a 1d/sc instruction in
the 1.SC whenever it misses in the data cache (on-miss insertion),
and issuing sequential prefetching simultancously. After having
analyzed the performance of this proposal through a cycle-by-cycle
simulation over a set of 25 benchmarks selected from SPEC9S5,
SPECY92 and Perfect Club, we conclude that an LLSC of only 8
entries, which combines on-miss insertion and sequential
prefetching, performs better than a conventional LSC of 512
entries. We think that the low cost of the proposal makes it worth
being taken into account for the development of future
MICrOProcessors.

1. INTRODUCTION

Every effort to decrease cycle time or increase Instruction Level
Parallelism when designing a high performance microprocessor,
may be neutralized by a slow memory subsystem (2, 3]. A large
number of techniques have been developed to minimize the latency
impact of a data reference, reducing either the number of misses
(e.g. hardware and software based prefetching) or their cost (e.g.
non-blocking caches, multithreading, decoupling).

Software based data prefetching techniques use special PREFETCH
instructions to bring a block into the cache memory in advance. Most
contemporary architectures include this instruction, and many
compilers can transform simple loops in order to decrease their miss
ratio substantially. However, these software techniques sometimes
perform poorly with respect to hardware prefetching {4, 23}.

Moreover, hardware based prefetching does not need to recompile,
and does not increase code size. A typical approach consists in
prefetching one or more consecutive blocks in a sequential way
[21], and it is frequently used on the instruction stream. In recent
years (91-97), alternative approaches have been proposed to predict
non-sequential accesses or to issue prefetching at the right time.
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Nevertheless, most of the current microprocessors do not
implement hardware prefetching. An exception to this i3 the
sequential tagged pretetching mechanism between the HP-PA 7200
processor and its external cache memory.

In this paper we show a way of improving hardware-based prefetching
in regular accesses to arrays and chained lists. Particularly, we focus on
the Load/Store Cache (LSC), a mechanism driven by the address
stream generated by each 1a/st instruction. The LSC associates the
PC-address of a 1a/st instruction with its individual behavior. Every
time a 1d/st instruction that is not present in the LSC is executed (LSC
miss), it is inserted into the LSC. Once a pattern has been recognized
and the instruction executes again, a prefetch address will be computed
and issued.

Previous work proposes a direct-mapped LSC with a number of
entries between 128 and 512 [1, 10, 16, 17]. It will be shown later
that the cost ot a LSC with 512 entries is similar to that of a double-
ported cache memory with a size between 6 and 12 KB. This may
decline the usc of the LSC in favor of more important resources.

Our purpose is to improve the use of the LSC entries in order to
decrease their number. We want to achieve similar (or even better)
performance while reducing the cost.

As far as we know, no previous reference considers both, the LSC
performance [10, 16] and the behavior of the 1d/st instructions
regarding their addressing patterns {8, 17], and the workloads they
consider are not very extensive. Our first contribution goes in that
direction, and is based on the analysis of 25 programs (taken from
SPEC92, SPEC95 and Perfect Club). From this characterization we
can advance the following results: a) the miss ratio for a direct-
mapped LSC with 512 entries is too high for many applications,
b) most of the instructions follow scalar or sequential patterns, and
¢) most of the 1d/st instructions hardly miss.

In this paper we propose preventing some instructions from being
stored in the LSC in order to reduce its number of entries. By
considering the former results, we identify and discard instructions
that: a) induce the prefetch of blocks that are already in the cache,
or b) show a sequential addressing pattern. This can be done by
combining two strategics:

- Storing 1d/st instructions in the LSC only when they miss in the
data cache (on-miss insertion)

- Performing sequential prefetching in parallel. In particular, we use
One-Block-Lookahead sequential tagged prefetching (OBLst) [21].

To understand the key aspects ol prefetching, we use a performance
model that takes into account the cache tookup pressure, the data
CPI, the shift from CPU misses to correctly prefetched misses, and
other usetul characterizations of the prefetching dynamics. Through
this model, we compare our approach with the conventional LSC
by means of a detailed cycle-level simulation, varying parameters
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such as LSC and data cache sizes. A noticeable point is that
performance holds when the number of LSC entries are reduced:
we show that an LSC of only & entries, managed by on-miss
insertion and combined with sequential prefetching, performs
better than a conventional LSC of 512 entries.

This paper is organized as follows. Section 2 reviews related
works. Section 3 presents the workload, the methodology we have
followed and the characterization of the 1d/st stream behavior
relevant to the LSC operation. Section 4 introduces the insertion-
miss policy and the combination with sequential data prefetching
in detail. Sections 5 and 6 describe the performance model, give
experimental results and discuss implementation costs. Finally,
Section 7 summarizes the main points of this contribution.

2. PREVIOUS WORK

Non-sequential data prefetching was firstly introduced by Baer and
Chen [1] under the term Preloading. The LSC used in that work was
called Reterence Prediction Table (RPT). An RPT is organized as a
cache indexed by a Look Ahead Program Counter (LA-PC), whose
value is based on some branch prediction policy. LA-PC varies from
the current PC value to a limit imposed by a constant named prefetch
distance which is proportional to the latency of the following level. If
LA-PC hits in the RPT, and the state of the selected entry indicates a
stride pattern, the addition of the latest address issued by the
corresponding 1d/st plus the stride is prefetched. Prefetched blocks
are directly added to the data cache.

Stride-directed prefetching [ 10] and speculative prefetching [16] use a
similar table, but now indexed by the PC. Every time a 1d/st
instruction is executed, the table is searched. If the instruction is found
in the table, the corresponding prefetched block will be used in the
next iteration. Under stride-directed prefetching, target blocks are
loaded directly into the data cache. Under speculative prefetching, the
prefetched blocks are loaded into a small separate cache.

Finally, [17] suggests an addition to the previous approaches in
order to detect a linear traversal of a chained list made up of
records. It is assumed that each record has a next_address tield that
points to the next record. This mechanism detects the 1d instruction
that reads the next_address field, and uses that value plus/minus a
constant as the prefetch address. This paper also considers the
pattern that appears when traversing sparse arrays whose non-zero
clements are chained by an index (e.g. spice).

Besides these papers about prefetching based on the classitfication
of 1a/st instructions, another big group which directly deals with
the global sequence of addresses (or first-level cache misses) can
he considered. The approach presented in {11] and used in (8] is
based on keeping a list of common strides by calculating the
strides between each reference and the previous sixteen references.

In [20] the minimum delta scheme (also used in [9]) and the
partition scheme are introduced. The former calculates the stride as
the minimum difference between a missed address and the last n
missed addresses. The latter splits memory into zones, and
calculates the stride between the last two references to the same
zone. In [14] Markov Chains are used to prefetch multiple
reference predictions from the memory subsystem. These schemes
are proposed for off-chip environments, in which the address of the
instruction to be included in the LSC is not available.

Finally, some approaches try to issue the prefetch as soon as
possible, or even to determine which is the optimal time to do it,
supposing very large latencies (e.g. to [ill in advance off-chip
caches in shared memory multiprocessors). Thus, [15] proposes
the use of stream buffers, which issue several requests in sequence
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instead of issuing a single onc and store the requests until they are
referenced. The purpose of this policy is to increase the prefetch
distance, i.e. to request blocks even earlier. In {20, 9] this idea is
also applied to streams with stride accesses. Adaptive sequential
prefetching is proposed in [6,7]. In [8] the same idea is extended to
non-sequential stride prefetching, and a comparison between the
sequential and not sequential cases is carried out. Adaptive
prefetching modifies the prefetch distance dynamically, according
to the latency of the system and to the loop size. Prefetched blocks
are stored in the cache.

There are many papers dealing with software-based prefetching which
we do not mention here, for they lay beyond of our scope. We should
mention [19], however, because it concludes that most misses are
caused by Id instructions with stride and list patterns, and this is a key
idea in our work, as we have exposed in Section 1. However, it must
be pointed out that [ 19] considers sequential prefetching as a particular
case of stride prefetching. The authors propose a compilation
algorithm that reorders the code to eliminate dependencies between
the instructions that load values and the instructions that use those
values, and analyze 12 benchmarks of SPEC92.

3. PATTERN CHARACTERIZATION AND
LSC USAGE

In order to take advantage of the insertion of a 1d/st into the LSC,
the following conditions must hold:

C1L. The instruction must remain some time in the LSC before
being useful, because we need several exccutions in order to fix the
prefetch condition.

C2. The instruction must access to memory following one of the
regular patterns that can be recognized.

C3. The datum that is being accessed by the instruction must not
reside in the data cache, since prefetching is not necessary in that case.

Previous work based on the use of an LSC (I, {0, 16, [7] does not
consider the optimization of the LSC in these terms, and gives no
detailed characterization of the relative importance of the different
patterns recognized.

3.1 Workload and tracing methodology

The chosen workload is a set ot 25 programs taken from SPEC95
(8 integer and 10 floating point), SPEC92 (spice) and from Perfect
Club (6 floating point). This workload has been targeted to a
SPARC V7 architecture. The user-mode execution traces have
been obtained dynamically by means of Shade, a utility from SUN
microsystems [5].

Figure 1 shows the complete evolution of CPI for a single issue
SPARC processor executing Spice on a sample system. A transient
behavior up to 4,000 million instruction can be observed. From
this point on, a steady state appears with low variation in the mean
value. The majority of the papers referred to in Section 2 assume a
transient state of some tens of million instructions at most, and take
a single observation after this point. This may not be representative
of the whole program behavior.

In this section, we have simulated 2000 million consecutive
instructions beyond the end of the transient state, rounded to a
billion instructions. This transient state has been determined by
plotting the temporal behavior of each program.

The advantage of this methodology arises when the locality in the
transient state is quite different from that in the steady state. From
a programmer’s point of view, the transient behavior corresponds
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Figure 1. CPI evolution while executing Spice on a sample system.

typically to the initialization of data structures by using very
simple -almost sequential- access patterns.

Table | shows the following data (from left to right): program input,
number of instructions, total number of loads and stores of the full
execution, number of instructions of the transient phase and number of
instructions skipped until statistics begin to be computed. All the
numbers are in billions. Programs labeled as irregular do not have a
clear transient phase. To compute the means, we consider the three
groups that are differentiated on the table (we include Spice from
SPEC 92 inside the SPEC95-fp group).

Tran-

PERFECT Input Instr. Ld St sient Skip.
QCDlg perfect 1.165 0.195 0.113 ~07 fullex.
MDG Iw perfect 18.593 5.754 2.207 ~0 0
BDNA na perfect 3.340 1.085 0.535 0.35 1
ARC2D sr perfect 7.990 3.175 1.291 ~0 0
FLOS2 i perfect 1.746 0.538 0211 045} fullex.
TRFD ti perfect 2458 0.926 0.453 ~0 0

| SPECO5-int
go 5stone2 1 30.714 5.886 1.571 irreg 4
gee stmt.t 0.545 0.092 0.028 ~0] fullex.
compress in (92) 0.091 0.014 0.007 ~0 ] fullex.
ijpeg penguin 40.598 5.244 2013 imreg 2
xlisp l-input(92) 5.176 1.057 0.462 ~0 0
m88ksim ctl.big 75885] 11.337 5295 irreg 10
ped scrabbl.in 17.518 4511 1.972 0.5 1
voriex vortex.big 72.662| 14.962 5.263 3.2 4
( SPECS5p
applu applu.in 63.222 [ 14.993 4642 ireg 3
apsi apsiin 45556 |  10.840 3.632 ] ureg 8
foppp natoms.in|  291.203[ 66.805] 24.024| imeg 1
hydro2d hydro2d.in 58.599 | 13.896 3.391 0.5 1
mgrid mgrid.in 91.587 | 32.074 2445 irreg 1
spice2gb greycode.in 21.294 4,826 0.906 4 4
su2cor su2cor.in 50.458 12.764 3.300 6 6
swim swim.in 40570 12.781 3.086 0.2 1
tomcatv tomcatv.in 50.7301 12.709 3.726 4 4
turb3d tub3din | 259.940] 24.565] 12.615[ irreg 1
waveb wave5.in 42,750 11.378 4.585 2 2

Table 1: Dynamic counts, transient intervals and number of

skipped instructions (x 109).

3.2 LSC misses
We detine the miss ratio in the LSC as:
my g¢ = (#Fmisses in LSC)/N

where N is the number of memory references, and a miss is counted
every time the PC-address of a 1d/st instruction is not found in the
LSC directory. This miss ratio is related to the condition C1, because
the average number of times that a 1d/st instruction is executed
before being replaced is just the inverse of my g¢.

Table 2 presents the average values of myg¢ for a direct-mapped
LSC with a different number of entries. If we analyze the
individual behavior of each program, it can be observed that in
order to achieve a value of my g¢ less than or equal to 10%, we
need at least 1024 entries in 10 out of 25 benchmarks. With
my gc=10%, a 1a/st instruction remains in the LSC for ten
consecutive instances in average. Whenever the instruction is
replaced, 3 executions are needed to detect a pattern before
triggering the prefetch. Therefore, the ratio (#prefetches/
#references) is 70%. With a miss ratio of 25%, that ratio drops to
25%.

# entries
16 32 64 128 256 512 1K 2K 4K 8K
PERFECT | 79.7| 638|454 | 326|238 166|74|27(1604
SPEC95-int | 64.3 | 50.3]39.2| 271 1781 109(64|35/16|06
SPEC95fp | 627|430 238| 166|141} 115(88,67]41]18

Table 2: my g¢, average miss ratio of a direct-mapped LSC in %

Even though we do not know the relation between my ¢ and the
reduction of the effective access time due to prefetching, those data
suggest a higher number of entries with reference to previous
papers {1, 10, 16, 17].

3.3 Pattern Distribution

Even supposing an ideal behavior of the LSC (m; gc = 0), some
pattern is needed to trigger pretetching (condition C2). We have
looked in our workload for five patterns that can be recognized by
hardware techniques. This has been done by tracking the following
equalities for each 1d/st instruction:

SCAlar: A=A
SEQuential: A;= A +5 0 <'s < Bsize
STRide: A=A +S S>Bsizell S <0

PoinTeR list: A; =D, +d d is a record displacement
INDex list': A, =4*D, , +K 4 =integer index size

K= Base Address of the Index Array
A, is the address generated by a 1a/st during its execution i, D; is
the value read by a load instruction during its execution i, and
Bsize is the block size. Storcs can only follow the first three
patterns.

The groups presented in Table 3 are disjoints. If an instance of a
1asst instruction matches several patterns at once, it is firstly
classified according to the pattern recognized in the previous
instance. If several patterns arise repeatedly, the following
priorities are applied: SCAlar, PoinTeR list, INDex list, STRide or
SEQuential.

Most of the accesses are scalar or sequential. Few of them follow
stride or chained list patterns, and they concentrate over a few
benchmarks. The higher percentages in the Remaining column are
maijnly due to integer programs whose access patterns we do not
detect.

An example of the pattern IND is accessing to a non-compressed
sparse array by means of another array with the indexes of the non-
zero elements; “INDex list” models the reference to the Index Array.
The program spice2g6 shows a large percentage of this behavior.
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PERFECT SCA | SEQ | STR | PTR| IND | Rem.
QCDlg 5167 20.33 18| 0.05 0.14| 26.01
MDG Iw 46.18| 27.25 3.65 0 0 2292
BDNA na 69 | 2307 512 0.02 0.03 2.76
ARC2D sr 20.33| 4662 | 28.11 0 0.04 4.9
FLOS2 tf 14.33| 71.38 5.01 0 0 9.28
TRFD ti 49| 4438| 2083 0 0| 29.89
SPEC95-int
go 31.62 3.52 145| 0.08 3.87| 5946
gce 3542 14.8 145} 1.33 1.01] 4599
compress 6398 1154 524 | 017 0011 19.06
iipeg 19.61] 49.01 4.02| 242 0.55| 2439
xlisp 37.62 7.86 516] 4.08 0.14] 4514
m8Bksim 3049 | 47.66 0.14| 007 06| 21.04
ped 40.8 242 143] 2.04 0.04| 5327
vortex 67.87 431 0.33| 0.08 0.91 26.5
SPEC95-fp
applu 30.86| 1383| 3435 0 0| 2096
apsi 39.87| 4571 9.6 0 0.02 4.8
foppp 98.65 0.25 0.06 0 0 1.04
hydro2d 12.12 87.6 0.05 0 0 0.23
mgrid 18.11 78.5 0.25 0 0 3.14
spice2g6 33.44 2.79 573] 008| 2117| 36.79
su2cor 19.73] 74.14 0.15 0 2.34 3.64
swim 0.02} 99.21 0.08| 0.02 0.29 0.38
tomcatv 31.06 66.8 0.17] 0.05 0.01 191
turb3d 29.67| 56.63 6.23 0 0.24 7.23
waves 21.96| 63.03 9.32 0 1.15 4.54

Table 3: Classification of accesses according to their patterns.

A lot of research on the matter reports a high number of stride
accesses, because sequential accesses are considered as a particular
case of stride accesses. An exception is [8], where sequential and
stride patterns are separately studied in programs of the SPLASH-1
suite, in a multiprocessor environment. The distributions given in
that paper are very similar to those we have found in SPEC95 and
Perfect Club.

The frequent SEQuential pattern, when considered as a particular
case of the STRide pattern, ensures the utility of any LSC prepared
for detecting strides. However, sequential prefetching is simpler
(no LSC is required) and cheaper (at most one bit per block).

On the other hand, prefetching SCAlar patterns is useless when
L.SC is indexed through the PC, because a variable is accessed and
prefetched at the same time. However, this may be useful when
indexing the LSC through the LA-PC.

The sum of stride and list patterns (STR, PTR and IND columns) is
small but noticeable: the average values for Perfect, SPEC95-int
and SPEC95-fp are 10.8%, 4.6% and 8.35% respectively.
Ncvertheless, in some programs most of the accesses follow these
patterns (ARC2D, TRFD, applu, spice2g6) and a high benefit from
prefetching may be obtained.

3.4 Execution and miss frequencies correlation.
Whatever patterns they follow, it is of no use to keep 1d/st
instructions that never miss in the LSC (condition C3).

Up to now we have considered that a 1d/st instruction is inserted in
the LSC when it is executed and misses in the LSC. We call this
strategy always insertion. Under always insertion and in the absence
of conflicts, the probability for a 1d/st instruction ot being in the LSC
is proportional to its frequency of execution. However, the set of 14/
st instructions we are keeping in the LSC (the most frequently
exccuted) may not be the most suitable set (the set that would cause
more cache misses if prefetching were turned off).

In order to study the correlation between executions and misses we
simulate a direct-mapped cache of 8KB and Bsize = 16B with
tagged sequential prefetching. For each individual 1d4/st we record
the number of executions and misses. Then, we put all the 1d/st
instructions into two lists: the first one ordered by number of
executions, and the second one ordered by number of cache
misses. Finally, we take the necessary 1d/st to cover 90% of
executions from the top of the first list, and from the second list the
necessary ld/st to cover 90% of misses. By doing so, we can
distribute 1d/st into one of four disjoint classes:

A)1d/st that represent less than 10% of total executions and misses.
B) 1d/st that represent 90% of executions, but not 90% of misses.

C) 1d/st that represent 90% of misses, but not 90% of executions.

D) 1d/st that represent 90% of executions and misses.

Table 4 presents the average number of 1dsst instructions in each
class for each workload group.

D

A B c
10% | 90% Exec. Q%(iznﬁ’;zgs 90% misses
PERF. CLUB 7371 1125 104 71
SPEC95-nt 5366 588 328 121
SPECO5p 1407 635 118 21

Table 4: Number of 14/st instructions for each Class.

The 1d/st we want to store in the LSC belong to classes C and D,
yet those which are really filling the table belong to classes B and
D. It can be observed that BUD is greater than CUD by a factor of
5, 2 and 5.4 for Perfect, SPEC95-int and SPEC95-p respectively.

Instructions belonging to class C have a low probability of being in
the LSC. However, they yield many misses and in consequence, it
would be convenient to keep them in the LSC. On average, they
represent 25% of the set with more misses, CUD.

On the other hand, 1d/st instructions of class B have a high
probability of being in the LSC. However, they hardly miss in the
cache and it is of no use to keep them in the LSC. On average, they
account for 78.6% of the most executed set, BUD.

4. ON-MISS INSERTION PLUS SEQUEN-
TIAL-TAGGED PREFETCHING

From the pattern distribution and the correlation between
execution and miss frequencies, we propose a combined
prefetching strategy, in which addresses are computed by two
independent prefetching mechanisms working in parallel: a) LSC
with on-miss insertion (LSCmi) prefetching, and b) One Block
Lookahead sequential tagged (OBLst) prefetching [21].

Under on-miss insertion, a hit in the LSC involves the same actions
as under always insertion (updating the state, the data field, etc.).
But in case of a LSC miss, insertion is performed only when there
has been a miss in the data cache too.

This way, the probability of finding a 1d/st instruction in LSC is
proportional to its miss trequency in the data cache, and not to its
frequency of execution. If two or more ld/st instructions are
mapped to the same LSC entry, they do not contend for that entry
if they hit in the data cache, increasing the stability of those
instructions that miss.

We add OBLst prefetching to prevent the 1d/st instructions which

follow a SEQuential pattern from contending for LSC entries.
Moreover, sequential prefetching can determine sequential
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relations among different loads, adding useful prefetching streams
which an LSC would not be ablc to generate.

By way of example, let us consider a chained list of structs greater
ale i dlan Ll ab ion Mhha 1 3 feotimsntionam tshinh cando tha naintae fiald io
LTIl 1€ OJOCK SIZC. 11IC LA HIDUUCLIULIT WIHCLT TCaud ulc l)Ullll.Cl TICIU 1S
classified by the corresponding detector. However, 1d instructions
which access the remaining fields do not follow a regular pattern;

OBLst prefetching can perform successfully in this case.

In Table 5 we show the replacement ratio for an LSCmi, defined as
the number of 1d/st entries evicted divided by the total number of
references. This ratio is comparable with that of Table 2 in the
sense that its inverse is the average number of times that a given
instruction is executed while remaining in the LSC until it is

le the one/two order of masenitude shift

ronlaced It 1¢ noticea P
Liceanie e one/itw I magmiu

ICpralClu. au 15 nyv

between the two tables.

i

# entries
16 32 64 128 256 512 1K 2K 4K 8K
PERFECT | 1641 1,09]| 061 030| 0,19( 0,09 0,06 | 0,03 | 0,01 | 0,00
SPEC95-int{ 295|242 191] 1,401 0,93]| 0,59]| 0,36 | 0,22 ] 0,13 0,06
SPEC95fp | 9,16 | 548 232| 0,70 0,55} 0,37 | 0,21] 0,11 0,04 | 0,01

Table 5: Average replacement ratio of a direct-rnapped L.SCmi.

5. PERFORMANCE ANALYSIS FOR A SIN-
GLE PROCESSOR-MEMORY SYSTEM

5.1 Workload and tracing methodology

The evaluation has been carried out by using the workload
described in subsection 3.1. However, we assume now a
multiprogramming environment with a quantum of I million
instructions. We also assume a multiprogramming degree high
enough to empty the first-level caches between every two bursts of
the same process completely.

Given the high temporal cost of the cycle level simulation and the
big number of benchmarks that have been analyzed, it is not
possible to proceed with the same number of instructions that was
used in Section 3. A limit ot 20 million instructions has been fixed.
However, to improve the representativeness of sampling, we
scatter the 20 quanta (observations) over a certain interval. For
each application this interval starts at the end of the transient phase
we showed in Table I, and its size varies according to the
benchmark behavior (e.g. a lot of benchmarks follow some
periodical behavior; the size of their intervals matches the size of
their periods). Similar studies contfirm that this kind of sampling is
much better than the contiguous selection of the observations {13].

5.2 System model

Figure 2 shows the system modeled. The processor is a single issue
in-order SPARC, similar to that used in related papers [8, 12]. We
consider a level one (L1) on-chip split cache memory, and a level
two (L2) off-chip unified cache. Block size is 32B in both cases. In
all experiments, we fix a 32KB direct-mapped L1 instruction cache
with OBLst prefetching. L2 is ideal in the sense that it always hits,
and has a pipelined interface for L1 block requests of 1:7:2 cycles
for address transfer, access and data return, respectively.

The L1 data cache (L1dC) is also direct-mapped, but its size and
prefetching capabilities are varied (sizes: 8 KB, 32 KB and
128KB; prefetching: OBLst and/or LSC, with LSC indexed by PC
or LA-PC). The LSC detects PoinTeR list, INDex list, STRide and
SEQuential patterns by using the policy exposed in subsection 3.3,

PR, Data
L2 Cache : Addess
X
A
i1 ORL write-back [
PAC buffer T
?Instructiong Instruction Data Victim Data
i Prefetch Cache Cache - Cache |i Prefetch
IookupbufferA A \ AR A lookupbuffer

( cPu )
Figure 2. System model. The Data Prefetch box can include
LSC-based and OBLst prefetchers.

which 1s similar to the one used in [17]. Demand fetches and
prefetches (low priority) have to contend for a single cache port.
Therefore, a high prefetching lookup pressure may degrade the
system performance. When sequential and LSC prefetching work
in parallel 1t is possible (o issue up to two prefetches per reference,
which are temporally held in the lookup buftfer.

As in other papers, a 16-entry victim cache is added {22,14]. This
way, we focus on the benefits prefetching offers for the elimination
of capacity and compulsory misses, and not on its ability for
dealing with contlict misses. Some benchmarks experience a large
fraction of conflict misses, in particular applu, apsi, su2cor, swim,
tomcatv and waveS5 from the SPEC95 suite.

ORL (Outstanding Request List) is an address buffer which
supports pending prefetches and gives information about the
blocks currently being read in L2.

5.3 Performance model

Global measures such as CPI reflect global effects, but they do not
capture critical aspects of prefetching. To tsolate them, we suggest
a model (Figure 3) which is partially based on [22] and which
considers the following quantities :
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Address L1 Data I Next level
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Figure 3. Quantities considered in the performance model.

N, P: Total number of CPU data references and issued prefetches.
L.1dC misses are looked up in the ORL; if they are not found a
search is issued on the L2.



a: Number of CPU misses that are currently being serviced in L2.
They are not affected by the full miss latency: we term them fast
misses. A Number of accesses to L2 triggered by CPU misses in
L1dC. We call them demanding misses, since they are caused by
demand, and attending them is critical.

[3: Number of misses caused by the prefetcher currently being serviced
in L.2. B: Number of accesses to L2 triggered by prefetch misses.

D, 8. Decomposition of prefetched blocks into useful and useless
(i.e. replaced without reference); B= D + 8.

From these quantitics we define: a) Number of prefetches per
reference (P/N): by Full-latency miss ratio (md = A/N); ¢) Partial-
latency miss ratio (my = o/N); d) Conventional miss ratio (m = (4+c)/
N = mg + mp); and ¢) Prefetch miss ratio (mp = B/N}, that can be
further split in useless and useful prefetch miss ratio (mpl = DIN and
mpt = O/N). Note that mp + md is the L2 access ratio. That is, the
number ol accesses to L2 per reference; this is a measure of the
pressure put on L2 by L1dC and the prefetching mechanism toghether.

The generic goal of prefetching is to decrease the conventional
miss ratio (m, and especially the fraction mq) with a minimum
pressure over L1 (minimum £/N) and a minimum L2 access ratio

increment (minimum mp)l.

These three aspects must be balanced for each particular system.
Thus, obtaining a minimum m can depend on the miss penalty at
the folfowing memory level, whereas obtaining a minimum P/N
can be essential depending on the number of ports in the cache.
Finally, obtaining a minimum mp can be critical if the L1/L.2

bandwidth is limited.

Figure 4 displays a representation of the model. The right side of
the bar shows the processor activity, while the left side shows the
prefetching activity. The ratio P/N appears numerically on the left,
and the data CPl appears on the right. A good prefetch system
should shitt a great number of misses (demanding and fast) from
the right side to the left side, increasing neither the total size of the
bar (L2 access ratio), nor the number of cache accesses per
reference (1 + PIN).
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Figure 4. Graphical representation of the performance model.

5.4 Results

The performance of conventional LSC prefetching (LSCconv),
LSCmi prefetching, and LSCmi prefetching combined with OBLst
(OBLst + LSCmi), is interpreted from our model in Figs. 5, 6 and
7. The L1dC size is set at 32KB and, in cach plot, the number of
entries of the LSC is from the top towards the bottom: &, 16, 32,
128 and 512. The two bars at the bottom show the behavior
without prefetching and with OBLst prefetching only. In each

' From this model, the terms coverage and accuracy proposed in

[ 14] could alternatively be quantified as: coverage = BI(A+B) and
aceurdcy = DI(D+d).
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tigure, the average values for SPEC95-tp and SPEC95-int groups
are displayed separately. The behavior of the Perfect Club group is
fairly similar to that of SPECO5fp. We will omit futher references
to this workload due to space limitations.
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Figure 5. Conventional L.SC prefetching (I.SCconv).

By observing the three figures as a whole, it is noticeable the
difference between floating point and integer applications.
SPECY5-int is almost insensitive to the kind of prefetching, and the
reduction in m (conventional miss ratio) due to prefetching is very
tow, varying from 7.1% (OBLst ptefetching) to 19.2% (OBLst +
1.SCmi-512entr.). This resull can be better understood if we
consider the characterization given in subsection 3.3., since scalar
and irregular patterns prevail here. However, SPEC95-fp is quite
sensitive to the kind of prefetching and m decreases between
27.5% (OBLst prefetching) and 86.3% (OBLst + LSCmi-512entr).

Another global observation deals with the poor accuracy of OBLst
prefetching in the integer workload. Defining accuracy as DI(D+8),
we can sce the great waste experienced in SPEC9S5-int: 0.23. In
SPECO5-[p the OBLst accuracy raises to 0.77.

It can be observed in Figure 5 that the floating point workioad benefits
from sequential prefetching, and it is quite sensitive to the size of the
LSCconv. Only with a big LSC (512, 128 entries) do we obtain a
better data CPI than with OBLst prefetching. The main reduction in m
appears in LSCconv-512entr prefetching, which eliminates 81% of
misses, whereas OBLst prefetching removes 67.4% ot misses.

The lookup pressure performed by LSCconv on L1dC (i.e. PIN) is
high. For LSCconv-512entr, P/N reaches 61.2%, i.e. the number of
accesses to L1dC is multiplied by 1.61. On the other hand, OBLst
only loads L1dC with 7.3% extra lookup activity.
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Figure 6. On-miss insertion L.SC prefetching (LSCmi).

Let us now analyze separately the performance of LSCmi
prefetching (Figure 6).

In SPEC95-fp on-miss insertion significantly decreases the lookup
pressure (P/N). With an LSCmi of 128-512 entries, 35% of
prefetches generated by an LSCconv prefetching are removed.
With fewer entries in LSCmi, the lookup pressure increases with
respect to LSCconv because in that case LSCconv hardly issue
prefetches.



On the other hand, the number of prefetch misses forwarded to 1.2
(B) increases with respect to LSCeonv prefetching (0%, 4%, 20%,
52% and 82% for 512, 128, 32, 16 and 8 entries respectively). In
the presence of a regular pattern, those prefetch misses are useful,
and m(LSCmi) < m(LSCconv). Only with a 512-entry LSC does
m(LSCmi) incrcase 0.8%. For the rest of cases, it always
decreases: 9.8%. 27.8%, 37.1% and 28.8% for a LSC with 128, 32,
16 and 8 entries.

With regard to performance, LSCrui prefetching reduces the data
CPI of a system without prefetch from 43% (8 entries) to 68% (512
entries). The behavior of LSCconv prefetching is always worse:
LSCmi reduces the data CPI of a system with LSCconv from 3.6%
(512 entries) to 30.5% (106 entries).

In SPEC95-int we can notice the same tendency, although the
differences between LSCconv and LSCmi prefetching are smaller.
Moreover, the reduction in data CPI relative to a system without
prefetching is smaller (13-14%).
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Figure 7. On-miss insertion LSC prefetching combined with
OBL sequential-tagged prefetching (LSCmi + OBLst).

In Figure 7 we analyze the performance of the concurrent work of
L.SCmi and OBLst. In SPEC95-fp the number of lookups in L1dC
(PIN) increases slightly with relation to LSCmi, but it is always
kept below the number required by LSCconv. With an LSC of 512-
128 entries, there are about 25% less prefetches than with insertion
always. On the whole, the number of prefetch misses (B) increases
largely with respect to a LSCconv system: from 34% (512 entr.) to
269% (8 entr.). The miss ratio decrease is also noticeable: between
21% (512 entr.) and 70% (8 entr.). Data CPI decreases are between
2.4% (512 entr.) and 56% (8 entr.).

In SPECY95-int, results are qualitatively but nor quantitatively
similar, The accuracy decrease is noticeable due to the concurrent
activity of OBLst prefetching.

On the whole, the most relevant fact is the very low sensitivity of
the miss ratio and the data CPl with respect to the size of LSC.
When moving from 512 to 8 entries the loss in performance is only
3.75% in data CPI for SPEC95-{p.

As Table 6 shows for SPEC95-fp, LSCmi-8entr + OBLst prefetching
achieves better ratios in almost all the metrics with respect to
LSCconv-512entr. It reduces the lookup pressure (P/N decreases
56.4%), increases the prefetch miss ratio (28.7% more in B/N), and so
decreases the miss ratio (10.3%). As a ncgative eftect, a loss of
accuracy —D/(D+8)— appears due to the use of OBLst. In both cases
data CPI is almost the same, but with a cost 64 times lower.

% PN % BMN % m_| data-CPI D/(D+3)
LSCconv-512 61.2 5.86 1.72 0.082 0.978
LSCmi-8 +OBLst 267 7.54 1.54 0.083 0785

Table 6: SPECY95-fp comparison between LSCconv-512entr
and LSCmi-8entr + OBLst.
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5.4.1 Results on programs which follow regular patterns
To observe the performance of our proposal when applied to
programs with an outstanding presence of stride and list patterns,
we have carried out a selection over the whole workload.

Figure 8 shows the means for applu, apsi and wave5 from SPEC95-
FP, spice trom SPEC92 and arc2d and trfd from Pertect Club. Results
for LSCconv appear on the left, and LSCmi + OBLst on the right.
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Figure 8. LSCconv (left) vs. LSCmi + OBLst (right), for applu,
apsi, wave5, spice (SPEC), arc2d and trfd (Perfect).

It can be observed in Table 7 that for these benchmarks, an

LSCmi-8entr.+OBLst performs better than an LSCconv-512entr.

with regard to data-CPI, which decreases 14.5%.

% PIN % B/IN % m data-CP| D/(D+3)
LSCconv-512 56.7 4.90 3.05 0.165 0.956
LSCmi-8 +OBLst 211 7.80 2.80 0.141 0.665

Table 7: LSCconv-512entr vs. LSCmi-8entr + OBLst for
applu, apsi, waveS5, spice (SPEC), arc2d and trfd (Perfect).

Although the results discussed here are based on a 32KB L1dC, we
have simulated other cache sizes too (8KB and 128KB). The same
conclusions are valid for these sizes, yet the advantages of our method
increase with the cache size. Eventually, we issue prefetches by using
an LA-PC as in [1], and with a prefetch distance equal to 1.5 times the
memory latency. In this case the lookup pressure (P/N) increases,
because the method tries to pretetch SCAlars too. Therefore, the
advantage of our method is greater since most of these scalar 1a/st hit
in L1dC and are not inserted in the LSCmi.

6. COST ANALYSIS

Executing a 1d/st instruction requires at least two accesses to the
LSC. The first access reads information about that instruction which
will be used later for detecting the pattern and for calculating the new
state. The second access writes the updated information after the
instruction has been executed. With a simple pipeline, the reading
could be performed during the ALU stage, after the 1d/st instruction
has been decoded. The computations for pattern recognition and for
generating the new state could be carried out during memory access.
Writing should be done in the final stage.

Such a simple implementation requires a writing port and a reading
port in the LSC. If prefetches are driven by LA-PC, a third additional
reading port is needed in orther to check if the instruction addressed by
LA-PCis a 1d/st, and if it matches some pattern.

Every entry in the LSC contains a variable number of fields,
depending on the patterns that we want to recognize. If we intend
to detect strides only, four fields are required: PC, A4i, Si and state.
32-bit addressing yields 12 bytes per entry (state needs only a few
bits). If we intend to detect accesses (o lists chained by address and
index, we should add three more ficlds (D4, di and Ki), and every
entry would take 24 bytes.



To sum up, a direct-mapped LSC with 512 entries stores between
6KB and 12KB, uses a decoder with 512 entries (similar to that of
a direct-mapped cache of 8KB with blocks of 16B), and requires
two ports at least, since it must be tested and updated in a single
cycle. Therefore, an LSC is comparable in size to a first-level data
cache. Replacing such an expensive 512-entry LSCconv by a 8-
entry LSCmi + OBLst divides its storage costs by a factor of 64. It
is difficult to apply an area model in order to take into account the
fixed cost of the control unit due to the great inaccuracy of such
models when computing area for very small caches [18].

7. CONCLUSIONS

In this paper we have analyzed the performance of a load/store
cache as a base for different proposals of hardware-based data
prefetching with patterns other than the sequential one. We have
found that in order to perform better than with sequential
prefetching, it is necessary to provide as much storage area as for a
first-level data cache. This is due to two key facts: a) regular
patterns different from the sequential patiern are uncommon; and
b) most of the instructions that occupy the LSC entries do not miss
(i.e. the involved prefetching is useless).

Decreasing the cost of the LSC with no efficiency loss, implies that
useless instructions must be removed from the LSC. To do that we
propose applying on-miss insertion in the LSC (LSCmi) working
in parallel with tagged sequential prefetching.

On-miss insertion introduces new instructions in the LSC only if
they miss in the data cache. This way, instructions that can take
profit from prefetching will be more likely included in the LSC.
On the other hand, sequential prefetching reinforces this point
because it prevents the 1d/st instructions which follow this pattern
from contending for the LSC entries.

For numerical workloads (SPEC95-fp and Perfect Club) our
proposal achieves a great increment in performance for every
cache size, specially for the small ones. We believe that the
relevant point here is that the performance ot an LSCmi decreases
only 3.75% in terms of data-CPl when the number of entries
decreases from 512 to 8. An LSCmi with 8 entries working in
combination with an OBLst prefetching achieves a performance
comparable to that of a conventional LSC with 512 entries (with a
storage cost 64 times lower).

For non-numerical workloads (SPEC95-int) the performance of an
LSC is rather limited because of the absence of recognizable
regular patterns. In this context, it makes little sense improving its
management. Anyway, since our method reduces the number of
entries strongly, it is possible to increase the number of fields of
cach entry (for detecting new patterns) with little cost.
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