
Processor Energy and Temperature in Computer Architecture Courses: a
hands-on approach

Sergio Gutiérrez-Verde Octavio Benedı́-Sánchez
Darı́o Suárez-Gracia Jose Marı́a Marı́n-Herrero† Vı́ctor Viñals-Yúfera

gaZ. Dpto. de Informática e Ingenierı́a de Sistemas
† Gitse. Dpto. de Ingenierı́a Mecánica

I3A–Universidad de Zaragoza
C\Marı́a de Luna 1. E-50018 Zaragoza, Spain
http://webdiis.unizar.es/gaz/

Abstract

Performance has driven the microprocessor industry for
more than thirty years. Its effort has enabled to multiply by
several orders of magnitude the computational power; e.g.,
the Intel 8080 was able to execute 0.64 MIPS and the newest
Core i7 can execute 6400 MIPS. The cost of this fabulous
improvement has been a large rise in energy consumption.
Nowadays, we have reached a point where one of the most
limiting factor for improving performance is energy dissi-
pation.

In order to keep the performance improvement during
the next years, it is necessary to study energy and tempera-
ture in deep. Nevertheless, most current computer architec-
ture curricula include neither energy nor temperature.

The lack of adequate experimental platforms contributes
to the difficulty in teaching these topics. In this paper we
propose a possible solution: to instrument a commodity PC
for measuring the processor power and temperature during
the execution of real programs. The platform is devised for
teaching, but it can be used to support research experiments
as well. For example, we describe an interesting under-
graduate laboratory that analyzes the interaction between
compiler optimizations and energy. With this laboratory,
students can learn that performance optimizations usually
reduce energy but may increase power.

1 Introduction

Recently, designing energy-efficient computers or reduc-
ing energy consumption is going beyond marketing strate-
gies or personal experiences to turn into a collective goal for
governments, societies, or companies. For instance, Green
Computing advocates for an environmentally sustainable

computing and communication, with minimal or no impact
on the environment. Together with the concepts of total cost
of ownership, including the cost of disposal and recycling,
the economics of energy efficiency is a key point of Green
Computing. So we think that computer engineers should be
aware of these issues.

Energy-efficient computers are not only important from
a Green Computing perspective, but also from a pure per-
formance point of view. On one hand, in the embedded
domain, lowering the energy consumed by the processor in-
crements the device uptime. On the other hand, in the com-
modity segment, the cooling system affects performance
when it is not able to dissipate all the generated heat and
forces a processor frequency/voltage reduction.

While the study of many design constrains, such as per-
formance or programmability, may be done by means of
white boards or simulators, evaluation of energy and tem-
perature appeals for hands-on laboratories—where students
deal with real—for many reasons such as: 1) This approach
reinforces their physics background and establish a clear
connection between computer architecture and its imple-
mentation; 2) They will quickly learn the importance of en-
ergy dissipation and temperature by watching for example
how fast a processor shutdowns when its fan stops; 3) En-
ergy and temperature simulations require sophisticated en-
vironments for being accurate, and since energy depends on
both the instructions and their data, the simulation time can
be very high and unfordable in two/three hour lab sessions.

The main barrier this hands-on approach faces is the
lack of well established platforms for carry on the mea-
surements. Many authors have performed processor power
measurements either research oriented such Isci et al. or
academic oriented like Ası́n et al. [3]. Others such us Mesa-
Martı́nez et al. have measured temperature in commodity
PCs [17]. But up to our knowledge there is not an ade-

quate platform able to simultaneously measure both magni-
tudes. The present work extends the Ası́n et al. platform
adding temperature monitoring support and automatic syn-
chronization of the sampling process. The resulting plat-
form improves measurement accuracy and data logging ca-
pabilities, and at the same time its academic capabilities
such ease of use or cost are reinforced.

Platform features are presented by means of a labora-
tory intended use case for last year undergraduate or mas-
ter courses. Our final goal is to use this platform with stu-
dents from both Computer Engineering (Computer Archi-
tecture courses) and Mechanical Engineering (Heat Trans-
fer courses) degrees in our institution to make them work-
ing together in a common problem. As a session suitable
for both kind of students we present a lab dealing with the
interaction between compiler optimizations and energy.

Summarizing, the contributions of this work are the fol-
lowing: we improve an existing platform for measuring en-
ergy and temperature in commercial processors extending
its logging capabilities and improving the sampling accu-
racy. We present the potential of the platform with a inter-
esting laboratory in which the relation of power and tem-
perature and the impact of compiler optimization in energy
and power are analyzed.

This paper is organized as follows. Section 2 comments
on the related work. Section 3 describes the measurement
platform in detail. Section 4 explains some test for validat-
ing the platform. Section 5 describes the example labora-
tory. Section 6 concludes and present some possible future
work lines.

2 Related Work

Energy and temperature have aroused the interest in both
industry and academia. In the industrial side, SPEC has in-
troduced SPECpower ssj2008 focusing on server computer
consumption [6], and EEMBC has defined EnergyBench es-
tablishing a framework for adding energy to the metrics of
the EEMBC’s performance benchmarks [5].

Many studies have been conducted in the academic side.
Regarding energy, Isci and Martonosi describes a metho-
dology for obtaining per-unit power estimations combining
real power measurements with performance counters [14].
Other authors have proposed infrastructures based on an In-
tel Pentium 4 for characterizing program phases, evaluating
compiler optimizations, or studying energy [9, 21, 3].

Temperature measurements have been performed with
more sophisticated setups; e.g., Mesa-Martı́nez et al. have
presented some power and temperature estimations using an
expensive IR thermal imaging equipment [16].

While most previous work focuses on energy and tem-
perature from a research perspective, our work also takes

into consideration academia requirements such as simplic-
ity or affordable cost.

3 Platform description

The measurement platform is based in our previous work
and consists of two commodity PCs [3]. One, named com-
puter under test (CUT), is monitored, and another, named
data acquisition and storage computer (DASC), acquires
and saves all the power and temperature samples gathered
from the CUT. Both computers are shown in Figure 1a, the
CUT in the left and the DASC in the right.

The CUT runs a GNU/Linux system with a 2.6.25 ker-
nel in which all non-required modules and services (X-
Windows, printing, USB, ...) have been removed to min-
imize the energy consumed by the operating system tasks.
The processor and the motherboard are a 2.8 Ghz Intel Pen-
tium 4 Northwood and an ASUS P4 P8000, respectively.
This motherboard employs a dedicated power line between
the power supply and the processor voltage regulator man-
ager; thus, it removes the need of hacking the motherboard
and simplifies the monitoring of the processor consump-
tion because the product of the voltage of the VRM power
line times its current is the power drawn by the processor—
assuming negligible the VRM consumption [2]. The above
described power line is present on most current PCs, so this
technique can be used with other hardware configurations.

The current is measured with a Tektronix TPC-312
clamp ammeter [23]. The output of the clamp ammeter
along with the voltage are logged with an Adlink PCI-
9112 [10] data acquisition card sampling at 2 Kilosam-
ples/second per channel, 1000×more than the previous ver-
sion of the platform. At this sampling rate, we are able
to observe the main program execution phases, and power
traces remain in reasonable sizes, lower than 1 GiByte.
All samples are stored in the DASC in order to allow off-
line analysis . The DASC system also runs GNU/Linux
and the previous LabView software has been replaced by
C based code and some perl scripts because they allowed
much higher sampling rates and we observed that the real-
time visualization of LabView was seldom used. In fact,
real-time visualization is useful for debugging the platform,
but for that purpose an oscilloscope is preferable. The use
of the new programs is straightforward with a small learn-
ing time as it was with the LabView based software.

Current processors require large heat sinks with power-
ful fans for cooling. Cold air flows towards the processor
pushed by the fan and gets warmer. The hot air is expelled
through the sides of the head sink as shown in Figure 1b.
Since the air (a fluid) flows through a solid (each of the nar-
row channels in between the parallel fins), the whole pro-
cessor cooling package could be modeled according to a
forced-convection thermal model. If some conditions are

Power
supply CPUVRM

Motherboard

12 v 1.6 v

Clamp ammeter

data adquisition and
storage computer (DASC)

.

computer under
test (CUT)

.

Cooling system

thermo-
couples

ethernet

(a) Component diagram.

1

6

5

2

3 4

(b) Thermocouple localization in the processor–cooling package. . The
cold air, pushed by the fan, flows through the narrow channels in between
the fins : it enters top-down and exits horizontally, either by the left and the
right sides

Figure 1: Overview of the platform with its main components

meet, and forced convection holds, heat transfer, q, becomes
proportional to dissipation area, A, and gradient tempera-
ture, ∆T :

q = h×A×∆T

Being the constant h an (experimental) number depending
mainly on thermal conductivity, speed of the flow, and chan-
nel geometry [11]. Acquiring temperature at multiple points
will help us to determine the model goodness. Measure-
ments are carried with K-type thermocouples optimized for
the temperature range of 0-100 °C that are located at 6 po-
sitions: 1) drilled in middle of the heat sink contacting with
the processor, 2) drilled in the border of the heat sink—
Intel provides some guidelines for the placement at these
locations [13], 3) in the lateral edge of a fink placed in the
middle of the heat sink, 4) in the lateral edge of a fink placed
in a corner of the heat sink, 5) in the free path of the output
hot air flow without touching the heat sink, and 6) in the
free path of the input cold air flow.

The six measurement points ease the verification of the
forced convection model because from this model we know
that the temperature of the hot air flow should be much
bigger than that of the cold air flow. Also, the temper-
ature should rise as we approach close to the processor;
therefore, in the real measures we have to observe that
Temp(5) >> Temp(6) and Temp(T1) > Temp(T2).

The acquisition of temperature samples is done with a Pi-
cotech TC-08 converter that is connected to a USB port of
the DASC [22]. The conversion frequency depends on the
number of attached thermocouples. In our case, 6 thermo-
couples, the data acquisition rate is 0.73 samples/second, so
that any individual thermocouple gets sampled every 4,4 s.
This rate is much smaller than that of power, but it is enough
because the change rate of temperature is much lower than
that of power as we will see in Section 4.

Since the platform uses two computers, it is required to
synchronize the beginning and the end of the sampling pro-

cess. The synchronization is acomplished by sending two
low-latency Ethernet packets, one just at the beginning of
the execution of the program under test and the other just
after its end. This synchronization schema is done by a
wrapper on the executables that avoids any complexity to
the students, even for those without a good shell knowledge.
The platform is able to monitor any program independently
of its execution time as long as the hard disk drive has space
left.

Summarizing, the platform is able to measure the tem-
perature and the energy drawn by the execution of any pro-
gram in an Intel Pentium 4 processor with high precision
and without interfering the computer under test. All the
platform software is freely available upon request.

4. Platform Validation

Most changes in the hardware of the platform with re-
gards to the previous version were motivated for increasing
the sampling accuracy and for logging power and temper-
ature simultaneously. The objective was to detect power
phases during program execution, and to see how changes
in energy consumption affected temperature.

As a prove of the accuracy of the platform, Figure 2
shows the temporal evolution of power and temperature for
the complete run of 473.astar (SPEC CFP2006) com-
piled at the maximum level of optimizations with Intel C
compiler1.

The left Figure, 2a, shows the instant power and temper-
ature at the center of the heat sink (thermocouple 1 in Fig-
ure 1b). Note that with this easy experiment students can
see how changes in the phases of programs also affects to
its energy consumption, and how temperature reacts slowly
to the changes in power—justifying the choice of a much
lower sample rate for temperature than for power. Besides,

1For more methodology details please read Section 5.

this plot also shows how the processor–heatsink–fan sys-
tem tends towards their thermodynamic equilibrium when
power is almost constant after roughly 130 s (this can be no-
ticed in both the 150-300 and 600-800 time windows). Our
software package includes a PID controller able to stabilize
the processor consumption, or alternatively the temperature,
at a given value for performing these kind of experiments in
a controlled way.

In order to employ the forced convection model of the
processor—cooling package we have to take several steps.
The first one is to verify relations among the measured tem-
peratures. As shown in the right Figure, 2b, the output air
temperature (T5) is warmer that the input one (T6), and the
difference in temperature increases as the processor activity
rises. Once the initiation phase is completed, the temper-
ature difference between the processor– headsink package
and the input air (T2 - T6) is large (a maximum of almost
30 °C) while the difference between the processor-headsink
package and the output air (T2 - T5) is small (less than 5
°C). These differences between both values indicate that the
air is absorbing heat from the headsink and spreads it out of
the processor–headsink package. Also the temperature in
the middle of the heat sink (T1) is bigger than that of the
border of the heat sink (T2). All these relations match with
the model expectations.

The second step involves considering also the fin tem-
peratures (T3 and T4), determine which gradient tempera-
ture has to be computed (∆T), and tune the experimental
constant h. We have some preliminary numbers, allowing
us to approximate the package temperature from the power
drawn by the processor, but we do not show the numbers
because the model is not accurate enought; the h constant
does not completely match with the handbook data nor-
mally used in thermal engineering.

5 Example Laboratory

This section describes a laboratory to get some insights
between compiler optimizations and energy/power and then
comments some other challenging experiments using the
thermal measurement abilities of the platform.

5.1 Interaction between Compiler Opti-
mization and Energy/Power

One possible application of the platform in academia is
its use in computer architecture laboratories. For example,
it easily allows to study the interaction between compiler
optimizations and energy/power.

The lab would be introduced by explaining the basic re-
lationships among time, energy, and power paying attention
to what changes should be expected when the optimization
level rises. An outline of such introduction follows.

In a processor without Dynamic Voltage Frequency Scal-
ing (DVFS), the execution time Tex of a program can be
expressed as

Tex = Ninst × CPI × Tcycle (1)

where Ninst, CPI , and Tcycle represents the total num-
ber of instructions, the average number of cycles per in-
struction, and the cycle time, respectively. For minimizing
Tex, compilers focus on reducing the total number of cycles,
Ninst × CPI . But which are the effects of this reduction
on power and energy?

Assuming the simplifying assumption that static bias
current does not flow in a microprocessor [20], its total
power consumption is given by

Ptot = Pdyn + Psta = CLV 2
ddf + VddIleak (2)

where Ptot is the total sum of the dynamic and static power.
The dynamic power, Pdyn, is the product of the average ca-
pacitance switched per cycle (processor activity), CL, times
the square of the supply voltage, Vdd, times the frequency,
f . The static power is the product of the supply voltage
times leakage current, Ileak [19].

From equations (1) and (2) we observe that compiler
optimizations only affect power indirectly. Regarding dy-
namic power, Pdyn, on one hand, it is difficult to estab-
lish a relationship between Ninst and CL because execut-
ing more, less, or different instructions may or may not
change the performed activity per cycle. On the other hand,
CPI seems to impact more the dynamic power (CL) be-
cause optimizations that rise/reduce Instruction Level Par-
allelism (ILP), such as instruction scheduling or dead-code
elimination, can increase/decrease activity per cycle, CL.

Static power is less affected by compiler optimizations
since it depends mostly on technological parameters; how-
ever, they can affect static power when the optimizations
increase/decrease the processor activity and this results in
a variation of processor temperature because leakage cur-
rent depends on temperature [4]. The most straightforward
path for reducing static power from compilation is to add
special instructions in the code for switching off processor
parts as suggested by Zhang et al. [26]. These proposals
will become more and more important in the future because
as technology scales, the percentage of static power is ris-
ing [15].

The product of Ptot times Tex is the energy consumed
by a program

Etot = Ptot × Tex = Edyn + Esta

= CtotV
2
dd + VddIleak × Tex (3)

where Ctot is the total capacitance that has been switched
across all execution cycles.

 40

 45

 50

 55

 60

 65

 0 100 200 300 400 500 600 700 800 900
 35

 43

 51

 59

 67

 75

P
ow

er
 (W

)

Te
m

pe
ra

tu
re

 (o C
)

Time (s)

Power Temperature

(a) Temperature in thermocouple 1 and Power

 25

 35

 45

 55

 65

 75

 0 100 200 300 400 500 600 700 800 900

Te
m

pe
ra

tu
re

 (o C
)

Time (s)

∆T Air

∆T Air

T1

T6

T5
T2

center heat sink T1
border heat sink T2

output air T5
input air T6

(b) Temperature at thermocouples

Figure 2: Temperature and Power temporal evolution during the full execution of 473.astar compiled with iO3prf options.

Recalling equations (1) and (3), Edyn is independent of
the frequency and

Ctot = CL ×Ninst × CPI (4)

Thus, execution-time optimization saves energy when
they reduce the total number of cycles, Ninst × CPI , be-
cause we do not expect that compiler optimizations increase
significantly CL. In deep-pipelined processors with com-
plex decoding such as the Intel Pentium 4, this is specially
true because the energy consumed in the execution stage is
smaller that the energy consumed in the rest.

Table 1: Compiler optimization impact summary. ↓, ?, and
↑ means decrement, undetermined, and increment, respec-
tively.

Power Ninst ↓ CPI ↓
dynamic (Pdyn) ? ↑
static (Psta) ? ?

Energy Ninst ↓ CPI ↓
dynamic (Edyn) ↓ ↓
static (Esta) ↓ ?

Table 1 summarizes all previous relations and de-
rives the effect of decreasing either Ninst or CPI , as-
suming constant the other factor. As it can be seen,
performance-oriented compiler optimizations (focused on
reducing Ninst × CPI) are beneficial for energy, and may
not be power-efficient when their target is to reduce only
the CPI because dynamic power can increase. Asking the
students to complete this table before the laboratory session
is a good assignment for ensuring that students understand
the underneath theory.

5.1.1 Experimental Results

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ne

rg
y

re
la

tiv
e

to
 g

O
0

Execution Time relative to gO0

gO0

gO2

gO3

gO3prf

iO3prf

(a) Integer

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ne

rg
y

re
la

tiv
e

to
 g

O
0

Execution Time relative to gO0

gO0

gO2

gO3

gO3prf

iO3prf

(b) Floating Point

Figure 3: Average Energy and Execution time relative to
gO0.

Table 2: Tested SPEC CPU2006 benchmarks.

Integer Input Floating Point Input
400.perlbench -I./lib checkspam.pl 2500 5 25

11 150 1 1 1 1
436.cactusADM benchADM.par

462.libquantum 1397 8 437.leslie3d -i leslie3d.in
473.astar rivers.cfg 447.dealII 23
483.xalancbmk -v t5.xml xalanc.xsl 453.povray SPEC-benchmark-ref.ini

454.calculix -i hyperviscoplastic
470.lbm 3000 reference.dat 0 0

100 100 130 ldc.of

Table 3: Compiler configurations with their respective optimization flags

Compiler Flags
gO0 gcc -O0
gO2 gcc -O2 -mtune=pentium4 -march=pentium4
gO3 gcc -O3 -mtune=pentium4 -march=pentium4 -mfpmath=sse,387 -msse2
gO3prf gcc -O3 -mtune=pentium4 -march=pentium4 -mfpmath=sse,387 -msse2 -fprofile-generate/use
iO3prf icc -O3 -xN -ipo -no-prec-div -prof-gen/use

The previous relations can be verified with the pro-
posed platform by executing multiple programs with dif-
ferent compiler optimizations and acquiring the energy and
power measurements. For the sake of brevity, we only show
the results for the relation between energy and execution
time.

As a benchmark we can choose any program not spend-
ing most of the time in I/O to ensure that the impact of
compiler optimization is significant in energy and power.
Due to its widespread use in industry and academia SPEC
CPU2006 has been our choice [8]. In order to reduce the
measurement time we select the representative subset pro-
posed by Phansalkar et al. [18]. The input sets for each
program used in this paper are shown in Table 2. Other
events of interest such as fetch stalls or instruction count can
be measured with Intel Performance Tuning Utility (PTU);
e.g., to compute the energy per instruction value [1].

To check the impact of compiler optimizations in en-
ergy and power we suggest to test multiple configurations
of the GNU C compiler 4.1.2 (gcc) [7] and one config-
uration of the Intel C compiler 10.1 (icc) [12], all listed
in Table 3. As a baseline, we use a configuration without
optimizations, gO0. We also checked a production-level
configuration tuned for our processor, gO2. Finally, we en-
courage using more aggressive gcc configurations: -O3
without and with profiling, and icc at its maximum level
of optimizations with profiling (iO3prf).

In integer, the more optimizations are applied, the better
the results are. The best gcc configuration, gO3prf saves
34.7% of execution time and 38% of energy. IO3prf in-
creases the gains saving 46% and 48.4% of execution time
and energy, respectively. In floating point, optimizations
are more effective; i.e., gO2 (the best gcc configuration)
saves 41.3% and 45.6% of execution time and energy, re-
spectively. Again, iO3prf performs better with 59.6%
and 62.8% reductions in execution time and energy.

Gains in execution time and energy are very close sug-
gesting a strong correlation. To support this claim, Figure 4
plots execution time and energy for each benchmark. As
can be seen the correlation is strong, which is in line with
previous work [24, 21]. We believe that the correlation is
due to the fact that the clock net, static consumption, and
fetch, decoding, and control parts of the processor consume
more than functional units [25]; hence, it seems than reduc-
ing the number of executed instructions is more important
than its kind for improving energy consumption.

Regarding execution time, icc beats gcc in all but one
benchmark, 447.dealII. Besides, icc consumes less
energy in all programs but 470.lbm. To conclude, both
gcc and icc reduce notably the number of executed in-
structions (50% and 75% on average for integer and float-
ing point, respectively) and increase the CPI (rising also the
Energy per instruction) but icc does it in a lower quantity.

Summarizing, the main assignments for this lab can be:
to perform the measurements for the program, to verify that
the table they have completed before the lab is correct, and
to finish extracting the conclusions of the previous para-
graphs.

5.2 Other Experiments

The platform can be used with a more research-oriented
focus such as master dissertations. For example, an out-
going work in our lab wants to obtain a power/temperature
profile of individual instructions.

Since the processors’ manual does not document the
consumption of the instructions, we can get an estimation
with the platform . For example, we have observed that
stack operations rise power consumption and heat more the
processor, which makes sense because stack instructions re-
quire a read/write in the cache and one increment/decrement
in the stack pointer register in the same cycle.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

gO0
gO2

gO3
gO3prf

iO3prf

gO0
gO2

gO3
gO3prf

iO3prf

gO0
gO2

gO3
gO3prf

iO3prf

gO0
gO2

gO3
gO3prf

iO3prf

 20

 45

 70

 95

 120

 145

 170

 195

 220

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

E
ne

rg
y

(K
ilo

Jo
ul

es
)

Execution Time Energy

483.xalancbmk473.astar462.libquantum400.perlbench

(a) Integer

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

gO0
gO2

gO3
gO3prf

iO3prf

gO0
gO2

gO3
gO3prf

iO3prf

gO0
gO2

gO3
gO3prf

iO3prf

gO0
gO2

gO3
gO3prf

iO3prf

gO0
gO2

gO3
gO3prf

iO3prf

gO0
gO2

gO3
gO3prf

iO3prf

 0

 62.5

 125

 187.5

 250

 312.5

 375

 437.5

 500

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

E
ne

rg
y

(K
ilo

Jo
ul

es
)

Execution Time Energy

470.lbm454.calculix453.povray447.dealII437.leslie3d436.cactusADM

(b) Floating Point

Figure 4: Execution time and Energy per benchmark.

6. Conclusions and Future Work

This paper presents a platform for measuring en-
ergy/power and temperature in commodity PCs with an aca-
demic focus. In this work, measures are carried out in an
Intel Pentium 4, but the platform can be easily ported to
any commodity PCs. The acquired data can be stored to
perform off-line analysis, and its accuracy enables to detect
power and temperature phases.

With the platform students can, for example, study
the interaction between compiler optimizations and en-
ergy/power. This laboratory enables the student to learn that
on average performance optimizations are energy-efficient.

Nowadays,the platform is used and extended by a small
group of students. Our next main step is to set up a whole
laboratory for using it as a regular laboratory session in our
Computer Architecture and Heat Transfer courses. Our on-
going work is to obtain a simple linear equation relating
measured power, fan speed, and dissipating surface to com-
pute output air temperature for using it during the introduc-
tion of the laboratories.

Our future work will try to extend the platform reduc-
ing the granularity of the sampling process. Now, the plat-
form does not know at which code fragment or function
each sample belongs. We believe that this ability will help
us finding the most heat-producing instruction sequences to
continue our studies on per instruction energy estimations.

Acknoledgements

The authors would like to thank the anonymous review-
ers for their suggestions on this paper. Darı́o Suárez Gra-
cia and Vı́ctor Viñals Yúfera were supported in part by the
Gobierno de Aragon grant gaZ: Grupo Consolidado de In-
vestigacion, the Spanish Ministry of Education and Science
under contracts TIN2007- 66423, TIN2007-68023-C02-01,
and Consolider CSD2007- 00050, and the European Union
Network of Excellence HiPEAC-2 (FP7/ICT 217068).

References

[1] Intel Performance Tuning Utility 3.1 Update 3. http:
//software.intel.com/en-us/articles/
intel-performance-tuning-utility-31-update-3,
2007 edition.

[2] Analog Devices. ADP3180, 6-Bit Programmable 2-, 3-, 4-
Phase Synchronous Buck Controller. Analog Devices, 2003.

[3] A. Ası́n Pérez, D. Suárez Gracia, and V. Viñals Yúfera. A
proposal to introduce power and energy notions in computer
architecture laboratories. In WCAE ’07: Proceedings of the
2007 workshop on Computer architecture education, pages
52–57, New York, NY, USA, 2007. ACM.

[4] D. Brooks, R. P. Dick, R. Josepth, and L. Shang. Power,
thermal, and reliability modeling in nanometer-scale micro-
processors. IEEE Micro, 27(3):49–62, May-June 2007.

[5] E. T. E. M. B. Consortium. EnergyBench ™ version 1.0
power/energy benchmarks. http://www.eembc.org/
benchmark/power_sl.php, 2008.

[6] S. P. E. Corporation. SPECpower ssj2008 benchmark suite.
http://www.spec.org/power_ssj2008/, 2008.

[7] Gcc team. GCC 4.1.2 Manual. http://gcc.gnu.org/
onlinedocs/gcc-4.1.2/gcc/. Free Software Foun-
dation, February 2008.

[8] J. L. Henning. Spec cpu2006 benchmark descriptions.
SIGARCH Comput. Archit. News, 34(4):1–17, 2006.

[9] C. Hu, J. McCabe, D. A. Jiménez, and U. Kremer. Infre-
quent basic block-based program phase classification and
power behavior characterization. In Proceedings of The 10th

IEEE Annual Workshop on Interaction between Compilers
and Computer Architectures. ACM Press, 2006.

[10] A. T. Inc. Adlink pci-9112 data acquisition card.
http://www.adlinktech.com/PD/web/PD_
detail.php?cKind=&pid=29&seq=&id=&sid=,
2008.

[11] F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S.
Lavine. Fundamentals of Heat and Mass Transfer. Wiley,
6th edition, 2007.

[12] Intel. Intel C++ Compiler 10.1 Profesional edi-
tion. http://www.intel.com/cd/software/
products/asmo-na/eng/277618.htm, 2007
edition.

[13] Intel. Intel® Pentium® 4 Processor in the 478-Pin Package
Thermal Design Guidelines. Intel Corporation, 1st edition,
May 2002.

[14] C. Isci and M. Martonosi. Runtime power monitoring in
high-end processors: Methodology and empirical data. In
MICRO 36: Proceedings of the 36th annual IEEE/ACM
International Symposium on Microarchitecture, page 93,
Washington, DC, USA, 2003. IEEE Computer Society.

[15] S. Kaxiras and M. Martonosi. Computer Architecture Tech-
niques for Power-Efficiency. Number 4 in Synthesis Lec-
tures on Computer Architecture. Morgan & Claypool Pub-
lishers, 2008.

[16] F. J. Mesa-Martinez, M. Brown, J. Nayfach-Battilana, and
J. Renau. Measuring performance, power, and temperature
from real processors. In ExpCS ’07: Proceedings of the 2007
workshop on Experimental computer science, page 16, New
York, NY, USA, 2007. ACM.

[17] F. J. Mesa-Martinez, J. Nayfach-Battilana, and J. Renau.
Power model validation through thermal measurements. In
ISCA ’07: Proceedings of the 34th annual international
symposium on Computer architecture, pages 302–311, New
York, NY, USA, 2007. ACM.

[18] A. Phansalkar, A. Joshi, and L. K. John. Analysis of redun-
dancy and application balance in the spec cpu2006 bench-
mark suite. In ISCA ’07: Proceedings of the 34th annual
international symposium on Computer architecture, pages
412–423, New York, NY, USA, 2007. ACM.

[19] J. Rabaey. Low Power Design Essentials. Springer, 2009.
[20] J. M. Rabaey, A. Chandrakasan, and B. Nikolić. Digital In-

tegrated Circuits. A design perspective. Prentice Hall Elec-
tronics and VLSI series. Prentice Hall, second edition, 2003.

[21] J. S. Seng and D. M. Tullsen. The effect of compiler opti-
mizations on pentium 4 power consumption. In Seventh An-
nual Workshop on Interaction between Compilers and Com-
puter Architectures (INTERACT’03, page 51, 2003.

[22] P. Technologies. USB TC-08 Temperature Logger User’s
Guide. Pico Technologies Limited, 2007.

[23] Tektronix. Tektronix tpc-312 current probe.
http://www2.tek.com/cmswpt/psdetails.
lotr?ct=PS&ci=13540&cs=psu&lc=EN, 2008.

[24] M. Valluri and L. John. Is compiling for performance ==
compiling for power? In Fifth Annual Workshop on Inter-
action between Compilers and Computer Architectures (IN-
TERACT’00), page 51, 2001.

[25] W. Wu, L. Jin, J. Yang, P. Liu, and S. X.-D. Tan. A system-
atic method for functional unit power estimation in micro-
processors. In DAC ’06: Proceedings of the 43rd annual
conference on Design automation, pages 554–557, New
York, NY, USA, 2006. ACM.

[26] W. Zhang, J. S. Hu, V. Degalahal, M. Kandemir, N. Vijaykr-
ishnan, and M. J. Irwin. Compiler-directed instruction cache
leakage optimization. In Proceedings of the 35th Annual
IEEE/ACM International Symposium on Microarchitecture,
page 208. IEEE Computer Society, 2002.

