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† I3A Instituto de Investigación en Ingenieŕıa de Aragón (I3A), 50018, Universidad de Zaragoza
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Abstract

In real-time systems, time is usually so critical that other parameters such as energy consumption are
often not even considered. However, optimizing the worst energy consumption case can be a key factor
in systems with severe power-supply limitations. In this paper we study several memory architectures
using combined time and energy optimization models for real-time multitasking systems. Each task is
modeled using Lock-MS, a method to optimize the WCET of a task, with an added set of constraints to
model in the same way the WCEC (worst case energy consumption). Our tested hardware components
focus on instruction fetching, including a lockable cache, a line buffer and a sequential prefetch buffer.
We test a variety of instruction fetch alternatives optimizing time and energy consumption. Our results
show that the accuracy of the estimation of the number of context switches in the worst case may affect
very much the resulting WCEC (up to 8 times in our experiments) and that optimizing the WCEC may
provide similar execution times than optimizing the WCET, with up to 5 times less energy consumption.
Additionally optimization functions combining WCET and WCEC with different weights show very
interesting WCET-WCEC trade-offs. This confirms that methodologies testing such optimizations at
design time could be very helpful to provide a precise system set-up.
Keywords: hard real-time, embedded, WCET, energy-aware, instruction memory-hierarchy

1 Introduction

Design of embedded and real-time systems and processors for specific tasks is a complex work. Besides,
for autonomous real-time systems operated with batteries or draining energy from limited sources, low
energy consumption is critical. Such systems are becoming increasingly important, ranging from sensor
networks, surveillance systems and satellite subsystems to search and rescue robotics. However, their energy
consumption is not usually tightly bounded, i.e. their specifications do not include a worst case energy
consumption (WCEC).

Real-time systems require that tasks complete their execution before specific deadlines. Given hardware
components with a fixed latency, the worst case execution time (WCET) of a single task could be calculated
from the partial WCET of each basic block of the task. However, in order to improve performance, current
processors perform many operations with a variable duration. This is mainly due to speculation (control or
data) or to the use of hardware components with variable latency. Branch predictors fall in the first category,
whereas memory hierarchy and data-path pipelining belong to the second one. Analyzing and optimizing

1

*Manuscript
Click here to view linked References



the WCET in the presence of such speculative components is very hard, but it is the base of all further
scheduling analysis.

Memory hierarchy is one of these challenging structures. In general, an on-chip memory hierarchy made
up of one or more cache levels takes advantage of program locality and saves execution time and energy
consumption. This is achieved by delivering data and instructions with an average latency of a few processor
cycles and an energy consumption far below that of the external main memory. Unfortunately, the cache be-
havior depends on past references and its analysis is very difficult due to this lack of predictability [11, 15, 24].
This implies that, usually, tasks are analyzed in isolation, i.e. without considering inter-tasks interferences.
Instead, alternative on-chip memory architectures are commonplace in real-time studies because they are
easier to analyze. Such designs include lockable caches and scratchpad memories.

Cache locking disables the cache replacement, which fixes cache contents. This means that, for an
instruction cache, hits and misses depend on whether each instruction belongs to a cached and locked
memory line, and not on the previous accesses. There are several WCET analysis/optimization methods
based on lockable instruction caches. These methods consider a restricted cache behavior disabling cache
replacement, a possibility offered by many commercial processors.1 With specific contents locked in cache,
the timing calculations are easier, so these methods enable the full system to be analyzed, i.e., several
tasks on a real-time scheduler. Cache-locking techniques can also be divided into static and dynamic cache
locking. Static locking methods preload the cache content at system start-up and fix this content for the
whole system lifetime so that it is never replaced [12, 18]. Mart́ı Campoy et al. use a genetic algorithm to
obtain the selection [12], whereas Puaut and Decotigny propose two low-complexity selection algorithms: one
to minimize the utilization and another to minimize the interferences [18]. None of these three algorithms
studies the possibility of worst path changes depending on the selected cache lines. Instead, the worst path
is determined only once, assuming an empty cache. Therefore, as stated in [8], these single-path analysis
are not optimal. Dynamic cache locking, on the other hand, allows tasks to disable and enable the cache
replacement. Although there are studies which allow instruction cache reloading at any point in order to
manage instructions and data phases in programs [17, 25], such detail is usually not needed and most studies
restrict reloading to context switches [3, 4, 13, 14]. These approaches require per-task selection of contents,
with the drawback that preloading is performed every time a task starts/continues its execution. Despite
this drawback, studies show that dynamic locking approaches provide a better worst case performance than
static locking policies, except when almost all code fits in cache [4, 13]. Lockable caches can also be used
on data [25]. However its complex analysis leads to a limited performance compared to instruction cache
locking.

Alternatively, scratchpad memories are considered for servicing specific main-memory areas [26]. Scratch-
pad memories are small, fast and low-consumption on-chip SRAMs. The allocated memory chunks can be
configured and modified at run-time. Indeed, a scratchpad memory can be seen as a locked direct-mapped
cache, although scratchpad management usually focus on tuning the data location at compile time (coarse-
grain data mapping), whereas cache analysis focus on accounting the run-time consequences of the existing
mapping between data and cache lines [19].

Regarding energy consumption in real-time systems, there are works that make use of dynamic voltage
scaling (DVS) for energy-efficient scheduling of tasks [6]. Such studies are essentially theoretical, and they
study how to manage the processor speed (and thus its estimated energy consumption) when there is enough
slack, i.e. based on the WCET of tasks. However, they usually do not include in such scheduling analysis
the worst-case energy consumption (WCEC) of the system, since this value is generally unknown.

The combined WCET-WCEC problem has been partially addressed in a previous work [9]. It nicely
describes the problem and shows that the WCEC cannot be calculated as average power × WCET , since
the path corresponding to the WCET may not coincide with the path with the highest energy consumption.
So, a technique to estimate the WCEC of a processor executing a single task is introduced. The WCEC is
computed by Integer Linear Programming (ILP) similarly to the WCET analysis techniques [11]. That is,
modeling the energy consumption cost of basic blocks through linear constraints and obtaining the worst

1For instance, Motorola (ColdFire, PowerPC, MPC7451, MPC7400), MIPS32, ARM (904, 946E-S), Integrated Device Tech-
nology (79R4650, 79RC64574), Intel 960, etc.
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case by finding the maximum. Although in our work we are also addressing the combined WCET-WCEC,
three characteristics of our proposal are key to understand the substantial improvement of our work with
respect to this previous proposal. First, our proposed instruction memory organization includes a lockable
cache, whereas they use a conventional cache. Conventional caches are not designed for real-time systems,
so they may not provide a good worst-case performance, and their behavior is difficult to analyze compared
to lockable caches. Hence, they analyze a single-task system, whereas we test the worst case of several
tasks running in a preemptive real-time scheduler. Second, this multitasking analysis allows us to take into
account the interferences of context switches in comparison to their proposal. As we will show in the results
section, this aspect is very important in multitask systems. Third, they simply calculate the WCET-WCEC,
whereas our ILP formulation optimizes it. That is, our proposal is able to select the set of instructions to
lock into the instruction cache so that the worst case of the system is minimized. Finally, the optimization
of the combined WCET-WCEC problem is a significant milestone, since previous worst-case optimization
studies focused on WCET only and they do not consider other factors such as energy consumption [3, 4].
This can be counterproductive when considering the WCEC, since the WCET optimization process would
discard options having a few more execution cycles even if such options consume far less energy.

In this paper we study different hardware components and optimization approaches for solving a combined
WCET-WCEC problem, focusing on a cache-based instruction memory hierarchy. That is, both latency
and energy consumption are modeled as constraints in a single ILP problem. In order to study different
instruction fetch components, our target system includes a lockable instruction cache that may be enhanced
with instruction line buffering and sequential prefetching. We consider the Lock-MS method for WCET
optimization [4] and extend it to compute and optimize the WCEC within a real-time multitasking system,
taking into consideration the effects of context switches. As we will see, depending on the particular tasks and
hardware components, not considering the WCEC analysis may result in extremely energy-wasting real-time
systems. For instance, in one of our experiments with the benchmark CRC, when optimizing time it shows
the same worst case execution time as when optimizing energy, but it uses up to 5 times more energy. Also,
the accuracy of the estimated number of context switches affects very much the energy consumption (up to
8 times more energy consumption in our experiments), which, to the best of our knowledge, no previous work
has pointed before. Finally, in many cases the best results are not achieved by optimizing the WCET of the
WCEC, but by an optimization goal combining both parameters. Such combined analysis and optimization
is possible through our proposed methodology. This allows a very precise system set-up in a design phase,
which could result in more efficient products.

This paper is organized as follows. Section 2 presents our tested hardware architecture. The combined
WCET-WCEC optimization model is described in Section 3. Sections 4 and 5 describe the experimentation
environment and the obtained results. Finally, Section 6 presents our conclusions.

2 Hardware architecture

In this paper, we consider a simple processor model like the ones of family ARM7T (although the considered
ISA in our experiments is ARMv7), a multicycle non-pipelined 1-issue processor. This allows us to focus on
the instruction memory hierarchy for the computation of the WCET and WCEC.

Previous studies on WCET analysis have used or proposed memory hierarchies intended to be easily
analyzable and to have a good worst case performance [4, 18, 26]. In this paper, additionally, our design
aims at low energy consumption: low-power standby transistors, tag-only array reading in prefetch lookup,
two separate SRAM banks instead of a dual-ported one, etc.

Figure 1 shows the chosen on-chip Harvard organization: the embedded SRAM main memory is split into
two independent banks of 128 KB (iSRAM and dSRAM, for instructions and data, respectively). Having
separate ports avoids contention, simplifies the timing analysis, and involves less energy consumption per
access than in a dual-ported SRAM at the cost of some area. Load/store instructions use the dSRAM
read/write port to transfer 32-bit words to/from the register file. Instruction fetch misses and prefetches
read a 4-instruction cache line (128 bits) from iSRAM. Below the iSRAM, our architecture has a lockable
instruction cache (IC), a line buffer (LB) and a prefetch buffer (PB). Between context switches the IC works
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Figure 1: Memory hierarchy organization. PC stands for program counter; IC for instruction cache; LB for
line buffer; PB for prefetch buffer; hIC, hLB and hPB for instruction hit in IC, LB or PB.

in a locked state, so no replacement is allowed. On each context switch, the IC is loaded with the instruction
lines previously selected for the task being switched in. Even without replacement, IC may exploit significant
amounts of temporal locality, because the instruction lines stored in IC are in general heavily reused. In
order to exploit the spatial locality of instruction streams not cached in IC, a fetch miss brings to LB a whole
cache line. Thus, short-range sequential fetching after a miss does not require iSRAM access. In order to
better exploit sequential fetching, a prefetch mechanism is available [3].

The instruction fetch proceeds as follows. In a single cycle (fetch stage), IC, LB, and PB are concurrently
accessed, providing the corresponding instruction in case of hit. On miss, the required instruction line is
requested to iSRAM, which will fill LB after a few cycles (iSRAM access stages). If the instruction being
fetched belongs to a memory line different from the previous PC, the prefetch mechanism is started. If so,
it must be checked whether the instruction line to be prefetched is already in IC or not. This look up avoids
redundant memory requests, which can be an important source of energy wasting. Since the tag array in
IC is single ported, this action cannot be done during the fetch stage, so prefetch triggering is checked the
first cycle just after the fetch stage (i.e., in parallel to the decode stage in case of fetch hit, and in parallel to
the iSRAM access stages in case of fetch miss). If prefetch is triggered (i.e., if the next memory line is not
cached), the next memory line will be requested to iSRAM. This will occur in the next cycle if the iSRAM
is free, or after completing any ongoing instruction memory request. When the prefetched instruction line
arrives, it is written in PB. If the next memory line required is the one speculatively prefetched, the roles of
LB and PB are interchanged, so that the former LB will be recipient of the next prefetched instruction line.
Note that the iSRAM may be busy reading a prefetched line when a fetch miss arises. If this occurs, the
miss processing is delayed until the line gets read, and if this happens quite often performance may suffer.

Summarizing, the described memory system has three key advantages: it is simple, its prefetch system
is suitable for a low-power locking cache and it is amenable for use in an ILP-based WCET analysis [3].
We assume that our system has no additional sources of latency variability (data cache, branch predictor,
out-of-order execution, etc.). Many embedded processors can operate under these considerations, which are
also assumed in previous studies [12, 18].
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3 Combined WCET-WCEC optimization model

Using the memory organization described above, the instructions to be locked into the instruction cache must
be selected so that a low WCET-WCEC is obtained. The Lock-MS method selects the set of instructions to
be locked, so that the schedulability of the whole system is maximized [4]. In order to select such instructions,
Lock-MS considers the resulting WCET of each task, the effects of interferences between tasks and the cost
of preloading the selected lines into cache. Additionally to the instruction cache, it supports the instruction
line buffer and the instruction prefetch buffer described above [3]. This method is based on Integer Linear
Programming (ILP) [7, 20]. Specifically, all requirements must be modeled as a set of linear constraints
and then the WCET of the resulting system is minimized. This allows not only to obtain a WCET bound,
but the lowest possible one given the assumed memory organization. Next, we outline how to set the ILP
constraints (see [3, 4] for further detail).

The WCET of a task i must be equal or higher than the worst execution time of any of its paths j.

wceti ≥ pathTimei,j ∀ 1 ≤ j ≤ NPathsi (1)

The execution time of each path j can be calculated as the sum of the execution times of all the particular
memory lines k (subset of instructions, in a basic block, which fit in a cache line) it traverses.

pathTimei,j =

NLinesi,j∑

k=1

lineTimei,j,k

In turn, the worst execution time of each particular memory line depends on its hits and misses.

lineTimei,j,k = hitTi,j,k · nhiti,j,k +missTi,j,k · nmissi,j,k

The time cost of any hit or miss (hitT , missT ) is a constant that depends on the timing of the hardware
structures. Such constants consider the different instructions in the memory line k and their execution
times [3, 4]. The number of hits and misses of a memory line (nhit, nmiss) depends on the control flow
graph and the memory lines locked in cache. For instance, if a memory line is traversed n times and it has
been cached and locked, it will hit n times and miss 0 times.

The final worst execution time to be used in multitasking systems also accounts for the overhead of
context switches.

wcetM i = wceti + ncswitchi · switchT imei (2)

It requires an (external) estimation of the number of context switches in the worst case (ncswitchi) depending
on the selected scheduling policy. The estimation of such value is discussed in Section 4.1.

Thus, the ILP system is set to minimize eq. 2, and in this process it provides the selection of memory
lines to be locked in the instruction cache in order to reach such result.

We apply the same methodology in order to calculate the WCEC. That is, additionally to model the
timing requirements to obtain the worst time, we add a new set of constraints to model the worst energy con-
sumption. The key point is that energy constraints can be constructed in the same way as timing constraints.
That is, instead of execution time costs (wcet, pathTime, lineTime, hitT , missT , wcetM , switchT ime, etc.)
the new constraints will represent energy costs using the same control flow constraints and parameters
(nhiti,j,k, nmissi,j,k, ncswitchi, etc.). Hence, the only changes between time and energy constraints are the
specific coefficients of each operation, i.e., time coefficients (cycles) for the timing constraints and energy
consumption coefficients (picojoules) for the energy constraints.

Therefore, for each task, both the worst time (WCET plus time overhead of context switches) and worst
energy (WCEC plus energy overhead of context switches) are modeled together. Using this model, any linear
combination of worst time and worst energy could be used as the optimization goal instead of eq. 2:

OptGoal = α · wcetM i + (1− α) · wcecM i (3)

This optimizes both parameters with the desired α ∈ [0, 1] and selects the memory lines to be locked into
cache. Also, we normalize both wcetM i and wcecM i previously (not shown), in order to use straightforward
values of α.

5



Table 1: Worst-case execution time and energy consumption metrics
Time Energy Description
WCET (Worst-Case
Execution Time)

WCEC (Worst-Case
Energy Consumption)

Time/energy required, at most, for completing the
execution of a single task (without being interrupted)
on a specific hardware platform

WCET-M (WCET-
Multitask)

WCEC-M (WCEC-
Multitask)

WCET/WCEC plus worst-case preemption delay
overheads due to considering a bound on the number
of context switches in the worst case

WCRT (Worst-Case
Response Time)

WCRE (Worst-Case
Response Energy)

WCET-M/WCEC-M of the task plus the WCET-
M/WCEC-M of each interrupting task times its
number of interruptions

WCSRT (Worst-Case
System Response
Time)

WCSRE (Worst-Case
System Response En-
ergy)

The highest WCRT/WCRE among the tasks in the
system

4 Experimentation environment

Experiments in this paper comprise worst-case time and energy values for multitasking systems. Although
temporal metrics are common and well-known in real-time systems, energy metrics are uncommon in this
area. Table 1 describes the used metrics, both regarding time and energy, and their relations. WCET (wceti
in eq. 1) and WCEC are the basic worst-case single task metrics. In multitask systems, it is required to
know the worst-case preemption delay too, especially the cache related preemption delay. With conventional
caches, this value usually depends on the interrupting task and may be different for each specific preemption,
which implies a complex analysis (e.g. [2]). In contrast, using lockable caches this value is proportional to
the cache lines used, and remains constant through the whole system lifetime. Hence, we can easily group
the WCET with the overheads due to context switches into a new WCET-M metrics (wcetMi in eq. 2). The
same applies to WCEC-M.

All our experiments consist of modeling each task and system as linear constraints, optimizing the
model and simulating the results in a Rate Monotonic scheduler. Considering a fixed priority scheduler, the
feasibility of periodic tasks can be tested in a number of ways [22]. Worst-case response time (WCRT, or
simply response time) analysis is one of these mathematical approaches. It is based on the following equation
for independent tasks:

Rn+1

i = Ci +

i−1∑

j=1

⌈
Rn

i

Tj

⌉

Cj (4)

where Ri is the WCRT, Ci in our case is the WCET-M and Ti is the period of each task i, respectively. It is
assumed that tasks are ordered by priority (the lower the i, the higher the priority). This equation provides
the response time of each task after a few iterations and it has been used in previous studies [5, 10, 23]. A
task i meets its real-time constraints if Ri ≤ Ti. The worst-case response energy (WCRE) can be calculated
in the same way. Finally, in order to test whole multitasking systems, we use the response time or response
energy of the task with the lowest priority (WCSRT or WCSRE).

4.1 Estimation of the number of context switches

A priory, the exact number of task switches (preemptions plus starting a task execution when the processor
is idle) in the system is not known. However, it can be overestimated in many ways [10, 23], and then,
included in the ILP. So that, the solver assumes that there will be as many context switches as estimated.
In our experiments, we use two different estimations for the number of context switches. First, we use a
trivial and pessimistic bound: the number of context switches for a task i, during Ti, cannot be higher than
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Table 2: Task sets “small” and “medium”
Set Task WCET (c) WCEC (pJ) Period (c)

small

jfdctint 18704 93935.12 84168
crc 203880 1004335.82 917460
matmul 834226 4337954.64 3754017
integral 1281414 6629432.60 5766363

medium

minver 14352 72799.72 57408
qurt 10117 86466.51 68104
jfdctint 18704 93935.12 74816
fft 4737168 24074762.80 19422389

the sum of the maximum number of invocations of any higher priority task:

ncswitchi ≤

i−1∑

j=1

⌈
Ti

Tj

⌉

(5)

By using this estimation in eq. 2, valid but pessimistic WCET-M and WCRT (eq. 4) will be obtained. In
our second estimation method, we use these (pessimistic) response times and we refine the estimation of the
maximum number of context switches as:

ncswitchi ≤

i−1∑

j=1

⌈
Ri

Tj

⌉

(6)

Using this new estimation, we solve again the ILP problem, which results in a more accurate system (which
may have a different selection of instruction lines to lock into cache). This process could be repeated until
the number of context switches converges but, as we will see, few iterations provide enough accuracy.

4.2 Benchmarks

We assume periodic tasks with fixed priorities managed by a Rate Monotonic scheduler. Table 2 lists the
two sets of tasks used in our experiments. Benchmarks include JPEG integer implementation of the forward
DCT, CRC, matrix multiplication, integral computation by intervals, matrix inversion, computation of roots
of quadratic equations and FFT, from the SNU-RT Benchmark Suite for Worst Case Timing Analysis [21].
Sources have been compiled with GCC 2.95.2 -O2 without relocating the text segment, i.e., the starting
address of the code of each task map to cache set 0. In this table, both WCET (in CPU cycles) and WCEC
(in pJ) refer to the task being executed in a system without cache, LB or prefetch, and they have been
computed without context switches. Task periods have been set so that all configurations are schedulable,
which allows us to better compare the obtained results. The “small” and “medium” task sets and the relation
between the periods for each task have already been used in previous studies [4, 18].

Note that the WCETs and periods of each task set follow different patterns. In the small task set, WCETs
and periods grow as the priority in tasks decreases. Periods grow approximately by an order of magnitude
in most cases. However, the medium task set has relatively small WCETs and periods for all tasks but the
one with the lowest priority, which is around three orders of magnitude larger. This means that the lowest
priority task in the medium task set will be interrupted many times. So, in general, the medium task set
will have much more context switches than the small task set for a given interval.

4.3 Architectural details

In this section we detail the timing and energy consumptions for the memory organization shown in Figure 1.
We assume a multi-cycle non-pipelined 1-issue processor with the ARMv7 instruction set architecture, which
has 4 bytes of instruction size. The LB/PB size (and memory/cache line size) is 16 bytes, or 4 instructions.
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Table 3: Energy consumptions for Read, Write and Lookup operations (measured in picojoules, pJ), static
power (leak) and area cost.

32 bit 128 bit Leak Area
Rd Wr Rd Wr Lkup (pJ/cycle) (µm2)

iSRAM — — 147.92 — — 0.05 1216188
dSRAM 38.50 38.37 — — — 0.05 1216188
1 KB IC 1.07 — — 1.44 0.09 0.07 7395
512 B IC 0.67 — — 1.27 0.06 0.04 5928
256 B IC 0.46 — — 1.16 0.04 0.02 4933
128 B IC 0.36 — — 1.11 0.03 0.011 1587
64 B IC 0.31 — — 1.08 0.02 0.007 584
LB/PB 0.08 — — 0.27 — 0.002 36

The instruction cache size is varied from 64 bytes to 1 KB. Main memory separates instructions and data into
two 128 KB embedded SRAM memories (iSRAM and dSRAM). In order to compute memory circuit delays
we have used Cacti v6.5 [16], a memory modeling tool at microarchitectural level, assuming an embedded
processor built in 32 nm technology and running at a processor cycle equivalent to 36 FO42. All memory
circuits have been modelled with low-standby power transistors in order to save as much energy as possible
(further details in Appendix A). We have verified that all the tested caches meet the cycle time constraint.
Further, the access time of each 128 KB embedded SRAM is 6 cycles if we choose to implement it with
low-standby power transistors. Therefore, instruction fetch costs are 1 cycle on cache or LB/PB instruction
hit, 7 cycles on LB miss (6 cycles of memory access plus 1 cycle of LB access) and a specific value between
1 and 6 cycles for the first hit to PB/LB being filled by prefetch, depending on prefetch timeliness. All data
accesses are delivered directly from the dSRAM in 6 cycles. So, once an instruction is fetched, the modeled
execution costs are 1 cycle for non-memory instructions, and 1+6 cycles for loads and stores (1 cycle for
address computation plus access latency).

In Table 3, we show the values of energy consumption according to Cacti. For each memory component,
columns (from left to right) show energy consumption for Read (Rd) and Write (Wr) operations for different
data widths (32 bit and 128 bit). Next column shows energy consumption for look-up accesses (Lkup) in
ICs (always direct-mapped), already included in the read/write consumptions. In the Leak column, we
show energy per cycle due to leakage (0.4 ns at 2.4 GHz). Whether a memory component is performing an
operation or not, this energy consumption must be accounted. Finally, in the last column, we show area
costs. Some values of this table have been intentionally left blank because none of the evaluated memory
hierarchy organizations requires that value. First two rows show the energy consumption of the two eSRAM
modules: iSRAM for instructions and dSRAM for data. iSRAM is accessed on prefetch, fetch miss or context
switch, and all these cases imply reading complete memory lines (128 bit). On the other hand, data load
and store operations always access dSRAM for a word (32 bit). Next six rows show the energy consumption
for different direct-mapped instruction cache sizes and LB/PB circuits, which are always written with line
granularity and read with word granularity.

5 Results

We consider four memory configurations, namely Direct-eSRAM, LB-only, No-prefetch, and Prefetch. In
Direct-eSRAM, instructions and data values are serviced from the corresponding embedded iSRAM or
dSRAM. LB-only adds the instruction line buffer (LB) to the previous configuration. In No-prefetch we
add a direct-mapped lockable IC ranging from 4 to 64 sets (64 B to 1 KB) to the instruction memory
datapath. Finally, Prefetch adds sequential prefetching to the previous configuration, with prior IC lookup.

2A fan-out-of-4 (FO4) represents the delay of an inverter driving four copies of itself. A processor cycle of 36 FO4 at 32 nm
technology would result in a clock frequency around 2.4 GHz, which is in line with the market trends [1].
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Table 4: Energy consumptions of each memory operation
Memory Configuration

Operation Direct-eSRAM LB-only No-prefetch Prefetch

(iSRAM + (iSRAM + (iSRAM+dSRAM (iSRAM+dSRAM
dSRAM) dSRAM+LB) +IC+LB) +IC+LB+PB)

Fetch Stage
Rd-LB(32b) Rd-IC(32b) + Rd-IC(32b) +

Rd-LB(32b) Rd-LB(32b) +
Rd-PB(32b)

Prefetch Lookup Lkup-IC

Prefetch Access Rd-iSRAM(128b) +
Wr-LB/PB(128b)

Fetch Miss Rd-iSRAM(32b) Rd-iSRAM(128b) + Wr-LB(128b) + Rd-LB(32b)

Data Load Rd-dSRAM(32b)

Data Store Wr-dSRAM(32b)

Context Switch Rd-iSRAM(128b) + Rd-iSRAM(128b) +
(flushed buffers) Wr-LB(128b) Wr-LB(128b) +

Rd-iSRAM(128b) +
Wr-PB(128b)

Context Switch (IC) refill-energy = mem-lines-in-IC ×
(Rd-iSRAM(128b) + Wr-IC(128b))

Any Cycle

Leak-iSRAM + Leak-iSRAM + Leak-iSRAM + Leak-iSRAM +
Leak-dSRAM Leak-dSRAM + Leak-dSRAM + Leak-dSRAM +

Leak-LB Leak-IC + Leak-IC +
Leak-LB Leak-LB + Leak-PB

Table 4 breaks down energy consumption for each memory operation in the four memory configurations.
The last row of this table shows the memory components involved in the static energy consumption, which
corresponds to leakage currents and must be considered even when the whole memory hierarchy is idle.

In sections 5.1, 5.2 and 5.3, for each memory configuration we optimize each task for either time (labeled
Opt. time) or energy (labeled Opt. energy). The plots in these sections present these values in vertical bars,
normalized to the Direct-eSRAM configuration. So, values below 1 represent that the tested system performs
the same work in less time or using less energy. Results for the LB-only configuration are also normalized to
the Direct-eSRAM system and are added to the same plots as horizontal lines. In Section 5.4 we focus on
a specific benchmark on a concrete memory hierarchy in order to show how optimizations combining time
and energy with different weights can be used for fine tuning particular systems.

An important point to consider is that our results do not deal with isolated benchmarks, but include the
effects of the real-time multitasking scheduling. That is, they include the effects of the context switches in
the worst case, and also the energy leakage for idle periods. To the best of our knowledge, no previous work
has studied how the energy consumption varies depending on the estimated number of context switches. As
we will see below, an accurate estimation of this value is far more critical for energy consumption than for
time, especially when the number of context switches is high.

5.1 Multitasking

In Figure 2, we show the normalized WCSRT and WCSRE(see Table 1) for the small and medium task
sets. The relative weight of each task can be seen in the periods of Table 2. The relation between weights
determines the estimated maximum number of context switches of each task. So, the whole system behavior
is mainly defined by the task with the lowest period, which is executed more times, and in a second term by
the other tasks plus their context switch overheads.

Firstly, it can be observed that energy consumption has a much higher variability than time. That is,
small changes in time usually result in important changes in energy consumption. This relation between time
and energy can be observed in all our experiments. In general, Figure 2 shows that prefetch increases energy
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Figure 2: WCSRT and WCSRE (see Table 1) of No-prefetch, Prefetch and LB-only normalized to the Direct-
eSRAM configuration for the small (a) and medium (b) task sets. The number of sets (of 16 bytes) of IC
(always direct-mapped) varies from 4 to 64.

consumption and may reduce the system response time. Also, increasing the cache size usually benefits both
time and energy. However, note that too much size would not be beneficial, specially when the number of
context switches is high. In such cases, the cost (in terms of time and energy) of preloading the cache at
each context switch could be higher than the cost of the actual misses, and the optimizer would choose not
using the cache. Also, a larger cache implies a higher leakage and energy consumption per operation, so sizes
larger than a given saturation point would provide worse results. This saturation point has already been
observed in previous studies [3, 4]. In our experiments this saturation point in cache size is reached with the
largest tested cache size, i.e. larger cache sizes (not shown in figures) perform worse.

When considering the memory configuration without prefetch, a seemingly contradictory result shows
up in Figure 2(b). Namely, when optimizing task energies, both the system response time and the overall
energy consumption become higher than when optimizing task times. The following analysis explains these
facts. Since optimizing energy may increase the task execution times, a higher number of context switches
may occur, which in turn raises the energy consumption. On the contrary, optimizing time may reduce the
number of context switches, which may reduce the system energy consumptions.

Further, note that simple components such as the LB are commonplace in real-time studies because
they always reduce the execution time. For instance, the response time of LB-only time in Figure 2 is
around 0.4 times the time in Direct-eSRAM systems. Intuitively, it would be expected the LB to reduce the
energy consumption too, since it reduces the number of memory accesses. However, our results show that
in some cases it may increase energy consumption (LB-only energy above 1 in Figure 2(a)). This is a very
interesting result, since it shows that even trivial hardware components can behave differently for time and
energy. In this case, the line buffer reduces the number of memory accesses by fetching an instruction line
(4 instructions), which consumes almost the same energy (0.27 pJ) as performing 4 smaller memory accesses
(0.08 pJ) according to Table 3. However, some of the fetched instructions may not be required, so in these
cases the energy consumed would be higher.

Although multitasking experiments show the general behavior, they depend very much on the selected
periods and the real-time scheduler used, i.e. results are very dependent on the combination of tasks. Thus,
a detailed per-task analysis is desirable for better understanding how the memory architectures and opti-
mization goals affect each particular task. Next sections show such detailed results, both for the small and
medium task sets.
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Figure 3: Normalized WCET-M and WCEC-M (see Table 1) of the considered memory configurations for
each task in the small task set.

5.2 Small task set

Figure 3 focus on the individual tasks in the small task set, showing time and energy normalized to the
Direct-eSRAM configuration. Its bars and lines correspond to the normalized WCET-M or WCEC-M (see
Table 1) of each task.

The leftmost half of each plot shows the configurations without prefetch. Such configurations are not
sensitive to the optimization goal, either time or energy. Using a prefetchless configuration, both time and
energy decrease as the IC size increases. However, the larger the IC, the higher the cost of preloading at
every context switch. This cost refers to the time needed to refill a larger IC (containing more instruction
lines) and to the individual energy cost of each refilled instruction line (see Table 3). In the search for an
optimal solution, the ILP solver can decide not to preload an instruction line if that cost is not offset by the
cost of its misses in the worst case at runtime. As a result occupancy of the IC may be very small for large
IC sizes. This can be seen in values 16 to 32 IC sets, in figures 3(b), 3(c) and 3(d), where time and energy
no longer decrease and, in some cases, energy increases. Indeed, Figure 3(c) becomes saturated with even
fewer sets, since this benchmark is essentially a tiny loop.

The rightmost half of each plot shows configurations with IC, LB and prefetch. In this configuration,
results do depend on the optimization goal. When optimizing time, the contents to lock into IC are selected so
that prefetch is used somehow more aggressively. On flat codes, where the control flow follows large sequences
of different basic blocks in most of the code (usually found as loops with a very large body), prefetch improves
very much the execution time. This can be seen in Figure 3(a), where the time bars reach much lower values
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with prefetch configurations. On the other hand, iterative codes (figures 3(b), 3(c) and 3(d)) do not take so
much advantage of prefetch, and time values remain very similar to those without prefetch. However, energy
presents opposite values. Using prefetch with the goal of minimizing time generally results in an important
waste of energy, which may be even higher than the Direct-eSRAM configuration (e.g. see Figure 3(b) and
Figure 3(d) for a 4-set IC). If the goal is to minimize the energy consumption and the IC is large enough,
in general, prefetching works similarly to not having prefetch, both for time and energy. This means that
IC is large enough to keep the most useful instruction lines and prefetch adds a marginal performance gain.
On flat codes (Figure 3(a)), as above, prefetching presents better time results and adds no additional energy
consumption.

Therefore, for our small task set, we can conclude that prefetch is only interesting for flat codes and, if
present, the goal of optimizations should focus on energy and not on time. A more practical approach would
be to be able to enable/disable prefetching on a per-task basis. In this way, after performing a time/energy
analysis and optimization, each particular task could enable/disable prefetching. Regarding the IC size, in
general the same approach could be taken: provide a large enough direct mapped lockable cache with the
possibility of adapting/fitting its size to the executed task size (for example by disabling some sets). This
would allow to use the best suited size, i.e. having the required sets and disabling those unused to avoid their
energy leakage.

5.3 Medium task set

When the maximum number of context switches is small, as in the small task set, it has little impact on
results. However, when this number grows, its impact can be much bigger than expected, especially on
energy consumption. This is the case for the medium task set. Since the number of context switches is high,
the optimizer will be more restrictive on the selection of instruction lines to be locked into cache, due to they
must be reloaded at each context switch. Thus, the selected lines and in turn the resulting system behavior
will depend very much on the accuracy of the estimated maximum number of context switches. In order to
show its effects, Figure 4 includes plots (right side) using an accurately bounded number of context switches
(eq. 6), as the small task set, and also (left side) using a trivial overestimated bound (eq. 5). Obviously, the
task with the highest priority (Figure 4(a)) is never evicted, so it has no context switches (apart from those
when starting its own execution).

For each task, when comparing the resulting values as the accuracy in bounding the number of context
switches increases (left vs. right plots), we observe a large reduction in energy, especially when there is no
prefetching. That is, the energy consumption for refilling the IC at each context switch plus the energy
required in the worst case to refill the flushed contents of the line and prefetch buffers may be a dominant
component in the energy accounting when the number on context switches is largely overestimated. Thus,
the accuracy on the estimation of the number of context switches is critical. For instance, for the 64 set IC
without prefetch running jfdctint, as the bound in the number of context switches is tightened, the WCEC-M
gets divided by more than eight (see Figure 4(d) and 4(e)). However, time decrements are much lower. This
is a very important result, since it shows that real-time systems mainly focusing on time may not be aware
of the important energy consumption effects of the accuracy on the estimation of the number of context
switches, so they might present extremely overestimated energy values.

Note also that, using an overestimated number of context switches, energy consumption has a clear
upwards trend along the leftmost four energy values (i.e. no prefetch and time optimization). That is, as the
cache size increases, optimizing time tries to use it as effectively as possible and this means selecting many
instruction lines to lock into cache. However, the energy required to preload such contents on every context
switch may result in an extremely high energy consumption, which may not worth the savings in execution
time. In all other cases (optimizations with prefetch and optimizing energy without prefetch), in general
both energy and time values with an overestimated number of context switches remain relatively flat when
increasing cache size. Thus, when the number of context switches is too much overestimated, small caches
are in general a safer option.

Finally, take into account that in general one does not decide whether to use an accurate bound on the
number of context switches or not, but each estimation method provides a particular bound [10, 23]. Thus,
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(b) qurt with context switches not accurately bounded

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64
Opt. time Opt. energy Opt. time Opt. energy

︸ ︷︷ ︸

No-prefetch
︸ ︷︷ ︸

Prefetch

R
el
a
ti
ve

W
C
E
C
-M

o
r
W

C
E
T
-M

(c) qurt with context switches accurately bounded
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(d) jfdctint with context switches not accurately
bounded
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(e) jfdctint with context switches accurately bounded
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Figure 4: Normalized WCET-M and WCEC-M (see Table 1) of the considered memory configurations for
each task in the medium task set. The left side plots use a trivial bound on the maximum number of context
switches (eq. 5), whereas the plots on the right side correspond to an accurate bound for the number of
context switches (eq. 6).
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given the huge differences that such estimations may cause, it is important to work with the method that
best fits a given system.

Focusing now on the results with an accurate number of context switches and without prefetch (leftmost
half of plots on the right in Figure 4), they show a time-energy trade-off depending on the optimization
goal. Although in Figure 4(a) (no context switches), and Figure 4(e) (flat code) differences are minimal, in
general the behavior should be similar to that of figures 4(c) and 4(g), which show the expected trade-off.
Assuming that in real-time systems, time is more critical than energy consumption, systems without prefetch
should probably optimize execution time. Further, note in Figure 4(c) the IC size effect described above:
when increasing the IC size, the energy consumption grows and the time presents minor variations. Since
this benchmark requires very few cache sets, increasing the cache size means a higher energy consumption
without improvement in time.

Let us focus now on configurations with prefetch and an accurate number of context switches (rightmost
half of plots on the right in Figure 4). Systems with prefetch present minor variations in time independently
of their optimization goal. That is, their time results are almost identical when optimizing time and when
optimizing energy. This means that prefetch acts as the the main time-reduction factor, and the optimization
goal has little effect on time. On the contrary, energy consumption depends very much on the optimization
goal. In general, optimizing time implies a much higher energy consumption than optimizing energy. This
means that, in order to reduce a few processor cycles, the system uses much more energy. See for instance
figures 4(c) and 4(g), which present similar times but much lower energy consumption values when optimizing
energy. Thus, on real-time systems with prefetch, even assuming that time is critical, optimizing energy
provides better global trade-offs between energy and time than optimizing time.

Next, we compare the tasks without prefetch and optimizing time to those with prefetch and optimizing
energy when the number of context switches is accurate (i.e. left-most and right-most 4 pairs of bars of plots
on the right in Figure 4). For flat codes (Figure 4(e)) prefetch is in general the best option as stated above,
since it reduces time very much. For the other tasks, times show lower or very similar values for systems with
prefetch. Regarding energy, prefetch usually implies more energy consumption, since it performs memory
accesses that may not be required. Thus, disabling prefetch should be recommended except for flat codes.
However, note that the trivially bounded bars of energy consumption are higher without prefetch, which
means that if the number of context switches is not estimated accurately, the resulting values for energy
consumption may be higher without prefetch than with prefetch.

5.4 Gradual optimization

In this section we perform a gradual optimization of a particular task on a specific memory organization.
That is, apart from showing the extreme values of optimizing time or energy (Opt. time and Opt. energy)
as above, we use several values for α (eq. 3).

The specific memory hierarchy organization selected includes prefetch, line buffer and instruction cache,
and the experiments show the worst-case performance (time and energy) of the matrix inversion benchmark
(minver). Several scenarios with a different number of context switches are used, and results are normalized
against the worst one. That is, a system with so much context switches that the instruction cache is present,
but not used at all. Although this normalization prevents direct comparisons with previous experiments, it
allows us to focus on the details of this particular memory organization.

Figure 5 shows the results of these experiments, representing time in the horizontal axis and energy in the
vertical one. That is, the lower left, the better. Although both axis show small steps, note that the tested
benchmark is not very large, and its behavior has a limited variability. That is, larger tasks implementing
more complex algorithms are expected to show more points spreading over a wider range. The normalization
point (coordinates (1, 1)) represents that the cost of preloading contents at each context switch equals that of
always missing in cache. Each chart corresponds to a particular IC size, and shows several lines representing
the worst case behavior with a different estimation of the number of context switches. Extreme points in
such lines represent the optimization of either time (α = 1, upper left) or energy (α = 0, lower right).
Intermediate points represent different values of α ∈ [0, 1]. As expected, optimizing time requires more
energy, and optimizing energy consumption results in a longer execution time. Also, the lower the number
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(c) IC with 32 sets of 16 bytes
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Figure 5: Gradual optimization of the matrix inversion benchmark (minver) with instruction cache, line
buffer and prefetch (Prefetch in Table 4), showing normalized WCET-M and WCEC-M. Extreme points in
lines represent the optimization of either time (α = 1, upper left) or energy (α = 0, lower right). Intermediate
points represent different values of α (eq. 3).

of context switches expected, the better the system performs. Thus, depending on the schedulability margin
and the number of context switches in the worst case, one could choose the most adequate optimization for
each task, i.e. choosing an optimization that, guaranteeing schedulability, uses the lowest possible energy.
Also, depending on the situation, interesting points may appear. For instance, in this benchmark, having
an IC size of 64 sets (Figure 5(d)) and 20 context switches, blindly minimizing time would not be advisable,
since the next point (with α = 0.85) achieves an almost identical WCET-M with a much lower WCEC-M.
Similarly, if there are no context switches (i.e. this task being the one with the highest priority), optimizing
WCEC-M with a 64-set IC would not be advisable, since the next point (α = 0.5) achieves a very similar
WCEC-M with a much lower WCET-M.

In conclusion, once a specific system has been chosen, this gradual analysis could be applied to its tasks
in order to look for the most adequate optimization combining time and energy. This would allow a very
precise system set-up in a design phase, which in turn could result in more efficient products.

6 Conclusions

In real-time systems, time is usually so critical that other parameters such as energy consumption are
often not even considered. When energy is considered, it remains as a secondary factor, i.e. execution time
is analyzed/minimized first and then the worst energy consumption of the resulting system is calculated.
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However, optimizing the worst energy consumption case can be a key factor in real-time and embedded
systems that are limited by their batteries or those not powered by mains, such as satellites. In this work,
we look into a combined WCET-WCEC analysis and optimization method in the presence of a lockable
instruction cache. That is, it chooses the optimal set of instructions to be locked into the cache of our
memory hierarchy.

We present results for several memory architectures using this combined WCET-WCEC optimization
model for real-time multitasking systems. To model the WCET of a task, we use the Lock-MS optimization
method. In order to add the WCEC computation, we apply the previous method but using energy coefficients
instead of time coefficients. So, the combined WCET-WCEC model of each task can be used to optimize
any linear combination of both WCET and WCEC.

In our experiments we assume a Harvard architecture aiming at low-energy consumption, with different
combinations of a lockable instruction cache, a line buffer and sequential prefetching. The inherent pre-
dictability of such hardware has allowed us to study the WCEC on a multitasking system for the first time.
Such study includes the influence of the estimation of the maximum number of context switches. Our results
show that, when this value is not accurately bounded, WCEC values can reach up to 8 times the actual
WCEC. This effect is much lower on the WCET. Thus, when accuracy is not possible, the basic recom-
mendation would be to use very small caches (which use less energy) and optimize the system for energy
consumption in order to minimize the overestimation.

When the maximum number of context switches can be estimated accurately, the type of task determines
its best memory hierarchy configuration and optimization goal. For tasks based on flat codes (i.e. large
sequences of different basic blocks, usually found as loops with a very large body), prefetch is specially
beneficial, reducing very much the execution time in the worst case with minor energy increments. In
such tasks, the instruction cache size does not affect the execution time, but it helps reducing the energy
consumption. For these codes, optimization should focus on energy consumption, which provides similar
time results to optimizing time, with much lower energy consumption. On the other hand, tasks based on
iterative control flow obtain more benefits from a large enough lockable cache, since it provides temporal
locality. For these cases, conservative memory hierarchies without prefetch and optimizing time should be a
better option in general. Nevertheless, performing a combined optimization with different weights of WCET
and WCET for each task on a particular hardware is always recommended, since the most adequate results
may be located on such combined optimization weights.

Finally, in order to make the most of the processor in terms of time and energy, it would be very interesting
some reconfiguration ability at task granularity. First, by fitting the size of the IC to requirements of the
executed task, since sizes of the IC larger than the optimal one do not harm performance but increase energy
consumption. Second, by activating or deactivating sequential prefetching. We can provide this mechanism
for tasks that really benefit from it or for tasks that really need it for achieving time constraints. Otherwise
prefetch implies an increasing energy consumption.

Further research would be needed in order to include the WCET-WCEC values of tasks into existing real-
time schedulers (apart from Rate Monotonic, used in this paper). This would allow us to provide a precise
bound on the lifetime of a real-time system running on a limited energy supply. Also, studies combining
WCET, WCEC and dynamic voltage scaling could lead to much more energy-efficient systems.
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Table 5: Cacti Parameters

Flag
Value

SRAMS 1KB IC 512B IC 256B
-size (bytes) 131072 1024 512 256

-block size (bytes)(line size) 16 16 16 16
-read-write port 1 1 1 1
-UCA bank count 1 1 1 1
-technology (u) 0.032 0.032 0.032 0.032

-Data array cell type itrs-lstp itrs-lop itrs-lop itrs-lop
-Data array peripheral type itrs-lstp itrs-lop itrs-lop itrs-lop

-Tag array cell type itrs-lstp itrs-lop itrs-lop itrs-lop
-Tag array peripheral type itrs-lstp itrs-lop itrs-lop itrs-lop
-output/input bus width 128/32 128/32 128/32 128/32

-operating temperature (K) 350 350 350 350
-cache type ram cache cache cache

-tag size (bits) 16 10 11 12
-access mode fast fast fast fast

-design objective 100:0:0:100:0 100:0:0:0:0 100:0:0:0:0 100:0:0:0:0
-deviate 100000:100000:100000:100000:1000000 0:100000:100000:100000:1000000

-Optimize ED or EDˆ2 NONE NONE NONE NONE
-Cache model (NUCA, UCA) UCA UCA UCA UCA

-Wire signalling default default default default
-Wire inside mat global global global global
-Wire outside mat global global global global

-Interconnect projection conservative conservative conservative conservative
-Add ECC yes yes yes yes

-Force cache config false false false false

A Cacti parameters

In order to obtain energy consumption estimations for our memory hierarchy components, we use the
Cacti 6.5 toolset. This tool models memory circuits at microarchitectural level. From the microarchi-
tectural model, Cacti calculates an estimation of energy consumption, power dissipation and area of the
memory circuit. The operational of Cacti is based on a configuration file with the description of the memory
circuit to be modeled. In Table 5, we show the value of the most important parameters of our memory
hierarchy components.

In the memory hierarchy model of this work, read and write operations to the different memory circuits
can require access to the complete line (128 bits) or to a single element (32 bits). Thus, we simulate both
128 and 32 bits of bus width, without varying the rest of the parameters.

We only show parameter values for SRAMs and some IC sizes (1 KB, 512 B and 256 B). Cacti was not
able to find a microarchitectural model for smaller memory circuits (128 B, 64 B and 16 B). So that, we
approximate the corresponding values from the ones obtained from the larger caches. In order to do that,
we perform a linear interpolation of 128 B and 64 B ICs from 512 B and 256 B ICs. In case of 16 B, a linear
approximation results in an inconsistent value for leakage (< 0). So that, just in this case, we divide by 4
the energy consumption values of the 64 B IC.
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ence of a lockable instruction cache in multitasking real-time systems. Journal of Systems Architecture,
57(7):695–706, August 2010.

[5] J. V. Busquets and A. Wellings. Adding instruction cache effect to schedulability analysis of preemptive
real-time systems. In Proceedings of RTAS96, 1996.

[6] Jian-Jia Chen and Chin-Fu Kuo. Energy-efficient scheduling for real-time systems on dynamic voltage
scaling (DVS) platforms. In Proceedings of the 13th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications, pages 28–38, Washington, DC, USA, 2007. IEEE
Computer Society.
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