
Journal of Systems Architecture xxx (2010) xxx–xxx
Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/ locate /sysarc
Improving the WCET computation in the presence of a lockable instruction cache
in multitasking real-time systems q

Luis C. Aparicio a,d, Juan Segarra a,c,d,⇑, Clemente Rodríguez b,d, Víctor Viñals a,c,d

a DIIS, Universidad de Zaragoza, 50018 Zaragoza, Spain
b DATC, Universidad del País Vasco, 20018 San Sebastián, Spain
c Instituto de Investigación en Ingeniería de Aragón (I3A), 50018 Zaragoza, Spain
d European Network of Excellence on High Performance and Embedded, Architecture and Compilation (HiPEAC)1
a r t i c l e i n f o

Article history:
Received 8 January 2010
Received in revised form 24 June 2010
Accepted 23 August 2010
Available online xxxx

Keywords:
WCET
Instruction cache-locking
Line-buffer
1383-7621/$ - see front matter � 2010 Elsevier B.V. A
doi:10.1016/j.sysarc.2010.08.008

q This work was supported in part by grants TIN2
ment and European ERDF), gaZ: T48 research grou
European ESF), Consolider CSD2007-00050 (Spanish
NoE (European FP7/ICT 217068). This work is an exte
RR-09-01 with new contributions and experimental r
⇑ Corresponding author at: DIIS, Universidad de Zara

E-mail addresses: luisapa@unizar.es (L.C. A
(J. Segarra), clemente.rodriguezl@ehu.es (C. Rodríguez

1 http://www.hipeac.net/

Please cite this article in press as: L.C. Aparicio e
time systems, J. Syst. Architect. (2010), doi:10.1
a b s t r a c t

In multitasking real-time systems it is required to compute the WCET of each task and also the effects of
interferences between tasks in the worst case. This is very complex with variable latency hardware, such
as instruction cache memories, or, to a lesser extent, the line buffers usually found in the fetch path of
commercial processors. Some methods disable cache replacement so that it is easier to model the cache
behavior. The difficulty in these cache-locking methods lies in obtaining a good selection of the memory
lines to be locked into cache. In this paper, we propose an ILP-based method to select the best lines to be
loaded and locked into the instruction cache at each context switch (dynamic locking), taking into
account both intra-task and inter-task interferences, and we compare it with static locking. Our results
show that, without cache, the spatial locality captured by a line buffer doubles the performance of the
processor. When adding a lockable instruction cache, dynamic locking systems are schedulable with a
cache size between 12.5% and 50% of the cache size required by static locking. Additionally, the compu-
tation time of our analysis method is not dependent on the number of possible paths in the task. This
allows us to analyze large codes in a relatively short time (100 KB with 1065 paths in less than 3 min).

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Real-time systems require that tasks complete their execution
before specific deadlines. Given hardware components with a fixed
latency, the worst case execution time (WCET) of a single task could
be computed from the partial WCET of each basic block of the task.
However, in order to improve performance, current processors per-
form many operations with a variable duration. This is mainly due
to speculation (control or data) or to the use of hardware compo-
nents with variable latency. Branch predictors fall in the first cate-
gory, whereas memory hierarchy and datapath pipelining belong
to the second one. A memory hierarchy made up of one or more
cache levels takes advantage of program locality and saves execution
time and energy consumption by delivering data and instructions
with an average latency of a few processor cycles. Unfortunately,
ll rights reserved.

007-66423 (Spanish Govern-
p (Aragón Government and
Government), and HiPEAC-2
nsion of the technical report
esults [1].
goza, 50018 Zaragoza, Spain.

paricio), jsegarra@unizar.es
), victor@unizar.es (V. Viñals).

t al., Improving the WCET comp
016/j.sysarc.2010.08.008
the cache behavior depends on past references and it is required to
know the previous accesses sequence in order to compute the la-
tency of a given access in advance. Resolving these intra-task inter-
ferences is a difficult problem its own. Anyway, real-time systems
usually work with several tasks which may interrupt each other at
any time. This makes the problem much more complex, since the
cost of inter-task interferences must also be identified and bounded.
Furthermore, both these problems cannot be accurately solved inde-
pendently, since the path that leads to the WCET of an isolated task
may change when considering interferences. Cache-locking tackles
the whole problem by disabling the cache replacement, so the cache
content does not vary. Specifically, for an instruction cache, the
instruction fetch hits and misses depend on whether each instruc-
tion belongs to a cached and locked memory line and not on the pre-
vious accesses.

In this paper, we focus on the instruction fetch path and analyze
several configurations of the memory architecture shown in Fig. 1.
It consists of a line buffer (LB) and a lockable instruction cache (i-
cache). The i-cache retains the fixed subset of instruction lines pre-
viously loaded by system software at task switches. It does not
need fine-grained locking, but whole cache-locking. The LB has
the size of a cache line and acts as a single-line cache memory
regarding the tag, access latency and refill latency. The only differ-
ence with a conventional cache is that it prevents exploiting any
utation in the presence of a lockable instruction cache in multitasking real-

http://dx.doi.org/10.1016/j.sysarc.2010.08.008
mailto:luisapa@unizar.es
mailto:jsegarra@unizar.es 
mailto:clemente.rodriguezl@ehu.es 
mailto:victor@unizar.es 
http://www.hipeac.net/
http://dx.doi.org/10.1016/j.sysarc.2010.08.008
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc
http://dx.doi.org/10.1016/j.sysarc.2010.08.008


Fig. 1. Memory architecture considered.

2 L.C. Aparicio et al. / Journal of Systems Architecture xxx (2010) xxx–xxx
temporal locality by invalidating its content on both i-cache hits
and backward jumps to the currently buffered line. Instruction
cache-locking can be implemented in several ways. One way is
to design and synthesize a specific organization taking advantage
of its control simplicity, since no replacement algorithm needs to
be implemented and the refill happens always in bursts. Another
way is making use of the locking capabilities present in many com-
mercial processors devoted to the medium and high-end embed-
ded market.2

We propose a new method intended to minimize the instruc-
tion cache contribution on the WCET. Previous works studying
cache-locking behavior do not distinguish between spatial and
temporal locality, so it is not clear how either of these affects the
WCET. In order to evaluate the importance of spatial locality we
first analyze an instruction line buffer (LB) working alone. Second,
to analyze the impact on the WCET of exploiting temporal locality,
we add an instruction cache, managed under static and dynamic
locking, to the LB. In static locking, memory lines are preloaded at
system start-up and remain unchanged during the whole system
lifetime. We use the Minimize Utilization (Lock-MU) method for
selecting the memory lines to be locked into the instruction cache
[2]. In dynamic locking, the instruction cache is preloaded and
locked in each context switch, so that there is one selection of
memory lines per task. To obtain this selection of memory lines
we propose Maximize Schedulability (Lock-MS), a new ILP-based
method that considers both intra-task and inter-task interferences.
That is, we get the selection of memory lines that provides the low-
est overall execution cost (including preloading times) when used
in a dynamic cache-locking multitasking system. We show how to
model the system with easy to understand path-explicit con-
straints and then how to transform them into a compact model,
which can be solved much faster.

This paper is organized as follows. In Section 2, we review the
background and related work. Section 3 presents our path-explicit
method for selecting the lines to be locked into the instruction
cache. The model compaction is described in Section 4. Section 5
shows experiments comparing several selection procedures, mem-
ory architectures and analysis times. Finally, Section 6 presents our
conclusions.
2. Related work

Multitask preemptive real-time systems must be schedulable to
guarantee their expected operation. That is, all tasks must com-
2 Mainstream Instruction Set Architectures supporting whole cache-locking
include, for instance, ARM (ARM940), MIPS (Integrated Device Technology
IDT79RC64xxx), Motorola 68K (Freescale Coldfire), Power (Freescale MPC74xx,
MPC8540, PowerPC 440 core, e300 core). Other processors support partial cache-
locking only (e.g. most ARM, IDT79RC46xx).

Please cite this article in press as: L.C. Aparicio et al., Improving the WCET comp
time systems, J. Syst. Architect. (2010), doi:10.1016/j.sysarc.2010.08.008
plete their execution before their deadline. Considering a fixed pri-
ority scheduler, feasibility of periodic tasks can be tested in a
number of ways [3]. Response Time analysis is one of these math-
ematical approaches, and fits very well as a schedulability test. This
approach is based on the following equation for independent tasks:

Rnþ1
i ¼ Ci þ

Xi�1

j¼1

Rn
i

Tj

� �
Cj ð1Þ

where Ri is the response time, Ci is the WCET and Ti is the period of
each task i, respectively. It is assumed that tasks are ordered by pri-
ority (the lower the i the higher the priority). This equation provides
the response time of each task after a few iterations and it has been
used in previous studies [4–6]. A task ti meets its real-time con-
straints if Ri 6 Di, being Di the deadline of the task.

The WCET of each task ðCiÞ is not easy to obtain in systems with
cache memory. In the literature we find different methods to
approach the WCET problem in the presence of caches [7]. These
methods can be divided into those that analyze the normal behav-
ior of the cache, and those which restrict its behavior to simplify
the analysis.

The first kind of methods try to model each task and system as
accurately as possible considering the dynamic behavior of the
cache [8–15]. We compare our approach to one of these methods.
A conventional cache analysis is very hard, since the worst path
depends on the cache outcome, and the cache outcome affects
the cost of each path. Due to this complexity, interferences among
tasks are not usually considered and tasks are analyzed in isolation.
This means that complementary methods are needed to adapt the
WCET of each isolated task to multitasking systems. This may be
done by further analysis to add the number of inter-task interfer-
ences and their cost to the cost of each task [5,6].

In turn, cache-locking methods restrict the cache behavior by
using the ability to disable the cache replacement. Having specific
contents fixed in cache, the timing analysis is easier, so these
methods can afford a full system analysis, i.e., several tasks on a
real-time scheduler. Cache-locking techniques can also be divided
into static and dynamic cache-locking.

Static locking methods preload the cache content at system
start-up and fix this content for the whole system lifetime so that
it never gets replaced [2,16]. Martí Campoy et al. use a genetic
algorithm to obtain the selection [16], whereas Puaut and Deco-
tigny propose two low-complexity selection algorithms: one to
minimize the utilization (Lock-MU) and another to minimize the
interferences (Lock-MI) [2]. Lock-MI is no longer considered in
similar studies, since Lock-MU always exhibits a better behavior.
None of these three algorithms studies the possibility of worst path
changes depending on the selected cache lines. Instead, the worst
path is determined only once, assuming an empty cache. After-
ward, these algorithms make a selection of lines to be locked, such
that they optimize this path. These techniques are also called
‘‘single-path analyses” [17] and, as authors say, their approach is
non-optimal. Studies comparing Lock-MU and the genetic algo-
rithm approach conclude that their performance is very similar
[18]. We use Lock-MU as a static locking reference, thus avoiding
the possible dependencies on the initialization parameters that ge-
netic algorithms may present. Also, we compare to a single-cycle
fetch system (ideal performance bound).

Cache-locking approaches that disable cache replacements but
allow the cache contents to be changed at run-time are known as
dynamic locking methods [19–24]. Essentially, these methods
differ in how they load the contents and lock the cache. The oper-
ating system may be used to change cache contents at context
switches by means of a subroutine [19,20]. As an alternative, the
content replacement can be launched by the operating system
when a task reaches a certain program counter value [21]. Also,
utation in the presence of a lockable instruction cache in multitasking real-

http://dx.doi.org/10.1016/j.sysarc.2010.08.008


L.C. Aparicio et al. / Journal of Systems Architecture xxx (2010) xxx–xxx 3
specific instructions may be used to control the cache replacement
by tasks [22]. All these approaches call for a per-task selection of
contents, with the drawback of repeatedly preloading the selec-
tion. Some of these methods have been improved by specific hard-
ware designs [23]. Also, dynamic versions of the previous static
locking methods have been proposed [24]. In this case, the idea
is to divide a task into regions, each one with particular contents
to be loaded and locked. So, automatically choosing the beginning
and end of each region in an adequate way can be seen as a contri-
bution which, in general, would benefit any content selection
method. Besides, these versions merge region-locking with
worst-path recomputing, reporting very high analysis times in
such recomputation.

All previous static and dynamic cache-locking methods obtain
the selection of lines to be locked by an heuristic search, either
by greedy or genetic algorithms. So, their results may be depen-
dent on the analyzed tasks and also on the search parameters. To
prevent these factors, we compare our proposal to the ideal
single-cycle fetch (no misses) plus the required preloading costs
at context switches to always hit.

Our proposed ILP-based method, Lock-MS (Maximize Schedula-
bility), is a dynamic cache-locking method that preloads the cache
at context switches, and it is able to provide a solution that mini-
mizes the worst overall cost in a feasible time.

Both locking and non-restrictive methods can be also improved
by reducing or avoiding task interferences. Cache partitioning
assigns a portion of the cache to each task, and restricts cache
replacement to each individual partition [25–31]. Keeping the
dynamic behavior within separate partitions, these techniques
eliminate inter-task interferences and allow a separate analysis
per partition. So, they are an interesting complement for other
analysis methods. The drawback is that the reduction of the avail-
able cache size for each task may result in a worse performance
than that of all tasks sharing the whole cache. The difficulty in
cache partitioning is choosing the size of each partition. Once the
partitions are set, the WCET analysis is equivalent to reducing
the cache size to a partition size and also the number of tasks using
each partition.
3. Selection of memory lines with Lock-MS (Max.
Schedulability)

We consider a multitask system with a lockable set-associative
instruction cache, so its behavior is completely predictable, avoid-
ing both intra- and inter-task interferences. Having a dynamic
locking approach, the cache content selected beforehand is pre-
loaded every time a task starts/continues its execution in the
CPU. In this way each task takes profit of the whole cache with
the drawback of the preloading costs on context switches.
Fig. 2. LB organization and control.

Please cite this article in press as: L.C. Aparicio et al., Improving the WCET comp
time systems, J. Syst. Architect. (2010), doi:10.1016/j.sysarc.2010.08.008
Also, we consider that the memory system has a small instruc-
tion line buffer (LB) to capture spatial locality (see Fig. 1), i.e., a
tagged buffer of the size of a cache line. The fetch lookup proceeds
in parallel in both instruction cache and LB. A hit in either cache
or LB delivers the requested instruction in a processor cycle. A
miss in both structures leads to requesting the line to the next
memory level (an embedded SRAM in our model), filling later
the LB with the incoming line. The only specific behavior to con-
sider is that the LB prevents any temporal locality exploitation
(i.e., it self-invalidates its content on i-cache hits and in back-
wards jumps to the currently buffered line), which removes the
potential dependencies on the previous path. Fig. 2 shows a way
to organize the LB along with its control. Finally, we consider that
our system has no additional sources of latency variability (data
cache, branch predictor, out-of-order execution, etc.). Most
embedded processors can operate under these considerations,
which are also assumed in previous studies [2,16]. We also as-
sume that all loop bounds are known.

The aim of our method is to provide, for each task, a selection of
lines such that, when locked, the schedulability of the whole sys-
tem is maximal. To obtain this selection of lines, Lock-MS considers
the resulting WCET of each task, the effects of interferences be-
tween tasks and the cost of preloading the selected lines into
cache. To get this selection we use Integer Linear Programming
(ILP) [32,33]. Thus, our method is based on modelling all require-
ments as a set of linear constraints and solving the resulting
system.

It is important to take into account that, using no component
with a latency dependent on the previous path, there are no
intra-task interferences in tasks, as observed in previous studies
on cache-locking [34]. Adding the LB may seem to invalidate
this statement but, with the previously defined behavior, the
LB content depends exclusively on the location of the instruc-
tion executed before, so each possible path can be explicitly
defined.

Problem formalization. Let us define a multitask system as a set
of periodic tasks ti; 1 6 i 6 NTasks. A task ti can be modelled as a
set of direct start-to-end paths Pathi;j; 1 6 j 6 NPathsi. At the same
time, each Pathi;j contains a set of NLinesi;j memory lines inside it.

Fig. 3(a) shows an example of a simple control flow. It shows
several memory lines, L1 to L12, organized into basic blocks contain-
ing control structures and a function. Note that memory lines may
be shared by different basic blocks (e.g. L1, L4) and basic blocks may
contain several memory lines (e.g. leftmost path in the deepest
loop: L3L4). The rightmost control flow corresponds to a function
called from the two marks.

Fig. 3(b) shows an augmented representation of the control flow
in Fig. 3(a), tailored to the subsequent WCET analysis. The new rep-
resentation details three aspects: (i) Memory lines shared by dif-
ferent basic blocks have now been divided and assigned a unique
identifier (e.g. L4aL4b). This allows us to account for a different cost
and number of accesses on each part of the memory line. (ii) Func-
tion bodies must also be processed depending on the calling points.
In Fig. 3(b) we have two analysis instances, called from memory
lines L2ð Þ1 and L4bð Þ2. (iii) To identify each start-to-end path
ðPathi;jÞ, path tags have been placed next to the basic blocks they
traverse (e.g. path 2 goes across L1a; L1b; L2; L9a; L9b; L11a;

L11b � L12a; L12b; L8a; L8b). With the LB behavior defined above its
content cannot be reused, i.e., if a memory line is needed after it
has been consumed, it must be fetched again. This avoids the LB
acting as a single-line cache. The consequence is that, on condi-
tional branches, the worst-path will take any side of the branch
but always the same one, since there is no dependence on the pre-
vious path. Also, the cost of a specific path traversing a specific
memory line is constant, even if it is traversed multiple times
(e.g. in path 2, L1b is traversed 1þ bound1

2 times).
utation in the presence of a lockable instruction cache in multitasking real-

http://dx.doi.org/10.1016/j.sysarc.2010.08.008


(a)

(b)

Fig. 3. Example of modelling a simple control flow. (a) Straightforward view:
memory lines have been split to reflect basic block boundaries. (b) Augmented
representation: (i) each (divided) memory line has a unique identifier, (ii) function
instances are introduced, and (iii) basic blocks are annotated with the traversing
path(s).

4 L.C. Aparicio et al. / Journal of Systems Architecture xxx (2010) xxx–xxx
In this way, we can model each task ti as a set of paths Pathi;j,
each of them traversing its set of (parts of) memory lines (simply
memory lines from now on). Thus, the cost of executing path j of
task i ðPathCi;jÞ can be computed as the sum of the cost of travers-
ing its instruction memory lines ðLCi;j;kÞ:
PathCi;j ¼
XNLinesi;j

k¼1

LCi;j;k
Please cite this article in press as: L.C. Aparicio et al., Improving the WCET comp
time systems, J. Syst. Architect. (2010), doi:10.1016/j.sysarc.2010.08.008
For the path 2 of the task i in Fig. 3, it would be:

PathCi;2 ¼
XNLinesi;2

k¼1

LCi;2;k

¼ LCi;2;1a þ LCi;2;1b þ LCi;2;2 þ LCi;2;9a1 þ LCi;2;9b1 þ LCi;2;11a1

þ LCi;2;11b1 þ LCi;2;12a1 þ LCi;2;12b1 þ LCi;2;8a þ LCi;2;8b

Cost of memory lines. Each memory line Li;j;k 2 Pathi;j has an asso-
ciated execution cost LCi;j;k; 1 6 k 6 NLinesi;j defined as follows:

LCi;j;k ¼ hitCosti;j;k � nhiti;j;k þmissCosti;j;k � nmissi;j;k

where hitCost and missCost are the execution costs on cache hit and
miss, and nhit and nmiss are the number of cache hits and misses.

Let us now show how to compute each of these values. First, the
number of cache hits and misses can be obtained by knowing the
maximum number of accesses to each instruction memory line
nfetchi;j;k through a given path j, and whether this line is cached
or not:

nhiti;j;k ¼ nfetchi;j;k � cachedl

nmissi;j;k ¼ nfetchi;j;k � nhiti;j;k

The binary variable cachedl 2 ½0;1� indicates whether the memory
line Li;j;k 2 Pathi;j starting at the physical address l�memlineSize is
cached and locked ðcachedl ¼ 1Þ or not ðcachedl ¼ 0Þ. The constant
nfetchi;j;k is the total number of times that this memory line is
accessed within path j, including the loop iterations, e.g.
nfetchi;2;9b ¼ ð1þ bound1

2Þ � ð1þ bound3
2Þ. This constant is a loop

bound, i.e., derived from source code annotations, abstract interpre-
tation, or any equivalent methodology.

As an example of the constraints on the number of hits and
misses, we show how to construct them on memory line L11 of path
2 in Fig. 3. This would be repeated for every memory line:

nhiti;2;11a1 ¼ nfetchi;2;11a1 � cached11

nmissi;2;11a1 ¼ nfetchi;2;11a1 � nhiti;2;11a1

nhiti;2;11b1 ¼ nfetchi;2;11b1 � cached11

nmissi;2;11b1 ¼ nfetchi;2;11b1 � nhiti;2;11b1

Cost of hits and misses. In order to compute the execution costs
we assume a simple processor where instruction fetch and execu-
tion proceed sequentially. For a cached memory line containing
one or more ðnInsi;j;kÞ instructions we can compute the total cost
as the fetch cost plus the execution cost ðtexecÞ. The fetch cost is
the instruction cache memory hit time ðthitCMÞ times the number
of fetched instructions ðnInsi;j;kÞ in Li;j;k:

hitCosti;j;k ¼ texeci;j;k þ thitCM � nInsi;j;k

Depending on the memory architecture, the penalties on cache
misses may vary. Let us start assuming that we have a locked cache
(replacements disabled) and no other component is present. In this
case, the miss cost is the execution time of the instructions in the
memory line, plus one cache miss time for each of them:

missCosti;j;k ¼ texeci;j;k þ tmissCM � nInsi;j;k

Adding a line buffer, the cache miss cost is the sum of the
execution time texec, a single LB miss tmissLB and one LB hit thitLB

for each of the remaining instructions in the memory line
ðnInsi;j;k � 1Þ:

missCosti;j;k ¼ texeci;j;k þ tmissLB þ thitLB � ðnInsi;j;k � 1Þ

Cache constraints. The number of memory lines that may be ca-
ched is limited by the cache configuration (number of sets S and
ways W). This is modelled by the new constraints:
utation in the presence of a lockable instruction cache in multitasking real-

http://dx.doi.org/10.1016/j.sysarc.2010.08.008


Fig. 4. Example of a program with functional information on feasibility (see [12]).

L.C. Aparicio et al. / Journal of Systems Architecture xxx (2010) xxx–xxx 5
W P cacheds þ cachedsþS þ cachedsþ2S þ � � � þ cachedsþnS

8 0 6 s < S; s 2 Integer

WCET. The WCET of a task i must be equal to the cost of its worst
path, i.e., it must be equal or greater than any of its paths j:

wceti P Pathcosti;j 8 1 6 j 6 NPathsi ð2Þ

Since we use a minimization model, this variable will be minimized
and at the end we will obtain the minimum wceti satisfying this
constraint, which is the desired value.

Note that it is possible for the final selection to include memory
lines of several alternative paths. This would be the case when hav-
ing two very similar paths and thus, in order to reduce the WCET,
the cost of both paths needs to be reduced.

Switch cost. When the goal is to obtain the plain WCET, the pre-
vious equations suffice. However, in order to take into account the
context switches, their cost must be considered. Let us focus on the
cost of a single context switch to task i. First, a constant cost tswitch
for saving the state of the preempted task and restoring task i must
be considered. The preloading time tpreload must also be added.
We consider each preloading time equal to tmissCM � thitCM , and
it must be taken into account for each cached memory line
ðcachedl ¼ 1Þ. Finally, we must include one miss penalty to the LB
for every context switch, since the worst case would be that the
LB has been flushed during the context switch:

numcachedi ¼
XMlines�1

l¼0

cachedl

tpreloadi ¼ ðtmissCM � thitCMÞ � numcachedi

switchCosti ¼ tswitchþ tpreloadi þ ðtmissLB � thitLBÞ

where the constant Mlines is the number of physical memory lines
in the system.

Minimization function: Worst overall cost. The worst overall cost
of a task i is equal to the WCET plus the switch cost times the num-
ber of context switches ncswitchi:

Wcosti ¼ wceti þ ncswitchi � switchCosti ð3Þ

Thus, minimizing Wcosti we obtain the selection of memory lines
cachedl (and the values of wcet, switchCost, etc.) such that when pre-
loaded and locked into cache, the worst overall cost of task i is
minimal.

Although the exact number of task switches ncswitchi (preemp-
tions plus context switches on idle processor) is not known, it can
be overestimated in many ways [5,6]. In our case, we can start with
any upper bound. For instance, this number cannot be higher than
the sum of the maximum number of invocations of any higher pri-
ority task during Ti:

ncswitchi 6
Xi�1

j¼1

Ti

Tj

� �
ð4Þ

This is a pessimistic bound, but below we show how it can be im-
proved, if needed. Note that, considering the cost of context
switches, memory lines may be not cached even if they are used
several times. For instance, think of a task using a memory line
three times, so that at first glance it should be locked into cache.
Now think of this task being preempted ten times. Clearly, the cost
of preloading this line 10 times is higher than the cost of the three
misses that we would get if this line was never locked into cache.
With this added cost, the ILP model will consider the WCET of a task
along with its context switch costs, so that it may choose not to
cache and lock lines that result in a worse overall system execution
time due to inter-task interferences.
Please cite this article in press as: L.C. Aparicio et al., Improving the WCET comp
time systems, J. Syst. Architect. (2010), doi:10.1016/j.sysarc.2010.08.008
Including high-level control information. Apart from structural
control flow information, our program modelling can include addi-
tional constraints to deal with high level functional control flow
information or execution-history dependent instruction timings.
For instance, if it is known that a path inside a loop is taken once
at most, or if taking a certain path implies a particular number of
iterations, this could be added to the model by modifying the exist-
ing constraints on the definition of paths and number of line
fetches, in a similar way to other ILP-based models [12].

For instance, in Fig. 4 (by Li et al. [12]) we can see a typical
example with functional information. Let us assume that each
box represents a different memory line. This example has two
paths depending on the if-then-else construct, since clearly the loop
must be assumed to take the maximum possible number of itera-
tions (functionality constraint of iterations equal to 10). The inter-
esting functional detail is that memory line B5 can be only
traversed once. Assuming that path P1 is always taking the then
side and that path P2 is taking the else side once, the constraints
for the maximum number of times that memory lines B4 and B5

are accessed could be expressed as:

nfetchi;P1;B4
¼ 10

nfetchi;P1;B5
¼ 0

nfetchi;P2;B4
¼ 9

nfetchi;P2;B5
¼ 1

Let us assume that, additionally, we know that, if B5 is traversed,
the number of iterations in the loop is exactly 5. In this case, the
memory lines and values of nfetch (in brackets) for each path
would be:

P1 : B1ð1Þ;B2ð11Þ;B3ð10Þ;B4ð10Þ;B5ð0Þ;B6ð10Þ;B7ð1Þ
P2 : B1ð1Þ;B2ð6Þ;B3ð5Þ;B4ð4Þ;B5ð1Þ;B6ð5Þ;B7ð1Þ

Response time. Once the ILP problem is solved, going back to Eq.
(1) we have the WCET of each task, Ci, and the cost of preloading
the cache with the selected lines. With these two values we can ob-
tain the response time Ri to test the schedulability of the real-time
system. A bound (tighter than that of Eq. (4)) of the maximum
number of preemptions Ni can then be calculated as:

Ni ¼ ncswitchi 6
Xi�1

j¼1

Ri

Tj

� �

With the new Ni we can recalculate the ILP problem in an iterative
way. We could also use more accurate and sophisticated bounds on
utation in the presence of a lockable instruction cache in multitasking real-

http://dx.doi.org/10.1016/j.sysarc.2010.08.008


Fig. 5. Folded/unfolded control flow graph.

Table 1
Fetch cost (first reference) of memory lines in Fig. 6 assuming that they are not
cached.

Line Path-explicit Compact

Path 1 Path 2

L1 tmissLB tmissLB tmissLB

L2a tmissLB tmissLB tmissLB

L2b 0 – 0
L3 tmissLB – tmissLB

L4a tmissLB – tmissLB

L4b – tmissLB tmissLB

Fig. 6. Detailed example of path-explicit/compact fetch costs.

6 L.C. Aparicio et al. / Journal of Systems Architecture xxx (2010) xxx–xxx
the number of preemptions (e.g. [6]), but this is not the objective of
the present paper.

In order to work with more accurate values, we simulate the
multitasking system under the rate monotonic scheduler consider-
ing that all tasks are initially launched at the same time. Having the
WCET and the number of cached lines of each task, the simulator
schedules the tasks and provides the exact number of context
switches Ni and response time Ri.

4. Avoiding the path-explicit constraints

Describing each path with a set of constraints implies a large ILP
model when the number of possible paths grows, which in turn
may decrease the solver speed. In this section we show that, by
applying a transformation, our model is compacted and the
description of the possible paths is no longer a limitation.

Let us take Fig. 5 as an example. It shows a simple control flow
graph and its corresponding execution possibilities, depicting also
the explosion of paths. In general, the WCET can be computed as
the maximum of the four possible paths:

P1 ¼ B0þ B1þ B31 þ B41 þ B61;4

P2 ¼ B0þ B1þ B31 þ B51 þ B61;5

P3 ¼ B0þ B2þ B32 þ B42 þ B62;4

P4 ¼ B0þ B2þ B32 þ B52 þ B62;5

WCET ¼maxðP1; P2; P3; P4Þ ð5Þ

With an instruction locking cache whose content has been selected,
several considerations must be done. First, Eq. (5) would compute
the WCET considering all misses, e.g. selecting an empty cache.
Our desired WCET is the minimum valid WCET considering any
cache content k in the set of possible contents C:

WCET ¼min
k2C
ðmaxðP1k; P2k; P3k; P4kÞÞ ð6Þ

Our ILP-based method performs this computation. For a clearer
notation, the k subindexes are not shown from now on:

WCET ¼minðmaxðP1; P2; P3; P4ÞÞ ð7Þ

Second, using a preloaded and fixed cache content, the cost of
executing a block is independent of the previously executed
blocks.3 This idea can be easily extended to the LB, since its behavior
depends on the previous executed instruction which is known for a
given path. So, all Bipath can be substituted by Bi and the common
blocks can be computed in isolation. This allows us to rewrite Eq.
(7) as:

WCET ¼minðmaxðB0þ B1þ B3þ B4þ B6;
B0þ B1þ B3þ B5þ B6;B0þ B2þ B3þ B4þ B6;
B0þ B2þ B3þ B5þ B6ÞÞ

¼minðB0þ B3þ B6þmaxðB1þ B4;
B1þ B5;B2þ B4;B2þ B5ÞÞ ð8Þ

Fig. 6 shows an example of basic blocks and memory lines ðLxÞ
to better see this simplification considering the LB. If a given mem-
ory line is selected to be cached and locked, its fetch cost will be
always a cache hit. For non-cached memory lines, the fetch cost
of their first reference must be the LB miss cost for every accessed
line. The most interesting fetch costs appear when a memory line
belongs to different basic blocks. This example includes all possible
cases, namely, a memory line shared by a common basic block and
then a conditional basic block ðL2Þ, a memory line belonging to two
3 This is true with the processor model assumed in this study. The application to
processors including additional sources of time dependencies (such as branch
predictor or out-of-order execution) may be addressed in future works.

Please cite this article in press as: L.C. Aparicio et al., Improving the WCET comp
time systems, J. Syst. Architect. (2010), doi:10.1016/j.sysarc.2010.08.008
alternative basic blocks ðL4Þ and a memory line shared by a condi-
tional block and a common basic block ðL6Þ. As explained above,
these lines are divided and a particular cost is assigned to each
part. Table 1 summarizes these LB costs for paths 1 and 2 of
Fig. 6 assuming that none of these memory lines is cached. Using
the path-explicit models for paths 1 and 2, there can be seen that
divided memory lines consecutively accessed (e.g. L2a, L2b) have a
single fetch cost. All this information can be obtained by statically
analyzing the code.

In the column labeled as Compact, Table 1 shows the fetch cost
of each memory line using the compact model. As it can be seen,
when both Path 1 and Path 2 have the same fetch cost for a given
line, it can be directly translated to the compact model (rule 1).
L5 – tmissLB tmissLB

L6a – tmissLB 0
L6b tmissLB 0 tmissLB

L7 tmissLB tmissLB tmissLB

utation in the presence of a lockable instruction cache in multitasking real-

http://dx.doi.org/10.1016/j.sysarc.2010.08.008


Table 2
Classification of memory lines in start-to-end paths and common paths in Fig. 3.

Path 1 L1a L1b L2 L8a L8b L1
9a L1

9b L1
10 L1

11b L1
12a L1

12b

Path 2 L1a L1b L2 L8a L8b L1
9a L1

9b L1
11a L1

11b L1
12a L1

12b

Path 3 L1a L1b L3a L3b L4a L7a L7b L8a L8b

Path 4 L1a L1b L3a L4b L5 L7a L7b L8a L8b L2
9a L2

9b L2
10 L2

11b L2
12a L2

12b

Path 5 L1a L1b L3a L4b L5 L7a L7b L8a L8b L2
9a L2

9b L2
11a L2

11b L2
12a L2

12b

Path 6 L1a L1b L3a L6 L7a L7b L8a L8b

CmnAll L1a L1b L8a L8b

Cmn1;2 L2 L1
9a L1

9b L1
11b L1

12a L1
12b

Cmn3;4;5;6 L3a L7a L7b

Cmn4;5 L4b L5 L2
9a L2

9b L2
11b L2

12a L2
12b

L.C. Aparicio et al. / Journal of Systems Architecture xxx (2010) xxx–xxx 7
When only one of the paths traverses a memory line, the fetch cost
can also be safely translated to the compact model (rule 2). These
two rules can be applied to the non-divided memory lines L1; L7

and L3; L5, respectively. The cost translation of the divided memory
lines ðL2; L4; L6Þ is not so straightforward. For lines whose parts be-
long to alternative paths (L4a and L4b), the fetch costs can also be
directly translated (rule 2) since, being alternative, they are never
used together. For the lines belonging to a common path and also
a non-common path ðL2; L6Þ, the full fetch cost must be associated
to the part in the common path (L2a and L6b) and 0 to the particular
path (L2b and L6a) (rule 3). With these translation rules, the cost of
any path (i.e., the sum of the cost of its lines) is the same as the sum
of the same lines in the compact model. That is, the sum of column
Path 1 (or Path 2) in Table 1 is the same as the sum of the same
lines in column Compact. Thus, for any memory line, we have an
equivalent representation of fetch costs which is independent of
the number of paths and does not add any overestimation.

Going back to Eq. (8), we can obtain equivalent expressions of
the max function as follows. If B1 > B2, then B1þ B4 > B2þ B4,
so clearly B2þ B4 could be dismissed. Otherwise, B1þ B4 6 B2þ
B4 and B2þ B4 must remain in the expression. So, using the max
operator first on the B1; B2 pair and then on the B4; B5 pair we
have:

maxðB1þ B4;B1þ B5;B2þ B4;B2þ B5Þ
¼maxðmaxðB1;B2Þ þ B4;maxðB1;B2Þ þ B5Þ
¼maxðmaxðB1;B2Þ þmaxðB4;B5ÞÞ
¼maxðB1;B2Þ þmaxðB4;B5Þ ð9Þ

Thus, we can rewrite Eq. (8) as:

WCET ¼minðcommonCost þmaxðB1; B2Þ þmaxðB4; B5ÞÞ ð10Þ

As a more complex example consider the control flow in Fig. 3.
Instead of having explicit constraints for the paths, the WCET is
constructed as the sum of common costs plus the maximum of
any alternative path. Table 2 shows the lines traversed by each
path in Fig. 3, and how these lines are grouped into common paths.
This table can be translated into a tree (Fig. 7). This tree can be seen
Fig. 7. Compact constraint graph of Fig. 3.

Please cite this article in press as: L.C. Aparicio et al., Improving the WCET comp
time systems, J. Syst. Architect. (2010), doi:10.1016/j.sysarc.2010.08.008
as a CFG where memory lines appear only once, i.e., each node is a
set of common lines and each branch is an alternative path. Follow-
ing Fig. 7, the constraints are:

wceti ¼ CmnAllþ ForkAll

CmnAll ¼ LC1a þ LC1b þ LC8a þ LC8b

ForkAll P Cmn1;2þ Fork1;2

ForkAll P Cmn3;4;5;6þ Fork3;4;5;6

Cmn1;2 ¼ LC2 þ LC1
9a þ LC1

9b þ LC1
11b þ LC1

12a þ LC1
12b

Fork1;2 P LC1
10

Fork1;2 P LC1
11a

Cmn3;4;5;6 ¼ LC3a þ LC7a þ LC7b

Fork3;4;5;6 P LC3b þ LC4a

Fork3;4;5;6 P Cmn4;5þ Fork4;5

Fork3;4;5;6 P LC6

Cmn4;5 ¼ LC4b þ LC5 þ LC2
9a þ LC2

9b þ LC2
11b þ LC2

12a þ LC2
12b

Fork4;5 P LC2
10

Fork4;5 P LC2
11a

These constraints compute the same wceti as Eq. (2). However,
they use directly the line cost variables ðLCi;j;kÞwithout needing the
explicit path cost constraints Pathcost. Thus, these new constraints
can be substituted on the previous path-explicit model to avoid the
explicit definition of paths.

Furthermore, an hybrid path-explicit/compact model is also
possible. It could provide an accurate WCET analysis on specific
code parts (e.g. unfeasible paths or execution-history dependent
instruction timings) and a fast analysis on compactable parts. This
would allow to tune the WCET analysis so that the accuracy is
adapted to different code parts.
5. Performance evaluation

We assume periodic tasks with fixed priorities managed by a
Rate Monotonic scheduler. Table 3 shows the two sets of tasks used
in our experiments. Benchmarks include JPEG integer implementa-
tion of the forward DCT, CRC, matrix multiplication, integral com-
putation by intervals, matrix inversion, computation of roots of
quadratic equations and FFT. Sources have been compiled with
GCC 2.95.2-O2. The WCET in this table refers to the LB-only system
and it has been computed without context switches. Periods have
been set so that the CPU utilization of each task in the LB-only sys-
tem is 1:2. The ‘‘small” and ‘‘medium” task sets and the relation be-
tween the periods for each task have already been used in previous
studies [2].

Note that the WCETs and periods of each task set follow differ-
ent patterns. In the small task set, WCETs and periods grow as the
utation in the presence of a lockable instruction cache in multitasking real-

http://dx.doi.org/10.1016/j.sysarc.2010.08.008


Table 3
Task sets ‘‘small” and ‘‘medium”.

Set Task LB-only WCET Period Size

Small jfdctint 10,108 23,248 1072 B
crc 109,696 329,088 536 B
matmul 542,229 2,440,031 208 B
integral 716,633 3,583,165 400 B

Medium minver 8522 19,601 1360 B
qurt 10,117 30,351 752 B
jfdctint 10,108 44,475 1072 B
fft 2,886,680 15,010,736 1016 B

Fig. 8. WCET of LB-only and single-cycle fetch systems relative to fetching directly
from the eSRAM.

8 L.C. Aparicio et al. / Journal of Systems Architecture xxx (2010) xxx–xxx
priority in tasks decreases. It can be seen that, in this task set, peri-
ods grow by an order of magnitude approximately in most cases.
However, the medium task set has relatively small WCETs and
periods for all tasks but the one with the lowest priority, which
is around three orders of magnitude larger. This means that the
lowest priority task in the medium task set will be interrupted
many times. So, in general, the medium task set will have more
context switches than the small task set for a given time period.

The target architecture considered in our experiments is an
ARM7 processor with instructions of 4 bytes. The LB size (and
memory/cache line size) is 16 bytes, or 4 instructions. The instruc-
tion caches are varied in size from 128 bytes to 4 KB and the
eSRAM is kept fixed at 256 KB. In order to compute memory delays
we have used Cacti v5.3, a cache circuit modelling tool [35], assum-
ing a future high-performance embedded processor built in 32 nm
technology and running at processor cycle equivalent to 36 FO4.4

We have verified that all the tested caches, excluding the fully asso-
ciative ones, meet the cycle time constraint. Besides, the access time
of the 256 KB eSRAM is 7 cycles if we choose to implement it with
low standby power transistors. Therefore, instruction fetch costs
are 1 cycle on cache or LB instruction hits and 8 cycles on LB misses.
All data accesses are delivered directly from the eSRAM. Thus, the
modelled execution costs are 1 cycle for non-executed predicated
instructions,5 2 cycles for non-memory instructions, and 1 + 7 cycles
for loads and stores.

Next we characterize separately each single task by computing
its WCET in three fetch systems, namely, Direct-eSRAM fetch
(upper bound), LB-only fetch, and single-cycle fetch (lower bound).
Then, we study the whole multitasking system acting on the mem-
ory system of Fig. 1 (LB + iCache system) and compare Lock-MS
(multiple per-task selections) to Lock-MU (a single selection for
all the tasks) [2]. Next, we discuss the analysis cost of the compact
Lock-MS model. Finally, we compare to a worst-case conventional
cache analysis.

5.1. Spatial locality

Fig. 8 shows, for each benchmark, the WCET of the LB-only and
single-cycle systems relative to a Direct-eSRAM system. A single-
cycle fetch system would correspond to a system with an ideal
instruction cache, whereas a Direct-eSRAM fetch system would
correspond to an easily predictable system with the instruction
cache disabled. As it can be seen, WCETs are significantly lowered
just by exploiting the spatial locality. On average, an LB-only sys-
tem reduces the Direct-eSRAM WCET by a 0:53� factor. In turn, a
single-cycle system reduces the Direct-eSRAM WCET by a 0:33�
factor on average. Obviously this single-cycle system would need
the whole program preloaded and fitting into the cache, but it gives
4 A fan-out-of-4 (FO4) represents the delay of an inverter driving four copies of
itself. A processor cycle of 36 FO4 at 32 nm technology would result in a clock
frequency around 2.4 GHz, which is in line with the market trends [36].

5 Predicated instructions are those general (not jump) instructions that include
several test bits, so that the instruction is executed as long as the test is true.

Please cite this article in press as: L.C. Aparicio et al., Improving the WCET comp
time systems, J. Syst. Architect. (2010), doi:10.1016/j.sysarc.2010.08.008
an idea of how far the ideal case is. So, the WCET reduction
achieved by enhancing an LB-only system with an instruction
cache (temporal locality) could be up to an additional speed-up
of 1:61 at most (from 0:53 to 0:33, assuming that the ideal 0:33
is reachable). Results for individual tasks depart somewhat from
the average case, but the trends are quite similar.

Utilization can be used to test the spatial locality effects on mul-
titasking systems. It is computed as the fraction of time the CPU is
busy executing the task set in the worst case:

U ¼
XNTasks

i¼1

Wcosti

Ti

Utilization values above 1 indicate the system is not executable
(and not schedulable). On values below 1, the system may (or
may not) be schedulable, depending on the response times and
deadlines ðRi 6 Ti; 8iÞ. As indicated above, the periods have been
set for both task sets in order to get a utilization value of 1:2 in
the LB-only system. In contrast, if all fetches were directly delivered
from the eSRAM the utilization would raise up to 2:33 and 2:24 for
the small and medium task sets, respectively, whereas with ideal
single-cycle fetch the utilization decreases up to 0:75 and 0:72,
respectively.

In conclusion, the instruction LB is beneficial for hard real-time
systems because it improves both WCET and processor utilization
at a very low cost, but significant room for improvement still re-
mains, which can be partly capitalized by a carefully managed
instruction cache.

5.2. Dynamic vs. static locking

In this section, we compare Lock-MS against Lock-MU in the LB
plus iCache system. Lock-MS selects for each task separately the
lines to be dynamically loaded at each context switch, whereas
Lock-MU computes a single, static selection for the whole task
set [2]. There has been no address tuning of the tasks, i.e., the code
of each task begins at an address mapped to cache set 0.

This comparison cannot be made with WCETs only, since the
periods and priorities of tasks lead to a different number of context
switches when combined with the WCETs. In general, shorter
WCETs cause fewer preemptions, which in turn decrease the sys-
tem response time. Thus, since the cost associated to context
switches depends on the locking method, it is necessary to test
how all these parameters affect the final system. First, we test
whether the system is schedulable. If so, we obtain the response
time of the task with the lowest priority ðt4Þ. As a simple speed-
up metric, we divide the period of this task by its response time:
T4=R4. This metric gives an idea of the looseness of the schedule.
Fig. 9 shows results with different cache configurations: from
utation in the presence of a lockable instruction cache in multitasking real-

http://dx.doi.org/10.1016/j.sysarc.2010.08.008


L.C. Aparicio et al. / Journal of Systems Architecture xxx (2010) xxx–xxx 9
128 bytes to 2 KB and from 256 bytes to 4 KB for the small and
medium task sets, respectively. The percentage of the instruction
cache size with respect to the task set size is shown on top of each
cache size group. As it can be seen, Lock-MS gets a schedulable sys-
tem with a cache of just 5% of the code size, whereas Lock-MU is
not schedulable until the cache size reaches significantly higher
percentages (40% and 10% for the small and medium task sets,
respectively). Additionally, for all cache sizes but the largest ones
(80%) the speed-up obtained with Lock-MS is always above that
of Lock-MU in both task sets. This is an indicator that Lock-MS
may achieve a pretty good performance with simple hardware.

The response time speed-ups of an ideal instruction cache (sin-
gle-cycle fetch) are 2:28 and 3:14 for the small and medium task
sets, respectively. Notice that this ideal system does not incur in
context switch penalties. In order to compare with an easily repro-
ducible and hardware independent dynamic locking policy, we
consider the ideal single-cycle fetch (no misses) plus the required
preloading costs at context switches to always hit. The response
time speed-ups of single-cycle plus context switch penalties are
2:19 and 2:55 for the small and medium task sets, respectively.
So, context switch penalties are responsible for 4% (small task
set) and 19% (medium task set) of the speed-up differences be-
tween these two systems. To give insight into such differences,
we have computed the number of context switches per system re-
sponse time (i.e., launching all tasks at the same time, the number
of context switches until the CPU becomes idle, divided by the time
required for this to happen). On average, the number of context
switches per system response time for the medium task set is
(a)

(b)

Fig. 9. Response time speed-ups. (a) Small task set. (b) Medium task set.

Please cite this article in press as: L.C. Aparicio et al., Improving the WCET comp
time systems, J. Syst. Architect. (2010), doi:10.1016/j.sysarc.2010.08.008
2:27 times higher than for the small task set. Obviously, the num-
ber of context switches affects Lock-MS and single-cycle with pen-
alties, but it does not affect Lock-MU (static-locking) nor single-
cycle without penalties.

Another interesting detail is that Lock-MS is not sensitive to
associativity in most cases. Among all experiments, only two inter-
mediate cache sizes in the medium task set (512 bytes and 1 KB)
take profit from a large associativity. This means that Lock-MS
can use fast and simple direct mapped caches with no performance
loss. On the contrary, depending on the code placement, Lock-MU
may be specially sensitive to the number of ways (e.g. see the steep
steps leading from direct mapping to 2-way and 4-way in the 80%
groups in both task sets). This happens when several tasks have a
high usage of memory lines mapped to the same cache line, but not
all of them can be locked at the same time. Increasing associativity
may reduce or solve the problem but at the cost of increasing hit
time,6 area and energy consumption. Performing a previous optimi-
zation of code layout should also reduce this problem for Lock-MU,
but it is not needed for Lock-MS.

For large cache sizes (80%), it can be seen that static approaches
may offer better results than a dynamic approach since the cache
preload penalty grows, as can be seen in Fig. 9. That is, when all
significant memory lines (or the whole tasks) almost or completely
fit in cache, using a unique selection for the whole task set should
be better than using a selection per task. This has been already
observed in other studies [37].

5.3. Analysis cost

The computational cost of Lock-MS depends on the analyzed
tasks and the employed ILP solver. Its application to the tasks in
Table 3 takes a few milliseconds, so its discussion is not relevant.
To get a better insight into the analysis cost of Lock-MS we have
designed a collection of synthetic tasks. These tasks have between
16 KB and 96 KB of code size, with up to 2216 possible paths
through consecutive if-then-else constructs. So, we can test Lock-
MS on very large tasks designed specifically to be difficult to ana-
lyze. Every task is analyzed in the LB plus iCache system for three
caches of growing sizes, totalizing 33 experiments. Table 4 summa-
rizes the experimentation space. For these experiments we have
used lp_solve version 5.5.0.14 with the default options on a
2 GHz, 64-bit Intel Xeon.

First of all, we have observed that the solver gets the optimal (or
a very close) solution of the minimization function Wcost (Eq. (3))
in a very short time, and then spends the rest of the time testing
similar solutions. Thus, using the first integer solution can save
us much time and its accuracy can be easily tested by the real
(not integer) solution. Although the real solution is not necessarily
a valid ILP solution, it is faster (the solution space is continuous)
and there cannot exist any better solution to the problem. Thus,
the difference between any valid integer solution and the real
one gives an idea of the goodness of the integer solution. Fig. 10
shows the cumulative distribution of these differences in our
experiments. The x-axis shows the differences and the y-axis
shows the number of occurrences. It can be seen that in 28% of
cases the difference is 0, i.e., the real solution is also integer, and
both solutions coincide. Also, there are no differences above
0.45%. This means that the obtained result is exact in 28% of cases,
and in the other 72% the possible overestimation when using the
first integer solution differs at most five CPU cycles per thousand.
However, since the real solutions may not be valid, lower differ-
6 In our experiments we have not modelled the hit time increase of fully associative
caches to better show the trends. However, if we were designing a real system we
could use Cacti in order to compute the multicycle hit time, run again Lock-MS and
get a more realistic speed-up.

utation in the presence of a lockable instruction cache in multitasking real-

http://dx.doi.org/10.1016/j.sysarc.2010.08.008


Fig. 12. Analysis time varying the number of conditional statements.

Table 4
Experimentation space.

Task Instruction cache

Size (KB) N. Paths Sizes (KB) Sets �Ways

16 236 4, 8, 12 64 � 4, 8, 12

32 272 8, 16, 24 64 � 8, 16, 24

48 2108 12, 24, 36 64 � 12, 24, 36

64 2144 16, 32, 48 64 � 16, 32, 48

96 29; 218; 230; 254; 2108; 2162; 2216 24, 48, 72 64 � 24, 48, 72

10 L.C. Aparicio et al. / Journal of Systems Architecture xxx (2010) xxx–xxx
ences may not be reachable, so it is perfectly possible that, even
with a 0.45% difference, a first integer solution is the best one.

Fig. 11 depicts the analysis time (both for the real and first inte-
ger solutions) as the complexity of the analysis grows. The x-axis
shows the task size. Each task has been analyzed for three cache
sizes, which can be seen in the plot as three marks for the same
x value, both for the real and integer solutions. The resulting values
have been fitted to a potential function, also shown in the figure. It
can be seen that the analysis time grows approximately in a qua-
dratic way as the complexity (code size, cache size and number
of paths) grows simultaneously.

Fig. 12 shows a similar study, but varying just the number of
paths from 29 to 2216. In this case we focus on the 96 KB task with
cache sizes of 24, 48 and 72 KB (64 sets of 24, 48 and 72 ways,
respectively). It can be seen that there is no ascending trend across
the broad range of tested number of paths. This means that the
number of paths does not limit the analysis time when using the
compact model of Lock-MS. Thus, the results are affected by the
particular relation between the memory lines and cache lines of
each problem. Anyway, the analysis of such large benchmarks
Fig. 10. Cumulative distribution of differences between the real and integer
solutions.

Fig. 11. Analysis time as the complexity grows (iCache base sizes of 4, 8 and 12 KB).

Please cite this article in press as: L.C. Aparicio et al., Improving the WCET comp
time systems, J. Syst. Architect. (2010), doi:10.1016/j.sysarc.2010.08.008
(96 KB, 1065 paths, 72 way set-associative cache) takes no longer
than 3 min. This analysis time is relatively short compared to other
ILP-based WCET analysis models, which have been criticised for
being too large and hard to analyze [12,38].
5.4. Lock-MS vs. worst-case conventional cache

As pointed out in the previous section, Lock-MS has a relatively
low computation cost compared to methods that analyze the
WCET assuming a conventional cache behavior [8,38]. Addition-
ally, such methods analyze the WCET of single tasks, so further
analysis/overestimation on inter-task interferences is required in
order to provide safe system bounds.

Given that the tasks in Table 3 are not specially hard to analyze,
in order to provide additional comparisons we have obtained the
response time speed-ups using a conventional cache by a worst-
case simulation method [8]. This technique has a high computa-
tional cost because it explores all required paths by a branch and
bound algorithm, but it provides a very accurate WCET bound for
each task. The inter-task interferences have been accounted as an
additional cost for worst case evictions, i.e. the minimum of task
lines and cache lines, times the miss penalty for every context
switch. Our results show that WCETs using conventional instruc-
tion caches are very similar to those with Lock-MS (differences
between �3:8% and 7:4%). When considering inter-task interfer-
ences in the system, both approaches present similar results.
Fig. 13 shows the response time speed-ups for the small task set
using direct-mapped caches having the same sizes than previous
experiments. Both Lock-MS and the worst-case conventional cache
behavior have low sensitivity to associativity, so these values are
not presented. Also, both behaviors reach a similar saturation
point, where additional cache size does not entail higher speed-
ups. Lock-MS performs better than the worst-case conventional
cache bound on very small caches (5–10% of code size). This is
due to the high intra-task interferences in small conventional ca-
ches, whereas Lock-MS avoids them by locking. The rest of exper-
iments (20–80% of code size) show similar speed-ups (differences
lower than 5%). These trends using a conventional cache appear
also for the medium task sets. However, in this case the system
is schedulable with large caches only (40–80%) and with speed-
ups lower than 1:1 due to the number of context switches being
much higher.

In general, methods using locking caches seem more adequate
for complex systems. When the analysis is affordable both with
locking and non-locking methods, several points must be consid-
ered. First, conventional caches do not resolve intra-task interfer-
ences, which may be an important drawback on small caches.
For larger caches, the bound on the number of preemptions may
become a key factor. In Lock-MS the cost of a context switch is
determined by the selected contents, and only those contents that
utation in the presence of a lockable instruction cache in multitasking real-

http://dx.doi.org/10.1016/j.sysarc.2010.08.008


Fig. 13. Lock-MS vs. worst-case conventional cache behavior for the small task set.

L.C. Aparicio et al. / Journal of Systems Architecture xxx (2010) xxx–xxx 11
are worth to be cached are selected. On the contrary, using a con-
ventional cache, context switches do not imply specific costs but
overestimations, which may be higher and difficult to bound
accurately. These overestimations may be addressed by further
inter-task interference analysis, although it would increase the
analysis time.
6. Conclusions

In this paper, we have proposed an ILP-based method (Lock-MS)
to obtain the selection of memory lines to be loaded and locked
into an instruction cache at each context switch in multitasking
real-time systems. This selection takes into account the require-
ments of each single task and also the effects of interferences be-
tween tasks. Additionally, we show that the description of the
model can be compacted when the number of possible paths
grows. The combination of both the path-explicit and compact
model is also possible, which is interesting for including high-level
control flow information.

To isolate the benefits of the instruction cache we analyze first
three cacheless options: either fetching directly from the eSRAM,
from a line buffer or from an ideal system providing single-cycle
fetch. Compared to the direct eSRAM fetch, the line buffer reduces
processor utilization by almost 50% at a very low cost, and we
take this option as a suitable baseline for the following
experiments.

We also compare Lock-MS, which provides a per-task memory
line selection, with an existing static locking approach (Lock-MU)
for an instruction fetch architecture having a line buffer and a
cache. Lock-MS performs better than Lock-MU for cache sizes un-
der 40% of the code size, improving schedulability with small ca-
ches. With larger caches, most or all the highly accessed code
can be cached and static-locking performs better, since it does
not suffer from cache reloading penalties. Our results also show
that our approach is not sensitive to the cache configuration (sets
vs. ways) but to the total cache size, being able to successfully ex-
ploit direct mapped caches.

In order to show that Lock-MS is computationally feasible we
have designed a collection of synthetic tasks designed specifically
to be large and difficult to analyze, using them in a set of large ca-
ches. We find that the solver obtains a very good solution in a very
short time, and the remaining time is spent discarding very similar
solutions. To assess the quality of the first integer solutions we use
the real solution, showing that it is optimal in around 25% of cases
and, in the rest of cases, no more than 0.45% larger than the real
solution, which can be taken as an overestimation bound. Using
the compact Lock-MS representation we show that the analysis
time grows approximately in a quadratic way with respect to the
problem complexity (essentially the task size), with the number
of paths in the task having very little impact. This allows us to ana-
Please cite this article in press as: L.C. Aparicio et al., Improving the WCET comp
time systems, J. Syst. Architect. (2010), doi:10.1016/j.sysarc.2010.08.008
lyze large codes in a relatively short time (100 KB with 1065 paths
in less than 3 min).

Finally, comparing Lock-MS with a worst-case conventional
cache analysis, both options perform in a similar way in WCET.
Regarding the response time in multitask, Lock-MS performs better
and has higher predictability.
References

[1] L.C. Aparicio, J. Segarra, V. Viñals, C. Rodrífguez, J.L. Villarroel, Improving the
use of instruction cache-locking methods in multitasking real-time systems,
Tech. Rep. RR-09-01, Universidad de Zaragoza, March 2009.

[2] I. Puaut, D. Decotigny, Low-complexity algorithms for static cache locking in
multitasking hard real-time systems, in: IEEE Real-Time Systems Symposium,
2002.

[3] L. Sha, T. Abdelzaher, K.-E. Arzétn, A. Cervin, T. Baker, A. Burns, G. Buttazzo, M.
Caccamo, J. Lehoczky, A.K. Mok, Real time scheduling theory: a historical
perspective, Real-Time Systems 28 (2004) 101–155.

[4] J.V. Busquets, A. Wellings, Adding instruction cache effect to schedulability
analysis of preemptive real-time systems, in: Proceedings of RTAS96, 1996.

[5] C. Lee, K. Lee, J. Hahn, Y. Seo, S. Min, R. Ha, S. Hong, C. Park, M. Lee, C. Kim,
Bounding cache-related preemption delay for real-time systems, IEEE
Transactions on Software Engineering 27 (9) (2001).

[6] J. Staschulat, S. Schliecker, R. Ernst, Scheduling analysis of real-time systems
with precise modelling of cache related preemption delay, in: Proceedings of
the Euromicro Conference on Real-Time Systems, 2005, pp. 41–48.

[7] R. Wilhelm et al., The determination of worst-case execution times – overview
of the methods and survey of tools, ACM Transactions on Embedded
Computing Systems (TECS).

[8] L.C. Aparicio, J. Segarra, C. Rodrífguez, J.L. Villarroel, V. Viñals, Avoiding the
WCET overestimation on LRU instruction cache, in: IEEE International
Conference on Embedded and Real-Time Computing Systems and
Applications, 2008.

[9] R. Arnold, F. Mueller, D. Whalley, M. Harmon, Bounding worst-case instruction
cache performance, in: IEEE Real-Time Systems Symposium, 1994, pp. 172–
181.

[10] C. Ferdinand, R. Wilhelm, Efficient and precise cache behavior prediction for
real-time systems, Real-Time Systems 17 (2–3) (1999) 131–181.

[11] C. Healy, D. Whalley, M. Harmon, Integrating the timing analysis of pipelining
and instruction caching, in: IEEE Real-Time Systems Symposium, 1995, pp.
288–297.

[12] Y.T.S. Li, S. Malik, A. Wolfe, Cache modelling for real-time software: beyond
direct mapped instruction caches, in: IEEE Real-Time Systems Symposium,
1996, pp. 254–264.

[13] T. Lundqvist, P. Stenström, An integrated path and timing analysis method
based on cycle-level symbolic execution, Real-Time Systems 17 (2–3) (1999)
183–207.

[14] F. Mueller, Timing analysis for instruction caches, Real-Time Systems 18 (2–3)
(2000) 217–247.

[15] H. Theiling, C. Ferdinand, R. Wilhelm, Fast and precise WCET prediction by
separated cache and path analyses, Real-Time Systems 18 (2–3) (2000) 157–
179.

[16] A. Martí Campoy, N. Perles Ivars, J.V. Busquets Mataix, Static use of locking
caches in multitask preemptive real-time systems, in: IEEE Real-Time
Embedded System Workshop, 2001.

[17] H. Falk, S. Plazar, H. Theiling, Compile-time decided instruction cache locking
using worst-case execution paths, in: CODES + ISSS ’07: Proceedings of the
Fifth IEEE/ACM International Conference on Hardware/Software Codesign and
System Synthesis, ACM, New York, NY, USA, 2007, pp. 143–148. <http://
www.doi.acm.org/10.1145/1289816.1289853>.

[18] A. Martí Campoy, I. Puaut, N. Perles Ivars, J.V. Busquets Mataix, Cache contents
selection for statically-locked instruction caches: an algorithm comparison, in:
Euromicro Conference on Real Time Systems, IEEE Computer Society, Los
Alamitos, CA, USA. <http://www.doi.ieeecomputersociety.org/10.1109/
ECRTS.2005.34>.

[19] A. Martí Campoy, E. Tamura, S. Sáez, F. Rodrfguez, J.V. Busquets Mataix, On
using locking caches in embedded real-time systems, in: ICESS, 2005, pp. 150–
159.

[20] A. Martí Campoy, N. Perles Ivars, V.J. Busquets Mataix, Static use of locking
caches in multitask preemptive real-time systems, in: Proceedings of IEEE/IEE
Real-Time Embedded Systems Workshop (Satellite of the IEEE Real-Time
Systems Symposium), 2001.

[21] A. Arnaud, I. Puaut, Dynamic instruction cache locking in hard real-time
systems, in: Proceedings of the 14th International Conference on Real-Time
and Network Systems (RNTS), Poitiers, France, 2006.

[22] P. Jain, S. Devadas, D. Engels, L. Rudolph, Software-assisted cache replacement
mechanisms for embedded systems, in: Proceedings of the 2001 IEEE/ACM
International Conference on Computer-Aided Design, IEEE Press, San Jose, CA,
USA, 2001, pp. 119–126.

[23] E. Tamura, J.V. Busquets Mataix, A. Martí Campoy, Towards predictable, high-
performance memory hierarchies in fixed-priority preemptive multitasking
real-time systems, in: International Conference on Real-Time and Network
Systems.
utation in the presence of a lockable instruction cache in multitasking real-

http://www.doi.acm.org/10.1145/1289816.1289853
http://www.doi.acm.org/10.1145/1289816.1289853
http://www.doi.ieeecomputersociety.org/10.1109/ECRTS.2005.34
http://www.doi.ieeecomputersociety.org/10.1109/ECRTS.2005.34
http://dx.doi.org/10.1016/j.sysarc.2010.08.008


12 L.C. Aparicio et al. / Journal of Systems Architecture xxx (2010) xxx–xxx
[24] I. Puaut, WCET-centric software-controlled instruction caches for hard real-
time systems, Real-Time System Euromicro Conference (2006) 217–226.

[25] R. Reddy, P. Petrov, Eliminating inter-process cache interference through cache
reconfigurability for real-time and low-power embedded multi-tasking
systems, in: CASES ’07: Proceedings of the 2007 International Conference on
Compilers, Architecture, and Synthesis for Embedded Systems, ACM, New
York, NY, USA, 2007, pp. 198–207. <http://www.doi.acm.org/10.1145/
1289881.1289917>.

[26] V. Suhendra, T. Mitra, Exploring locking and partitioning for predictable shared
caches on multi-cores, in: DAC ’08: Proceedings of the 45th Annual Conference
on Design Automation, ACM, New York, NY, USA, 2008, pp. 300–303. <http://
www.doi.acm.org/10.1145/1391469.1391545>.

[27] D. Chiou, P. Jain, S. Devadas, L.Rudolph, Application-specific memory
management of embedded systems using software-controlled caches, Tech.
Rep., MIT, November 1999.

[28] P. Ranganatham, S. Adve, N. Jouppi, Reconfigurable caches and their
application to media processing, in: Proceedings of the Annual International
Symposium on Computer Architecture, 2000, pp. 214–224.

[29] J.E. Sasinowski, J.K. Strosnider, A dynamic programming algorithm for cache
memory partitioning for real-time systems, IEEE Transactions on Computer 42
(8) (1993) 997–1001. <http://www.dx.doi.org/10.1109/12.238493>.

[30] G.E. Suh, L. Rudolph, S. Devadas, Dynamic cache partitioning for simultaneous
multithreading systems, in: Proceedings of the IASTED International
Conference on Parallel and Distributed Computing and Systems, 2001, pp.
116–127.

[31] C. Zhang, F. Vahid, W. Najjar, A highly configurable cache architecture for
embedded systems, in: Proceedings of the Annual International Symposium on
Computer Architecture, 2003, pp. 136–146.

[32] V. Chvátal, Linear Programming, W.H. Freeman & Company, 1983.
[33] F. Rossi, P.V. Beek, T. Walsh, Handbook of Constraint Programming, Elsevier,

2006.
[34] A. Martí Campoy, S. Sáez, N. Perles Ivars, J.V. Busquets Mataix, Performance

comparison of locking caches under static and dynamic schedulers, in:
Proceedings of the 27th IFAC/IFIP/IEEE Workshop on Real-Time
Programming, IFAC/IFIP/IEEE, Lagow, 2003.

[35] S. Thoziyoor, N. Muralimanohar, J.H. Ahn, N.P. Jouppi, Cacti 5.3. <http://
www.hpl.hp.com/research/cacti/>.

[36] Chart watch: high-performance embedded processor cores, Microprocessor
Report 22 (2008) 26–27.

[37] A. Martí Campoy, N. Perles Ivars, F. Rodrfguez, J.V. Busquets Mataix, Static use
of locking caches vs. dynamic use of locking caches for real-time systems, in:
Canadian Conference on Electrical and Computer Engineering, 2003.

[38] R. Wilhelm, Why AI + ILP is good for WCET, but MC is not, nor ILP alone, in:
VMCAI, 2004, pp. 309–322.

Luis C. Aparicio received the degree in Mathematics
from University of Zaragoza (Spain) in 1997. In 2000, he
joined this University and currently he is a Ph.D. stu-
dent. His current research interests are cache memories
in real-time systems, timing analysis and worst-case
execution time.
Please cite this article in press as: L.C. Aparicio et al., Improving the WCET comp
time systems, J. Syst. Architect. (2010), doi:10.1016/j.sysarc.2010.08.008
Juan Segarra graduated in Computer Science from
Universitat Jaume I (Spain) and hold his Ph.D. in 2003
from the same university. Also in this year, he joined the
University of Zaragoza, where he is currently working as
a lecturer in the Informática e Ingeniería de Sistemas
Department. Also, he is member of the Computer
Architecture group (gaZ) of the University of Zaragoza.
His research interests include QoS, media distribution
and also worst-case execution time and worst-case
memory performance in hard real-time systems.
Clemente Rodríguez received the Bachelor’s degree in
Computer Science from the Autonomous University of
Barcelona, Spain in 1981 and the degree in Computer
Science in 1986 from the Polytechnic University of
Catalonia, Spain. He is a professor at the Computer
Architecture and Technology Department of the Basque
Country University where he has been working since
1988. Since 1990 he leads a group in parallel architec-
tures and computer architectures which has been par-
ticipating in several European and local research
projects. Since 2006 he is a member of the Computer
Architecture Group of the University of Zaragoza. His

interests include timing analysis and memory hierarchy.
Víctor Viñals received the M.S. degree in Telecommu-
nication, and the Ph.D. degree in Computer Science from
the Universitat Politècnica de Catalunya (UPC) in 1982
and 1987, respectively. He was associate professor in
the Facultat d’Informática de Barcelona (UPC) in the
1983–1988 period. Currently, he is full professor in the
Informática e Ingeniería de Sistemas Department at the
University of Zaragoza, in Zaragoza (Spain). His research
interests include processor microarchitecture, memory
hierarchy and parallel computer architecture. He is
member of the ACM and the IEEE Computer Society. He
also belongs to the Juslibol Midday Runners Team and

to the Computer Architecture Group of the University of Zaragoza.
utation in the presence of a lockable instruction cache in multitasking real-

http://www.doi.acm.org/10.1145/1289881.1289917
http://www.doi.acm.org/10.1145/1289881.1289917
http://www.doi.acm.org/10.1145/1391469.1391545
http://www.doi.acm.org/10.1145/1391469.1391545
http://www.dx.doi.org/10.1109/12.238493
http://www.hpl.hp.com/research/cacti/
http://www.hpl.hp.com/research/cacti/
http://dx.doi.org/10.1016/j.sysarc.2010.08.008

	Improving the WCET computation in the presence of a lockable instruction cache in multitasking real-time systems
	Introduction
	Related work
	Selection of memory lines with Lock-MS (Max. Schedulability)
	Avoiding the path-explicit constraints
	Performance evaluation
	Spatial locality
	Dynamic vs. static locking
	Analysis cost
	Lock-MS vs. worst-case conventional cache

	Conclusions
	References


