
Microprocessors and Microsystems 35 (2011) 695–707
Contents lists available at SciVerse ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro
Filtering directory lookups in CMPs

A. Bosque a,⇑, V. Viñals b, P. Ibáñez b, J.M. Llaberı́a a

a Department of Computer Architecture, Universitat Politécnica de Catalunya (UPC), Barcelona, Spain
b Department of Computer Science and Systems Engineering, University of Zaragoza, Zaragoza, Spain

a r t i c l e i n f o a b s t r a c t
Article history:
Available online 22 August 2011

Keywords:
Chip multiprocessor (CMP)
Coherence directory
Coherence actions filtering
0141-9331/$ - see front matter � 2011 Elsevier B.V. A
doi:10.1016/j.micpro.2011.08.006

⇑ Corresponding author. Tel.: +34 934017423; fax:
E-mail addresses: abosque@ac.upc.edu (A. Bosque)

imarin@unizar.es (P. Ibáñez), llaberia@ac.upc.edu (J.M
Coherence protocols consume an important fraction of power to determine which coherence action to
perform. Specifically, on CMPs with shared cache and directory-based coherence protocol implemented
as a duplicate of local caches tags, we have observed that a big fraction of directory lookups cause a miss,
because the block looked up is not allocated in any local cache. To reduce the number of directory lookups
and therefore the power consumption, we propose to add a filter before the directory access.

We introduce two filter implementations. In the first one, filtering information is explicitly kept in the
shared cache for every block. In the second one, filtering information is decoupled from the shared cache
organization, so the filter size does not depend on the shared cache size.

We evaluate our filters in a CMP with 8 in-order processors with 4 threads each and a memory hierar-
chy with write-through local caches and a shared cache. We show that, for SPLASH2 benchmarks, the pro-
posed filters reduce the number of directory lookups performed by 60% while power consumption is
reduced by �28%. For Specweb2005, the number of directory lookups performed is reduced by 68%
(44%), while directory power consumption is reduced by 19% (9%) using the first (second) filter
implementation.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction As a result, all transactions are broadcasted to all the local caches
During the past decade single-core processors have become
increasingly more complex, even leading to designs with ineffi-
ciencies in power/performance. This fact, along with the always
increasing density in the chips, has encouraged the development
of multi-core chips. Nowadays, most computer manufacturers of-
fer multi-core chips such as the IBM Power 6 with two cores [1],
the AMD Phenom II with four cores [2], the Fujitsu SPARC64 VII
with four cores [3], the Intel Xeon 7400 series with six cores [4],
or the SUN Niagara 2 with eight cores [5].

All these systems differ from each other in important features
like the number of cores, the memory hierarchy, or the intercon-
nection network on-chip. However, all of them support the shared
memory programming model, so a coherence protocol is necessary
to keep local caches coherent.

Coherence protocols can be classified as directory-based or
snoopy-based protocols. Directory-based protocols keep a direc-
tory that stores the state of each block of main memory. All trans-
actions should access this structure in order to determine which
coherence actions to perform. In the snoopy-based protocols, the
state of each block of cached data is stored in the local caches, that
is, the information about the state of the cached data is distributed.
ll rights reserved.

+34 934017055.
, victor@unizar.es (V. Viñals),
. Llaberı́a).
in the system.
Both protocols consume an important fraction of shared cache

energy to determine which action to perform. The energy in snoo-
py-based protocols is spent on broadcasting coherence messages
and making tag-cache lookups [6]. Directory-based protocols con-
sume less energy than snoopy-based protocols, because it is known
which caches have a copy of a block [7].

A directory can be implemented in two basic ways: by a full-
map scheme [8], or by duplicating the local cache tags [9]. Differ-
ences between duplicate tag directory and full-map arise in size,
lookup method, and retrieved information in a lookup operation.
Concerning size, the duplicate tag directory uses the smallest ex-
plicit representation of all blocks contained in local caches. Thus,
a duplicate tag directory requires less area than a full-map direc-
tory. However, by duplicating local cache tags, any directory look-
up requires an associative lookup that is expensive in terms of
energy consumption. For example, in Niagara 2, a lookup can per-
form up to 256 comparisons. Both directory schemes identify the
processors that have a copy. However, the duplicate tag directory
scheme also identifies the way in the set of the local caches owning
the copy and so there is no need of local cache lookups to identify
which block to invalidate.

In directory-based protocols, we observe that an important frac-
tion of directory lookups ‘‘misses’’, that is, the searched block is not
cached in any local cache in the system. These directory lookups
waste energy because we could decide not to perform them and

http://dx.doi.org/10.1016/j.micpro.2011.08.006
mailto:abosque@ac.upc.edu
mailto:victor@unizar.es
mailto:imarin@unizar.es
mailto:llaberia@ac.upc.edu
http://dx.doi.org/10.1016/j.micpro.2011.08.006
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro

696 A. Bosque et al. / Microprocessors and Microsystems 35 (2011) 695–707
the program execution would be correct. We suggest to identify
these useless lookups and avoid to perform them.

We propose two filter implementations that are accessed before
the directory. These filters dismiss lookups that would ‘‘miss’’ in
the directory. All proposed filters are designed for CMPs like Niag-
ara 2 where the local cache level is split into an instruction cache
and a data cache [5], the shared cache is inclusive, and the direc-
tory is implemented by duplicating the local cache tags.

Although instruction and data streams generally access differ-
ent memory regions, we cannot guarantee that a cache line has
been accessed just from one and only one of these streams (e.g.,
in self-modifying codes, the same block may be accessed as data
and instruction). As a result, it is necessary to check both the copy
of the tags of the local data caches and the copy of the tags of the
local instruction caches in every search in a directory implemented
as a copy of the local tags.

The local cache level in the evaluated CMP is split into data and
instruction. Thus, every access to the shared cache might be la-
beled with the stream (data or instruction) it belongs to. The pro-
posed filters use this information to decide, based on the previous
accesses, if a block belongs to the data or instructions stream.
When the filter is able to classify a block as exclusively belonging
to a specific stream, it is only necessary to access the directory of
that stream. All directory lookups performed in the other directory
are filtered out.

Along this paper, we propose two basic different filter imple-
mentations. In the first one, we exploit the inclusion property of
the shared cache to label each block with the stream it belongs
to. In the second one, we keep the information of all blocks belong-
ing to a stream together. We use Bloom filters that are space-
efficient probabilistic data structures used to test whether an
element is a member of a set [10]. As we need to identify two
different streams, we use two independent Bloom filters. Each
Bloom filter is associated with a directory and it keeps information
of all blocks allocated in that directory.

The rest of this paper is organized as follows. We motivate our
idea in Section 2. In Section 3 we outline the proposed filters. Sec-
tion 4 describes in detail the memory hierarchy of the chosen CMP
model. In Section 5 we detail the filter implementations. Section 6
shows our experimental results and Section 7 discusses related
work. Finally, Section 8 contains the conclusions.

2. Motivation

We model a CMP with a shared inclusive L2 cache, multithreaded
processors that access local instruction and data caches, and use
write-through policy in local data caches. A detailed description of
the CMP is in Section 4.
bi
llio

ns

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00

barnes fmm ocean radiosity raytrace vo

evictioevictiostoresifetch-missesload-misses
memory operations

SPLASH2

Fig. 1. The first column for each benchmark represents the billions of memory operation
evictions. The second column collects the billions of directory lookups in each directo
directory.
As the directory is implemented by duplicating the tags of the
local cache, it is possible to distinguish between a data directory
and an instruction directory. The data directory holds the tags of
the local data caches whereas the instruction directory holds the
tags of the local instruction caches.

In general, the sets of memory addresses of instructions and
data (values of program counters of the executed instructions
and addresses of referenced data) are disjoint. However, both
stores and evictions need to look up both data and instruction
directories because we cannot assure that instruction and data
are always located in different memory regions. Two examples of
this situation are self-modifying code and constants located in
the code segment. The latter case happens when a compiler locates
program constants along with the instructions that use them.
Therefore, a cached block could contain instructions and constants,
so there could be copies of that block in both the local data and
instruction caches. If this block needs to be evicted from the shared
cache, all the copies in the system have to be invalidated.

Instruction/data block exclusivity is maintained in the local ca-
ches, as in Niagara 2 [11]. In order to keep instruction/data block
exclusivity, instruction fetches and loads that miss in the local ca-
ches also perform directory lookups.

Consequently, any access to the shared cache (loads that miss in
the local data cache, instruction fetches that miss in the local
instruction cache, and stores) and any eviction from the shared
cache perform a directory lookup. Lookups are only useful if they
hit, that is, if the target block is present in any local cache in the
system. For the rest of the paper, we will call ‘‘useful lookups’’ to
the lookup actions that hit in at least one local cache.

Fig. 1 shows the distribution of memory operations that access
the shared cache and the total and useful directory lookups in the
modeled CMP. Refer to Section 6 for a description of the used work-
loads and to Section 4 for the characteristics of the simulated sys-
tem. Fig. 1 has three columns for each benchmark. The first one
shows the memory operations categorized as load-misses, ifetch-
misses, stores and evictions (bottom-up). The second column cor-
responds to the data and instruction directory lookups generated
by the memory operations of the first column. The last column
represents the number of useful data and instruction directory
lookups.

The number of directory lookups is, on average, almost twice
the number of memory operations. However, only 35% and 25%
of the directory lookups are useful for SPLASH2 and Specweb2005,
respectively. For SPLASH2, on average, the data directory lookups
represent 40% of the directory lookups performed and 80% of them
are useful. Thus, on average, 60% of the directory lookups are per-
formed in the instruction directory and only 1% of them are useful.
For Specweb2005, on average, the number of directory lookups are
lrend water-
nsquared

water-
spatial

banking ecommerce support

memory
ops

directory
lookups

useful
directory
lookups

nsns
directory lookups
instruction data

Specweb2005

s that access the shared cache categorized as load-misses, ifetch-misses, stores and
ry. The third column represents the billions of ‘‘useful’’ directory lookups in each

MM

Pn

L1 I L1 D SB

L2 DIR

P0

L1 I L1 D SB

L2 DIR

CROSSBAR

Fig. 2. CMP model with a first-level local cache per core (instruction cache, data
cache and store buffer) and a second-level shared cache divided in several banks.

A. Bosque et al. / Microprocessors and Microsystems 35 (2011) 695–707 697
performed in equal number in both directories. However, while
50% of the data directory lookups are useful, only 2% of the instruc-
tion directory lookups are useful.

In a system where instruction/data exclusivity were not main-
tained, the number of directory lookups would be smaller. This dif-
ference can be computed from Fig. 1. The first column in Fig. 1
shows that, on average, 67% of the memory operations are stores
for both SPLASH2 and Specweb2005, the number of ifetch-misses
is almost zero for SPLASH2 and 6% of the memory operations for
Specweb2005, and the number of load-misses is 22% and 10% of
the memory operations for SPLASH2 and Specweb2005, respec-
tively. Thus, the number of directory lookups necessary for main-
taining instruction/data exclusivity represents a small fraction
(22% and 16% on average for SPLASH2 and Specweb2005, respec-
tively) of the total number of lookups.

Results from Fig. 1 clearly indicate that if we know in advance
whether a directory lookup is useful or not, the number of per-
formed lookups (and hence the energy consumption) can be
greatly reduced.
3. Filtering mechanism outline

Based on the results in the previous section, we propose to
implement a filter that is able to know if a block is in the data or
the instruction directory. As a result, lookups are only performed
in one of the directories (data or instruction), thus reducing the en-
ergy consumed.

We propose two different basic filter implementations. In the
first one, filtering information is explicitly kept for every block in
the shared cache. We exploit the inclusion property of the shared
cache to label each block with information about the stream it be-
longs to (data or instruction). Thus, the filter is implemented as
metadata associated with each block in the shared cache, similar
to the state bits of the block. We call this kind of filter ‘‘instruc-
tion-data filter’’ (ID filter).

In the second basic implementation, filtering information is
kept in structures decoupled from the shared cache organization.
We use one structure for each stream (data or instruction). These
structures keep information about all blocks belonging to the spe-
cific stream. We implement each structure with a Bloom filter.
Bloom filters [10] are space-efficient probabilistic data structures
used to test whether an element is a member of a set.

Both proposed filters guarantee by their implementation that
they do not produce false negatives, that is, they never indicate
that a block is not allocated in a directory when it is there. In the
first implementation, the metadata associated with each block only
identifies the stream the block belongs to when the block has be-
longed to the same stream along the whole execution. When the
block has belonged to both streams, depending on the specific
implementation, either the block is identified as unknown or the
state of the system is modified to guarantee that the block belongs
to a specific stream. This will be cover with more detail in Sections
5.1 and 5.2. In the second implementation, we use Bloom filters,
which guarantee that they never produce false negatives. As a re-
sult, we guarantee that whenever the target block is allocated in
the directory, the lookup is performed.

The proposed filters are read in parallel with the shared cache
tag array. Then, if necessary, the directory is accessed in parallel
with the shared cache data array as in Niagara 2.
1 The bandwidth requirements to implement local write-through caches is so high
in many-core systems (which is not the target of this paper), that makes it
unaffordable. However, in this scenario, a practical implementation would be to
organize the many-core system in small clusters and perform cache coherency at the
cluster level. Each of these clusters would be the CMP modeled in this paper.
4. Chip multiprocessor model

Fig. 2 shows the CMP configuration we assume in this work. It is
a CMP with 8 in-order multithreaded cores and a memory
hierarchy similar to the one in Niagara 2. The first cache level is
local to each core, and is composed of an instruction cache (L1 I)
and a write-through no-write-allocate data cache (L1 D). Each core
has also a store buffer (SB) with several entries per thread that con-
tain all outstanding stores. The second-level cache (L2) is shared
among all the cores and is inclusive, that is, all data in the local ca-
ches must also be in the shared cache. It is divided into different
banks interleaved by second-level cache block size. Two crossbars
communicate the two cache levels.

A write-invalidate directory-based protocol is used to maintain
cache coherence among the local caches. The directory is distrib-
uted among the second-level cache banks, keeping close to each
bank the information about the blocks associated with it. Table 1
presents the specific parameters we chose for the memory
hierarchy. All of them are based on Niagara 2 memory hierarchy
parameters.

CMPs that use write-through local caches (as the one modeled
in this paper) require more bandwidth than CMPs that use write-
back local caches (like Piranha [12]), because all stores must access
the shared cache. However, the extra bandwidth guarantees that
data is always updated in the shared cache. Thus, the latency to ac-
cess shared data does not depend on how many caches are sharing
it, but it is only increased by contention in the interconnection net-
work. Moreover, in a system with write-back local caches, local ca-
ches are responsible for serving dirty blocks when they are
requested by other processors. These requests can delay the access
of a processor to its local caches, reducing processor’s performance.
In a system with write-through local caches, local caches do not
serve any other processor requests.1

We assume a directory similar to that of Niagara 2 [11], which
consists of a copy of the local cache tags. The directory is split into
instruction and data directories, replicating the organization of the
local caches. The directory in each bank is implemented as a CAM
structure whose area requirements are O (PxNL1/NBL2), being P

the number of processors, NL1 the number of lines in the local ca-
ches and NBL2 the number of banks of the shared cache. The size of
this structure also depends on the local cache tag size. As the
shared cache is inclusive, any local cache block is allocated in the
shared cache. Thus, the local cache block tag in the directory could
be replaced by the set index and way of the corresponding shared
cache block. Since in the modeled CMP the shared cache tag array
is accessed before the directory, set index and way are available on
time to access the directory. This information requires fewer bits,
and so, the directory size and its power consumption are smaller.

Table 1
Memory hierarchy parameters.

L1 D size 8 KB L2 size 4 MB
L1 D associativity 4-Way L2 number of banks 8
L1 D block size 16B L2 associativity 16-Way
L1 I size 16 KB L2 block size 64B
L1 I associativity 8-Way L2 latency 7 Cycles
L1 I block size 32B L2 MSHR 8

Crossbar arbitration 3 Cycles Store Buffer 8 Entries per thread
Crossbar latency 3 Cycles

Physical address 40 Bits Memory latency 117 Cycles
SHARED CACHE

BANK 0

0
4
8

12

directory LC
0

number
of local

cache set

LC
3

LC
2

LC
1

BANK 1

1
5
9

13

LC
0

LC
2

LC
1

LC
3

BANK 2

2
6

10
14

LC
0

LC
2

LC
1

LC
3

BANK 3

3
7

11
15

LC
0

LC
2

LC
1

LC
3

set
number

12
13
14
15

11
10

0

9
8
7
6
5
4
3
2
1

local cache

12
13
14
15

11
10

0

9
8
7
6
5
4
3
2
1

LC3

12
13
14
15

11
10

0

9
8
7
6
5
4
3
2
1

LC2

12
13
14
15

11
10

0

9
8
7
6
5
4
3
2
1

LC1

interconnection network

LC0

Fig. 3. Mapping of local cache blocks to shared cache banks and directories when
the shared cache and the local caches have the same block size.

30
31

0

8
7
6
5
4
3
2
1

local cache

set
number

9

30
31

0

8
7
6
5
4
3
2
1

LC3

9

interconnection network

LC0

698 A. Bosque et al. / Microprocessors and Microsystems 35 (2011) 695–707
A lookup in a duplicate tag directory is associative, so it is
expensive in terms of energy consumption. However, this lookup
identifies not only the processors that have a copy, but also the
way in the set of the local caches. Block invalidations are per-
formed by sending to all involved processors a message that in-
cludes the local cache set index and the way (s) in the set to
invalidate. So, there is no need of local cache lookups to identify
which block to invalidate. The directory is also responsible for
identifying which stores have to update a block in the local cache
of the processor performing the store. Thus, stores update local ca-
ches when the acknowledgement message is received. This mes-
sage, like invalidation messages, includes the way that has to be
updated.

Like in Niagara 2 [11], instruction/data block exclusivity is
maintained in the local caches, that is, the same block can not be
at once in both instruction and data caches (across all cores). The
directory is responsible for ensuring instruction/data exclusivity.
The shared cache block size is larger than the block size of the local
caches. Thus, copies of different subblocks from the same shared
cache block can reside in local caches of different types (instruc-
tion/data).
SHARED CACHE

BANK 0

0, 1
8, 9

16, 17
24, 25

directory LC
0

number
of local

cache set

LC
3

LC
2

LC
1

BANK 3

6, 7
14, 15
22, 23
30, 31

LC
0

LC
2

LC
1

LC
3

Fig. 4. Mapping of local cache blocks to shared cache banks and directories when
the shared cache block size is twice the local cache block size.
4.1. Directory organization in a bank

Duplicate instruction and data directories have a similar struc-
ture, but they are accessed in a different way depending on the
kind of memory operation.

In order to understand better the directory organization, let us
first assume that the shared cache block size is the same as the lo-
cal cache block size. The shared cache is split in several banks and
it is interleaved by its block size. The directory is also split in order
that each shared cache bank only keeps the fragment of the direc-
tory corresponding to the blocks mapped to that bank. Blocks lo-
cated in contiguous local cache sets are mapped to different
shared cache banks and therefore to different directories. Thus,
the number of local cache blocks assigned to a particular directory
is (NLCS/SCB)⁄LC, being NSLC the number of local cache sets, SCB
the number of shared cache banks, and LC the number of local ca-
ches. Fig. 3 shows an example of how the blocks in the local cache
sets are mapped to the different directories. We can see that blocks
located in the first set of a local cache are mapped to the directory
of the first shared cache bank, blocks located in the second set are
mapped to the directory of the second shared cache bank, and so
on. Blocks located in a specific set are mapped to a single directory,
independently of the local cache where they are located.

However, as the local cache block size is smaller than the shared
cache block size in our CMP model, several contiguous local cache
sets are mapped to the same shared cache bank. This number is
equal to the ratio between the shared cache and the local cache
block size. As before, the number of blocks mapped to a particular
directory is (NLCS/SCB)�LC. Fig. 4 shows the same system as
Fig. 3, but now the local cache block size is half the shared cache
block size. The number of sets in the local cache is doubled and
the mapping to the shared cache banks changes. Blocks located
in two consecutive local cache sets are mapped to the same shared
cache bank: the first two local sets are mapped to the first shared
cache bank, the second two local sets are mapped to the second
shared cache bank, and so on.

Our CMP model has 8 shared cache banks interleaved by 64B
blocks, and 8 local data caches, each one with 128 sets of associa-
tivity 4, and block size of 16B (see Table 1). Blocks located in four
contiguous local cache sets are mapped to the same directory since
the banks are interleaved by 64B blocks and the local cache block
size is 16B. The total number of blocks mapped in a specific direc-
tory is 512 (4-way � 16 sets � 8 local caches).

Each directory puts together blocks located in the same set of all
the local caches because it is the minimum amount of blocks that
need to be looked up in any directory lookup. This number of
blocks is 32 (4 blocks/set � 8 local caches). Moreover, the directory
is also organized in order to make easy to access blocks located in
contiguous sets in the local caches. The reason is that depending on
the shared cache access, the corresponding directory lookup can

Fig. 5. Data or instruction directory structure of Niagara 2 and how they are
accessed.

Table 2
Actions performed in the data and instruction directories for every memory operation
in the shared cache. For each lookup, the number of comparisons performed is
enclosed. The shaded cells identify the actions that are unnecessary in a system
without data/instruction exclusivity.

Memory operation Data directory Instruction directory

Load-miss Update Lookup (64)
Ifetch-miss Lookup (64) Update
Store Lookup (32) Lookup (64)
Shared cache eviction Lookup (128) Lookup (128)

A. Bosque et al. / Microprocessors and Microsystems 35 (2011) 695–707 699
require to look up all these blocks. Fig. 5 shows how the directory
is organized in 16 different panels (using SUN’s terminology [11])
of 32 entries which correspond to the blocks located in the same
set of all the local data caches. Each panel entry keeps only the
block located in a particular local cache and in a specific way of
the local cache set that the panel corresponds to. Any directory
lookup determines the panel (s) which has to be looked up using
some address bits of the target block. Then, all the entries of the
panel (s) are compared to the target block. The local caches that
keep a local copy and the way where the copy is located are deter-
mined by the entries with a positive result from the comparison.

In a similar way, the instruction directory of a shared cache
bank tracks 512 blocks (8-way � 8 sets � 8 local caches). It is also
organized in panels of the same size as the data directory. Differ-
ences are due to larger cache block size and higher associativity
in the local instruction caches.

4.2. Directory operation

Any access to and any eviction from the shared cache performs
a lookup in the directory. Along this paper, we call ‘‘memory oper-
ations’’ to all these accesses and evictions, namely, loads and
instruction fetches that miss in the local caches, stores and evic-
tions. If the shared cache and the local cache had the same block
size, the directory lookup for all memory operations would require
the same number of comparisons, involving all the elements of a
specific local cache set in every local cache. However, in our CMP
model local and shared cache block sizes are different. Thus, some
lookups require twice or four times more comparisons.

Below we describe the memory operations and the actions per-
formed in the directory for each one:

� Load-miss: It is a load that miss in the local data cache. The
directory entry that corresponds to the local cache location in
which the block will be allocated is updated with the missing
address tag. In order to assure instruction/data exclusivity, it
is necessary to invalidate all the copies of the 16B block (local
data cache block size) in all the local instruction caches. The
address of this 16B block determines a specific set in the local
instruction caches. As there are 8 local instruction 8-way asso-
ciative caches, 64 comparisons are performed.
� Ifetch-miss: It is an instruction fetch miss in the local instruction

cache. The behavior is the same as in a load but, instead of the
data directory, the instruction directory is updated and all the
copies of the 32B block (local instruction cache block size) are
invalidated in the local data caches. Thus, the blocks allocated
in two local data cache sets are looked up. As there are 8 local
data 4-way associative caches, 64 comparisons are performed.
� Store: As the local data cache is write-through, every store

accesses the shared cache. The copy of the local tags in both
directories, data and instruction, are looked up in order to send
invalidations to all the local caches that have the block. The
address of this block determines one local data cache set and
one local instruction cache set. Thus, 32 and 64 comparisons
are performed in the data and the instruction directories
respectively.
� Eviction: As inclusion is enforced in the system, the shared

cache victim block is removed from the local caches. Instruction
and data directories are looked up in order to send invalidations
to all the local caches that have a copy of the 64B evicted block
(shared cache block size). Thus, up to two 32B blocks in the local
instruction caches and four 16B blocks in the local data caches
can be invalidated. So, 128 comparisons are performed in each
directory.

Table 2 summarizes the actions performed for every memory
operation and the number of comparisons performed by the look-
up actions. The bolded cells identify the actions that are unneces-
sary in a system without data/instruction exclusivity.

Update actions are mandatory in order to keep always an exact
copy of the tags of the local caches in the directory.

5. Filter implementation

In this section we first present two ID filter implementations
where filtering information is associated with the shared cache
block. The filter size is related with the shared cache size. Secondly,
we present a Bloom based filter design. This filter is decoupled
from shared cache bank organization and so, it is independent of
the shared cache size.

5.1. A simple implementation: the two-bit ID filter

The two-bit ID filter classifies the shared cache blocks as
belonging either to the data stream, instruction stream or both:
blocks that have been accessed only by loads and stores are
marked as data blocks; blocks that have been accessed only by
instruction fetches are marked as instruction blocks; and blocks ac-
cessed by instruction fetches and stores or loads are marked as
mixed blocks. Therefore, the filter contains two bits per shared
cache block.

The value of these bits is set every time that a new block is allo-
cated in the shared cache and it is updated only when the type of
the block changes. A data (instruction) block changes its type when
it is accessed by an ifetch-miss (load-miss or store). The type of the
block changes to mixed in both cases.

Table 3 collects the actions performed in the directory depend-
ing on the memory operation and the type of the accessed block.
Comparing Tables 2 and 3, we observe the following differences.
For load-misses and ifetch-misses, the lookup actions can be elim-
inated for data and instruction blocks, respectively. For stores and
evictions, as long as a block is classified as instruction or data, it is
only necessary to look up in one directory. For a data (instruction)
block, all its copies must be in the local data (instruction) caches, so
only the data (instruction) directory should be looked up.

Table 3
Actions performed in the data and instruction directories when using the two-bit ID
filter. The number of comparisons performed by each lookup is enclosed.

Memory operation Block type Data directory Instruction directory

Load-miss Data Update –
Instr Update Lookup (64)
Mixed Update Lookup (64)

Ifetch-miss Data Lookup (64) Update
Instr – Update
Mixed Lookup (64) Update

Store Data Lookup (32) –
Instr – Lookup (64)
Mixed Lookup (32) Lookup (64)

Shared cache eviction Data Lookup (4) –
Instr – Lookup (4)
Mixed Lookup (4) Lookup (4)

Table 4
Actions performed in the directories after looking up in the one-bit improved ID filter.

Memory operation Block type Data directory Instruction directory

Load-miss Data Update –
Instr – –

Ifetch-miss Data Lookup (128) Update
Instr – Update

Store Data Lookup (32) –
Instr – Lookup (128)

Shared cache eviction Data Lookup (128) –
Instr – Lookup (128)

700 A. Bosque et al. / Microprocessors and Microsystems 35 (2011) 695–707
This filter implementation has two drawbacks: it requires two
bits per shared cache block, and its performance could be reduced
if highly accessed blocks are classified as mixed. A block classified
as mixed, as long as it remains in the shared cache, can not change
its type. The reason is that the filter itself does not keep informa-
tion about the number of copies of any block in the data and
instruction local caches. So, after any access to the shared cache,
the filter has not enough information to revert the state of a block
from mixed to instruction or data. This information is available in
the directory but, as the shared and the local caches block sizes are
different, neither of the directory accesses looks up enough infor-
mation to decide whether a block can be classified as data or
instruction. So, for example, for an instruction block that is ac-
cessed as data once, even though hundreds of instruction fetches
are performed over it, it will not be considered an instruction block
anymore. Below we propose a different ID filter implementation to
eliminate mixed blocks and to reduce the filter size.
5.2. A smaller filter: the one-bit improved ID filter

As blocks in the shared cache barely change their type, we pro-
pose an ID filter that classifies every block in the shared cache
either as data or as instruction. This ID filter requires only one
bit per shared cache block, so the filter size is halved.

For a proper operation of the one-bit ID filter, it is necessary to
modify the coherence protocol to force instruction/data exclusivity
of 64B blocks (shared cache block size). So, each block in the shared
cache is forced to be classified either as a data or instruction block.
Thus, there can be copies of a block either in the local data caches
or in the local instruction caches, but never in both of them.

A drawback of the one-bit ID filter is that every time a block in
the shared cache changes its type, all the copies of this block in the
local caches must be invalidated. A block that changes its type from
data to instruction (or instruction to data) needs to invalidate all its
copies in the local data (or instruction) caches. In order to carry out
the invalidations, a directory lookup is needed.

In general, changes in the type of block are rare in the analyzed
workloads. However, in some specific workloads, a few amount of
blocks highly accessed change continuously their type because
they contain both instructions and data. These blocks come from
the compiler placement of program constants in the code region.
For example, the first 32B of a 64B block can hold instructions
and the next 32B can hold data. In the system without filter, there
are copies of the first 32B in the local instruction caches and copies
of the next 32B in the local data caches. Therefore, both loads and
instruction fetches that access this block hit in the local caches and
do not need to access the shared cache. However, with the one-bit
ID filter, instruction/data exclusivity at 64B blocks is forced. Thus,
any ifetch-miss (or load-miss) that accesses the first (or last) 32B
sets the block type to instruction (or data) and invalidates all the
copies of the last (or first) 32B in the local data (or instruction) ca-
ches. As a result, the number of load-misses and ifetch-misses to
the shared cache increases. Therefore, there is an increase in the
number of directory lookups (recall Table 2) and all of them are
useful since there are local copies of the block.

We propose the one-bit improved ID filter in order to reduce
this waste of energy. This filter assures instruction/data exclusivity
by preventing a block classified as instruction block to change its
type. Thus, when a load accesses a block classified as instruction
block, the data is supplied to the local data cache, but it is not allo-
cated in the local data cache. In this way, the number of loads in
the shared cache increases as with the one-bit ID filter, but neither
directory lookups nor invalidations are necessary. Moreover, the
number of ifetch-misses is the same as in the system without filter.

Table 4 shows the actions performed in the directory for each
memory operation when using the one-bit improved ID filter.
Comparing Tables 3 and 4, we see that, in general, forcing data/
exclusivity for 64B blocks causes a bigger number comparisons
when the memory operation changes the type of the block: when
an ifetch-miss access a data block. But, as the mixed block type
does not exist, stores and evictions either access the data directory
or the instruction directory, but they never look up both as before.

The filtering information, like in the two-bit ID filter, is set in
the allocation of new blocks in the shared cache and it is updated
every time a block changes its type. Every time a new block is allo-
cated in the shared cache, the associated filter bit is set to instruc-
tion or data depending on the current memory operation. When
any block changes its type, the associated filter bit is updated to
the new value.

5.3. Bloom based filter

A Bloom filter is a space-efficient probabilistic data structure
that is used to test whether an element is a member of a set
[10]. False positives are possible, but false negatives are not. We
use Counting Bloom filters [13] in order to be able to remove ele-
ments from the set.

We use a Bloom filter for the data directory and another one for
the instruction directory. Each of these filters keeps track of the
block addresses allocated in each directory. To do membership
tests or updates in the filters, we use the lower bits of the block in-
dex in the shared cache.

Before performing a directory lookup the corresponding Bloom
filter is accessed. If the membership test results negative, the direc-
tory lookup is useless. This lookup is not performed and we know
that neither invalidations nor updates are necessary in the local ca-
ches. In case the test membership is positive, we cannot assure
whether the directory lookup is useless or not, and hence it is
performed.

The Bloom filter is updated in every directory update. When a
load-miss or an ifetch-miss access the shared cache, a new block

65
70
75
80
85
90
95

100

%

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
64 128 256 512 1024 2048 4096 8192

hash functions
entries of each array

useful
with Bloom filter

%

0
5

10
15
20
25
30
35

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
64 128 256 512 1024 2048 4096 8192

hash functions
entries of each array

useful
with Bloom filter

Fig. 6. Percentage of useful directory lookups and useful directory lookups according to the Bloom filter used for SPLASH2.

Table 5
Different combination of hash functions used to analyze
the effectiveness of the Bloom based filter.

Number of hash
functions

Hash functions

1 xor
2 s3, s5
3 xor, s0, s3
4 xor, s0, s3, s5

64 - 1

128 - 1

15

20

25

30

35

40

%

64 - 2
64 - 3

64 - 4
128 - 2 128 - 3

128 - 4

256 - 1

256 - 2 256 - 3
256 - 4

512 - 1

512 - 2
1024 - 1

0

5

10

15

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

Bloom filter size (bytes)

entries - # hash functions

Fig. 7. Percentage of useful instruction directory lookups when using Bloom filters
of different sizes for the instruction directory. Labels in the graph mean (# entries –
hash functions).

A. Bosque et al. / Microprocessors and Microsystems 35 (2011) 695–707 701
is allocated and another one is evicted in the corresponding local
cache. The new block is inserted in the Bloom filter and the evicted
block is removed. The insertion of the new block in the Bloom filter
is performed using the block index in the shared cache of the block
performing the load-miss or the ifetch-miss. In order to remove the
evicted block, the directory has to be read since it keeps the shared
cache indexes of the blocks currently allocated in the local caches.

The Bloom filter is also updated with local cache invalidations
performed by stores, evictions, ifetch-misses and load-misses.
Every block invalidated in the local caches has to be removed from
the Bloom filter. The shared cache indexes of the invalidated blocks
are known after a directory lookup.

We design Bloom filters of different sizes and using different
number of hash functions in order to analyze their effectiveness.
We choose two types of hash functions: based on bit shifts and
based on XOR (exclusive or) operation. The hash functions based
on bit shifts shift the address bits of the block accessing the filter
a certain amount of bits and use the lower bits to access the Bloom
filter. The hash functions that use an XOR operation split in half the
address of the block accessing the filter, perform an XOR operation,
and use the lower bits to access the Bloom filter. Based on bit shifts,
we use three different hash functions: shift zero bits (s0), shift
three bits (s3), and shift five bits (s5). Based on XOR operation,
we use only one hash function (xor).

Fig. 6 shows the percentage of directory lookups that different
Bloom based filters identify as useful for the data and the instruc-
tion directories for SPLASH2 (with Bloom filter in Fig. 6). The
number of directory lookups that are useful is also included (use-
ful in Fig. 6). The number of entries of the Bloom filter array vary
from 32 to 8192. The number of hash functions varies between 1
and 4. There is an array of counters for each hash function and
all of them are accessed in parallel. An increase in the number of
hash functions involves an increase in the size of the Bloom based
filter used. For example, when we use a 32-entry Bloom filter with
2 hash functions, 2 arrays of 32 entries each are used and each ar-
ray is accessed by just one hash function. Table 5 shows which
hash functions are used when we indicate 1, 2, 3, or 4 in Fig. 6.

Fig. 6a shows that the Bloom based filter of the data directory is
able to identify very few useless directory lookups, even using
Bloom filters with a big number of entries. For the instruction
directory, the effectiveness of the Bloom based filter is good using
quite small number of entries with enough number of hash
functions.
Fig. 7 shows the same information as Fig. 6b but taking into ac-
count the size of the Bloom filter used. We can see that for the
same filter size not all the filters behave in the same way. In gen-
eral, the bigger the number of hash functions used, more directory
lookups are identified as useless, that is, the number of directory
lookups performed is reduced. Finally, we decide to use a Bloom fil-
ter with 128 entries and 2 hash functions since the reduction in the
number of directory lookups identified as useful with bigger filters
does not pay off the higher energy consumption of those filters.
The counter size is 10 bits because each directory has 512 entries
so 9 bit counters and a valid bit are needed. Thus, each Bloom filter
has a size of 320B.

Table 7
Specweb2005 workloads, the corresponding simultaneous sessions, the number of
web transactions, billions of instructions executed and number of simulation runs.

Workload Simultaneous
sessions

Web trans. Instr (109) Simulation
runs

Banking 200 100 15.52 30
Ecommerce 1000 1200 8.07 15
Support 1400 2200 8.07 10

702 A. Bosque et al. / Microprocessors and Microsystems 35 (2011) 695–707
6. Evaluation

This section shows the benefits of the proposed filters. Section
6.1 describes the evaluation methodology. Section 6.2 shows the
number of directory lookups performed when using the proposed
filters, that is, the filter coverage. Section 6.3 analyzes the perfor-
mance loss of the one-bit improved ID filter since it is the only pro-
posed mechanism that changes the coherence protocol. Section 6.4
shows the energy saving when using each of the proposed filters.
Finally, Section 6.5 shows the same results as Section 6.4 but for
different local and shared cache sizes and different technologies.

6.1. Methodology

We use a Simics-based simulator. Simics [14] is a full-system
multiprocessor simulator capable of running unmodified commer-
cial OSs and applications. We completely developed the memory
hierarchy of our CMP model on top of Simics using the tools pro-
vided by this simulator. The main characteristics of this memory
hierarchy are detailed in Section 4 and its parameters are described
in Table 1. The consistency memory model of this memory hierar-
chy is Total Store Order (TSO). We configured Simics to model a
SPARC V9 target system running Solaris 9. We simulated a system
with 8 in-order, blocking, 1.2 GHz processors with 4 threads each
that share a 8 GB memory. Due to simulation time restrictions,
the non-numerical applications are executed in a system with 8
non-multithreaded processors.

We use the applications of the SPLASH2 benchmark suite [15]
and as non-numerical applications, the three workloads of Spec-
web2005 [16]: banking, ecommerce, and support. In order to
adapt the SPLASH2 workloads to our simulated scenario, we scaled
the input dataset up as proposed by Monchiero et al. [17]. For
water-nsquared and water-spatial we were only able to scale the
datasets to 2 k and 4 k particles, respectively to bound the simula-
tion time. We execute the whole parallel section of each bench-
mark. Table 6 shows the applications used, the corresponding
datasets and the billions of executed instructions.

For the three workloads of Specweb2005, we use the web server
Apache 2.0.63 with PHP. Table 7 indicates how many simultaneous
sessions are running for each workload. Web servers present high
time and space variability [18] and, on top of that, we can not
simulate Specweb2005 workloads until their completion due to
simulation time restrictions. To minimize web server variability,
we run several simulations for each workload performing the same
number of web transactions, with a thinking time set to zero. All
these simulations are run after fast forwarding the period of ramp
up of Specweb2005 [16]. To determine the number of web transac-
tions in each workload, we warm the caches for 0.75 billion cycles
and then we measure the number of web transactions for 2.25 bil-
lion cycles. Table 7 shows the number of web transactions per-
formed, the average billions of instructions executed for each
Table 6
SPLASH2 benchmarks, the corresponding datasets, and billions of cycles and
instructions executed.

Benchmark Dataset Instr (109) Cycles (109)

Barnes 64 K particles 4.97 0.62
fmm 64 K particles 9.57 1.20
Ocean 1026x1026 5.99 0.91
Radiosity – Largeroom,

– ae 5000 7.45 0.94
– en 0.050 �bf 0.1

Raytrace Balls4 5.77 0.79
Volrend Head 0.63 0.08
Water-nsquared 2192 Particles 13.79 1.72
Water-spatial 4096 Particles 4.02 0.50
workload, and the number of simulation runs. For Specweb2005
results we use the mean of the simulations.

6.2. Coverage

In Fig. 1, we showed that a large amount of directory lookups
are useless. Now, we analyze whether the proposed filters are able
to identify the useless lookups in advance or not.

Fig. 8 shows the percentage of directory lookups identified as
useful by each filter proposed and the percentage of useful direc-
tory lookups. The directory lookups identified as useful are those
that will be performed, so the smaller the number of directory
lookups classified as useful, the better. Fig. 8a and b show the per-
centage of useful instruction and data directory lookups, respec-
tively. There are four columns per benchmark. From left to right,
the first three correspond to the two-bit ID filter, the one-bit im-
proved ID filter and the Bloom filter. The last column represents
the percentage of useful directory lookups, which we call ‘‘perfect
filter’’.

For both SPLASH2 and Specweb2005, Fig. 8a shows that less
than 1% of the instruction directory lookups are useful. The two-
bit and the one-bit improved ID filters identify almost all these
cases. Thus, when using any of these filters, instruction directory
lookups are reduced to less than 1% on average, compared to the
system without filtering. The Bloom filter does not achieve such
good results. For SPLASH2, the Bloom filter reduces instruction
directory lookups to 4%, but for Specweb2005, it only reduces
instruction directory lookups to 31%.

Bloom filter has a bad performance for Specweb2005 because
its parameters are tuned for SPLASH2. We do not dedicate any ef-
fort to tune the Bloom filter parameters for Specweb2005 because
later we show that, from a power consumption point of view, the
performance of the Bloom filter for SPLASH2 is not better than
the performance of any of the ID filters. Moreover, tunning the
Bloom filter parameters for Specweb2005 requires to use more ad-
dress bits in the hash functions. To get these extra bits the tag array
should be read and this will increase the energy consumption.

Fig. 8b shows that the percentage of useful data directory look-
ups is far bigger than the percentage of useful instruction directory
lookups. The reason is that stores represent an important fraction
of the memory operations in the shared cache because local data
caches are write-through (Fig. 1). Thus, most directory lookups
performed in both directories are performed by stores which are
accessing private data. This private data is located in the local data
caches. As a result, instruction directory lookups are useless and
can be safely filtered out. As stated before, the directory is used
not only to find which blocks to invalidate in the local caches but
also to identify the way in the set of the private cache that has to
be updated with the store. So, data directory lookups generated
by stores are, in general, useful and they should not be filtered out.

Fig. 8b shows that all SPLASH2 benchmarks except ocean be-
have similarly: on average, 85% of the data directory lookups are
useful and none of the proposed filters is able to properly identify
the useless directory lookups. The percentage of useless data
directory lookups is less than 1% using any of the proposed filters
compared to the system without filtering. The behavior of ocean
is different: 50% of the data directory lookups are useless and both

%

0
5

10
15
20
25
30
35
40
45
50

barnes fmm ocean radiosity raytrace volrend water-
nsquared

water-
spatial

banking ecommerce support

Specweb2005SPLASH2

two-bit ID filter one-bit improved ID filter Bloom filter perfect filter

%

0
10
20
30
40
50
60
70
80
90

100

barnes fmm ocean radiosity raytrace volrend water-
nsquared

water-
spatial

banking ecommerce support

two-bit ID filter one-bit improved ID filter Bloom filter perfect filter

Specweb2005SPLASH2

Fig. 8. Percentage of directory lookups identified as useful by each proposed filter and percentage of useful directory lookups. (a) Corresponds to the instruction directory
lookups and (b) corresponds to the data directory. In both graphs, for every benchmark each column correspond to the system using a different filter: two-bit ID filter, one-bit
improved ID filter, Bloom filter and a perfect filter (from left to right).

A. Bosque et al. / Microprocessors and Microsystems 35 (2011) 695–707 703
the two-bit ID filter and the Bloom filter are able to identify most of
them, reducing the number of lookups up to 64% and 62%, respec-
tively. Ocean differs from the rest of SPLASH2 benchmarks in that
the number of shared cache evictions is as important as the num-
ber of stores. Most of the data directory lookups performed by evic-
tions are useless and the proposed filters can identify them.

For Specweb2005, Fig. 8b shows that, on average, 50% of data
directory lookups are useful, because an important number of data
directory lookups are performed by ifetch-misses. Lookups per-
formed by ifetch-misses are, in general, useless and can be filtered
out. However, the proposed filters do not perform as well as in the
instruction directory. The two-bit ID filter is the best, but it is only
able to reduce the number of data directory lookups up to 67%
compared to the system without filtering.

Summing up, all filters reduce the instruction directory lookups
between 69% and 99%. However, data directory lookups are barely
reduced. In the best case, for Specweb2005, they are reduced to
67%. The Bloom filter requires a specific filter for each directory,
that is, a Bloom filter to filter out data directory lookups and
1.10
1.12
1.14
1.16

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00
1.02
1.04
1.06
1.08

no
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e

barnes fmm ocean radiosity raytrace ov

SPLASH2

Fig. 9. Normalized execution time of the one-bit improv
another one to filter out instruction directory lookups. We propose
to not use the Bloom filter in the data directory due to its poor per-
formance. From now on, when we use a Bloom filter, we will be
using a Bloom filter only for the instruction directory, that is, a
Bloom filter will only filter out the instruction directory lookups
while the data directory lookups will not be filtered out.

6.3. Performance

Both the two-bit ID filter and the Bloom filter do not modify the
coherence protocol so benchmarks’ performance is not altered. On
the contrary, the one-bit improved ID filter modifies the coherence
protocol forcing the instruction/data exclusivity at a 64B granular-
ity. It is then necessary to check that the performance of the bench-
marks is the same as before.

Fig. 9 shows the normalized execution time of the one-bit im-
proved ID filter with regard to the system without any filter. For
Specweb2005, it is interesting to compare both the mean and the
standard deviation of the different simulations that we run (see
water-
nsquared

water-
spatial

troppusecremmocegniknabdnerl

Specweb2005

ed ID filter compared to the system without filter.

704 A. Bosque et al. / Microprocessors and Microsystems 35 (2011) 695–707
Section 6.1) for the system with and without the one-bit improved
ID filter. Because of this, Specweb2005’s benchmarks have two
bars: the first one represents the mean and standard deviation
for the system without filtering, and the second one corresponds
to the mean and standard deviation in the system using the one-
bit improved ID filter.

For SPLASH2, Fig. 9 shows that, on average, the system is 0.3%
slower when using the one-bit improved ID filter. Radiosity is
the benchmark with the worst performance. It has a performance
loss of 0.9%. In this benchmark, the compiler allocated frequently
accessed constants in the code region. Thus, some shared cache
blocks are accessed simultaneously by loads and instruction
fetches. In the original coherence protocol, the subblocks accessed
only by instruction fetches or only by loads are cached in the local
caches. In contrast, when forcing the instruction/data exclusivity at
a 64B granularity, not all those subblocks are locally cached. Thus,
some loads or instruction fetches need to access the shared cache
instead of only the local caches.

Fig. 9 shows that in Specweb2005 we can differentiate two
groups: for banking the mean execution time shows an increase
of 1.6%; for ecommerce and support, the mean execution time
shows a decrease of 2.1% and 0.1%, respectively. In both groups
the confidence interval shows that the execution time is not statis-
tically different.

For banking, the variability is high because we can not simu-
late enough web transactions due to simulation time restrictions.
As the number of web transactions is low, the cold-start and
end-effect may influence the results. The first transaction to com-
plete within the interval would have started before the interval be-
gan. Similarly, when the last transaction completes, the next ones
would have already started. In order to reduce the confidence
intervals, we executed more simulation runs of Banking than of
the rest of Specweb2005 workloads.

6.4. Power reduction

CACTI 6.5 [19] is used to estimate dynamic energy and leakage
power for the cache tag array and the proposed filters. We modi-
fied CACTI to model CAM structures, so that dynamic directory en-
ergy and leakage power can be estimated. All structures were
modeled using a 65 nm technology with a target frequency of
1.2 GHz.

The average dynamic power consumption is computed based on
activity statistics of the shared cache, the filters, and the data and
instruction directories along the execution of the benchmarks. The
average dynamic power consumption of the directory is 1.5 times
the average dynamic power consumed by the tag array of the
shared cache. However, the leakage power of the tag array is 2.2
times the directories leakage since the tag array is bigger than
the directory structure.

Fig. 10 shows the percentage of power reduction in the direc-
tory using the different proposed filters. The directory power
0
5

10
15
20
25
30
35
40

barnes fmm ocean radiosity raytrace vol

%

two-bit ID filter one-bit im

SPLASH2

Fig. 10. Percentage of power r
consumption includes the dynamic power and the leakage power
in both data and instruction directories. There are three columns
for each benchmark. Each column corresponds to the directory
power reduction when using one of the proposed filters: the
two-bit ID filter, the one-bit improved ID filter, and the Bloom filter
(from left to right).

For SPLASH2, on average, the power reduction is quite similar
when using any of the proposed filters. The two-bit and the one-
bit improved ID filters, on average, reduce the power consumption
by 28%. The Bloom filter reduces the directory power by 27%. In
contrast, for Specweb2005, there is an important difference be-
tween the reduction achieved by the ID filters and the Bloom filter.
Fig. 8 shows that the Bloom filter identifies fewer useless directory
lookups than the other proposed filters. Thus, the directory power
is only reduced by 9% when using the Bloom filter. On the other
hand, any of the ID filters, on average, reduce the directory power
by 19% for Specweb2005.

There are important differences on average power reduction be-
tween SPLASH2 (28%) and Specweb2005 (19%), though Fig. 8
shows that the ID filters are as effective for SPLASH2 as for Spec-
web2005. For banking the average power reduction is similar to
the reduction observed for SPLASH2, but ecommerce and support

experience a lower reduction. The differences are due to simulating
Specweb2005 in single-threaded processors. Ecommerce and sup-

port have a high shared cache miss rate. This high miss rate, to-
gether with the existence of just one thread per core, give rise to
frequent core stalls in which no request is sent to the shared cache.
As long as the core is stalled, no directory lookups are performed.
Thus, during core stalls, filters are not filtering out directory look-
ups to reduce power consumption. However, the filter consumes
leakage power. The dynamic power reduction in the directory is
smaller due to less accesses, but the increase in the leakage power
due to the filter remains the same. To prove this argument we sim-
ulate SPLASH2 suite in a system with single-threaded cores and we
observe a similar reduction in saved power.

On average, the one-bit improved ID filter gets a slightly bigger
reduction than the rest of the proposed filters. The drawback of this
filter is that it comes with a small performance loss (Fig. 9).

6.5. Other cache sizes and new generation technologies

The size of the ID filters is directly proportional to the number
of blocks in the shared cache. An increase in the shared cache size,
keeping the same block size, increases the number of blocks and so
the number of entries of the ID filters. Therefore, the leakage and
dynamic power consumption of the filter also increase.

The Bloom filter size is determined by three parameters: the
number of entries, the number of hash functions, and the number
of bits of each entry (counter bits). The counter bits should be
enough to count all blocks allocated in the directory the Bloom
filter is associated to. Thus, an increase in the number of blocks
allocated in the directory will increase the counter bits. The
rend water-
nsquared

water-
spatial

banking ecommerce support

proved ID filter Bloom filter

Specweb2005

eduction in the directory.

30

0

5

10

15

20

25

moolBtib-enotib-owt two-bit one-bitBloom
SPLASH2 Specweb2005

65nm

22nm
%

Fig. 12. Percentage of power reduction in the directory modeling all the structures
with a 65 nm technology or a 22 nm technology.

A. Bosque et al. / Microprocessors and Microsystems 35 (2011) 695–707 705
number of entries and the number of hash functions should be big
enough to keep the number of false positives low. An increase in
the directory size increases the number of blocks allocated in the
Bloom filter. As a result, the number of false positives in a specific
Bloom filter increases. It is then necessary to check that the accu-
racy loss in the Bloom filter does not affect the results.

Fig. 11 shows the average percentage of power reduction for
SPLASH2 and Specweb2005 for different local and shared cache
sizes for each proposed filter. Both benchmark suites have three
groups of columns: the two-bit ID filter, the one-bit improved ID
filter, and a Bloom filter with 128 entries and 2 hash functions
(from left to right). There are 4 columns in each group. The first
one shows the average numbers presented in Fig. 10 that are for
the memory hierarchy parameters defined in Table 1. For the next
columns, the size of the local and shared caches is increased, but
the rest of their parameters remain the same as before. In the sec-
ond column, only the shared cache size is doubled, in the third col-
umn only the local caches are doubled and in the fourth one both
local and shared cache sizes are doubled.

The number of shared cache evictions is reduced when the
shared cache size is doubled. Thus, the energy consumed by the
directory is reduced, so the percentage of power reduction is also
reduced. Our workloads are barely affected by this effect since
the number of evictions is small for both shared cache sizes.

When the shared cache size is increased, the power consump-
tion of the ID filters increases. We expect the percentage of power
reduction to decrease. Fig. 11 shows that the percentage of power
reduction is only reduced for the two-bit ID filter. The one-bit im-
proved ID filter barely increases the leakage and power consump-
tion of the tag array, so an increase in the shared cache size does
not affect the percentage of power reduction in the directory.

Fig. 11 also shows that for the Bloom filter the percentage of
power reduction is not affected when the shared cache is doubled
as it was expected.

When the local cache size is doubled, Fig. 11 shows that all fil-
ters decrease the percentage of power reduction. When the local
caches size is doubled, both the directory leakage and dynamic
power increase. However, the directory leakage is almost multi-
plied by a factor of 3 while the dynamic power is only multiplied
by a factor of 2. Such an important increase in the leakage power
affects the percentage of power reduction in the directory for all
filters.

Finally, we analyze how the percentage of power reduction is
affected for new generation technologies. Fig. 12 compares the
percentage of power reduction when using 65 nm and 22 nm tech-
nologies. We use the memory hierarchy parameters described in
Table 1 and a Bloom filter with 128 entries and 2 hash functions.
Fig. 12 shows average numbers for SPLASH2 and Specweb2005.
There are three groups of columns for each benchmark suite: the
two-bit ID filter, the one-bit improved ID filter, and the Bloom filter
(from left to right). There are 2 columns in each group. The first one
shows numbers for 65 nm technology with a target frequency of
0

5

10

15

20

25

30

two-bit one-bit Bloom two-bit one-bit
SPLASH2 Specweb2

%

Fig. 11. Percentage of power reduction in the direct
1.2 GHz and the second column shows numbers for 22 nm technol-
ogy with a target frequency of 2.75 GHz.

Fig. 12 shows that the power reduction when using the different
filters is smaller for a 22 nm technology than for a 65 nm technol-
ogy. In SPLASH2, the power reduction attained is still quite inter-
esting for all the proposed filters. The Bloom filter shows the
worse result reducing the power by 17%, and the one-bit improved
ID filter gets the best result reducing by 20% the power. In Spec-
web2005, the power is reduced by 11% when using the two-bit
and one-bit improved ID filters. However, the Bloom filter does
not get such good results. It only reduces the power by 2%.
7. Related work

During the last decade several techniques to filter out coherence
actions in snoopy-based protocols have been published. The
proposed mechanisms try to reduce either local cache lookups per-
formed by coherence requests or directly the broadcast messages.
In order to reduce the coherence actions a filtering structure is
necessary. This structure is either placed together with the local
caches or distributed across the on-chip network.

When the filter is placed together with the local cache in snoo-
py-based protocols in bus-based systems, we can distinguish sev-
eral ways to reduce the power consumed by coherence actions.

Several proposals try to filter snoop-induced lookups. JETTY [6]
adds small structures to SMPs that are accessed before doing the
tag cache lookup. Ekman et al. [20] evaluate JETTY on CMPs and
conclude that, as the local caches are smaller than in SMPs, JETTY
is not an interesting mechanism for CMP systems because the en-
ergy consumption of the filters and the local caches are similar.
Salapura et al. [21] propose a structure that keeps a superset of
cached blocks. The Page Sharing Table (PST), proposed by Ekman
et al. [22], uses vectors that identify sharing at the page level with
precise information.

There is a group of proposals trying not only to filter snoop-
induced lookups but to reduce broadcast messages. RegionScout
Bloom
005

base

L2 8MB - L1D 8KB - L1I 16KB

L2 4MB - L1D 16KB - L1I 32KB

L2 8MB - L1D 16KB - L1I 32KB

ory with different local and shared cache sizes.

706 A. Bosque et al. / Microprocessors and Microsystems 35 (2011) 695–707
[23] implements several structures per node in a similar way to
JETTY [6], but these structures keep global system information
about regions, which are continuous sections of memory. Cantin
et al. [24] present an idea similar to RegionScout, but the informa-
tion kept in the structures is precise and the structures are bigger.

Focusing on logical ring interconnections, Strauss et al. [25] pro-
pose using an adaptive filter in each node to skip the snoop-in-
duced lookup when possible and to decide if the lookup should
be performed in parallel to sending the request to the next node
(to reduce snoop latency) or in sequence (to reduce the number
of messages).

Compiler time knowledge can also be used to reduce coherence
actions. Information about the behavior of a program helps deter-
mining whether a region of memory is shared or private, thus lim-
iting snoop-induced lookups to shared blocks [26,27].

There are other proposals that distribute the filter over the on-
chip network for snoopy-based. Agarwal et al. [28] propose adding
a region tracker structure in each output port of the routers. This
structure indicates which regions are not allocated in the local ca-
ches of the processors reached from a specific port, so useless
broadcast messages are not sent.

Lately, techniques to filter coherence actions in directory-based
protocols have also appeared. Lotfi-Kamran et al. [29] present
TurboTag, which is a filter that reduces the number of directory
lookups performed in a system with write-back local caches. Their
filter, placed together with the directory, is based on a Bloom filter.
There are also other proposals that, like in snoopy-based protocols,
distribute the filter over the on-chip network. Jerger [30], in a
coarse-grain like directory-based protocol, adds Counting Bloom
Filters [13] to each output port of the routers in order to not broad-
cast useless invalidation messages addressed to the local caches
reached from a specific port.

Our proposed filter tries to reduce the number of directory look-
ups in a directory-based protocol. Unlike previous proposals for
directory-based protocols, our filtering mechanism is designed
for a system which, like Niagara 2, has write-through local caches
and the directory is implemented as a duplicate tag directory.
TurboTag [29] proposes the closest filtering mechanism since it fil-
ters lookups to a duplicate tag directory and uses a filter based on a
Bloom filter. However, TurboTag is designed for systems with
write-back local caches. In our CMP model, the number of stores
that access the shared cache is bigger than in a system with
write-back local caches and the directory lookups performed by
these extra stores are not useless, that is, there is a copy of the tar-
get block in a local cache (and therefore, in the directory). Conse-
quently, as our experiments have shown, ID filters are more
efficient than Bloom based filters for systems with write-through
local caches.
8. Conclusions

An important fraction of directory lookups are useless because
there are no copies of the target block in any local cache in the sys-
tem. We could decide not to perform these directory lookups and
program execution would remain correct. These useless directory
lookups waste energy, but in a directory coherence mechanism
there is no way to avoid them. We propose to use a filter before
accessing the directory which is able to identify in advance
whether a lookup is useless or not.

We propose two basic filter implementations. In the first imple-
mentation, we exploit the inclusion property of the shared cache to
label each block with the stream it belongs to (data or instruction).
In the second one, we keep the information of all blocks belonging
to a stream together using a separate Bloom filter for each
directory (data and instruction).
We propose three different filters based on the two implemen-
tations described: the two-bit ID filter, the one-bit improved ID fil-
ter, and the Bloom based filter. Using any of these filters, on
average, more than 60% of the directory lookups are avoided for
SPLASH2. For Specweb2005, the two-bit and one-bit improved ID
filters reduced the directory lookups by more than 60%, but the
Bloom filter only reduces them by 45%. The two-bit and one-bit
ID filters achieve 28% and 19% reduction in power consumption
for SPLASH2 and Specweb2005, respectively. When using the
Bloom filter the power consumption is reduced by 27% and 9%
for SPLASH2 and Specweb2005, respectively.

The results shown in this paper lead to the conclusion that ID
filters perform better than Bloom based filters. From the power
consumption perspective, although both filters have a similar en-
ergy consumption by construction, ID filters are able to avoid more
directory lookups than Bloom based filters. A good advantage of
Bloom based filters over ID filters is that their size do not grow
with the size of the shared cache. However, when analyzing power
consumption for large shared cache sizes, we see that attained
power consumption of the one-bit improved ID filter is indepen-
dent of the shared cache size. As a result, the one-bit improved
ID filter is the best solution proposed, outperforming the other
analyzed implementations both in terms of performance and en-
ergy consumption.
Acknowledgments

This work was supported in part by Grants TIN2010-21291-
C02-01 and TIN2007-60625 (Spanish Government), gaZ: T48 re-
search group (Aragón Government and European ESF), Consolider
CSD2007-00050 (Spanish Government and European ERDF), and
HiPEAC-2 NoE (European FP7/ICT 217068).
References

[1] H.Q. Le, W.J. Starke, J.S. Fields, F.P. O’Connell, D.Q. Nguyen, B.J. Ronchetti, W.M.
Sauer, E.M. Schwarz, M.T. Vaden, IBM POWER6 microarchitecture, IBM J. Res.
Dev. 51 (6) (2007) 639–662.

[2] AMD, ‘‘AMD Multi-Core Technology’’, <http://multicore.amd.com>.
[3] Fujitsu, ‘‘Fujitsu SPARC64 VII Processor,’’ June 2008.
[4] Intel, ‘‘Leading Virtualization Performance and Energy Efficiency in a Multi-

processor Server’’.
[5] T. Johnson, U. Nawathe, An 8-core, 64-thread, 64-bit Power Efficient SPARC

SOC (niagara2), in: ISPD ’07, 2007, pp. 2–2.
[6] A. Moshovos, G. Memik, B. Falsafi, A. Choudhary, JETTY: Filtering Snoops for

Reduced Energy Consumption in SMP Servers, in: HPCA-7, 2001, pp. 85–96.
[7] A. Agarwal, R. Simoni, J. Hennessy, M. Horowitz, An Evaluation of Directory

Schemes for Cache Coherence, in: ISCA-15, May–2 Jun 1988, pp. 280–289.
[8] L. Censier, P. Feautrier, A new solution to coherence problems in multicache

systems, Comput. IEEE Trans. C-27 (12) (1978) 1112–1118.
[9] C.K. Tang, Cache System Design in the Tightly Coupled Multiprocessor System,

in: AFIPS ’76, 1976, pp. 749–753.
[10] B.H. Bloom, Space/time trade-offs in hash coding with allowable errors,

Commun. ACM 13 (1970) 422–426.
[11] OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification, vol. 1,

Sun Microsystems, Inc., May 2008.
[12] L.A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer, B. Sano, S.

Smith, R. Stets, B. Verghese, Piranha: a Scalable Architecture Based on Single-
Chip Multiprocessing, in: ISCA-27, 2000, pp. 282–293.

[13] L. Fan, P. Cao, J. Almeida, A.Z. Broder, Summary cache: a scalable wide-area
web cache sharing protocol 8 (2000) 281–293.

[14] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg,
F. Larsson, A. Moestedt, B. Werner, Simics: a full system simulation platform,
Computer 35 (2) (2002) 50–58.

[15] J.P. Singh, A. Gupta, M. Ohara, E. Torrie, S.C. Woo, The SPLASH-2 Programs:
Characterization and Methodological Considerations, ISCA-22, 1995, p. 24.

[16] SPEC, Specweb2005 Release 1.10 Benchmark Design Document, Technical
Whitepaper, 2006.

[17] M. Monchiero, J.H. Ahn, A. Falcón, D. Ortega, P. Faraboschi, How to simulate
1000 cores, SIGARCH Comput. Archit. News 37 (2) (2009) 10–19.

[18] A.R. Alameldeen, D.A. Wood, Variability in architectural simulations of multi-
threaded workloads, in: HPCA-9, 2003, p. 7.

[19] N. Muralimanohar, R. Balasubramonian, CACTI 6.0: A Tool to Model Large
Caches, Technical report, HP Laboratories Palo Alto, 2009.

http://multicore.amd.com

A. Bosque et al. / Microprocessors and Microsystems 35 (2011) 695–707 707
[20] M. Ekman, F. Dahlgren, P. Stenström, Evaluation of snoop-energy reduction
techniques for chip-multiprocessors, in: Workshop on Duplicating,
Deconstructing and Debunking, 2002. in Conjunction with ISCA, May 2002.

[21] V. Salapura, M. Blumrich, A. Gara, Improving the accuracy of snoop filtering
using stream registers, in: MEDEA ’07, 2007, pp. 25–32.

[22] M. Ekman, P. Stenström, F. Dahlgren, TLB and snoop energy-reduction using
virtual caches in low-power chip-multiprocessors, in ISLPED’02, 2002, pp.
243–246.

[23] A. Moshovos, RegionScout: exploiting coarse grain sharing in snoop-based
coherence, in: ISCA-32, June 2005, pp. 234–245.

[24] J. Cantin, M. Lipasti, J. Smith, Improving multiprocessor performance with
coarse-grain coherence tracking, in: ISCA-32, June 2005, pp. 246–257.

[25] K. Strauss, X. Shen, J. Torrellas, Flexible Snooping: Adaptive Forwarding and
Filtering of Snoops in Embedded-Ring Multiprocessors 34 (2) (2006) 327–338.

[26] A. Dash, P. Petrov, Energy-efficient cache coherence for embedded multi-
processor systems through application-driven snoop filtering, in: DSD ’06,
2006, pp. 79–82.

[27] C.S. Ballapuram, A. Sharif, H.-H.S. Lee, Exploiting access semantics and
program behavior to reduce snoop power in chip multiprocessors, in:
ASPLOS XIII, 2008, pp. 60–69.

[28] N. Agarwal, L.-S. Peh, N. Jha, In-network coherence filtering: snoopy coherence
without broadcasts, in: MICRO-42, 2009, pp. 232 –243.

[29] P. Lotfi-Kamran, M. Ferdman, D. Crisan, B. Falsafi, TurboTag: lookup filtering to
reduce coherence directory power, in: ISLPED ’10, 2010, pp. 377–382.

[30] N. Jerger, SigNet: network-on-chip filtering for coarse vector directories, in:
DATE’10, 2010, pp. 1378–1383.

Ana Bosque is a PhD candidate in the IIS Department at
the University of Zaragoza, although she is based on
Barcelona, working as research assistant in the Com-
puter Architecture Department at the Universitat
Politècnica de Catalunya (UPC). She has a MS in Com-
puter Engineering from the University of Zaragoza
(2002). Her research interests include memory hierar-
chy and coherence protocols for chip multiprocessors.
Victor Viñals received the MS degree in Telecommuni-
cation, and the PhD degree in Computer Science from
the Universitat Politècnica de Catalunya (UPC) in 1982
and 1987, respectively. He was associate professor in
the Facultat d’Informática de Barcelona (UPC) in the
1983–1988 period. Currently, he is full professor in the
IIS Department at the University of Zaragoza (Spain). His
research interests include processor microarchitecture,
memory hierarchy and parallel computer architecture.
He is member of the ACM and the IEEE Computer
Society. He also belongs to the Juslibol Midday Runners
Team and to the Computer Architecture Group of the
University of Zaragoza.
Pablo Ibáñez is an associate professor in the IIS
Department at the University of Zaragoza. His research
interests include memory hierarchy, processor mic-
roarchitecture, and parallel computer architecture. He
has an MS in computer science from Universitat
Politècnica de Catalunya and a PhD in computer engi-
neering from the University of Zaragoza. Ibáñez is a
member of the IEEE, the ACM, and the I3A.
José M. Llaberı́a received the MS degree in telecom-
munication, and the MS and the PhD degrees in com-
puter science from the Universitat Politècnica de
Catalunya (UPC) in 1980, 1982, and 1983, respectively.
He is a full professor in the Computer Architecture
Department at UPC (Barcelona, Spain). His research
interests include processor microarchitecture, memory
hierarchy, parallel computer architecture, vector pro-
cessors, and compiler technology for these processors.

	Filtering directory lookups in CMPs
	1. Introduction
	2. Motivation
	3. Filtering mechanism outline
	4. Chip multiprocessor model
	4.1. Directory organization in a bank
	4.2. Directory operation

	5. Filter implementation
	5.1. A simple implementation: the two-bit ID filter
	5.2. A smaller filter: the one-bit improved ID filter
	5.3. Bloom based filter

	6. Evaluation
	6.1. Methodology
	6.2. Coverage
	6.3. Performance
	6.4. Power reduction
	6.5. Other cache sizes and new generation technologies

	7. Related work
	8. Conclusions
	Acknowledgments
	References

