
Avoiding the WCET Overestimation on LRU Instruction Cache∗

L. C. Aparicio†, J. Segarra†, C. Rodrı́guez‡, J. L. Villarroel† and V. Viñals†
†{luisapa, jsegarra, jlvilla, victor}@unizar.es, DIIS, Universidad de Zaragoza

‡acprolac@si.ehu.es, DATC, Universidad del Paı́s Vasco

Abstract

The WCET computation is one of the main challenges in
hard real-time systems, since all further analysis is based
on this value. The complexity of this problem leads existing
analysis methods to compute WCET bounds instead of the
exact WCET. In this work we propose a technique to com-
pute the exact instruction fetch contribution to the WCET
(IFC-WCET) in presence of a LRU instruction cache. We
prove that an exact computation does not need to analyze
the full exponential number of possible execution paths, but
only a bounded subset of them. In the benchmark codes
we have studied, the IFC-WCET is up to 62% lower than a
bound computed with a widely used approach, and the dif-
ference between the number of possible execution paths and
the ones relevant for the analysis is extremely large.

1 Introduction

Computation of the Worst Case Execution Time
(WCET) of a task is one of the main challenges in the study
of hard real-time systems. WCET is difficult to obtain since
it depends on both hardware and software, but it is needed
in order to guarantee the time requirements of the system.

Given hardware components with a fixed latency, the
WCET can be computed from the partial WCET of each
basic block of a program. However, in order to improve
performance, current processors perform many operations
with a variable duration. This is mainly due to speculation
(control or data) or to the use of hardware components with
variable latency. Branch or store-load independence predic-
tors fall in the first category, whereas memory hierarchy and
datapath pipelining belongs to the second one. A memory
hierarchy made up of one or more cache levels takes profit
of program locality and saves execution time and energy
consumption by delivering data and instructions with an av-
erage latency of a few processor cycles. Unfortunately, the

∗This work has been supported by the project Grupo Consolidado de
Investigación of the Diputación General de Aragón and by the project
TIN2007-66423 of the MEC/MCyT of Spain.

cache behavior depends on the past references and, in order
to compute in advance the latency of a given access, it is
required to know the previous access sequence. So, to com-
pute the exact instruction fetch contribution to the WCET
(IFC-WCET) in presence of caches it is needed to analyze
each and every execution path.

In the literature we find different methods to approach
the WCET problem in presence of caches [11]. Due to
the difficulty of the problem, most of these methods try
to solve it by dividing the problem in two (or more) sim-
pler steps [2, 3, 4, 5, 6, 7, 10]. In the first step, they avoid
the combinatorial explosion of paths by not always remem-
bering the whole history of the followed one. This is gen-
erally referenced as path merging, where several different
possible executions reaching a concrete point are merged,
guaranteeing that the resulting combined path is not better
than any of the original ones. Having less (or even just one)
paths to analyze, it is possible to classify each memory ac-
cess either as a hit, a miss or an uncertainty, which may
also have additional information (e.g. A first miss classifi-
cation in Static Cache Simulation means a miss followed
by successive hits [7]). Since WCET bounds must be up-
per bounds, any uncertainty must be considered as the worst
possible case. In a second step, the timing of executing each
instruction is considered to compute the WCET bound.

In this paper we propose a technique aimed towards the
exact computation of the IFC-WCET in presence of an in-
struction cache. We prove that an exact IFC-WCET compu-
tation does not need to analyze the full exponential number
of possible execution paths, but only a bounded subset of
them. Our approach allows to discard most of them and
focus just on the relevant ones. In the benchmark codes
we have studied, the IFC-WCET is up to 62% lower than
a bound obtained by the well-known Static Cache Simula-
tion method [7]. Also, the number of execution paths that
we need to analyze may be up to 2 800 orders of magnitude
lower than the possible execution paths.

This paper is structured as follows. In Section 2 we
bound the number of paths to be analyzed. In Section 3 we
show our obtained results. Finally, conclusions and future
work are presented in Section 4.



2 Bounding the Number of Relevant Paths

In this section we prove that in order to obtain the exact
instruction fetch contribution to the WCET, the number of
paths to explore is bounded and much lower than the num-
ber of possible execution paths.

We assume that the timing effect of instruction cache is
independent of any other hardware component. We con-
sider a common replacement policy: least recently used
(LRU), where cache content is ordered by the time of the
last reference. Having an LRU replacement policy, in order
to be general, we are going to deal with the most challeng-
ing LRU cache architecture for the WCET analysis, which
is a fully associative cache (no conflict misses) with unlim-
ited size (no capacity misses). This avoids all evictions and
tracks a global ordering of blocks (instead of a per-set or-
dering), which maximizes differences in cache states.

2.1 Bounds inside Loops

We are going to prove that an n-iteration loop enclosing
p-alternative paths can only lead to

∑min(p,n)
i=1

p!
(p−i)! differ-

ent cache states (Proposition 3), and not to pn, which is the
number of distinct paths in the loop. For now on, we will
assume that the number of loop iterations n is bigger than
the number of alternative paths p inside the loop, which is
the usual case and results in cleaner formulas.

∑p
i=1

p!
(p−i)!

is independent on n and, for practical purposes, nicely
bounded. In order to bound the maximum number of dif-
ferent cache states we give the following definitions, prop-
erties and propositions about sequences of instruction block
addresses. An instruction block address is the address is-
sued by the processor to fetch an instruction, without the
least b significant bits for an instruction cache organized in
blocks of 2b bytes (also called lines in the cache literature).
To shorten, from now on a sequence of instruction block
addresses will be simply called an address sequence.

Definition 1. We define the Ordered Set of Blocks (OSB)
as the set of different blocks ordered in increasing order of
access time in an address sequence. That is, let A be the
address sequence generated along an execution path of a
program. OSBA is the ordered set of different instruction
blocks fetched during the execution of such a path. Note
that the order of a block in an OSB depends only on the
time of its last access (LRU ordering).

For example, the OSB associated with the address se-
quence [bi, bi, bj , bj , bk, bk] is {bi, bj , bk}, and in another
example, the OSB associated with the address sequence
[bi, bi, bj , bj , bk, bk, bj , bj ] is {bi, bk, bj}.

For notation purposes, we denote OSBAB as OSBA ∪
OSBB and we assume A 6= B. OSBs are ordered sets,

therefore the following properties are trivially deduced by
the general theory of sets:

Property 1. OSBA

⋃
OSBA = OSBA

Property 2. OSBA

⋃
OSBB 6= OSBB

⋃
OSBA

Property 3. OSBA

⋃
OSBB

⋃
OSBA =

OSBB

⋃
OSBA

Definition 2. (Cache State) Let A be the address sequence
associated with an execution path of a program. CS(A)
represents the cache state that is reached after executing
the address sequence A.

Definition 3. Let OSBA be the OSB associated with the
address sequence A. CS(OSBA) represents the cache
state that is reached after the ordered access to the blocks
belonging to OSBA.

Proposition 1. CS(A) = CS(OSBA)
Let A be the address sequence associated to an execution

path of a program, and OSBA its associated ordered set of
blocks. CS(A) is equal to CS(OSBA).

Proof. This proposition is trivially deduced from defini-
tions 1, 2 and 3: by construction, OSBA is the LRU-filtered
version of A, and cache states store an LRU-filtered version
of a given address sequence.

Proposition 2. CS(A, B) = CS(OSBAB)
Let A, B be two different address sequences. The cache

state that is reached after executing first the address se-
quence A and later the address sequence B is equal to
CS(OSBAB)

Proof. CS(A, B) = CS(OSBA

⋃
OSBB) =

CS(OSBAB)

Rule 1. CS(A, A) = CS(A)
The cache state reached after executing an address se-

quence A twice consecutively, is equal to the cache state
that is reached when this sequence is executed only once.

Proof. CS(A, A) = CS(OSBAA) = CS(OSBA) =
CS(A)

Rule 2. CS(A, · · ·(n) · · · , A) = CS(A)
The cache state reached after executing n times an ad-

dress sequence A is equal to the cache state that is reached
when this sequence is executed only once.

Proof. By induction, applying Rule 1.

Rule 3. CS(A, · · · , A,B, · · · , B) = CS(A, B)
The cache state reached after executing n times the ad-

dress sequence A, followed by the execution of the address
sequence B m times is equal to the cache state reached af-
ter executing the sequence A once and then B once.



Proof. CS(A, · · · , A,B, · · · , B) =
CS(OSBA···AB···B) = CS(OSBAB) = CS(A, B)

Rule 4. CS(A, · · · , A,B, · · · , B, A, · · · , A) = CS(B, A)
The cache state reached after executing i times the ad-

dress sequence A, followed by executing j times the address
sequence B, and followed by executing k times the address
sequence A is equal to the cache state that is reached after
executing the sequence B and later the sequence A.

Proof. CS(A, · · · , A,B, · · · , B,A, · · · , A) =
CS(OSBA···(i)···AB···(j)···BA···(k)···A) =
CS(OSBABA) = CS(OSBBA) = CS(B, A)

Proposition 3. Let L be an n-iteration loop containing
p different instruction paths inside. The maximum num-
ber of states in the instruction cache at the ending of L is∑min(p,n)

i=1 P i
p where P i

p are the permutations of i elements

selected from p elements, that is
∑min(p,n)

i=1
p!

(p−i)! .

Proof. Let Ak, with k = 1, . . . , p be the address sequence
associated with the k-th alternative path inside the loop.

If we always take the same path k, applying Rule 2,
there is only one different CS (CS(Ak)). Since
there are p alternative paths we have p cache states
(CS(A1),CS(A2),. . . ,CS(Ap)), that is, P 1

p .
If we always take exactly two paths i, j (i 6= j), applying

Rules 3 and 4, we have two cache states (CS(Ai, Aj) and
CS(Aj , Ai)). Thus, accounting all possible pairs of dif-
ferent paths we have P 2

p cache states. This calculation can
be repeated until considering that all p paths can be taken,
which results in P p

p cache states. However note that, if the
number of iterations n is lower than p, one could never tra-
verse p different paths, but only n.

Accounting all previous cases we have that the
number of different cache states is

∑min(p,n)
i=1 P i

p =∑min(p,n)
i=1

p!
(p−i)! .

Figure 1 shows a comparative between the number of
execution paths and the number of different cache states
according to the number of iterations in a loop enclosing
2, 4 and 16 alternative paths. Note that the y-axis is loga-
rithmic. Although the number of different cache states ini-
tially grows exponentially, it is always below the number
of different paths, and remains constant when the bound is
reached.

Corollary 1. In order to compute the exact IFC-WCET, ev-
ery time we reach an instruction shared by several execution
paths (e.g. at a loop end) we can select, for each distinct
cache state, the path with the longest cumulative execution
time, discarding the others. From this pruning point on,
analysis (instruction cache state and cumulative execution
time tracking) must take place separately on each selected
path, until another pruning point is reached.

Cache states of 2 paths in a loop
Cache states of 4 paths in a loop

Cache states of 16 paths in a loop
Execution paths of 2 paths in a loop
Execution paths of 4 paths in a loop

Execution paths of 16 paths in a loop

1

D
iff

er
en

ti
te

m
s

to
an

al
yz

e

0

1e+100

1e+80

1e+60

1e+40

1e+20

10 20 30 40
Loop iterations

50 60 70 80 90 100

Figure 1. Number of execution paths and in-
struction cache states according to the num-
ber of iterations in a loop.

Corollary 2. For any value of the number of paths p and
loop iterations n in a loop, the number of different cache
states that can be reached at the end of the loop is lower
than

∑∞
i=1

1
i! × p! = e × p!. Additionally, this maximum

number of different cache states is reached with dlogp(e ×
p!)e iterations.

Corollary 3. In an s-way set-associative LRU cache,
the maximum number of cache states is also bounded to∑p

i=1 P i
p, i.e. the number of sets does not affect the cache

states bound. This can be easily seen by taking into ac-
count that the worst case in a set-associative LRU cache
is achieved when all accesses are mapped to the same set.
This case is the same as having a totally associative cache
of smaller size, so its bound remains the same than that of a
totally associative cache.

Corollary 4. The previous results can be directly applied
on nested loops. Let us have an outer loop L1 with pL1 al-
ternative paths inside, one of them pL1

k containing an inner
loop L2 with pL2 alternative paths. The path pL1

k actually

accounts for
∑pL2

i=1 P i
pL2 alternative paths in terms of cal-

culating the number of instruction cache states in loop L1.
This can be extended for any nesting level.

Corollary 5. When a loop L may be entered by n different
instruction cache states, the maximum number of states in
the instruction cache at the end of L is n×

∑p
i=1 P i

p. Note
that this bound is not cummulative with Corollary 4, which
already accounts these cases in nested loops.

2.2 Bounds outside Loops

Code outside of loops is generally not a problem, since
the number of traversed branches is much more limited. In



any case, a branch can be considered as a branch inside a
loop with just one iteration.

On the other hand, it is highly frequent that different ex-
ecution paths end up traversing the same basic block after
convergence instructions. In these cases, cache states tend
to converge for any replacement policy [9]. Thus, any ap-
plication of Corollary 1 several instructions after a conver-
gence point should reduce the number of cache states. This
is also applicable to the common instructions after ending a
loop, i.e. the bound on the number of cache states given by
Proposition 3 essentially affects the analysis of the loop, but
tends to 1 after analyzing subsequent instructions.

Finally, take into account that our proposal follows the
execution flow, and thus functions are analyzed each time
they are called. This means that analyzing function calls
needs no special treatment, even for recursive ones, since
the call and return statements are unconditional jumps.

These considerations cover any well-structured code.

3 Results

As a proof of concept we have developed a tool which
follows (without actually executing) the program control
flow and computes the exact IFC-WCET and the over-
all WCET under simplified hardware assumptions. Fol-
lowing the control flow is accomplished by simply decod-
ing instructions sequentially and following unconditional
branches. For conditional branches, annotations (e.g. num-
ber of iterations in a loop) must be followed when they exist.
If there is no annotation in a conditional branch, analysis is
forked. This means that whenever an non-annotated con-
ditional branch is reached, our tool takes both paths, mak-
ing a separate analysis for each one. Obviously, this leads
to a combinatorial explosion, which is solved by applying
Corollary 1. The application of this corollary essentially
means that every path analysis must stop at a predefined
pruning point. When every single path analysis reaches this
point, cache states are compared. If two paths have an iden-
tical state, the path with the lowest cumulative WCET until
that point can be pruned.

Our tool models a simple processor which processes in-
structions in two sequential non-pipelined stages: instruc-
tion fetch and execution. Instruction fetch takes 1 or 60 cy-
cles depending on whether it hits or misses in the instruc-
tion cache. Non-memory instructions finish their execution
in the next cycle. Memory instructions (load and store)
spend in their execution phase 60 cycles, since we always
assume a data cache miss.1 For our experiments we have
used a subset of those found in [1] plus some other interest-
ing/alternative benchmarks, and they are commonplace in

1Experiments performed assuming other miss penalties and other data
cache behavior, such as hit-always, may change the worst case path, but
the trends observed in IFC-WCET remain.

WCET studies [4, 6, 7, 8, 10]. We have selected those that
include conditional sentences inside loops, have bounded
iterations in loops and do not contain unstructured code.
Benchmarks too simple or too similar to those selected have
not been considered. We test 2-way set associative caches
with varying sizes of 128, 256 and 512 bytes, and block
sizes of 8, 16 and 32 bytes. These small cache sizes are
reasonable for the selected benchmarks.

3.1 Exact IFC-WCET vs. SCS Bound

All events consuming time contribute to the WCET and
determine the worst path. Since the focus of this paper is
the instruction fetch analysis, we isolate the IFC-WCET
from the overall WCET by subtracting the time contribu-
tion of both data access and execution. In order to get a
clear comparison, the method to compare with must be also
specialized on instruction cache analysis and not device-
specific. We have chosen the Static Cache Simulation (SCS)
method [7], which is well established and documented.

Figure 2 shows the exact IFC-WCET normalized to the
IFC-WCET bound obtained by SCS. Additionally, the fig-
ures also show the instruction hit ratio for the worst-case
execution path. Given that our IFC-WCET is exact, it must
be always equal or lower than the SCS bound. Reductions
in exact IFC-WCET appear when SCS is not able to accu-
rately classify an instruction fetch into one of its charac-
terizations types (hit/miss/first-hit/first-miss by loop level).
We can highlight two interesting facts from the figure: 1)
The approximation quality of SCS does not correlate with
cache size (e.g. qurt-16B across all cache sizes) nor block
size (e.g. in bubble-128B the SCS approximation improves
quality as the block size increases, whereas in qurt-256B it
happens the contrary). 2) The instruction hit ratio for the
worst-case execution path is not a good indicator to guess
SCS accuracy. See for instance bubble-128B, where the hit
ratio remains flat across all the block sizes, but SCS accu-
racy increases significantly. The reason why there is no cor-
relation between the architectural parameters and the IFC-
WCET bound accuracy is that in every experiment (cache
and block size), the worst case path can differ. So, the im-
portance of classifying correctly a given instruction fetch as
hit or miss depends critically on the location of the instruc-
tion: an overestimation made to an instruction belonging to
the worst-case path may be amplified, for instance by an
enclosing loop. Additionally, a misclassification can even
change the worst case path itself. Both possibilities happen
in the analyzed benchmarks.

Regarding qurt benchmark, the IFC-WCET reduction
found by the exact method is significant and sustained
across all cache configurations (up to 62%). This bench-
mark is much bigger than the others, which means that it
does not even fit in the biggest cache. Thus, depending on



Figure 2. Exact IFC-WCET normalized to the SCS IFC-WCET bound, and instruction hit ratio (line).

the path, cache content may present much more variations.
As we understand, this benchmark is more similar in com-
plexity to real codes than the others, so that it is expected
that real codes would obtain similar IFC-WCET reductions.

3.2 On the Exact Analysis

Table 1 shows data about the performed analysis. The
first columns show the size, cumulative number of itera-
tions in the worst case path and number of possible execu-
tion paths, showing the combinatorial explosion problem.
Application of Proposition 3 is shown in the next columns,
containing the maximum and average number of relevant
paths (cache states) considering the previous bound. The
max. value accounts for the maximum number of relevant
paths after any pruning point of the program, and the avrg. is
the average number of relevant paths from the beginning to
the end of the program. Next, for every cache and block
size it is shown the maximum and average number of rele-
vant paths in the analysis. Remember that, with our method,
only these relevant paths are analyzed. Notice also that
these two numbers are below the bound on the number of
relevant paths.

It can be seen that the resulting number of analyzed
paths is up to more than 2 800 orders of magnitude un-
der the possible paths. Note also that this grows when
block size shrinks. The reason is that when blocks are
small, the blocks traversed by different paths are very spe-
cific, whereas with larger blocks, different paths may end
up bringing the same big instruction block to the cache.

Regarding qurt, it shows a consistent growing in rele-
vant paths as the cache size varies. This reaffirms our claim
that exact analysis is more important as the benchmark gets
more complex and the cache becomes bigger.

Finally, execution time of the analysis running on a
3.4 GHz Pentium4 is presented (Anal. Time). Analysis
times are shown with the only goal of demonstrating that an
exact analysis is feasible, since the implementation is not
yet optimized in any way. The most computation-intensive
part is the analysis of loops, as can be seen by considering
the number of iterations in bubble, crc, and integral, and
realizing that they also have the highest analysis times. A
very effective optimization would be to loop just the num-
ber of iterations required to reach the maximum number of
states and to obtain the subsequent worst path, instead of
performing the full number of iterations as our analysis cur-
rently does. Such an optimization would reduce very much
the analysis execution time.

4 Conclusions

In this paper we give the theoretical foundations to carry
out an exact analysis of the instruction fetch contribution
to the WCET (IFC-WCET) in presence of LRU instruction
caches. With such an analysis it is possible to compute the
exact IFC-WCET instead of the overestimated upper bound
that conventional methods may compute.

First, we have proved that the inherent exponential com-
plexity of analysis can be drastically reduced. The IFC-
WCET analysis of loops containing branches does not de-



Bound on 128 B Cache 256 B Cache 512 B Cache
Bench. Size Iter. Possible Relev. Paths Block Relev. Paths Anal. Relev. Paths Anal. Relev. Paths Anal.

Paths Max Avrg Size Max Avrg Time Max Avrg Time Max Avrg Time
8B 2 2.00 0.03s 2 2.00 0.02s 2 2.00 0.02s

arraysum 152B 100 ∼ 1030 3 2.99 16B 1 1.00 0.02s 1 1.00 0.03s 1 1.00 0.07s
32B 1 1.00 0.10s 1 1.00 0.08s 1 1.00 0.03s
8B 1 1.00 0.02s 1 1.00 0.01s 1 1.00 0.02s

bs 112B 4 16 1 1.00 16B 1 1.00 0.01s 1 1.00 0.01s 1 1.00 0.02s
32B 1 1.00 0.01s 1 1.00 0.01s 1 1.00 0.02s
8B 6 4.00 0.37s 3 2.03 0.19s 3 2.02 0.20s

bubble 160B 5 050 ∼ 101 529 9 4.10 16B 5 3.04 0.27s 3 2.02 0.19s 3 2.02 0.20s
32B 3 3.00 0.27s 3 2.02 0.19s 3 2.02 0.19s
8B 14 1.08 0.17s 114 1.77 0.26s 126 6.73 0.95s

crc 560B 2 082 ∼ 101 996 216 6.87 16B 6 1.04 0.16s 44 1.13 0.18s 51 4.62 0.64s
32B 2 1.00 0.16s 4 1.02 0.16s 9 1.52 0.22s
8B 19 3.01 1.15s 42 5.34 2.00s 34 7.34 2.73s

integral 420B 3 000 ∼ 102 873 87 19.36 16B 10 2.34 0.85s 14 3.01 1.09s 14 4.34 1.58s
32B 4 1.00 0.38s 7 1.00 0.38s 5 1.00 0.37s
8B 10 2.29 0.03s 63 12.21 0.07s 281 36.16 0.18s

qurt 752B 60 ∼ 1044 553 65.29 16B 4 2.14 0.03s 23 2.73 0.04s 124 15.76 0.09s
32B 4 2.95 0.03s 18 3.38 0.04s 73 9.94 0.06s

Table 1. Size, number of iterations, possible execution paths, bounded maximum and average rele-
vant paths, and data recorded during the analysis: maximum and average number of relevant paths
(those actually analyzed, which have different cache states) and analysis time.

pend on the number of iterations, but on the number of
branches inside the loop. This basic bound is also extended
to consider set-associative caches, nested loops and multi-
ple states entering a loop. Applying these formalisms to
the codes we have studied, the number of possible execu-
tion paths and the number of paths relevant for the exact
IFC-WCET analysis differ up to more than 2 800 orders of
magnitude.

Second, we have built a proof of concept tool and run
it on several benchmarks. Across several instruction block
and cache sizes, the exact IFC-WCET has been compared
to the bound provided by Static Cache Simulation (SCS), a
widely used approach. In simple benchmarks SCS bounds
are very accurate. However, for larger and more complex
benchmarks such as qurt the exact IFC-WCET is signifi-
cantly lower than the SCS bound across all block and cache
size (up to 62% lower).

Finally, it is important to notice that having a set of
benchmarks with exact IFC-WCETs would allow the sci-
entific community to have more concrete WCET references,
since currently there is no way to demonstrate how good the
results provided by a WCET bound analysis method are.

References

[1] Benchmarks maintained by Mälardalen WCET group.
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html.

[2] R. Arnold, F. Mueller, D. Whalley, and M. Harmon. Bound-
ing worst-case instruction cache performance. In IEEE Real-
Time Systems Symposium, pages 172–181, December 1994.

[3] P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construc-
tion or approximation of fixpoints. In Conference Record of
the Fourth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 238–252, Los
Angeles, California, 1977. ACM Press, New York, NY.

[4] C. Ferdinand and R. Wilhelm. Efficient and precise cache
behavior prediction for real-time systems. Real-Time Sys-
tems, 17(2-3):131–181, November 1999.

[5] C. Healy, D. Whalley, and M. Harmon. Integrating the tim-
ing analysis of pipelining and instruction caching. In IEEE
Real-Time Systems Symposium, pages 288–297, December
1995.

[6] T. Lundqvist and P. Stenström. An integrated path and tim-
ing analysis method based on cycle-level symbolic execu-
tion. Real-Time Systems, 17(2-3):183–207, November 1999.

[7] F. Mueller. Timing analysis for instruction caches. Real-
Time Systems, 18(2-3):217–247, May 2000.

[8] I. Puaut. Cache analysis vs static cache locking for schedu-
lability analysis in multitasking real-time systems. In Pro-
ceedings of 2nd International Workshop on Worst-Case Ex-
ecution Time Analysis (WCET’02), 2002.

[9] J. Reineke, D. Grund, C. Berg, and R. Wilhelm. Timing
predictability of cache replacement policies. Real-Time Sys-
tems, 37(2):99–122, Nov. 2007.

[10] H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and pre-
cise WCET prediction by separated cache and path analyses.
Real-Time Systems, 18(2-3):157–179, May 2000.

[11] R. Wilhelm et al. The determination of worst-case execution
times-overview of the methods and survey of tools. ACM
Transactions on Embedded Computing Systems (TECS),
2007.


