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Abstract—In multitasking real-time systems it is required
to compute the WCET of each task and also the effects
of interferences between tasks in the worst case. This is
complex with variable latency hardware usually found in the
fetch path of commercial processors. Some methods disable
cache replacement so that it is easier to model the cache
behavior. Lock-MS is an ILP based method to obtain the
best selection of memory lines to be locked in a dynamic
locking instruction cache. In this paper we first propose a
simple memory architecture implementing the next-line tagged
prefetch, specially designed for hard real-time systems. Then,
we extend Lock-MS to add support for hardware instruction
prefetch. Our results show that the WCET of a system with
prefetch and an instruction cache with size 5% of the total code
size is better than that of a system having no prefetch and cache
size 80 % of the code. We also evaluate the effects of the prefetch
penalty on the resulting WCET, showing that a system without
prefetch penalties has a worst-case performance 95% of the
ideal case. This highlights the importance of a good prefetch
design. Finally, the computation time of our analysis method
is relatively short, analyzing tasks of 96 KB with 10°° paths
in less than 3 minutes.

Keywords-WCET; prefetch; instruction cache;

I. INTRODUCTION

Real-time systems require that tasks complete their execu-
tion before specific deadlines. Given hardware components
with a fixed latency, the worst case execution time (WCET)
of a single task could be computed from the partial WCET of
each basic block of the task. However, in order to improve
performance, current processors perform many operations
with a variable duration. This is mainly due to speculation
(control or data) or to the use of hardware components with
variable latency. Branch predictors fall in the first category,
whereas memory hierarchy and datapath pipelining belong
to the second one. A memory hierarchy made up of one or
more cache levels takes advantage of program locality and
saves execution time and energy consumption by delivering
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Figure 1. Memory architecture. The LB/PB roles are switched after issuing
a prefetch.

data and instructions with an average latency of a few
processor cycles. Unfortunately, the cache behavior depends
on past references and it is required to know the previous
accesses sequence in order to compute the latency of a given
access in advance. Resolving these intra-task interferences
is a difficult problem its own. Anyway, real-time systems
usually work with several tasks which may interrupt each
other at any time. This makes the problem much more
complex, since the cost of infer-task interferences must also
be identified and bounded. Furthermore, both these problems
cannot be accurately solved independently, since the path
that leads to the worst case of an isolated task may change
when considering interferences. Cache locking tackles the
whole problem by disabling the cache replacement, so the
cache content does not vary. Specifically, for an instruction
cache, the instruction fetch hits and misses depend on
whether each instruction belongs to a cached and locked
memory line and not on the previous accesses.

In this paper we focus on the instruction fetch path. We
introduce an implementation of next-line tagged sequential
prefetching for real-time processors (Figure 1). It fetches
the next memory line in physical order. This prefetch buffer
(PB) is combined with a line buffer (LB) and a lockable
instruction cache, and its hardware complexity is very low.



So, whereas the lockable instruction cache captures temporal
locality, the LB captures spatial locality inside the current
memory line and the PB extends it so that it is also captured
outside the current line.

In order to use this architecture we extend Lock-MS
(Maximize Schedulability), an ILP-based method that obtains
the selection of memory lines to be loaded into the dynamic
locking instruction cache that minimizes the worst overall
execution cost (WCET plus preloading times at context
switches) [1]. The obtained worst-case performance is com-
pared with dynamic locking (Lock-MS) and static locking
(Lock-MU, Minimize Utilization) methods without prefetch.
Our results show that the usage of prefetch with a minimal
instruction cache performs better than systems with very
large instruction caches without prefetch.

This paper is organized as follows. In Section II we review
the background and related work. Section III describes our
proposed hardware architecture. The Lock-MS method is
extended in Section IV to include the previous hardware
architecture. Section V shows our results. Finally, Section VI
presents our conclusions.

II. RELATED WORK

Multitask preemptive real-time systems must be schedu-
lable to guarantee their expected operation. That is, all
tasks must complete their execution before their deadline.
Considering a fixed priority scheduler, feasibility of periodic
tasks can be tested in a number of ways [2]. Response Time
analysis is one of these mathematical approaches, and fits
very well as a schedulability test. This approach is based on
the following equation for independent tasks:
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where R; is the response time, C; is the WCET and T; is
the period of each task i, respectively. It is assumed that
tasks are ordered by priority (the lower the ¢ the higher the
priority). This equation provides the response time of each
task after a few iterations and it has been used in previous
studies [3], [4], [5]. A task meets its real-time constraints if
R; < D;, Vi, being D, the deadline.

The WCET of each task (C;) is not easy to obtain
in systems with cache memory. In the literature we find
different methods to approach the WCET problem in the
presence of caches [6]. These methods can be divided into
those that analyze the normal behavior of the cache, and
those which restrict its behavior to simplify the analysis.

The first kind of methods try to model each task and
system as accurately as possible considering the dynamic
behavior of the cache [7], [8], [9], [10], [11]. This analysis
is very hard, since the worst path depends on the cache
outcome, and the cache outcome affects the cost of each
path. Due to this complexity, interferences among tasks are

not usually considered and tasks are analyzed in isolation.
So, complementary methods are needed to adapt the WCET
of each isolated task to multitasking systems. This may be
done by further analysis to add the number of inter-task
interferences and their cost to the cost of each task [4], [5].

On the other hand, cache locking methods restrict the
cache behavior by using the ability to disable the cache
replacement, present in many commercial processors'. Hav-
ing specific contents fixed in cache, the timing analysis is
easier, so these methods can afford a full system analysis,
i.e. several tasks on a real-time scheduler. Cache-locking
techniques can also be divided into static and dynamic cache
locking. Static locking methods preload the cache content
at system start-up and fix this content for the whole system
lifetime so that it never gets replaced [12], [13]. On the other
hand, dynamic cache locking allows the tasks to disable and
enable the cache replacement at will [14], [15], [16], [17].
Although there are studies which allow instruction cache
reloading at any point [16], most of them restrict reloading
to context switches [1], [14], [15]. These approaches call
for a per-task selection of contents, with the drawback of
preloading every time that a task enters the CPU. Our
base method, Lock-MS (Maximize Schedulability) belongs
to this type of methods. Lock-MS models can be set both
in compact and path-explicit versions. Whereas the path-
explicit version may be easier to understand and necessary
to include execution-history dependent timings, the compact
version offers a much better performance due to the model
description being much shorter [1].

Most of the methods dealing with the instruction cache
do not consider other variable-latency component in the
instruction fetch path. Only a few of them include a line
buffer, which improves performance and does not present
relevant difficulties in its analysis (e.g. [1], [16]). Instruc-
tion prefetching involves predicting future program counter
addresses and sending them to the next memory level
in order to overlap execution and miss processing time.
Much research has been done on the subject for general
purpose processors, focusing on coverage, precision and
timeliness, both from software and hardware point of view
(see for instance [18], [19]). However, prefetch is not usually
considered in real time frameworks, since its timing is
not straightforward to model and it pollutes the cache.
Sequential prefetching is the simplest and oldest hardware
alternative. Three simple algorithms have been proposed,
differing in the conditions that launch the prefetch. Next-line
always launches the prefetch for line ¢ + 1 every time that
there is a reference to line 7 [20]. Next-line on miss launches
it only if the access to the current line misses. The next-line
tagged scheme issues a prefetch if the current fetch misses or
it hits in a previously prefetched line [21]. All these schemes

IFor instance, Motorola (ColdFire, PowerPC, MPC7451, MPC7400),
MIPS32, ARM (904, 946E-S), Integrated Device Technology (79R4650,
T9RC64574), Intel 960, etc.



can be extended in degree or distance (prefetch the next n
lines or prefetch the line at a distance n, respectively) [22].

It is important to notice that one of the main difficulties
in the WCET analysis in the presence of prefetch is that
the cache gets polluted. However, since we work with
a prefetch buffer and a locked cache, our cache content
remains unchanged.

III. HARDWARE ARCHITECTURE

Our memory hierarchy consists of a lockable instruction
cache, a line buffer (LB) and a prefetch buffer (PB), as can
be seen in Figure 1. These two single-line address-tagged
buffers capture spatial locality and support the on-miss
tagged sequential prefetching. The fetch lookup proceeds
in parallel in the instruction cache, LB and PB. A hit in
either structure delivers the instruction in a processor cycle,
while a miss in the three structures leads to requesting
the line to the next memory level (an embedded SRAM
in our model), filling later the LB with the incoming line,
and scheduling a sequential prefetching directed to the PB.
In contrast to conventional tagged prefetching where the
cache cannot be locked, in order to support the tagged
prefetching, both buffers have a bit-tag to inform the prefetch
controller of the first use of a prefetched line. Then, on
such a first use, the prefetch controller looks up the cache
(we assume a dedicated lookup port) and, if it misses, the
prefetch is issued to the next level and the current PB/LB
role is interchanged, being the current LB the new PB, and
the current PB the new LB, which invalidates its content.
Summarizing, the described memory system has three key
advantages: it is simple, it is a suitable implementation of
prefetching for a locking cache and, as we will see, it is
amenable for use in an ILP-based WCET analysis. The
only specific behavior to consider is that, on an LB/PB
miss and cache hit, the buffers invalidate their content.
This removes the potential dependencies on the previous
path. Finally, we consider that our system has no additional
sources of latency variability (data cache, branch predictor,
out-of-order execution, etc.). Most embedded processors can
operate under these considerations, which are also assumed
in previous studies [12], [13].

IV. SUPPORTING HARDWARE PREFETCH IN LOCK-MS

We consider a multitask system with the memory archi-
tecture described in the previous section, so its behavior is
completely predictable. Having a dynamic locking approach,
the cache content is preloaded every time a task enters the
CPU. In this way each task can take profit of the whole
cache with the drawback of the preloading costs in context
switches. We also consider that all loop bounds are known.

The aim of Lock-MS is to provide a selection of lines
such that, when locked, the schedulability of the whole
system is maximal. To obtain this selection of lines, Lock-
MS considers the resulting WCET of each task, the effects

of interferences between tasks and the cost of preloading the
selected lines into cache. This method is based on Integer
Linear Programming (ILP) [23], [24]. Thus, all requirements
must be modeled as a set of linear constraints and then the
resulting system is minimized.

The constraints in Lock-MS can be either path-explicit
or compact. Whereas the compact model offers a superior
performance, it may be harder to understand. So, we first
describe the integration of prefetch into the path-explicit
model and then we show how to transform it into the
compact model.

Path-explicit model overview: The main idea of con-
straints is to define the worst overall cost of a task as the
function to minimize. This worst cost of task ¢ is the WCET
plus the number of context switches (ncswitch) times the
switch cost:

Weost; = weet; + neswitch; - switchCost; 2)

The WCET of a task ¢ must be equal to the cost of its worst
path, i.e. it must be equal or greater than any of its paths j:

weet; > pathCost; ; V1 < j < NPaths;

where, using the path-explicit Lock-MS constraints, the cost
of each path can be computed as the sum of the cost of its
particular memory lines:

NLines; ;

Z lineCost; j 1,
k=1

pathCost; j =

In turn, the cost of each memory line can be computed by
knowing the number of instruction cache hits (n/Chit) and
misses (n/Cmiss) to the line k in the specific path j of task
1 and the hit and miss costs (/ChitCost and ICmissCost).
Since the cache is locked, the number of hits and misses will
be either zero or the number of accesses. This can be easily
computed by knowing the total number of times that this line
is accessed (nfetch) and whether its corresponding physical
memory line is cached (cached; = 1) or not (cached; = 0).

lineCost; j 1, = IChitCost; j i - ndChit, j , +
1CmissCost; ;i - nICmiss; ;. (3)
nlChit; j x = nfetch, ;, - cached,

nlCmiss; j = nfetch; ; . — nIChit; j

In a similar way, the switch cost to task ¢ depends on the
number of memory lines to preload in each context switch
(numcached) times the preload cost of each single line
(ICpreloadCost). Also, it depends on the possible penalties

for flushing the LB/PB if they contain useful data.

Mlines—1

Z cached,

1=0
switchCost; = I1CpreloadCost - numcached; +

numcached; =

(tmisspp — thitrp) + (tmisspp — thitpp)



Finally, the cache configuration (sets S and ways W) must
be also specified:

W > cacheds + cachedsis + cachedgios + - - -

-+ +cachedsins V0 <s<S, s € Integer

So, minimizing Wecost; we get the selection of lines
cached; (and the values of wcet, Wcost, switchCost, etc.)
such that when preloaded and locked into cache, the worst
overall cost of task ¢ is minimal. For further details not
related to our prefetch contribution, please refer to the paper
describing Lock-MS [1].

Introducing prefetch to the cost of hits and misses: In
order to compute the execution costs we assume a simple
processor where instruction fetch and execution proceed
sequentially. For a cached memory line containing one or
more (nIns) instructions we can compute the total cost as
the fetch cost plus the execution cost (texec). The fetch cost
is the instruction cache memory hit time (thitcp,) times the
number of instructions (nIns) in the line k.

IChitCost; ; ), = texec; j , + thitcar - ndns; ;i

Depending on the memory architecture, the penalties on
cache misses may vary. Let us start assuming that we
have a locked cache (replacements disabled) and no other
component is present. In this case, the miss cost is the
execution time of the instructions in the memory line, plus
one cache miss time for each of them:

ICmissCost; j 1 = texec; j i + tmissca - ndns; j i

Adding a line buffer, the cache miss cost is the sum of
the execution time (texec), a single LB miss (tmissrp)
and one LB hit (thityp) for the remaining instructions in
the memory line ((nIns — 1)):

ICmissCost; ;, = texec; i +tmissrp +

thitrp - (ﬂlnsi,j,k -1)

Having cache memory, line buffer and hardware prefetch
buffer, the computation of the cache miss cost is more com-
plex. Prefetching implies fetching a memory line while the
previous line is being executed, trying to overlap the current
fetch with the execution of the preceding line, and thus
hiding the fetch latency of the new memory line. According
to next-line tagged prefetch, we assume that misses and
first references to prefetched lines start prefetching the next
memory line. Being a speculative action, the prefetch may
succeed or not. Within a straight-code sequence sequential
prefetching always gets the correct line, but on jumps or
taken branches it fetches an incorrect line (except for jumps
to the next physical line). In this latter case the correct
memory line will be demanded to the next level and stored
in the LB as in a system without prefetch. Thus, we cannot
compute the cost of a memory line as above (eq. 3: cache
hits plus cache misses), but we need to consider two cache

miss cases: cache miss with prefetch hit and cache miss with
prefetch miss.

lineCost; ;. = IChitCost; ;. - nIChit; ;1 +
PBCost; j 1 - nICmissPBhit; ;1 +
LBCost; j 1 - nICmissPBmiss; j

So, instead of accounting the number of fetches of each
memory line as above, it is needed to separate this account
into sequential fetches, coming after the previous line in
physical order (nfetchInSequence), and fetches after jumps
(nfetchAfterJump). These constants can be easily obtained
by statically parsing the code, as the number of fetches in
the original Lock-MS method.

nfetch; ;= nfetchInSequence, ; . +
nfetchAfterJump; ; .
nlChit; ; 1 nfetchid’k - cached;
nCmissPBhit; ; nfetch[nSequencem’k .
(1 — cachedy)
nCmissPBmiss; j,, = nfetchAfterJump, ;. -
(1 — cached;)

The cache miss cost with prefetch miss is the same as not
having hardware prefetch, as above:

LBCost; j. = texec;j +tmisspp +

thitLB . (n[nsi,j,k - 1)

Having a prefetch hit, the prefetch penalty not hidden
(PBPenalty) is the time required to service the memory
line from memory (tmisspp) minus the service (from LB
or cache) and execution cost of the preceding memory line,
i.e. the IChitCost of the preceding line.? Since this penalty
must be equal or greater than zero we translate it into two
constraints:

PBPenalty; ; i
PBPenalty; j
PBCOSti’j’k =

tmisspp — IChitCost; j 11
0

texec; ;. + PBPenalty; ;1 +
thitrg - (nIns; ji — 1)

2
>

Note that once a prefetched memory line is already stored
in PB and the processor starts fetching from it, the PB role
switches to the LB role. That is why all instructions have
an access cost of thitrg.

Let us see graphically how the timings on the first access
to memory lines are set. Figure 2 shows an example of
basic blocks and memory lines (L, ) covering all the prefetch
cases that may appear. Let us assume that none of these
memory lines is cached, since otherwise the fetch cost would

2We consider that a cache hit has the same cost than an LB hit.
Technologically, this is the usual situation and avoids detailing where the
previous memory line was, which would require to replicate this constraint.
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Figure 2. Example of prefetch cases.

Table I
FETCH COST OF THE FIRST ACCESS TO MEMORY LINES IN FIGURE 2
FOR SYSTEMS WITHOUT AND WITH PREFETCH.

No Prefetch Prefetch
Line | Path-expl. Path-expl.
1 2p Cm 1 p 5 Cm

L LB LB LB LB LB LB
L, | LB LB LB | PB—L; PB-I, PB—-I1,
Loy 0 - 0 0 - 0

L3 LB - LB | PB—L»> - PB—L,
Li, | LB - LB | PB—L3 - PB—L3
Ly - LB LB - LB LB
Ls - LB LB - PB— Ly, PB— L4
Lea - LB 0 - PB—-Ls | PB—Ls—LB
Ley | LB O LB LB 0 LB
L~ LB LB LB | PB—Lg, PB—Lg PB—Lg;

be always a hit cost. If there is LB and no prefetch, the
fetch cost of the first access to the line (i.e. discarding the
execution costs and the hit costs once the line is already in
LB) is the LB cost (tmissyp) for every accessed line. If
there is LB and PB, the fetch cost of the first access to the
line may be the LB cost (after a jump) or the maximum PB
fetch cost (tmisspp) minus the execution of the previous
memory line (/ChitCost; j;—1). Table I summarizes these
costs for paths 1 and 2 of Figure 2. Columns are grouped
into No prefetch and Prefetch. Using the path-explicit models
for paths 1 and 2, there can be seen that divided memory
lines (e.g. Log, Lop) consecutively accessed have a single
fetch cost. Also, having prefetch, the cost to be subtracted
may be that of a full line or a divided one, depending on
whether the whole line is executed previously or not. All
this information can be obtained by statically analyzing the
code. Fetch costs for the compact model (Cm columns) are
discussed below.

A. Compact Model

As outlined above, the previous constraints refer to the
path-explicit Lock-MS model. This model is relatively easy
to understand and has an acceptable analysis time. Without
prefetch this path-explicit model can be transformed into
a compact model whose analysis is not dependent on the
number of paths [1]. This can reduce very much the analysis
time for benchmarks. In the columns labeled as Cm, Table 1
shows the fetch cost of the first access to each line using
the compact model. As it can be seen, the transformation
without prefetch is straightforward, with the only detail of
setting the fetch cost of divided memory lines to the part in
the common path (e.g. Lo, and Lgy).

However, this transformation is not directly applicable to a
system with prefetch without allowing certain WCET over-
estimation. In general the compact model would maintain
the prefetch accuracy when the prefetch is more effective,
since many of the memory lines are accessed sequentially
independently of the execution path. In the other cases, the
WCET overestimation would be bounded by the number
of accesses to a given memory line times the maximum
overestimation on the memory line fetch cost. The last
column in Table I shows the application of the compact
model with this overestimation. In general, the fetch cost
of most memory lines is also straightforward to set. The
previous detail on the divided memory lines can be also
extended to prefetch (Log, Lop), but in some cases it may
imply a more elaborated (yet straightforward) computation
(e.g. Lgq» Lep). The overestimation can be seen in the cost of
line L;. The prefetch cost in this line depends on the path
previously taken and, since not all paths go through L7,
there is no way of reorganizing the associated costs to get a
precise cost computation. In this case, the fetch cost of the
first access to this line must be overestimated by assuming
the worst possible case: PB—Lgy,.

As an intermediate solution, an hybrid path-
explicit/compact model is also possible [1]. This option has
been proposed to deal with high level functional control
flow information or execution-history dependent instruction
timings, as in other ILP methods [8]. So, path-explicit
constraints can be used inside a compact model to define
specific execution behaviors. In a similar way, chunks of
code where prefetch involves overestimations could be
analyzed using path-explicit constraints. In the example in
Figure 2 this would imply to use path-explicit constraints
from a common point above the path fork (L) to the
non-compactable memory line L7, so that the cost of L~
can be accurately set depending on the path. The partial
cost computed in this way would be added to the cost of
the rest of the task computed with the compact model.

V. RESULTS

We assume periodic tasks with fixed priorities managed by
a Rate Monotonic scheduler. Table II shows the two sets of



Table II
TASK SETS “SMALL” AND “MEDIUM”.

Set Task I{Sg};}y Period Size

jfdctint 10108 23248 | 1072 B

small cre 109696 329088 536 B
matmul 542229 2440031 208 B

integral 716633 3583165 400 B

minver 8522 19601 | 1360 B

medium qurt 10117 30351 752 B
jfdctint 10108 44475 | 1072 B

fft 2886680 | 15010736 | 1016 B

tasks used in our experiments. Benchmarks include JPEG
integer implementation of the forward DCT, CRC, matrix
multiplication, integral computation by intervals, matrix
inversion, computation of roots of quadratic equations and
FFT. Sources have been compiled with GCC 2.95.2 -O2 and
there has been no address tuning of the tasks, i.e. the code
of each task begins at an address mapped to cache set 0. The
WCET in this table refers to the LB-only system and it has
been computed without context switches. Periods have been
set so that the CPU utilization of each task in the LB-only
system is 1.2. The “small” and “medium” task sets and the
relation between the periods for each task have already been
used in previous studies [1], [13].

Note that the WCETs and periods of each task set follow
different patterns. In the small task set, WCETSs and periods
grow as the priority in tasks decreases. Their maximum
growth can be seen in the period, being around one order
of magnitude in most cases. However, the medium task set
has relatively small WCETs and periods for all tasks but the
one with the lowest priority, which is around three orders of
magnitude larger. This means that the lowest priority task in
the medium task set will be interrupted many times. So, in
general, the medium task set will have more context switches
than the small task set for a given time period.

The target architecture considered in our experiments
is an ARM?7 processor with instructions of 4 bytes. The
LB/PB size (and memory/cache line size) is 16 bytes, or
4 instructions. The instruction caches are varied in size from
128 bytes to 4 KB and the eSRAM is kept fixed at 256 KB.
In order to compute memory delays we have used Cacti v5.3,
a cache circuit modeling tool [25], assuming a future high-
performance embedded processor built in 32 nm technology
and running at processor cycle equivalent to 36 FO4°. We
have verified that all the tested caches, excluding the fully
associative ones, meet the cycle time constraint. Besides,
the access time of the 256 KB eSRAM is 7 cycles if we
choose to implement it with low standby power transistors.
Therefore, instruction fetch costs are 1 cycle on cache or

3A fan-out-of-4 (FO4) represents the delay of an inverter driving four
copies of itself. A processor cycle of 36 FO4 at 32 nm technology would
result in a clock frequency around 2.4 GHz, which is in line with the market
trends [26].

LB instruction hit, 7 cycles on LB miss and a specific value
between 1 and 7 cycles on PB hit, depending on prefetch
timeliness. All data accesses are delivered directly from the
eSRAM. The modeled execution costs are 1 cycle for non-
executed predicated instructions*, 2 cycles for non-memory
instructions, and 1+7 cycles for loads and stores.

Next we characterize separately each single task by com-
puting its WCET in four fetch systems, namely, Direct-
eSRAM fetch (upper bound), LB-only fetch (upper bound),
LB+PB fetch and Single-cycle fetch (lower bound). Then,
we compare the whole multitasking system (LB + PB
+ iCache system) with systems without prefetch using
Lock-MS (dynamic locking) [1] and Lock-MU (static lock-
ing) [13]. Next, to avoid the influence of the particular task
code, we study the effects on the WCET of several forced
prefetch penalties. Finally, we discuss the analysis cost.

A. Spatial Locality

Figure 3 shows, for each benchmark, the WCET of the
LB-only, LB+PB and Single-cycle systems relative to a
Direct-eSRAM system. A Single-cycle fetch system would
correspond to a system with an ideal instruction cache,
whereas a Direct-eSRAM fetch system would correspond
to an easily predictable system with the instruction cache
disabled. As it can be seen, WCETs are significantly
lowered just by exploiting the spatial locality inside the
current memory line. On average, an LB-only system re-
duces the Direct-eSRAM WCET by a 0.53x factor. When
exploiting the spatial locality both inside and outside the
current line, LB+PB reduces the Direct-eSRAM WCET
by a 0.40x factor. Finally, a Single-cycle system reduces
the Direct-eSRAM WCET by a 0.33x factor on average.
Obviously this Single-cycle system would need the whole
program preloaded and fitting into cache, but it gives an
idea of how far the ideal case is. So, the WCET reduction
achieved by enhancing an LB+PB system with an instruction
cache (temporal locality) could be up to an additional 7%
at most (from 0.40 to 0.33, assuming that the ideal 0.33
is reachable). Results for individual tasks depart somewhat
from the average case, but the trends are quite similar.

Utilization (Figure 4) can be used to test the spatial
locality effects on multitasking systems. It is computed as
the fraction of time the CPU is busy executing the task set
in the worst case:

U— N%’CS Weost;
- i=1 T;
Utilization values above 1 indicate the system is not exe-
cutable (and not schedulable). On values below 1, the system
may (or may not) be schedulable, depending on the response

4Predicated instructions are those general (not jump) instructions that
include several test bits, so that the instruction is executed as long as the
test is true.
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times and deadlines (R; < D;,Vi). We use the periods as
the deadlines. As indicated above, the periods have been
set for both task sets in order to get an utilization value of
1.2 in the LB-only system. Using line buffer and hardware
prefetch (without cache), the system utilization is below 0.9.
So, the LB+PB captures spatial locality pretty well, almost
halving the utilization of a system without LB. In this case,
the performance gain in these task sets by an instruction
cache can be no more than 6%.

These results show that instruction prefetch is very effec-
tive in worst-case performance, improving both single task
and multitasking systems.

B. Dynamic Locking with Hardware Prefetch

As outlined above, hardware prefetch can increase worst-
case performance significantly. With the timings considered,
the average cycles per instruction (CPI) is one fetch hit cycle
plus two execution cycles. This means that it is required
to consume at least three instructions (of the four that
may be stored in each memory line) to pay no prefetch
penalties (3 cycles x 3 instr. > 7 memory fetch cycles).
The possibility of prefetching with no penalties is common
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Figure 5. Response times normalized in respect of the ideal case (Single-
cycle fetch).

in systems including prefetch (e.g. PIC32MX3XX/4XX flash
microcontrollers).

Figure 5 shows the results comparing several configura-
tions of cache plus LB using dynamic (Lock-MS) and static
locking (Lock-MU) with those also using prefetch. For the
experiments with instruction cache and prefetch we use dy-
namic locking (Lock-MS), since in general they will require
few lines to be cached and locked, and it is well known that
dynamic locking performs better than static on small caches.
Instruction cache sizes range from 5% to 80% of the task
set size (percentages shown over the bars). Using dynamic
locking their configuration is always direct mapped since
other options present very similar results. For static locking,
both direct mapped and full associative configurations are
presented, since they may differ very much. Results without
prefetch are similar to those in previous studies [1], [14],
[15], [16]. One detail to consider is that the medium task
set presents much more context switches than the small task
set, which benefits static locking.



When introducing the prefetch buffer, the LB+PB com-
bination is very effective, reducing drastically the cache
requirements, both for the small and the medium task sets.
This can be easily explained because, in the general case, the
only memory lines to be cached are those at jump destina-
tions, which would never be correctly prefetched. Obviously
there are more details to consider, such as memory lines
with few instructions, but the ILP solver handles them all
automatically. In the small task set, prefetch with 5% of
cached contents outperforms both the static and dynamic
locking approaches without prefetch, even having 16 times
more cache size (80% of the task set size). In the medium
task set the combination with prefetch is also the best
one, except for the fully associative 4 KB static locking
instruction cache. However, note that such an instruction
cache is not realistic since it would imply hit times much
higher than 1 cycle because the look-up procedure would
require several cycles. Also, remember that the medium
task set has a high number of context switches, which
penalizes dynamic locking policies but not static ones. So,
under certain conditions, it is possible that a large cache
having a significant associativity degree using static locking
may outperform a combination of prefetch with a very
small instruction cache using dynamic locking. Nevertheless,
a small instruction cache with prefetch seems the most
adequate option.

These results show that the combination of line buffer with
prefetch and a (minimal) dynamic locking cache outperforms
systems with line buffer and larger caches without prefetch.

C. Effects of prefetch penalties

For the prefetch to be effective, the fetch time of the
prefetched memory line must be hidden by the execution
time of the previous line. So, the effectiveness will depend
on the number of instructions in the previous line and how
much they take to be executed. This depends on the hardware
timings and on the particular code to analyze. To evaluate
the effects of the prefetch penalty (fetch cycles not hidden
using prefetch) we have forced several prefetch penalties.
The forced prefetch penalties are 4 cycles (PB4) and 0 cycles
(PB0). A O-cycle penalty means that the prefetch works in
an ideal way, i.e. on prefetch hits it fetches memory lines
before they are needed. A 4-cycle prefetch penalty means
that every fetch (by prefetch hit) of a new memory line costs
4 cycles. The worst prefetch case would be a prefetch taking
the same time than not prefetching, i.e. 7 cycles, which is
equivalent to not having PB.

Additionally, since these results will not be comparable to
the previous ones, we perform this analysis on a collection
of large synthetic tasks. These tasks range between 16 KB
and 96 KB of code size, with 512 to 10% possible paths
through consecutive conditional statements.

Figure 6 shows the relative worst-case performance of
several memory architectures without cache. There can be
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Figure 6. WCET without cache.

seen that the average prefetch penalty is decisive in the per-
formance that the final system can provide. Whereas a sys-
tem able to prefetch without penalties (LB+PB0) performs
really close to the ideal Single-cycle case, the performance
of a system with intermediate penalties (LB+PB4) is at a
distance 0.13 of that of a system without prefetch (LB-only).

Adding a dynamic-locking direct-mapped instruction
cache, some prefetch misses can be avoided by caching the
memory lines after jumps. This can be seen in Figure 7.
The smaller the task size, the more it can be cached, so
the WCET is nearer to the ideal one. In the same way, the
larger the cache size, the better the results. However, the
performance gain because of the cache size depends on the
available margin. That is, the performance gain when adding
an instruction cache to the LB+PBO system is much lower
than that of adding it to a system with just an LB.

So, a hardware design avoiding prefetch penalties is a key
factor to reach the best worst-case performance.

D. Analysis Cost

The analysis of the initial non-synthetic benchmarks takes
a few milliseconds, so the discussion of their analysis is
not relevant. In this section we test the analysis time of
Lock-MS with compact models using the previous synthetic
tasks. For these experiments we have used Ip_solve version
5.5.0.13 using the default branch-and-bound rule (lowest
indexed non-integer column) on a 2.33 GHz Intel Core 2
(32-bit).

First of all, we have observed that the solver gets the
optimal (or a very close) solution of the minimization
function Wcost (eq. 2) in a very short time, and then
spends the rest of the time testing similar solutions. Thus,
using the first integer solution can save us much time and
its accuracy can be easily tested by the real (not integer)
solution. Although the real solution is not necessarily a valid
ILP solution, it is faster (the solution space is continuous)
and there cannot exist any better solution to the problem,
i.e. it is a lower bound. Thus, the difference between any
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valid integer solution and the real one gives an idea of the
goodness of the integer solution. Considering all experiments
in this section, our results show that in 28% of cases the
difference is 0, i.e. the real solution is also integer and both
solutions coincide. Also, we have found no differences above
0.45%. This means that the obtained result is exact in 28%
of cases, and in the other 72% the potential overestimation
(probably not reachable because of the real solution being a
lower bound) when using the first integer solution differs at
most in five CPU cycles per thousand.

Figure 8 depicts the analysis time (both for the real and
first integer solutions) as the complexity of the analysis
grows. The x axis shows the program size, but both the cache
size and the number of possible paths grow along this axis.
Each code has been analyzed for three cache sizes, which
can be seen in the plot as three marks for the same x value,
both for real and integer solutions. The basic instruction
cache has 64 sets and 4, 8 and 12 ways with sizes of 4,
8 and 12 KB respectively, and have a multiplicative factor
(on the associativity degree and size) along the x axis (see
labels in Figure 8). The resulting values have been fitted
to a potential function, also shown in the figure. It can
be seen that the analysis time grows approximately in a
quadratic way when the complexity (code size, cache size
and number of paths simultaneously) grows. The analysis
of such large benchmarks (96 KB, 10%° paths, 72 way set-
associative cache) takes no longer than 3 minutes.

VI. CONCLUSIONS

In this paper we propose a simple memory architecture for
real time systems. It is composed of a lockable instruction
cache, a line buffer and a prefetch buffer implementing
the next-line tagged prefetch. This architecture is easy to
implement and highly predictable.

To analyze this architecture we extend Lock-MS, an ILP-
based method that obtains the selection of memory lines
to be loaded into the dynamic locking instruction cache
that minimizes the worst overall execution cost (WCET

WCET of synthetic tasks combining instruction cache, line buffer and prefetch with forced prefetch penalties.
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Figure 8. Analysis time as the complexity grows (iCache base sizes of 4,
8 and 12 KB).

plus preloading times at context switches). The prefetch
extension of the path-explicit Lock-MS model is possible by
adding new constraints to compute the prefetch penalty of
the memory lines. However, this path-explicit model cannot
be transformed directly into a compact Lock-MS model
without introducing certain overestimations. We show that
these possible overestimations are relatively small and they
can be avoided by an hybrid path-explicit/compact Lock-MS
model.

Our results shows that hardware prefetch reduces very
much the resulting WCET. A system with prefetch and
without cache has a WCET comparable to a system without
prefetch and a dynamic locking cache with size 10% of the
task set code. Comparing to static locking, this cacheless
system with prefetch performs better than a static locking
direct-mapped cache with size 80% of the task set code,
and very near to a full associative cache with size 40% of
the task set code. Adding just a dynamic locking cache of
size 5% of the task set code to the system with prefetch,
the resulting WCET outperforms all other realistic systems.
We also evaluate the effects of the prefetch penalty on



the resulting WCET showing that, without cache, a system
without prefetch penalties has a performance 95% of the
ideal case. These results state the importance of a good
prefetch design and its benefits when used in combination
with a small dynamic locking cache. Finally, the analysis
cost of the method is very low, being able to analyze large
benchmarks (96 KB, 105° paths, 72 way set-associative
cache) in less than 3 minutes.
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