
Filtering Directory Lookups in CMPs with

Write-Through Caches

Ana Bosque1, Victor Viñals2, Pablo Ibañez2, and Jose M. Llaberia1

1 DAC, UPC, Barcelona, Spain
{abosque,llaberia}@ac.upc.edu

2 DIIS, University of Zaragoza, Zaragoza, Spain
{victor,imarin}@unizar.es

Abstract. In CMPs, coherence protocols are used to maintain data co-
herence among the multiple local caches. In this paper, we focus on CMPs
using write-through local caches, and a directory-based coherence proto-
col implemented as a duplicate of the local cache tags. A large fraction
of directory lookups is due to stores performed on private data local to
the processor performing the store.

We propose to add a filter before the directory in order to either
reduce the associativity of the lookups or even eliminate those that are
unnecessary. When a block from the shared cache has only one copy in
the local caches, the filter identifies the processor and allows for reducing
the number of comparisons performed in the corresponding directory
lookup. When that is not possible, the filter bits are used to code other
situations that can also reduce the number of directory lookups or their
associativity.

We evaluate the fillter in a CMP with 8 in-order processors with 4
threads each and a memory hierarchy with local caches and a shared
cache. We show that a filter representing 0.7% of the size of the shared
cache can avoid, on average, 97% and 93% of all comparisons performed
by directory lookups for SPLASH2 and Specweb2005, respectively. Only
for SPLASH2, there is a small performance loss of 0.3%. As a result, on
average, directory power is reduced 30.8% and 22.4% for SPLASH2 and
Specweb2005, respectively.

1 Introduction

Chip-multiprocessors (CMPs) have become the industry choice of design for
high-performance processors. Nowadays, most computer manufactures offer
CMPs with different number of cores [20,4,13,16,18], where each of them has
at least a local cache level. All CMPs support the shared memory programming
paradigm. Thus, local caches need to be kept coherent by means of a coherence
protocol.

Directory-based protocols keep a directory that stores the state of each block
of main memory. All transactions should access this structure in order to deter-
mine which coherence actions to perform. A directory can be implemented in two

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 267–279, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

268 A. Bosque et al.

basic ways: by a full-map [8], or by duplicating the local cache tags [31]. Differ-
ences between duplicate tag directory and full-map arise in size, lookup method,
and retrieved information in a lookup operation. Concerning size, the duplicate
tag directory uses the smallest explicit representation of all blocks contained in
local caches. Thus, a duplicate tag directory requires less area than a full-map
directory. However, by duplicating local cache tags, any directory lookup re-
quires an associative lookup that is expensive in terms of energy consumption.
For example, in Niagara 2, a lookup can perform up to 256 comparisons.

The number of directory lookups necessary in a coherence protocol depends
on the write policy of the local caches. The commercial CMP Niagara 2 [18]
uses write-through local caches and a shared cache. It requires more bandwidth
than the Piranha prototype [6], which uses write-back local caches, because all
stores must access the shared cache. However, the extra bandwidth consumed
by Niagara 2 assures that data is always up-to-date in the shared cache. Thus,
an access to shared data is serviced directly from the shared cache without any
intervention from the local caches. The drawback of write-through local caches,
though, is that private stores are sent both to the shared cache and to the
directory, where a (probably useless) lookup needs to be necessarily performed.
In a CMP like Niagara 2, any store requires a 96-associative directory lookup.

In this paper, we show that many of the directory lookups done by stores are
useless. We propose a mechanism to identify stores to private data in order to
avoid many lookups in the directory. Furthermore, the mechanism is extended
to deal with other situations in which directory lookups can be avoided.

Our results show that for SPLASH2, just by using a filter whose size is 0.7%
the size of the shared cache, we can avoid 97% of the comparisons performed in-
side the directory with a tiny 0.2% performance loss. For Specweb2005, the num-
ber of comparisons performed by directory lookups is reduced by 93%. On aver-
age, directory power consumption is reduced by 30.8% and 22.4% for SPLASH2
and Specweb2005, respectively.

The rest of this paper is organized as follows. In Section 2, we motivate our
work. Section 3 describes the proposed filter. Section 4 shows our experimental
results. Section 5 discusses related work and Section 6 contains the conclusions.

2 Motivation

In a directory-based protocol, both stores that access the shared cache and evic-
tions in an inclusive shared cache require a directory lookup in order to invalidate
the copies of the block in the local caches.

In a CMP with write-back local caches, stores access the shared cache either
on a miss in the local data cache or to get the block ownership and change the co-
herence state of the block to Modified. However, if local caches are write-through,
all the stores must access the shared cache. In our workloads (Section 4.2) we
found that only 1 out of 100,000 stores access true shared data. Thus, in a CMP
with write-through local caches and a duplicate tag directory, when an associa-
tive lookup is performed by a store, it happens that most of the times the only
copy of the cache block is located in the processor performing the store. The

Filtering Directory Lookups in CMPs with Write-Through Caches 269

bi
llio

ns

0.00

0.15

0.30

0.45

0.60

0.75

0.90

barnes fmm ocean radiosity raytrace volrend water-
ns

water-
spatial

banking ecommerce support

directory lookups
(evictions + stores)
at least one copy
only itself

1.38

SPLASH2 Specweb2005

Fig. 1. Billions of directory lookups (directory lookups), billions of directory lookups
that find at least a copy of the cache block in any local cache (at least one copy),
and billions of directory lookups performed by stores that only find a copy just in the
local cache of the processor that performs the current store (only itself).

directory lookups performed by these stores are needless and it is possible to
improve directory energy-efficiency by filtering them out.

Figure 1 presents an analysis of directory lookups. Refer to Section 4.1 for
the parameters of the simulated CMP model and to Section 4.2 for a description
of the workloads used. The difference between the first two bars is the number
of times that there are no copies of the shared cache block in any local cache.
On average, this difference represents 30% of the directory lookups. The differ-
ence between the second and the third bar represents all cases that require to
invalidate local cache blocks. These cases are: a) evictions performed over shared
cache blocks which have local copies, and b) stores performed over shared cache
blocks that are allocated at least in a local cache different from the local cache
of the processor performing the store. On average, this difference represents 1%
of the directory lookups. The remaining directory lookups (69%) are performed
by private stores, i. e. stores that access cache blocks without copies in any other
processor’s local cache.

The proposed mechanism aims to reduce the number of total directory lookups
by filtering out private stores, so that they do not perform expensive and useless
directory lookups. Thus, the proposed mechanism reduces the number of directory
lookups shown in the third column in Figure 1. Additionally, the filter is enhanced
in order to also avoid the 30% of directory lookups that do not find any copy in
the local caches, and that are also useless. In Figure 1, these directory lookups are
represented by the difference between the first and the second column.

3 Filtering Mechanism

3.1 Overview

We assume a CMP with a shared inclusive L2 cache and multithreaded pro-
cessors that access local instruction and write-through data caches. A detailed
description of the CMP model is in Section 4.1.

270 A. Bosque et al.

As processors are multithreaded, local caches are highly accessed by the pro-
cessors. A directory organization such as a full-map directory requires a lookup
in the local cache tags for every invalidation. As a result, if processor requests
and invalidations sent from the directory share the same local cache port, thread
execution can be delayed. Thus, the local cache tags require two ports so that
thread performance is not diminished. An alternative is to replicate the cache
tags [28,9]. This replica is located side-to-side with the local cache tags and it is
used by invalidations to set the state bits of the cached blocks.

The replica of the local cache tags can be located in the other side of the
interconnection network and be used as a duplicate tag directory. The full-map
directory is removed. Now, when an invalidation is sent, the local cache set and
way to invalidate is already identified in the message, and a local cache lookup
is not needed. As the replica of the local cache tags is located together with the
inclusive shared cache, it is possible to keep pointers to the shared cache tags
(set index and way) instead of the local cache tags themselves. Consequently,
the duplicate tag structure is much smaller [18].

Every directory lookup requires an expensive associative lookup in the du-
plicate tag structure. However, using a full-map directory, only the tags of the
processors effectively having a copy of the block are looked up. Based on program
behavior, we propose to use a filter before accessing the duplicate tag directory
in order to reduce the lookup associativity. Figure 1 shows that, on average,
69% stores are private. If we identify these cases, the lookup in the duplicate
tag directory can be restricted to the duplicate tag of the processor performing
the private store (in order to determine which cache way to update in the local
cache, see Section 4.1).

The proposed filter manages the same information than a DIR1NB directory
scheme [1], but it is only used as a filter before looking up in the duplicate tag
directory. In a DIR1NB directory, the only processor than can have the copy of
a block (owner) is identified. Thus, the proposed filter has as many entries as
lines in the shared cache, and each entry has log2P bits plus a valid bit. When
the valid bit is zero, the representation of the owner identifier bits is changed to
a coarse granularity [14,19]. Consequently, other situations might be identified,
for example, whether there are no copies of a block in any local cache. Figure 1
shows that 30% directory lookups are performed under these conditions.

3.2 Filter Operation

Each line in the shared cache has associated one entry in the filter. For every
shared cache access or eviction (memory operation from now on), the filter entry
is read together with the state bits of the line. Depending on the value stored
in the filter, the directory lookup performed by any memory operation accessing
that line can be either eliminated or performed over a smaller number of entries
in the directory structure.

A filter entry state is updated using only the following information: memory
operation type, identifier of the processor performing the memory operation, and
previous filter state. We also know the evictions from local caches. Using them

Filtering Directory Lookups in CMPs with Write-Through Caches 271

Table 1. Filter states

valid bit owner identifier information filter state

1 xxx xxx is the only processor that can have a
local copy of the block in its local data cache

valid owner

0 000 there are no copies of the block no copies
0 001 block cached only in the local data caches

of processors identified as 0xx
data block (subgroup0)

0 010 block cached only in the local data caches
of processors identified as 1xx

data block (subgroup1)

0 011 data block data block (all)
0 100 unused
0 101 block cached only in the local instruction

caches of processors identified as 0xx
instruction block (subgroup0)

0 110 block cached only in the local instruction
caches of processors identified as 1xx

instruction block (subgroup1)

0 111 instruction block instruction block (all)

the filter information will be precise, but extra directory accesses and costly filter
updates will be required. Consequently, we decide to not keep filter information
precise all the time, that is, to only know a superset of the copies in the local
caches.

3.3 Filter States

The modeled CMP has 8 cores, so a filter entry has 3 owner identifier bits and a
valid bit. Table 1 shows how these bits are used to encode different filter states
that will reduce directory lookups or directory lookups associativity.

The directory is split in data and instruction directories. Most directory
lookups are performed on both directories (only lookups performed to keep in-
struction/data exclusivity are performed in only one directory (see Section 4.1)).
As long as the filter identifies the type of the block (data or instruction block),
directory lookups are limited to just one directory. Moreover, if the owner (valid
owner) or the owner’s group (subgroupX) is identified, the lookup associativity
is reduced since only the entries of the owner or its group have to be looked
up. Finally, directory lookups are completely avoided if the filter indicates that
there are no copies of the block in any local cache (no copies).

The filter state valid owner is set on three cases: a) local data cache misses
that also misses in the shared cache, b) local data cache misses to a block in the
shared cache without copies in the local caches (no copies), and c) store to a
block in the shared cache which may have copies in the local data cache of the
processor performing the store (valid owner equal to the processor performing
the store, data block (all), or data block (subgroupX) where ’X’ is the subgroup
which the processor performing the store belongs to).

The filter state is set to no copies in two cases: a) store that misses in the
shared cache, and b) store to a cache block in the shared cache which is not
present in the local data cache of the processor performing the store (no copies,
valid owner when the owner is different from the processor performing the store,
instruction block, or data block (subgroupX) where ’X’ is not the subgroup the
processor performing the store belongs to).

272 A. Bosque et al.

Both local instruction and data cache misses modify the filter state to add
the processor performing them as one of the processors that can have a copy of
the accessed block in its local caches. When a local data cache miss accesses a
block whose filter state is instruction block, the filter state is not modified.

3.4 Filter Overhead

The filter proposed requires (1 + log2P) bits per shared cache line, being P the
number of cores in the CMP. For the CMP described in Section 4.1, as it has 8
cores, four extra bits per shared cache line are required. For each 512KB, 64B
block-size L2 bank, the filter implementation requires 4KB. This represents 12%
of the tag array size (including the state bits in the tag array) and 0.7% of the
total bank size (tag array + data array).

4 Evaluation

4.1 Chip Multiprocessor Model

Figure 2 shows the CMP configuration we assume in this work. It is a CMP
with 8 in-order multithreaded cores with 4 threads each and a memory hierarchy
similar to the one in Niagara 2 [18]. The first cache level is local to each core,
and is composed of an instruction cache (L1 I) and a write-through no-write-
allocate data cache (L1 D). Each core also has a store buffer (SB) with several
entries per thread that contain all outstanding stores. The second-level cache
(L2), which is inclusive, is shared among all the cores. It is divided into different
banks interleaved by second-level cache blocks. A crossbar communicates the
two cache levels. A write-invalidate directory-based protocol is used to maintain
the cache coherence among the local caches. The directory is distributed among
the second-level cache banks, keeping close to each bank the information about
the blocks associated with it. Table 2 collects the specific parameters we chose
for the memory hierarchy.

MM

Pn

L1 I L1 D SB

L2 DIR

P0

L1 I L1 D SB

L2 DIR

CROSSBAR

Fig. 2. CMP model

Table 2. Memory hierarchy parameters

L1 D size 8KB L2 size 4MB
L1 D assoc. 4-way L2 no. banks 8
L1 D block 16B L2 assoc. 16-way
L1 I size 16KB L2 block 64B
L1 I assoc. 8-way L2 latency 7 cycles
L1 I block 32B L2 MSHR 8
store
buffer

8 entries
per thread

Crossbar arb. 3 cycles
Crossbar lat. 3 cycles

Phys. address 40 bits Memory lat. 117 cycles

We assume a directory similar to that of Niagara 2 [30], which consists of
a copy of the local cache tags. The directory is split into instruction and data
directories, replicating the organization of the local caches. The directory gives

Filtering Directory Lookups in CMPs with Write-Through Caches 273

Table 3. SPLASH2 benchmarks.

benchmark dataset
instr cycles
(109) (109)

barnes 64K particles 4.97 0.62
fmm 64K particles 9.57 1.20
ocean 1026x1026 5.99 0.91

radiosity
-largeroom,
-ae 5000 7.45 0.94
-en 0.050 -bf 0.1

raytrace balls4 5.77 0.79
volrend head 0.63 0.08
water-ns 2192 particles 13.79 1.72
water-spatial 4096 particles 4.02 0.50

Table 4. Specweb2005 workloads.

workload
simultaneous

sessions
web

trans.
instr simulation

runs(109)
Banking 200 100 15.52 30
Ecommerce 1000 1200 8.07 15
Support 1400 2200 8.07 10

the way or ways of the local caches where the copies of the subblocks are lo-
cated. Thus, an invalidation message consists of the local cache set and way to
invalidate. Stores update local caches when the ack message is received. The ack
message includes the way where the copy of the block is located in order to avoid
the local cache lookup.

Like in Niagara 2 [30], instruction/data block exclusivity is maintained in the
local caches, that is, the same block can not be at once in both instruction and
data caches (across all cores). The directory is responsible for ensuring instruc-
tion/data exclusivity. The shared cache block size is larger than the block size
of the local caches. Thus, copies of different subblocks from the same shared
cache block can reside in local caches of different types (instruction/data). The
proposed filter has only one entry for every shared cache line. As a result, in-
struction/data block exclusivity has to be maintained at a shared cache block
size granularity to guarantee the correct filter operation.

4.2 Methodology

We use a Simics-based simulator. Simics [21] is a full-system multiprocessor
simulator capable of running unmodified commercial OSs and applications. We
configured Simics to model a SPARC V9 target system with a Total Store Order
(TSO) consistency memory model running Solaris 9.

We use the applications from the SPLASH2 benchmark suite [27] and, as non-
numerical applications, the three workloads from Specweb2005: Banking, Ecom-
merce, and Support [15]. In order to adapt the SPLASH2 workloads to our simu-
lated scenario, we scaled the input dataset up as proposed by Monchiero et al. [22]
(Table 3). Due to simulation time restrictions, we cannot simulate as many Simics
processors in Specweb2005 as in SPLASH2. As a result, Specweb2005 applica-
tions are executed in a CMP with 8 non-multithreaded processors.

For the three workloads of Specweb2005, we use Apache 2.0.63 web server.
Web servers present high time and space variability [3] (Table 4). Conclusions
are based on the mean of the simulations and on statistical techniques used by
Alameldeen et. al. [3]. To determine the number of web transactions in each
workload, we warm the caches for 0.75 billion cycles and then we measure the
number of web transactions for 2.25 billion cycles. In the rest of the paper, for
Specweb2005 results we show the mean of all simulation runs.

274 A. Bosque et al.

4.3 Filter Coverage

Figure 3 shows the percentage of comparisons performed by the directory lookups
in the CMP with the proposed filter with respect to the comparisons performed
without filtering. Table 5 shows the number of comparisons performed in the
system without filtering.

%

0
5

10
15
20
25
30

barnes fmm ocean radio-
sity

raytrace vol-
rend

water-
ns

water-
spatial

banking e-
commerce

support

(a) data directory

%

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

barnes fmm ocean radio-
sity

raytrace vol-
rend

water-
ns

water-
spatial

banking e-
commerce

support

(b) instr directory

Fig. 3. Percentage of directory comparisons per-
formed by directory lookups when filtering

Table 5. Billions of di-
rectory comparisons without
filtering

benchmark data dir instr dir
barnes 24.87 57.34
fmm 26.54 61.56
ocean 21.73 53.38
radiosity 28.61 70.45
raytrace 6.23 47.29
volrend 1.28 3.23
water-ns 26.70 60.41
water-spatial 10.82 25.03
banking 45.21 90.09
ecommerce 24.84 43.87
support 28.33 48.59

Figure 3 shows that the number of comparisons performed by directory
lookups is reduced, on average, by 93%. The reduction is more important in
the instruction directory: more than 99% in the instruction directory for all
the benchmarks vs. 88% for SPLASH2 and 81% for Specweb2005 in the data
directory.

A data directory lookup is necessary to determine if a block in the local data
cache has to be updated and the way in which the copy of the block is located.
For this reason, there are several comparisons in the data directory that can not
be eliminated.

For Ecommerce and Support, the reduction in data directory comparisons
is lower than in the other benchmarks. More than 10% of their stores access
cache blocks that are in data block filter state, while in the other benchmarks
this number is below 1%. That means that the amount of shared data is also
larger than in the rest of benchmarks. In this situation, the number of needless
directory lookups is smaller, and so the number of comparisons to avoid.

4.4 Performance

The proposed filter modifies the coherence protocol forcing the instruction/data
exclusivity at a 64B granularity. Thus, we need to check that the performance

Filtering Directory Lookups in CMPs with Write-Through Caches 275

1.05

0.85

0.9

0.95

1

no
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e

barnes fmm ocean radio-
sity

raytrace vol-
rend

water-
ns

water-
spatial

banking e-
commerce

support

Fig. 4. Normalized execution time

40
45

0
5

10
15
20
25
30
35

barnes fmm ocean radio-
sity

raytrace vol-
rend

water-
ns

water-
spatial

banking e-
commerce

support

%

Fig. 5. Percentage of power reduction in
the directory

remains unchanged. Figure 4 shows the normalized execution time of the CMP
with the filter proposed with respect to the baseline CMP. In SPLASH2 all
benchmarks show a performance loss below 0.5%, except raytrace, which has a
performance loss of 1.5% due to the increase in the local data cache miss rate.
In Specweb2005 we can differentiate two groups: for banking and ecommerce,
the mean execution time shows an increase of 1.4% and 1.1%, respectively, in
support, the mean shows an execution time decrease of 4.3%. In both groups the
confidence interval shows that the execution time is not statistically different.

4.5 Power Consumption

CACTI 6.5 [25] is used to estimate dynamic energy and leakage power for the
shared cache tag array and the proposed filter. We modified CACTI to model
CAM structures, so that the directory energy consumption, both dynamic and
static, can be estimated. All structures were modeled using a 65nm technology
with a target frequency of 1.2GHz.

The average dynamic power consumption is computed based on activity statis-
tics of the shared cache, the filter, and the data and instruction directories col-
lected during benchmark execution. The average dynamic power consumption
of the directory is 1.5 times the average dynamic power consumed by the tags
of the shared cache. However, the leakage power of the tags is 2.2 times the
directories leakage since these structures are smaller than the tags of the local
caches.

Figure 5 shows the percentage of power reduction in the directory using the
filter proposed. It takes into account power reduction in the directory as well
as additional consumption due to the filter structure embedded into the shared
cache tags. The directory power consumption includes the dynamic power and
the leakage power in both data and instruction directories. The proposed filter
is placed together with the shared cache tags, so tags and filter state bits are
read together in every access to the shared cache. This means that both the
energy consumed by the shared cache tag array on any operation and its leakage
power increase. These increases affect the energy reduction in the directory. The
energy to update the filter state also decreases the dynamic energy reduction in
the directory.

276 A. Bosque et al.

On average, the directory power is reduced by 30.8% for SPLASH2 and by
22.42% for Specweb2005. The difference between SPLASH2 and Specweb2005
is due to simulating Specweb2005 in single-thread processors. Ecommerce and
Support show a shared cache miss rate higher than the rest of benchmarks. As
there is only 1 thread per core, every shared cache miss stalls a core and, as
a result, the number of accesses to the shared cache and directory lookups are
smaller than in the rest of benchmarks. Thus, the dynamic power reduction in
the directory is smaller, but the increase in the leakage power due to the filter
remains the same. To prove this argument we simulate SPLASH2 suite in a
system with single-threaded cores and we observe a similar reduction in saved
power.

Other cache configurations and new generation technologies. The size
of the proposed filter is directly proportional to the number of shared cache lines.
Moreover, the energy consumed by the directory depends on the number of di-
rectory lookups performed which is determined by the shared cache accesses. If
the size of the local caches is increased, the shared cache accesses are modified.
Thus, we decide to analyze the reduction of power for different cache configura-
tions. We simulate a CMP in which the sizes of the shared cache and the local
caches are doubled. The percentage of power reduction is smaller than in the
baseline system due to the increase in the power consumption of the proposed
filter (bigger shared cache) and the decrease in the number of directory lookups
performed (bigger local caches). On average, in the worst case, the percentage
of power reduction is 24% for SPLASH2 and 10% for Specweb2005.

Finally, we analyze how the percentage of power reduction is affected for new
generation technologies. We model all structures using a 22nm technology with
a target frequency of 2.75GHz. On average, the percentage of power reduction
is 19.5% for SPLASH2 and 10.5% for Specweb2005.

5 Related Work

This section gathers together several techniques to filter out coherence actions,
e.g., local cache lookups or broadcast messages. The filter is either placed to-
gether with the local caches or distributed in the on-chip network.

When the filter is placed together with the local cache in snoopy-based proto-
cols in bus-based systems, we can distinguish several ways to reduce the power
consumed by coherence actions.

Several proposals try to filter snoop-induced lookups. JETTY [24] adds small
structures to SMPs that are accessed before doing the tag cache lookup and
Ekman et al. [11] evaluate this proposal on CMPs. Salapura et al. [26] propose a
structure that keeps a superset of cached blocks. The Page Sharing Table (PST),
proposed by Ekman et al. [12], uses vectors that identify sharing at the page level
with precise information.

There is a group of proposals that try to not only filter snoop-induced lookups
but to reduce broadcast messages. RegionScout [23] implements several struc-
tures per node in a similar way to JETTY [24], but these structures keep global

Filtering Directory Lookups in CMPs with Write-Through Caches 277

system information about regions, which are continuous sections of memory.
Cantin et al. [7] present an idea similar to RegionScout, but the information
kept in the structures is precise and the structures are bigger.

Focusing on logical ring interconnections, Strauss et al. [29] propose using an
adaptive filter in each node to skip the snoop-induced lookup when possible and
to decide if the lookup should be performed in parallel to sending the request to
the next node (to reduce snoop latency) or in sequence (to reduce the number
of messages).

Compiler time knowledge can also be used to reduce coherence actions. In-
formation about the behaviour of a program helps determining whether a re-
gion of memory is shared or private and limit snoop-induced lookups to shared
blocks [10,5].

There are proposals that distribute the filter over the on-chip network for
snoopy-based and directory-based protocols. Agarwal et. al. [2] propose adding
a region tracker structure in each output port of the routers. This structure indi-
cates which regions are not allocated in the local caches of the processors reached
from a specific port, so useless broadcast messages are not sent. Jerger [17], in
a coarse-grain like directory-based protocol, adds counting bloom filters to each
output port of the routers in order to not broadcast useless invalidation messages
addressed to the local caches reached from a specific port.

Unlike previous proposals, the goal of the proposed filter is to reduce energy
consumption in a coherence directory implemented as a duplicate tag directory
in a CMP with write-through caches. This CMP is similar to Niagara 2 that has a
limited number of cores. However, if the number of cores in the system increases
significantly (many-cores), cores could be organized in groups or clusters. Every
cluster might work like a small CMP with write-through local caches since the
coherence protocol inside the cluster is greatly simplified. The shared cache in
a cluster would be private for that cluster. It could use a write-back policy to
update the last-level cache shared among all the clusters or main memory. Our
filtering mechanism would be used inside each cluster. However, such systems
are out of the scope of this paper.

6 Conclusions

We have observed that in CMPs with write-through caches, a big fraction of
directory lookups is due to stores performed over data that are private to the
processor executing the store instruction. In such a situation, a directory lookup
is performed but no invalidations are necessary. This needless directory lookup
wastes energy. We propose to use a filter before accessing the directory. The filter
is able to identify private stores and reduce the number of directory lookups
performed or the number of directory entries looked up in a directory lookup.

The proposed filter has an entry for each line in the shared cache. For every
shared cache access, a filter entry is read together with the state bits of the
block accessed. Every filter entry keeps either the owner of the corresponding
block or some useful information to limit the associativity of a directory lookup

278 A. Bosque et al.

performed over the corresponding block. Using this information the number of
comparisons in the directory is greatly reduced.

The proposed filter area is 12% the tag array area and 0.7% the total shared
cache area, and filtering is performed on every access to the shared cache. Our
results show that, on average, the proposed filter reduces the number of compar-
isons performed by directory lookups by 95%, and reduces the directory power
by 28.2% for all the benchmarks.

References

[1] Agarwal, A., Simoni, R., Hennessy, J., Horowitz, M.: An Evaluation of Directory
Schemes for Cache Coherence. In: ISCA-15, pp. 280–289 (1988)

[2] Agarwal, N., Peh, L.-S., Jha, N.: In-Network Coherence Filtering: Snoopy coher-
ence without broadcasts, pp. 232–243 (2009)

[3] Alameldeen, A.R., Wood, D.A.: Variability in Architectural Simulations of Multi-
Threaded Workloads. In: HPCA-9, p. 7 (2003)

[4] AMD. AMD Multi-Core Technology, http://multicore.amd.com
[5] Ballapuram, C.S., Sharif, A., Lee, H.-H.S.: Exploiting Access Semantics and Pro-

gram Behavior to Reduce Snoop Power in Chip Multiprocessors. In: ASPLOS
XIII, pp. 60–69 (2008)

[6] Barroso, L.A., et al.: Piranha: a Scalable Architecture Based on Single-Chip Mul-
tiprocessing. In: ISCA-27, pp. 282–293 (2000)

[7] Cantin, J.F., Lipasti, M.H., Smith, J.E.: Improving Multiprocessor Performance
with Coarse-Grain Coherence Tracking. In: ISCA-32, pp. 246–257 (June 2005)

[8] Censier, L.M., Feautrier, P.: A New Solution to Coherence Problems in Multicache
Systems. IEEE Transactions on Computers C-27(12), 1112–1118 (1978)

[9] Charlesworth, A., Aneshansley, N., Haakmeester, M., Drogichen, D., Gilbert, G.,
Williams, R., Phelps, A.: The Starfire SMP Interconnect, p. 37 (1997)

[10] Dash, A., Petrov, P.: Energy-Efficient Cache Coherence for Embedded Multi-
Processor Systems through Application-Driven Snoop Filtering. In: DSD 2006,
pp. 79–82 (2006)

[11] Ekman, M., Dahlgren, F., Stenström, P.: Evaluation of Snoop-Energy Reduction
Techniques for Chip-Multiprocessors. In: Workshop on Duplicating, Deconstruct-
ing and Debunking, in conjunction with ISCA (May 2002)

[12] Ekman, M., Stenström, P., Dahlgren, F.: TLB and Snoop Energy-Reduction Using
Virtual Caches in Low-Power Chip-Multiprocessors. In: ISLPED 2002, pp. 243–
246 (2002)

[13] Fujitsu. Fujitsu SPARC64 VII Processor (June 2008)
[14] Gupta, A., dietrich Weber, W., Mowry, T.: Reducing Memory and Traffic Require-

ments for Scalable Directory-Based Cache Coherence Schemes. In: ICPP 1990, pp.
312–321 (1990)

[15] http://www.spec.org/web2005/

[16] Intel. Leading Virtualization Performance and Energy Efficiency in a Multi-
processor Server

[17] Jerger, N.: SigNet: Network-on-chip filtering for coarse vector directories. pp.
1378–1383 (2010)

[18] Johnson, T., Nawathe, U.: An 8-core, 64-thread, 64-bit Power Efficient SPARC
SOC (niagara2). In: ISPD 2007, p. 2 (2007)

http://multicore.amd.com
http://www.spec.org/web2005/

Filtering Directory Lookups in CMPs with Write-Through Caches 279

[19] Laudon, J., Lenoski, D.: The SGI Origin: A ccnuma Highly Scalable Server, pp.
241–251 (1997)

[20] Le, H.Q., et al.: IBM POWER6 microarchitecture. IBM J. Res. Dev. 51(6), 639–
662 (2007)

[21] Magnusson, P., Christensson, M., Eskilson, J., Forsgren, D., Hallberg, G., Hog-
berg, J., Larsson, F., Moestedt, A., Werner, B.: Simics: A Full System Simulation
Platform. Computer 35(2), 50–58 (2002)

[22] Monchiero, M., Ahn, J.H., Falcón, A., Ortega, D., Faraboschi, P.: How to Simulate
1000 Cores. SIGARCH Comput. Archit. News 37(2), 10–19 (2009)

[23] Moshovos, A.: RegionScout: Exploiting Coarse Grain Sharing in Snoop-Based Co-
herence. In: ISCA-32, pp. 234–245 (June 2005)

[24] Moshovos, A., Memik, G., Falsafi, B., Choudhary, A.: JETTY: Filtering Snoops
for Reduced Energy Consumption in SMP Servers. In: HPCA-7, 2001, pp. 85–96
(2001)

[25] Muralimanohar, N., Balasubramonian, R.: CACTI 6.0: A Tool to Model Large
Caches (2009)

[26] Salapura, V., Blumrich, M., Gara, A.: Improving the Accuracy of Snoop Filtering
Using Stream Registers. In: MEDEA 2007, pp. 25–32 (2007)

[27] Singh, J.P., Gupta, A., Ohara, M., Torrie, E., Woo, S.C.: The SPLASH-2 Pro-
grams: Characterization and Methodological Considerations. In: ISCA-22, p. 24
(1995)

[28] Steinman, M.B., Harris, G.J., Kocev, A., Lamere, V.C., Pannell, R.D.: The Al-
phaServer 4100 Cached Processor Module Architecture and Design (1996)

[29] Strauss, K., Shen, X., Torrellas, J.: Flexible Snooping: Adaptive Forwarding and
Filtering of Snoops in Embedded-Ring Multiprocessors. SIGARCH Comput. Ar-
chit. News 34(2), 327–338 (2006)

[30] Sun Microsystems, Inc. OpenSPARC T2 System-On-Chip (SoC) Microarchitec-
ture Specification vol. 1 (May 2008)

[31] Tang, C.K.: Cache System Design in the Tightly Coupled Multiprocessor System.
In: AFIPS 1976, pp. 749–753 (1976)

	Filtering Directory Lookups in CMPs with Write-Through Caches
	Introduction
	Motivation
	Filtering Mechanism
	Overview
	Filter Operation
	Filter States
	Filter Overhead

	Evaluation
	Chip Multiprocessor Model
	Methodology
	Filter Coverage
	Performance
	Power Consumption

	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

