
Virtual Registers

Antonio GonzBlez, Mateo Valero, JosC Gonz Blez and Teresa Monreal
Universitat Politkcnica de Catalunya

Department d’ Arquitectura de Computadors
Jordi Girona, 1-3 - Mbdul D6
08034 - Barcelona (SPAIN)
E-mail: antonio @ac.upc.es

Abstract

The number of physical registers is one of the critical
issues of current superscalar out-of-order processors.
Conventional architectures allocate in the decode stage a
new storage location (e.g. physical register) for each
operation that has a destination register. When an
instruction is committed, it frees the physical register
allocated to the previous instruction that had the same
destination logical register. Thus, an additional register
(i.e. in addition to the number of logical registers) is used
for each instruction with a destination register from the
time it is decoded until it is committed. In this paper we
propose a novel register organization that allocates
physical registers when instructions complete execution. In
this way, the register pressure is significantly reduced
since the additional register is only spent from the time
execution completes until the instruction is committed. For
some long latency instructions (e.g. load with a cache miss)
and for parts of the code with small amount ofparallelism,
the savings could be very high. We have evaluated the new
scheme for a superscalar processor and obtained a
significant speedup.

1 Introduction

Out-of-order execution (dynamic scheduling) has been
proved to be an effective approach to improve processor
performance. A dynamically scheduled processor has the
ability to identify dependences among instructions at run-
time. This process must be restricted to a small window of
the program, which is known as the instruction window, in
order to keep the hardware complexity and the associated
delay below certain limits. Those instructions that are free
of dependences at each time are candidates to be issued.

The performance of out-of-order superscalar
processors is mainly determined by a number of factors:
instruction fetching mechanism, size of the instruction

1094-7256197 $10.00 0 1997 IEEE

window, memory organization, and register organization
are some of the most critical features.

Registers have a severe impact on the performance
since they are used by the majority of instructions to store
their source and destination operands. Dynamic register
renaming plays a key role in out-of-order processors in
order to eliminate name dependences [5] (also known as
anti- and output dependences). In such processors, the
number of physical registers determines the number of
instructions that can be in the instruction window.
Enlarging the physical register file is an obvious solution to
deal with such limitation. However, the hardware cost of
the register file is very high mainly because of the large
number of ports that it has. In addition, larger register files
have a longer access time, and this may increase the critical
path length and penalize performance [11.

In this paper we propose a novel register organization
that provides a significant improvement of the performance
of current superscalar processors. Alternatively, the
proposed organization can be used to reduce the cost of the
register file without loosing performance. The key idea of
the new organization is to allocate a physical register for
the destination of an instruction at the time that its
execution completes instead of doing it in the decode stage
as it is usual. In this way, the register pressure is
significantly reduced, specially in the presence of long
latency instructions (e.g. loads with high miss penalty) and
long dependence chains that force some instructions to wait
long in the instruction window.

The rest of this paper is organized as follows. Section
2 reviews the traditional register management approaches.
Section 3 presents the novel register organization that is
called virtual registers. The Performance of the new
scheme is compared with the traditional one in section 4.
Finally, the main conclusions of this work are summarized
in section 5.

364

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 08:11 from IEEE Xplore. Restrictions apply.

2 Register renaming

Dynamic register renaming is a k.ey issue for the
performance of out-of-order execution processors and
therefore, it has been extensively used since it was first
implemented in the IBM 360/61 [12]. In this paper we
focus on out-of-order processors that implement precise
exceptions [8]. In such processors, instructions are
committed in-order. After being decoded, instructions are
kept in the instruction reorder buffer until they commit.
The size of the reorder buffer determines the degree of
reordering that can be achieved at run-time. The size of the
reorder buffer is sometimes the instructron window size. In
other words, the instruction window is defined as the set of
instructions from the oldest not committed instruction to
the latest decoded instruction

The objective of register renaming is to eliminate
name dependences through registers (anti- and output
dependences). This is achieved by allocating a free storage
location for the destination register of every new decoded
instruction. There are two different schlemes based on the
approach taken to implement these rename storage
locations. In particular, the two following approaches are
the most common solutions to provide the rename storage
locations:

The entries of the reorder buffer [I?]. In this case, the
result of every instruction is kept in the reorder buffer
until it is committed. It is then written in the register
file. The source operands that are available when an
instruction is decoded are read either from the register
file or from a reorder buffer entry. Those operands
that are not ready at decode are fixwarded from the
execution units to the corresponding instruction queue
entries (reservation stations) when they are produced.
When an instruction commits, its result is copied from
the reorder buffer to the register file. There is a slight
variation that includes a register buffer used just for
renaming and avoids to store the result in the reorder
buffer(e.g. PowerPC 604 [lo]).

A physical register. In this case there is a physical
register file that contains more registers than those
defined by the ISA (instruction set architecture),
which are referred to as logical regiisters. By means of
a map table, each logical register is mapped to a
physical register in the decode stage. The destination
register is mapped to a free physic(a1 register whereas
source registers are translated to the last mapping
assigned to them. When an instruction commits, the
physical register allocated by the previous instruction
with the same logical destination register is freed. In

this scheme, the operands are always read from the
physical register filie, which simplifies the operand
fetch task when compared with the previous model.

Both register renaming schemes are being used in the
latest microprocessors. The first one is used by the Intel
Pentium Pro [2], the PowerPC 604 [lo], and the HAL
SPARC64 [3]. The MIPS RlOOO [13], and the DEC 21264
[4] are current implementations of the second approach. In
this paper, we focus on the second scheme. A comparison
of both approaches in terms of cost-effectiveness could be
an interesting study but it is beyond the scope of this paper.

A number of physical registers significantly higher
than the number of logical registers is required for
performance. This is so because when the instruction
window is empty (e.g., after a branch misprediction), each
logical register is mapped to a physical register. Thus, the
minimum number of physical registers that are used is
equal to the number of logical registers. In addition, for
every instruction whose destination operand is a register,
an additional register is allocated when it enters the
window and a physical register is released when it leaves
the window.

3 Virtual registers

This section presents the novel register renaming scheme
proposed in this paper. This new organization is proposed
for both integer and 1;P register files. Since it is
implemented in the same way for both files, only one file is
considered in the explanation of this section.

The motivation for the register organization that is
proposed here comes from the observation that the
conventional register renaiming scheme based on a physical
register file allocates a new physical register for every
instruction with a destination register. This register is
allocated from the time when the instruction is decoded
until the next instruction that has the same logical
destination register is committed.

However, the register does not hold any value until the
instruction execution finishes (i.e., when it is written in the
write back stage). For sections of code with little
parallelism and/or long latency operations, the time from
decode to write back can be very large for some
instructions, especially when the instruction window is
large.

For instance, long latency operations may be the case
of load instructions that miss in cache when the cache miss
penalty is high. Due to the increasing gap between
processor and memory speed, this factor can have an
increasing impact in the future. A large instruction window
is desirable in order to increase the instruction level
parallelism that can be exploited at run-time.

365

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 08:11 from IEEE Xplore. Restrictions apply.

Fetch Decode Issue Execute Write back Commit
I I I I I I I

I I
I I I I
I I I I I

Figure 1 : Virtual register organization. Each table
is depicted in the stage in which it is updated

Notice that the reason why logical registers are
mapped to physical registers at decode stage is mainly to
keep track of dependences among instructions. In fact,
what is just required to keep track of dependences is a tag
that identifies the last producer for every logical register.
These tags are used to determine from where the source
operands are to be read.

The register organization that we propose allocates a
new physical register for every instruction when the
instruction execution completes (in the write back stage).
Therefore, when compared with the conventional scheme,
this new organization saves one physical register for every
instruction in the instruction window that has not
completed. As a result, the register pressure is significantly
reduced. This benefit can be used in two ways: a) design
processors with a smaller register file and reduce the
hardware complexity, without loosing performance; or b)
increase the performance of the processor by building a
larger instruction window without increasing the register
file.

The new organization (see figure l) , which is called
virtual registers, is based on adding a new type of registers
that are called virtual registers. The registers referenced by
the instructions of the ISA are referred to as logical
registers. When an instruction is decoded, its destination
register is mapped to a free virtual register. These registers
are not related to any physical storage location and
therefore they are merely tags. This mapping is done by
means of a table, which is called the virtual map table
(VMT), that is indexed by the logical register number and
contains its last virtual register mapping. Since virtual
registers are not related to any particular storage, the
processor may use as many of them as it wants. In practice,
the decode stage will stall when the instruction window is
full, so the number of virtual register (NVR) to guarantee
that the processor never stalls because of the lack of them
is the number of logical registers (NLR) plus the
instruction window size (WS). The size of each entry of the
VMT is then rlog2(NLR+WS)1 bits. There is a free pool of

virtual registers that identifies those that can be allocated
by a new mapping at each moment. In the decode stage, the
source operands of every instruction are renamed using the
VMT. The instruction is then dispatched to the instruction
window with all its source and destination operands
referring to virtual registers.

The wakeup and selection logic is basically the same
as that of a conventional register organization. Every time
a result is produced, the virtual register associated to this
result is broadcast to all the instructions in the instruction
queue. If an instruction is using such virtual register as a
source operand, then it is marked as available. An
instruction can be chosen for issuing when all its operands
are available.

When an instruction is issued, it always reads its
register operands from the physical register file. This is
done by means of a second table, which is called the
physical map table (PMT). This table has as many entries
as the number of virtual registers and it is indexed by the
virtual register number. Each entry identifies the last
physical register to which that virtual register has been
mapped. The size of each entry is then rlog*(NPR>1, where
NPR denotes the number of physical registers. Using this
table, the source virtual registers are translated to physical
registers and the operands are then obtained from the
physical register file. Alternatively, this map table could be
implemented by means of a CAM (content-addressable
memory) with a number of entries equal to number of
physical registers, which is much lower than the number of
virtual registers. This approach is for instance used by the
DEC 21264 [4] to implement the logical to physical map
table.

Every instruction whose destination is a register
allocates a new physical register when its execution
completes. At this time, a new physical register is taken
from a free pool of physical registers (the solution to the
lack of free physical registers is considered in the next
section; for the sake of simplicity we assume now that this
event never happens). The destination virtual register is
mapped to this free physical register and this mapping is
reflected in the PMT.

When an instruction commits, the previous virtual
register allocated to the logical destination register is
returned to the free pool. The identifier of this virtual
register is obtained from the VMT in the decode stage,
before being updated with the new mapping. This
information is kept in the reorder buffer. In addition, the
physical register allocated to that virtual register is also
released. This information is obtained from the PMT when
the instruction commits and therefore it does not need to be
kept in the reorder buffer.

In case of an exception or a branch misspeculation, a
precise state can be obtained by undoing the mappings

366

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 08:11 from IEEE Xplore. Restrictions apply.

performed by instructions that follow the offending one.
This can be done by popping out the entries of the reorder
buffer from the newest until the offending one. For each
instruction, the reorder buffer stores the destination logical
register and the virtual register that was allocated to the
previous instruction with the same destination logical
register. Using the logical register identifier, the VMT is
read to obtain the current virtual register mapping and then
the entry is restored with the previous virtual mapping.
Using the current virtual mapping, the PNlT is read and the
physical register allocated to that virtual register, if any, is
freed. Notice that a mechanism based on checkpointing
similar to the one used by the RlOOOO [131 could be used to
recover from branches in just one cycle.

3.1 Avoiding deadlock
A virtual register organization may be designed with any
number of logical, virtual and physicid registers. The
number of logical registers is a feature of the ISA and
therefore remains fixed for different implementations of
the same ISA. The amount of virtual registers has a small
impact on the hardware cost: it determines the number of
entries of the PMT (rlog2(NPR)1-bit wide) if it is not
implemented through a CAM, and it has a Iogarithmic
impact on the width of the VMT. On the other hand, the
number of physical registers has a very high impact on the
hardware cost as discussed in the introduction. In
consequence, the number of physical registers will be
lower than that of virtual registers.

In this case, it may happen that when a instruction
completes there is no a free physical register. The obvious
approach to deal with this situation isb to squash such
instruction. However, in this situation, the eldest
instruction in the window will not be able to commit
because when its execution completes it will also find that
there is not any free physical register. Under this
circumstances, no instruction will be allow to commit and
therefore no physical register will be freed, which will
result in a deadlock.

This deadlock can be avoided by a slight modification
in the register management policy. In1 particular, it is
enough to reserve a given number of registers for the oldest
instructions that require them. Such number is referred to
as the number of reserved registers (“RR). When an
instruction completes, it allocates a new physical register
as previously described, provided that there are more free
physical registers than those reserved for the oldest NRR
instructions that require them or it is one of the NRR oldest
instructions in the window with a destination register.
Otherwise, the instruction is squashed and kept in the
instruction window and re-issued later on.

This is implemented by means of a register that points
to the youngest entry in the reorder buffer with a register
reserved (PRR), a register that indicates the number of
instructions below (older than or equal to) PRR that have a
destination register (Reg), and how many of such
instructions have already allocated a physical register
(Used).

When an instructions with a destination register
commits, PRR is moved to point from the current location
to the next instruction with a destination register or until the
tail of the reorder buffer. If the new instruction pointed by
PRR has not yet allocated a physical register, then Used is
decreased; otherwise it is left unchanged. If the new
instruction pointed by PRR. has not a destination register
(PRR points to the tail of the reorder buffer), then Reg is
decreased; otherwise it is unchanged.

When an instruction with a destination register is
decoded, if Reg is lower than NRR, then Reg is increased
and PRR is updated to point to the location of such
instruction in the reorder buffer.

Notice that this parameter may have a strong influence
on the performance. A higher value of the NRR means that
there are less physical registers to be used without the
constraint of being one of the oldest instructions. However,
a higher value of NRR also implies that the processor speed
when there are only NRR free registers or less is higher.

4 Performance evaluation

This section presents a performance evaluation of the
virtual register organization. The objective of this section is
to demonstrate the benefits of the novel register
organization. An exhaustive evaluation of the impact on
the cost and performance of the different design parameters
for different processor architectures is left for future work.

The evaluation of the new scheme is performed by
comparing the execution time of an aggressive superscalar
processor with a conventional register organization with
that of the same processor with the virtual register
organization. In both cases it is assumed the same amount
of physical registers.

4.1 Experimental framework
A trace-driven simulator of a out-of-order rsuperscalar
processor has been developed to evaluate the proposed
register organization. Two different register organizations
have been simulated. The. first one is the conventional
register scheme used by tlhe RlOOOO [13] among others.
The second one is the virtual register organization
proposed in this paper. In both cases, a typical superscalar
architecture has been assumed. The execution of an
instruction consists of the following stages:

367

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 08:11 from IEEE Xplore. Restrictions apply.

Fetch: Every cycle, up to eight instructions can be
read from the Instruction cache. A perfect instruction
cache is assumed. In this stage, branch prediction is
performed using a 2048 entry Branch History Table
with a 2 bit up-down saturated counter per entry.

Decode: Up to eight instructions are decoded every
cycle. Their logical registers are renamed and mapped
onto physical registers for the conventional
organization and they are mapped to virtual registers
for the virtual register organization. Then, the
instructions are dispatched to a global Instruction
Queue and to a global Instruction Reorder Buffer
(IRB). The size of both, which corresponds to the size
of the instruction window, is 128 entries. Instructions
are kept in the Instruction Queue until they are issued
and they remain in the IRB until they are committed.
If the IRB is full or there are not free physicaUvirtua1
registers, then the fetch and decode stages are stalled.
There is one physical register file for integer data and
another for FP data. Both have 64 registers with 16
read ports and 8 write ports. The number of virtual
registers is 160 for integer and 160 for FP.

Issue: Every cycle, the issue logic searches the
Instruction Queue for instructions that are free of
dependences. If there are more ready instructions than
available resources, the oldest instructions are
selected. Register operands are obtained at this
moment from physical register file. Table 1 shows the
number of functional units and their latency.

Simple Integer

Complex Integer

Effective Address

Simple FP

Repeat Functional Unit

3 1 1

2 9 multiply 1
67 divide 67

3 1 1

3 4 1

I FP Multiplication I 2 I 4 I 1 I
IT Divide and SQR 1 2 1 16divide I iz I 35 SQR

Table 1 : Functional units and instruction latency.

0 Execute: Instructions are executed in the
corresponding functional units. Loads and stores
execute in the effective address computation units and
then they are entered into the loadstore queue.
Instructions wait in the loadstore queue until they
commit. Load instructions access the cache when a

cache port is available. Three memory ports and the
memory disambiguation scheme implemented in the
PA-8000 [6] have been assumed in this experiment.

Write-back: Instructions are completed and the results
are written into the register file. For the virtual register
organization, the virtual to physical register mapping
is performed at the beginning of this stage.

Commit (or retire, or graduate): Instructions are
committed in-order so that a precise state [8] can be
recovered at any time. Store instructions send their
request to memory in this stage.

The processor has a lookup-free data cache [7] that
allows up to 8 different cache lines with outstanding
misses. The cache size is 16 KB, and it is direct-mapped
with 32-byte line size. Cache hit latency is 2 cycles and the
penalty for a cache miss is 50 cycles. An infinite L2 cache
is assumed and a 64-bit data bus between L1 and L2 is
considered (i.e., a line transaction occupies the bus during
four cycles).

Our experimentation methodology is trace-driven
simulation. The object code, previously compiled with full
optimization for a DEC Alphastation 600 51266 with and
Alpha AXP 21164 processor, is instrumented using the
Atom tool [111. The instrumented program is executed and
the trace generated feeds the processor simulator. A cycle-
by-cycle simulation is performed in order to obtain
accurate timing results. Because of the detail at which
simulation is carried out the simulator is slow, so we have
simulated 100 million of instructions for each benchmark
after skipping the first 2 billion of instructions. Five
floating-point (apsi, swim, mgrid, hydro2d, waves) and
four integer (go, li, compress, vortex) SPEC95 benchmarks
have been selected for this study. Each program was run
with the largest input set available for that benchmark.

4.2 Results
Figure 3 shows the speedup gained by the new register
renaming scheme in front of the traditional one. The
speedup is measured as the execution time of the traditional
scheme divided by the execution time of the new
organization.

It can be seen that in general the highest improvement
is achieved by the highest value of NRR (Le., 32). The
speedup decreases significantly when NRR decreases for
FP codes, except for hydro2d, whereas for integer codes,
the difference is not so high. In fact, for two out of four
integer codes, the optimal NRR is 4. Intermediate values of
NRR like 16 and 24 also outperform the traditional scheme
for all the benchmarks except for compress.

368

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 08:11 from IEEE Xplore. Restrictions apply.

2.0

a rn
1 .O

0.5

n

1,

go li compress vortex apsi swim

IJ NRR = 32
0 NRR = 24

Ill, NRR = 16
NRR=8
NRR=4
NRR= 1

mgrid hydrc12d wave5

Figure 3: Speedup of the virtual register organization when compared with the conventional scheme for a
varying value of the NRR.

With NRR equal to 32, the novel1 register renaming
scheme provides an average speedup of 1.21 for the
analyzed programs and it goes up to 1.84 for swim.

5 Conclusions

We have presented a novel register organization for out-of-
order execution processors. The key idiea behind the new
organization is to delay the allocation of physical registers
until instructions complete, instead of doing it in the
decode stage, in order to reduce the register pressure.

The new scheme is based on introducing a new
concept that is called virtual registers. Virtual registers are
not related with any storage location but they are merely
tags that are used to keep track of register dependencies.

A preliminary evaluation of the lxoposed approach
has shown speedups of 21% in average when compared
with a conventional register organization with approxi-
mately the same hardware cost. The improvement for FP
codes (36%) is much higher than for integer codes (6%).

Acknowledgments
We would like to thank Jim Smith for his comments and
suggestions on early versions of this pa,per.

This work has been supported by the Spanish Ministry
of Education under grant CICYT TIlC 429/95 and the
Direcci6 General de Recerca of the Generalitat de
Catalunya under grant 1996FI-03039- APDT.

The research described in this paper has been
developed using the resources of the CEPBA.

References
[11 K.I. Farkas, N.P. Jouppi and P. Chow, “Register File Design

Considerations in Dynamically Scheduled Processors”, in
Proc. of the Int. Symp. osn High Performance Computer
Architecture, pp. 40-5 1, 1996

[2] L. Gwennap, “Intel’s P6’ Uses Decoupled Superscalar
Design”, Microprocessor Report, 9(2), Feb. 1995

[3] L. Gwennap, “HAL Reveals Multichip SPARC Processor”,
Microprocessor Report, 9(3), March 1995

[4] L. Gwennap, “Digital 2:1264 Sets New Standard”, Micro-
processor Report, 10(14.), Oct. 1996

[5] J.L Hennessy and D.A.]Patterson, Computer Architecture. A
Quantitative Approach. Second Edition. Morgan Kaufmann
Publishers, San Francisco 1996.

[6] D. Hunt, “Advanced Performance Features of the 64-bit PA-
8000”, in Proc. of the ClmpCon’95, pp. 123-128, 1995.

[7] D. Kroft, “Lockup-free instruction fetch/prefetch cache
organization”, in Proc. 8th International Symposium on
Computer Architecture (,1981) pp. 81-87

[8] J.E. Smith and A.R. Phjzkun, “Implementing Precise Inter-
rupts in Pipelined Processors”, IEEE Tranactions on Com-
puters, 37(5), pp. 562-5’73, May 1988.

[9] G.S. Sohi, “Instruction Issue Logic for High-Performance,
Interruptible, Multiple Functional Unit, Pipelined Comput-
ers”, IEEE Transactions on Computers, 39(3), pp. 349-359,
March 1990

[101 S.P Song, M. Denman and J. Chang, “The PowerPC 604
Microprocessor”, IEEE Micro, 14(5), pp. 8-17, Oct. 1994

[113 A. Srivastava and A. Eustace, “ATOM: A system for build-
ing customized program analysis tools”, in Proc of the 1994
Con$ on Programming iknguages Design and Implementa-
tion, 1994.

[12] R.M. Tomasulo, “An Effient Algorithm for Exploiting Mul-
tiple Arithmetic Units”, IBM Journal of Research and
Development, 11(1), pp. 25-33, Jan. 1967.

[13] K.C. Yeager, “The MIPS RlOOOO Superscalar Microproces-
sor”, IEEE Micro, 16(2), pp. 28-40, April 1996

369

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 08:11 from IEEE Xplore. Restrictions apply.

