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Abstract— WCET computation is one of the main
challenges in the study of HRTS, since it is needed to
guarantee the time requirements. Moreover, modern
processors have hardware components with a variable
latency not known at compilation time which makes
the problem even harder. In particular, the WCET
computation problem in presence of caches takes ex-
ponential complexity.

In this work we propose two techniques targeted
to compute WCET accurately in presence of both in-
struction and data caches. Both techniques reduce
drastically the number of states to analyze by pruning
all the paths located outside the time-critical path.

Keywords— Hard Real Time Systems, Cache mem-
ories, Worst Case Execution Time.

I. Introduction

WORST Case Execution Time (WCET) compu-
tation is one of the main challenges in the

study of Hard Real Time Systems (HRTS). The
WCET is difficult to determinate since it depends on
both the hardware and the software, but it is needed
to guarantee the time requirements of HRTS.

For hardware components with a fixed latency, the
WCET can be computed from the partial WCET
of each basic block of a program. For example the
WCET of a loop enclosing several alternative paths
can be computed as the product of the number of
iterations by the execution time of the longest path.

On the other hand, to improve performance mod-
ern processors have hardware components with a
variable latency dependent on the past, e.g. caches,
branch predictors, pipelined execution, etc. In these
cases it is needed to analyze each and every execu-
tion path to compute the WCET, storing and updat-
ing throughout all that paths the relevant hardware
state as dictated by the interaction between program
execution and hardware behavior.

As far as we know, it does not exist any approach
to obtain the exact WCET in presence of caches.
Instead, existing approaches try to compute a safe
upper bound of WCET, either by means of analysis
[2], [4], [6], [8], [11], [12], [16], [17], [21], [22] or by
limiting the cache dynamics by locking their contents
[9], [10], [13], [14], [15], [18], [19].

The contribution of this work consists of two
techniques aimed towards an exact computation of
WCET in presence of both instruction and data
caches. Our techniques can be applied in the con-
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vergence points of the program control flow, for in-
stance, in the first instruction reached by different
execution paths. The ending of an if-then-else con-
struct is typically one of these convergence points.
The first technique (equal-cache path removal) al-
lows to discard all those execution paths with equal
cache state, keeping only the one with the longest
accumulated execution time. Our second technique
(arbitrary-cache path removal) computes the differ-
ence of the accumulated execution time between two
execution paths. If this difference is bigger than
a threshold (dependent on the cache state) we can
safely remove the execution path with smaller accu-
mulated execution time.

This paper is structured as follows. In Section 2
our work is motivated and the existing approaches
are sketched. In Section 3 we describe our first tech-
nique: equal-cache path removal and we analyze the
problem complexity on loops. Our second technique
(arbitrary-cache path removal) is described in Sec-
tion 4. Finally, in Section 5 conclusions and future
work are presented.

II. Motivation and related work

Obtaining WCET is required for a schedulabil-
ity analysis in HRTS. A safe (upper) bound of the
WCET of a task can be calculated by static analy-
sis. This can be accomplished by accounting the time
requirements (processor cycles) for every unique exe-
cution path in the task and then selecting the longer
one. This is very expensive due to the exponential
complexity of the problem. See for example how a
piece of code with a conditional sentence inside a loop
(Fig. 1 (a)) represents a control-flow graph (Fig. 1
(b)) which shows a combinatorial explosion of paths
when unrolled (Fig. 1 (c)). A conditional sentence
with two paths inside a loop with just 100 iterations
has 2100 different execution paths.

Currently, modern processors use cache memories
to bridge the increasing gap between ever-faster pro-
cessor and moderately faster memory. Cache mem-
ories are small and very fast buffers of instructions
and data. They are used for decreasing the aver-
age access time and reducing the power consump-
tion. However, the behavior of a cache is not easily
predictable in compilation time since its contents de-
pends on the path taken during program execution.
It is difficult to statically compute which blocks are
inside the cache at a given instant, since it is equiva-
lent to compute for every memory reference and for
every execution path if it is either a hit, an com-
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Fig. 1. Combinatorial path explosion in a loop enclosing two alternative paths
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Fig. 2. WCET computation with caches

Execution Case Path A Path B
First execution 30 40

Alternated execution 20 30
Two consecutive executions 10 20

Table I: Execution Costs

pulsory miss, a capacity miss or a conflict miss [7].
Obviously, the exponential number of required cache
states makes the problem too complex both in time
and space.

Fig. 2 shows the code in Fig. 1 executing with the
costs given in Table I. The first row of Table I gives
the times requited to fill caches for the first execu-
tion of the paths A and B respectively. Second row
accounts for the cost of executing either A after B
or B after A respectively (some blocks required in A
have been evicted by B or viceversa). The last row
accounts for two consecutive executions of A or B re-
spectively. Fig. 2 (a) shows a naive analysis that does
not take into account the path followed in the previ-
ous iteration, while Fig. 2 (b) shows the exact WCET
computation by considering all possible paths.

In the literature we find different methods to ap-

proach the WCET problem in presence of caches.
Due to the difficulty of the problem, most of these
methods try to solve it by dividing the problem in
two seemingly simpler steps. In the first step, they
avoid the combinatorial explosion of cache states by
not always remembering the whole history of the fol-
lowed path. This allows to classify each memory ac-
cess either as a hit or a miss. However, this classi-
fication is pessimistic because there has been a loss
of information associated to the reduction of cache
states. In the second step, they compute an upper
bound of the WCET analyzing all execution paths
and considering the worst case in each memory access
(obtained in the first step). This means the WCET
of a task can be widely overestimated in general.

Next, we summarize several approaches that can
be used to analyze the WCET in presence of caches.

A. Analytical methods

These methods make a static analysis to classify
all memory accesses in the worst case. Later they
perform a timing analysis to calculate the WCET.
Cycle-level Symbolic Execution performs a cycle-level



XVII JORNADAS DE PARALELISMO—ALBACETE, SEPTIEMBRE 2006 3

analysis of control flow, so that it can deal with
timing related to architectural components such as
pipelines, functional units or caches. This is done us-
ing symbolic data, since actual values are not known
at compilation time. However, their cache analysis
is quite pessimistic [8]. Abstract Interpretation uses
the semantic properties of programs, thus support-
ing correctness proofs of program analysis [3]. This
technique can be used to estimate cache behavior,
being able to classify instruction executions as hit,
miss or unknown [4], [17]. Static Cache Simulation
provides a more detailed classification on each mem-
ory reference [2], [6], [12]. These classifications com-
bined with a control-flow graph allow to compute a
WCET bound. To reduce the combinatorial explo-
sion of cache states Static Cache Simulation defines
an Abstract Cache State, which represents the worst
cache state at a given execution point. This abstract
cache state is pessimistic by definition, so the WCET
obtained with this method is overestimated. Addi-
tionally, this method has particular problems on data
caches, since it needs regular data accesses. This is
partially solved looking for data access patterns ei-
ther directly [21], [22] or using Cache Miss Equations
(CME) [5], [16].

B. Restrictive methods

Restrictive methods assume the existence of com-
mands or instructions whose execution locks the
cache content until another command resumes regu-
lar replacement (unlock). As long as the cache is in a
locked state, hits are serviced normally, but no new
block is allowed to enter into the cache. This allows
a precise access classification (hit/miss) because the
cache content is known and fixed until the unlock
instruction resumes normal behavior.

Several authors propose to lock the cache during
the whole system execution [13], [15]. In this case
low complexity algorithms are needed to select the
content to fix [14]. Genetic algorithms have been
also applied on this subject [10]. Other authors use
cache locking just on chunks of code where its exact
content (and thus its access classifications) cannot be
guaranteed [18], [19]. CMEs are used to determine
these periods [5], [20].

In general, these methods allow to determine ex-
actly whether each memory access is a hit or a miss.
However, this precision is obtained by locking the
cache behavior and not taking advantage of it. This
means they increase predictability by reducing per-
formance, which can lead to increase the WCET. Ad-
ditionally, the cost of lock/unlock and cache preload-
ing instructions must also be considered.

III. Path removal with equal cache states

In this section we propose a method in order to dis-
card execution paths reaching identical cache states.
This method does not lose any information, and the
discarded execution paths are guaranteed not to be
the worst case execution paths. Essentially, we ana-
lyze the cache state and the accumulated WCET on

a given execution point for all execution paths. If
some of them have the same cache state, we main-
tain the one with the longest WCET, discarding the
rest.

We focus the application of this method on loops.
The number of possible execution paths in a loop
with a conditional inside is pn, where p represents the
number of paths in the conditional and n the number
of loop iterations. However, not all execution paths
lead to different cache states. Therefore, to calculate
the WCET of a piece of code containing a loop with
several paths inside, we only have to consider the
worst execution path for each different cache state
at the loop ending.

This method is valid for any cache architecture.
In order to be general, in our theoretical reasoning
we assume the worst one: a totally associative cache
(no conflict misses) with infinite size (no capacity
misses). We also use the most common replacement
policy: least recently used (LRU), where cache con-
tent is ordered by the time of the last reference.

Next we are going to define some key cocepts in or-
der to bound the maximun number of different cache
states

Definition 1: (Cache State) Let A be a sequence
of memory accesses associated to an execution path
of a program. CS(A) represents the cache state that
is reached after executing the sequence of accesses A.

For notation purposes, we donete CS(A,B) the CS
that is reached after executing first the sequence of
access A and later the sequence of access B

For example, if we assume all memory references
in the paths are static (do not vary durring the exe-
cution) and we consider the execution of all possible
execution paths of a loop, with 4 iterations, enclos-
ing 2 alternative paths (A, B) as in Figure 1 (a), the
number of different cache states that can be reached
is 4 (as is proved in [1]) because:

CS(A,A, A,A) = CS(A)
CS(B,B,B,B) = CS(B)
{ CS(A,A,A,B), CS(A,A,B,B), CS(A,B,B,B),
CS(A,B,A,B), CS(B,A,A,B), CS(B,A,B,B),
CS(B,B,A,B) } = CS(A,B)
{ CS(B,B,B,A), CS(B,B,A,A), CS(B,A,A,A),
CS(B,A,B,A), CS(A,B,B,A), CS(A,B,A,A),
CS(A,A,B,A) } = CS(B,A)
Fig. 3 shows the evolution of all possible cache

states reachable after four iterations in the loop in
Fig. 1. It also shows that some cache states are du-
plicated and thus can be discarded. In fact, after the
loop output only four (out of 16 possible) different
states can appear.

Proposition 1: Let L be a loop containing p differ-
ent paths inside. Let us assume all memory refer-
ences in the paths are static (do not vary during the
execution). The maximum number of cache states
at the ending of L is

∑p
i=1

p!
(p−i)! , that is

∑n
i=1 V i

p

where V i
p are the variations of i elements selected

from p elements without repetitions.
Proof: This proof is detailed in [1].



4 L. C. APARICIO ET AL.: EXECUTION PATH PRUNING FOR WCET ANALYSIS

Fig. 3. Combinatorial explosion of cache states in a loop
enclosing 2 alternative paths

Fig. 4 shows a comparative between the number
of execution paths and the number of different cache
states according to the number of iterations in a loop
enclosing 2, 4, 8, and 16 alternative paths. Note that
although the number of different cache states grows
initially exponentially then it is constant, besides it
is much smaller than the number of execution paths.

Corollary 1: The maximum number of different
cache states that can be reached at the end of a loop
does not depend on the number of iterations of the
loop (see Fig. 4).

Corollary 2: The maximum number of different
cache states that can be reached at the end of a loop
depends on the number of paths inside the loop (see
Fig. 4)

Definition 2: (Execution Path Analysis State) Let
P be a execution path. We define the EPAS: Exe-
cution Path Analysis State as the couple formed by:
the cache state (data an instruction) and the exe-
cution time accumulated by the path in a common
execution point (a point shared by different execu-
tion paths).

Corollary 3: To calculate the WCET considering
the EPAS graph we must only take, for each different
cache state, the path with the largest accumulated
execution time. That is to say, for all paths reaching
a common instruction (in this case, the loop exit)
with the same cache state, only the one with the
largest accumulated execution time can actually be
the one with the “real” WCET until that point.

In Fig. 5 we can see the reduction of execution
paths obtained from Figure 1 when the EPAS graph
is considered. Although the problem complexity re-
mains exponential, it now depends on the number
of paths inside the loop, which in general is much
smaller than the number of loop iterations.

IV. Path removal with arbitrary cache
states

By Corollary 3, if we have several execution paths
reaching the same cache state on the same instruc-
tion, only one of them (the one with higher WCET
until then) will be relevant for the program WCET.
This means that all paths reaching different cache
states must be analyzed. In this section we propose
how to detect (and discard) execution paths with ar-
bitrary cache states which will be irrelevant to obtain
the program WCET. We first define the threshold for

Fig. 4. Possible executions paths and possible cache states
according to the number of iterations

discarding paths and then prove these paths can be
safely discarded. Next, we propose two methods for
obtaining this threshold and finally we discuss the
computational cost for both methods.

Definition 3: (Largest Cost Difference on Execu-
tion Times) Let us have two different EPAS A, B
on the same instruction (e.g. coming from two dif-
ferent paths), and other EPAS C (reachable by both
A and B with an unknown WCET) some instruc-
tions in the future. We define the LCDET : Largest
Cost Difference on Execution Times from A to B
(LCDETB−A) as the maximum cost for B to be-
come C (LCDETB−C ) minus the minimum cost for
A to become C (BCETA→C) after any incoming
instruction sequence on both states A and B (the
same sequence on both states), i.e. LCDETB−A =
WCETB→C −BCETA→C .

Proposition 2: Let us have two different paths PA,
PB which lead to a common instruction with two dif-
ferent EPAS A, B from a common initial situation
I. Let us suppose each path accumulates a different
worst case execution time WCETI→A, WCETI→B

at that point, and WCETI→A > WCETI→B . In or-
der to obtain the WCET, path PB can be safely dis-
carded if WCETI→A ≥WCETI→B + LCDETB−A

Proof: This proof is detailed in [1]

Proposition 3: Let s be the number of sets in a
cache, n the number of ways, m the miss cost and h
the hit cost (m > h). An upper bound of the LCDET
for two states of a cache using LRU is s×n×(m−h).

Proof: This proof is detailed in [1]

Note that this LCDET bound is in fact the cost
of refilling the whole cache with misses minus refill-
ing it with hits, which is the largest memory access
difference. For example, if we consider the EPAS-
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Fig. 5. Path removal with repeated cache states in a loop enclosing 2 alternative paths. A.E. stands for Analysis End

graph in Fig. 5, a 2-way cache with 2 sets and sup-
pose that the cost difference between a miss and a
hit is 10, we can discard in the analysis the execution
path represented by the hexagon, because the accu-
mulated time difference between this path and any
execution path with a accumulated time of 120 (rep-
resented by the triangle or by the square in Fig. 5)
is 60 that it is bigger than the cost of refilling the
whole cache and therefore, we can guarantee that
the above mentioned path will never contribute to
the “real” WCET.

By construction the LCDET can be found when
all accesses are misses on B (maximum cost) and,
whenever possible, they are hits on A (minimum cost
within the same access sequence).In this case we do
not consider a general worst cost difference for each
access (m− h) but a concrete one which depends on
the cache contents. For every single access c, the
possible cases are:

1. c is contained in both A and B; costA = h,
costB = h, costDiff B−A = 0

2. c is neither contained in A nor B; costA = m,
costB = m, costDiff B−A = 0

3. c is not contained in A but it is in B; costA =
m, costB = h, costDiff B−A = h −m

4. c is contained in A but not in B; costA = h,
costB = m, costDiff B−A = m − h

Clearly, case 4 (m − h) is the desired one, since it
maximizes the cost difference. However, there can
be situations where case 4 is not possible. In these
situations, the next worst one is case 2. This case
does not increase the cost difference, but produces a
miss in B, which follows our worst case construction
(all misses in B and hits in A whenever possible).
This case 2 is always possible, since it represents ac-
cessing a new line.

Thus, we have to look for the worst case on ev-
ery step. That is, case 4 whenever possible and
case 2 otherwise. On each case, cache states A and
B are modified accordingly and the total cost is the
sum of the cost of each step. At the end, we have
constructed an incoming sequence, access by access,
guaranteeing that the LCDET cost is minimum.

Algorithm 1 Algorithm for obtaining the LCDET
from cache state A to B (LCDETB−A).
Require: A1,...,S , B1,...,S : cache states, i.e. array

(sets) of ordered lists (ways).
Ensure: costDiff : LCDET from A to B

(LCDETB−A).
1: costDiff ← 0
2: for s = 1, . . . , S do {S-set cache}
3: for n = 1, . . . , N do {N -way set}
4: c← search c ∈ As / c /∈ Bs

5: if ∃ c ∈ As / c /∈ Bs then
6: costDiff ← costDiff + (m − h)
7: As ← modify cache state As

8: Bs ← modify cache state Bs

9: else
10: costDiff ← costDiff + 0
11: As ← modify cache state As

12: Bs ← modify cache state Bs

13: end if
14: end for
15: end for
16: return costDiff

Corollary 4: The lowest LCDET is obtained by al-
gorithm 1.

For example, if we consider the EPAS-graph in
Fig. 5, a 2-way cache with 2 sets and suppose that
the cost difference between a miss and a hit is 10,
applying the algorithm 1 to cache states that Fig. 6
is showing, the LDCET obtained from the cache
state in EPAS represented by the pentagon to the
cache state in EPAS represented by the triangle is
10, therefore we can discard in the analysis the ex-
ecution path represented by the pentagon, since we
can guarantee that the execution path represented
by the pentagon will never be the “real” WCET.

Note that after applying our techniques in order to
prune execution paths (equal-cache path removal and
arbitrary-cache path removal) to the code of Fig. 1,
the exact WCET requires only to analyze 2 paths
instead of the 16 possible.
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V. Conclusions and future work

In this paper we propose a new approach for the
WCET analysis of a program. Our approach is based
on reducing the number of states to analyze without
losing information.

Namely, our techniques discard execution paths
which are not relevant for the WCET computation.
Our first technique is specially effective at loops,
where the number of possible execution paths be-
comes exponential in the number of iterations. In
this case, we prove that it suffices the analysis of a
much smaller number, dependent only on the num-
ber of different paths inside a loop.

Our second technique computes the difference of
the accumulated execution time between two execu-
tion paths at a given instruction. If this difference
is bigger than a threshold (previously computed) we
can safely prune the execution path with smaller ac-
cumulated execution time.

Thus, by combining the two techniques it is pos-
sible to compute a very accurate WCET, instead of
obtaining it by overstimated bounds (caused by in-
formation loss) as other methods do.

We propose as future work a detailed study of
the application of our methods, that is, to analyze
the most convenient points to apply each technique
and to measure the degree of pruning reached in
real workloads. Another interesting research line is
the generalization of our approaches to other hard-
ware components with a sequential behavior, such as
TLBs or branch predictors.
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