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Abstract 

The number of physical registers is one of the critical 
issues of current superscalar out-of-order processors. 
Conventional architectures allocate in the decode stage a 
new storage location (e.g. physical register) for  each 
operation that has a destination register. When an 
instruction is committed, it frees the physical register 
allocated to the previous instruction that had the same 
destination logical register. Thus, an additional register 
(i.e. in addition to the number of logical registers) is used 
for each instruction with a destination register from the 
time it is decoded until it is committed. In this paper we 
propose a novel register organization that allocates 
physical registers when instructions complete execution. In 
this way, the register pressure is significantly reduced 
since the additional register is only spent from the time 
execution completes until the instruction is committed. For 
some long latency instructions (e.g. load with a cache miss) 
and for  parts of the code with small amount ofparallelism, 
the savings could be very high. We have evaluated the new 
scheme for  a superscalar processor and obtained a 
significant speedup. 

1 Introduction 

Out-of-order execution (dynamic scheduling) has been 
proved to be an effective approach to improve processor 
performance. A dynamically scheduled processor has the 
ability to identify dependences among instructions at run- 
time. This process must be restricted to a small window of 
the program, which is known as the instruction window, in 
order to keep the hardware complexity and the associated 
delay below certain limits. Those instructions that are free 
of dependences at each time are candidates to be issued. 

The performance of out-of-order superscalar 
processors is mainly determined by a number of factors: 
instruction fetching mechanism, size of the instruction 
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window, memory organization, and register organization 
are some of the most critical features. 

Registers have a severe impact on the performance 
since they are used by the majority of instructions to store 
their source and destination operands. Dynamic register 
renaming plays a key role in out-of-order processors in 
order to eliminate name dependences [5] (also known as 
anti- and output dependences). In such processors, the 
number of physical registers determines the number of 
instructions that can be in the instruction window. 
Enlarging the physical register file is an obvious solution to 
deal with such limitation. However, the hardware cost of 
the register file is very high mainly because of the large 
number of ports that it has. In addition, larger register files 
have a longer access time, and this may increase the critical 
path length and penalize performance [11. 

In this paper we propose a novel register organization 
that provides a significant improvement of the performance 
of current superscalar processors. Alternatively, the 
proposed organization can be used to reduce the cost of the 
register file without loosing performance. The key idea of 
the new organization is to allocate a physical register for 
the destination of an instruction at the time that its 
execution completes instead of doing it in the decode stage 
as it is usual. In this way, the register pressure is 
significantly reduced, specially in the presence of long 
latency instructions (e.g. loads with high miss penalty) and 
long dependence chains that force some instructions to wait 
long in the instruction window. 

The rest of this paper is organized as follows. Section 
2 reviews the traditional register management approaches. 
Section 3 presents the novel register organization that is 
called virtual registers. The Performance of the new 
scheme is compared with the traditional one in section 4. 
Finally, the main conclusions of this work are summarized 
in section 5. 
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2 Register renaming 

Dynamic register renaming is a k.ey issue for the 
performance of out-of-order execution processors and 
therefore, it has been extensively used since it was first 
implemented in the IBM 360/61 [12]. In this paper we 
focus on out-of-order processors that implement precise 
exceptions [8]. In such processors, instructions are 
committed in-order. After being decoded, instructions are 
kept in the instruction reorder buffer until they commit. 
The size of the reorder buffer determines the degree of 
reordering that can be achieved at run-time. The size of the 
reorder buffer is sometimes the instructron window size. In 
other words, the instruction window is defined as the set of 
instructions from the oldest not committed instruction to 
the latest decoded instruction 

The objective of register renaming is to eliminate 
name dependences through registers (anti- and output 
dependences). This is achieved by allocating a free storage 
location for the destination register of every new decoded 
instruction. There are two different schlemes based on the 
approach taken to implement these rename storage 
locations. In particular, the two following approaches are 
the most common solutions to provide the rename storage 
locations: 

The entries of the reorder buffer [I?]. In this case, the 
result of every instruction is kept in the reorder buffer 
until it is committed. It is then written in the register 
file. The source operands that are available when an 
instruction is decoded are read either from the register 
file or from a reorder buffer entry. Those operands 
that are not ready at decode are fixwarded from the 
execution units to the corresponding instruction queue 
entries (reservation stations) when they are produced. 
When an instruction commits, its result is copied from 
the reorder buffer to the register file. There is a slight 
variation that includes a register buffer used just for 
renaming and avoids to store the result in the reorder 
buffer(e.g. PowerPC 604 [lo]). 

A physical register. In this case there is a physical 
register file that contains more registers than those 
defined by the ISA (instruction set architecture), 
which are referred to as logical regiisters. By means of 
a map table, each logical register is mapped to a 
physical register in the decode stage. The destination 
register is mapped to a free physic(a1 register whereas 
source registers are translated to the last mapping 
assigned to them. When an instruction commits, the 
physical register allocated by the previous instruction 
with the same logical destination register is freed. In 

this scheme, the operands are always read from the 
physical register filie, which simplifies the operand 
fetch task when compared with the previous model. 

Both register renaming schemes are being used in the 
latest microprocessors. The first one is used by the Intel 
Pentium Pro [2], the PowerPC 604 [lo], and the HAL 
SPARC64 [3]. The MIPS RlOOO [13], and the DEC 21264 
[4] are current implementations of the second approach. In 
this paper, we focus on the second scheme. A comparison 
of both approaches in terms of cost-effectiveness could be 
an interesting study but it is beyond the scope of this paper. 

A number of physical registers significantly higher 
than the number of logical registers is required for 
performance. This is so because when the instruction 
window is empty (e.g., after a branch misprediction), each 
logical register is mapped to a physical register. Thus, the 
minimum number of physical registers that are used is 
equal to the number of logical registers. In addition, for 
every instruction whose destination operand is a register, 
an additional register is allocated when it enters the 
window and a physical register is released when it leaves 
the window. 

3 Virtual registers 

This section presents the novel register renaming scheme 
proposed in this paper. This new organization is proposed 
for both integer and 1;P register files. Since it is 
implemented in the same way for both files, only one file is 
considered in the explanation of this section. 

The motivation for the register organization that is 
proposed here comes from the observation that the 
conventional register renaiming scheme based on a physical 
register file allocates a new physical register for every 
instruction with a destination register. This register is 
allocated from the time when the instruction is decoded 
until the next instruction that has the same logical 
destination register is committed. 

However, the register does not hold any value until the 
instruction execution finishes (i.e., when it is written in the 
write back stage). For sections of code with little 
parallelism and/or long latency operations, the time from 
decode to write back can be very large for some 
instructions, especially when the instruction window is 
large. 

For instance, long latency operations may be the case 
of load instructions that miss in cache when the cache miss 
penalty is high. Due to the increasing gap between 
processor and memory speed, this factor can have an 
increasing impact in the future. A large instruction window 
is desirable in order to increase the instruction level 
parallelism that can be exploited at run-time. 
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Figure 1 : Virtual register organization. Each table 
is depicted in the stage in which it is updated 

Notice that the reason why logical registers are 
mapped to physical registers at decode stage is mainly to 
keep track of dependences among instructions. In fact, 
what is just required to keep track of dependences is a tag 
that identifies the last producer for every logical register. 
These tags are used to determine from where the source 
operands are to be read. 

The register organization that we propose allocates a 
new physical register for every instruction when the 
instruction execution completes (in the write back stage). 
Therefore, when compared with the conventional scheme, 
this new organization saves one physical register for every 
instruction in the instruction window that has not 
completed. As a result, the register pressure is significantly 
reduced. This benefit can be used in two ways: a) design 
processors with a smaller register file and reduce the 
hardware complexity, without loosing performance; or b) 
increase the performance of the processor by building a 
larger instruction window without increasing the register 
file. 

The new organization (see figure l ) ,  which is called 
virtual registers, is based on adding a new type of registers 
that are called virtual registers. The registers referenced by 
the instructions of the ISA are referred to as logical 
registers. When an instruction is decoded, its destination 
register is mapped to a free virtual register. These registers 
are not related to any physical storage location and 
therefore they are merely tags. This mapping is done by 
means of a table, which is called the virtual map table 
(VMT), that is indexed by the logical register number and 
contains its last virtual register mapping. Since virtual 
registers are not related to any particular storage, the 
processor may use as many of them as it wants. In practice, 
the decode stage will stall when the instruction window is 
full, so the number of virtual register (NVR) to guarantee 
that the processor never stalls because of the lack of them 
is the number of logical registers (NLR) plus the 
instruction window size (WS). The size of each entry of the 
VMT is then rlog2(NLR+WS)1 bits. There is a free pool of 

virtual registers that identifies those that can be allocated 
by a new mapping at each moment. In the decode stage, the 
source operands of every instruction are renamed using the 
VMT. The instruction is then dispatched to the instruction 
window with all its source and destination operands 
referring to virtual registers. 

The wakeup and selection logic is basically the same 
as that of a conventional register organization. Every time 
a result is produced, the virtual register associated to this 
result is broadcast to all the instructions in the instruction 
queue. If an instruction is using such virtual register as a 
source operand, then it is marked as available. An 
instruction can be chosen for issuing when all its operands 
are available. 

When an instruction is issued, it always reads its 
register operands from the physical register file. This is 
done by means of a second table, which is called the 
physical map table (PMT). This table has as many entries 
as the number of virtual registers and it is indexed by the 
virtual register number. Each entry identifies the last 
physical register to which that virtual register has been 
mapped. The size of each entry is then rlog*(NPR>1, where 
NPR denotes the number of physical registers. Using this 
table, the source virtual registers are translated to physical 
registers and the operands are then obtained from the 
physical register file. Alternatively, this map table could be 
implemented by means of a CAM (content-addressable 
memory) with a number of entries equal to number of 
physical registers, which is much lower than the number of 
virtual registers. This approach is for instance used by the 
DEC 21264 [4] to implement the logical to physical map 
table. 

Every instruction whose destination is a register 
allocates a new physical register when its execution 
completes. At this time, a new physical register is taken 
from a free pool of physical registers (the solution to the 
lack of free physical registers is considered in the next 
section; for the sake of simplicity we assume now that this 
event never happens). The destination virtual register is 
mapped to this free physical register and this mapping is 
reflected in the PMT. 

When an instruction commits, the previous virtual 
register allocated to the logical destination register is 
returned to the free pool. The identifier of this virtual 
register is obtained from the VMT in the decode stage, 
before being updated with the new mapping. This 
information is kept in the reorder buffer. In addition, the 
physical register allocated to that virtual register is also 
released. This information is obtained from the PMT when 
the instruction commits and therefore it does not need to be 
kept in the reorder buffer. 

In case of an exception or a branch misspeculation, a 
precise state can be obtained by undoing the mappings 
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performed by instructions that follow the offending one. 
This can be done by popping out the entries of the reorder 
buffer from the newest until the offending one. For each 
instruction, the reorder buffer stores the destination logical 
register and the virtual register that was allocated to the 
previous instruction with the same destination logical 
register. Using the logical register identifier, the VMT is 
read to obtain the current virtual register mapping and then 
the entry is restored with the previous virtual mapping. 
Using the current virtual mapping, the PNlT is read and the 
physical register allocated to that virtual register, if any, is 
freed. Notice that a mechanism based on checkpointing 
similar to the one used by the RlOOOO [ 131 could be used to 
recover from branches in just one cycle. 

3.1 Avoiding deadlock 
A virtual register organization may be designed with any 
number of logical, virtual and physicid registers. The 
number of logical registers is a feature of the ISA and 
therefore remains fixed for different implementations of 
the same ISA. The amount of virtual registers has a small 
impact on the hardware cost: it determines the number of 
entries of the PMT (rlog2(NPR)1-bit wide) if it is not 
implemented through a CAM, and it has a Iogarithmic 
impact on the width of the VMT. On the other hand, the 
number of physical registers has a very high impact on the 
hardware cost as discussed in the introduction. In 
consequence, the number of physical registers will be 
lower than that of virtual registers. 

In this case, it may happen that when a instruction 
completes there is no a free physical register. The obvious 
approach to deal with this situation isb to squash such 
instruction. However, in this situation, the eldest 
instruction in the window will not be able to commit 
because when its execution completes it will also find that 
there is not any free physical register. Under this 
circumstances, no instruction will be allow to commit and 
therefore no physical register will be freed, which will 
result in a deadlock. 

This deadlock can be avoided by a slight modification 
in the register management policy. In1 particular, it is 
enough to reserve a given number of registers for the oldest 
instructions that require them. Such number is referred to 
as the number of reserved registers (“RR). When an 
instruction completes, it allocates a new physical register 
as previously described, provided that there are more free 
physical registers than those reserved for the oldest NRR 
instructions that require them or it is one of the NRR oldest 
instructions in the window with a destination register. 
Otherwise, the instruction is squashed and kept in the 
instruction window and re-issued later on. 

This is implemented by means of a register that points 
to the youngest entry in the reorder buffer with a register 
reserved (PRR), a register that indicates the number of 
instructions below (older than or equal to) PRR that have a 
destination register (Reg), and how many of such 
instructions have already allocated a physical register 
(Used). 

When an instructions with a destination register 
commits, PRR is moved to point from the current location 
to the next instruction with a destination register or until the 
tail of the reorder buffer. If the new instruction pointed by 
PRR has not yet allocated a physical register, then Used is 
decreased; otherwise it is left unchanged. If the new 
instruction pointed by PRR. has not a destination register 
(PRR points to the tail of the reorder buffer), then Reg is 
decreased; otherwise it is unchanged. 

When an instruction with a destination register is 
decoded, if Reg is lower than NRR, then Reg is increased 
and PRR is updated to point to the location of such 
instruction in the reorder buffer. 

Notice that this parameter may have a strong influence 
on the performance. A higher value of the NRR means that 
there are less physical registers to be used without the 
constraint of being one of the oldest instructions. However, 
a higher value of NRR also implies that the processor speed 
when there are only NRR free registers or less is higher. 

4 Performance evaluation 

This section presents a performance evaluation of the 
virtual register organization. The objective of this section is 
to demonstrate the benefits of the novel register 
organization. An exhaustive evaluation of the impact on 
the cost and performance of the different design parameters 
for different processor architectures is left for future work. 

The evaluation of the new scheme is performed by 
comparing the execution time of an aggressive superscalar 
processor with a conventional register organization with 
that of the same processor with the virtual register 
organization. In both cases it is assumed the same amount 
of physical registers. 

4.1 Experimental framework 
A trace-driven simulator of a out-of-order rsuperscalar 
processor has been developed to evaluate the proposed 
register organization. Two different register organizations 
have been simulated. The. first one is the conventional 
register scheme used by tlhe RlOOOO [13] among others. 
The second one is the virtual register organization 
proposed in this paper. In both cases, a typical superscalar 
architecture has been assumed. The execution of an 
instruction consists of the following stages: 
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Fetch: Every cycle, up to eight instructions can be 
read from the Instruction cache. A perfect instruction 
cache is assumed. In this stage, branch prediction is 
performed using a 2048 entry Branch History Table 
with a 2 bit up-down saturated counter per entry. 

Decode: Up to eight instructions are decoded every 
cycle. Their logical registers are renamed and mapped 
onto physical registers for the conventional 
organization and they are mapped to virtual registers 
for the virtual register organization. Then, the 
instructions are dispatched to a global Instruction 
Queue and to a global Instruction Reorder Buffer 
(IRB). The size of both, which corresponds to the size 
of the instruction window, is 128 entries. Instructions 
are kept in the Instruction Queue until they are issued 
and they remain in the IRB until they are committed. 
If the IRB is full or there are not free physicaUvirtua1 
registers, then the fetch and decode stages are stalled. 
There is one physical register file for integer data and 
another for FP data. Both have 64 registers with 16 
read ports and 8 write ports. The number of virtual 
registers is 160 for integer and 160 for FP. 

Issue: Every cycle, the issue logic searches the 
Instruction Queue for instructions that are free of 
dependences. If there are more ready instructions than 
available resources, the oldest instructions are 
selected. Register operands are obtained at this 
moment from physical register file. Table 1 shows the 
number of functional units and their latency. 

Simple Integer 

Complex Integer 

Effective Address 

Simple FP 

Repeat Functional Unit 

3 1 1 

2 9 multiply 1 
67 divide 67 

3 1 1 

3 4 1 

I FP Multiplication I 2 I 4 I 1  I 
IT Divide and SQR 1 2 1 16divide I iz I 35 SQR 

Table 1 : Functional units and instruction latency. 

0 Execute: Instructions are executed in the 
corresponding functional units. Loads and stores 
execute in the effective address computation units and 
then they are entered into the loadstore queue. 
Instructions wait in the loadstore queue until they 
commit. Load instructions access the cache when a 

cache port is available. Three memory ports and the 
memory disambiguation scheme implemented in the 
PA-8000 [6] have been assumed in this experiment. 

Write-back: Instructions are completed and the results 
are written into the register file. For the virtual register 
organization, the virtual to physical register mapping 
is performed at the beginning of this stage. 

Commit (or retire, or graduate): Instructions are 
committed in-order so that a precise state [8] can be 
recovered at any time. Store instructions send their 
request to memory in this stage. 

The processor has a lookup-free data cache [7] that 
allows up to 8 different cache lines with outstanding 
misses. The cache size is 16 KB, and it is direct-mapped 
with 32-byte line size. Cache hit latency is 2 cycles and the 
penalty for a cache miss is 50 cycles. An infinite L2 cache 
is assumed and a 64-bit data bus between L1 and L2 is 
considered (i.e., a line transaction occupies the bus during 
four cycles). 

Our experimentation methodology is trace-driven 
simulation. The object code, previously compiled with full 
optimization for a DEC Alphastation 600 51266 with and 
Alpha AXP 21164 processor, is instrumented using the 
Atom tool [ 111. The instrumented program is executed and 
the trace generated feeds the processor simulator. A cycle- 
by-cycle simulation is performed in order to obtain 
accurate timing results. Because of the detail at which 
simulation is carried out the simulator is slow, so we have 
simulated 100 million of instructions for each benchmark 
after skipping the first 2 billion of instructions. Five 
floating-point (apsi, swim, mgrid, hydro2d, waves) and 
four integer (go, li, compress, vortex) SPEC95 benchmarks 
have been selected for this study. Each program was run 
with the largest input set available for that benchmark. 

4.2 Results 
Figure 3 shows the speedup gained by the new register 
renaming scheme in front of the traditional one. The 
speedup is measured as the execution time of the traditional 
scheme divided by the execution time of the new 
organization. 

It can be seen that in general the highest improvement 
is achieved by the highest value of NRR (Le., 32). The 
speedup decreases significantly when NRR decreases for 
FP codes, except for hydro2d, whereas for integer codes, 
the difference is not so high. In fact, for two out of four 
integer codes, the optimal NRR is 4. Intermediate values of 
NRR like 16 and 24 also outperform the traditional scheme 
for all the benchmarks except for compress. 
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Figure 3: Speedup of the virtual register organization when compared with the conventional scheme for a 
varying value of the NRR. 

With NRR equal to 32, the novel1 register renaming 
scheme provides an average speedup of 1.21 for the 
analyzed programs and it goes up to 1.84 for swim. 

5 Conclusions 

We have presented a novel register organization for out-of- 
order execution processors. The key idiea behind the new 
organization is to delay the allocation of physical registers 
until instructions complete, instead of doing it in the 
decode stage, in order to reduce the register pressure. 

The new scheme is based on introducing a new 
concept that is called virtual registers. Virtual registers are 
not related with any storage location but they are merely 
tags that are used to keep track of register dependencies. 

A preliminary evaluation of the lxoposed approach 
has shown speedups of 21% in average when compared 
with a conventional register organization with approxi- 
mately the same hardware cost. The improvement for FP 
codes (36%) is much higher than for integer codes (6%). 
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