20th International Symposium on Computer Architecture and High Performance Computing

Selection of the Register File Size and the Resource Allocation Policy
on SMT Processors

Jesus Alastrueyl, Teresa Monreal!, Francisco Cazorla?, Victor Vifals' and Mateo Valero

2,3

'pIIs-]3A Universidad de Zaragoza, Spain. {jalastru, tmonreal, victor}@unizar.es
’Barcelona Supercomputing Center, Spain. francisco.cazorla@bsc.es
3DAC, Universitat Politécnica de Cataluiia, Spain. mateo@ac.upc.edu

Abstract

The performance impact of the Physical Register File
(PRF) size on Simultaneous Multithreading processors
has not been extensively studied in spite of being a critical
shared resource. In this paper we analyze the effect on
performance of the PRF size for a broad set of resource
allocation policies (Icount, Stall, Flush, Flush++, Static,
Dcra and Hill-climbing) and evaluate them under two
metrics: instructions per second (IPS) for throughput and
harmonic mean of weighted IPCs (Hmean-wIPC) for fair-
ness. We have found that resource allocation policy and
PRF size should be considered together in order to obtain
the best score in the proposed metrics. For instance, for
the analyzed 2 and 4-threaded SPEC CPU2000 work-
loads, small PRF’s are best managed by Flush, whereas for
larger PRFs, Hill-climbing and Static lead to the best val-
ues for the throughput and fairness metrics, respectively.
The second contribution of this work is a simple procedure
that, for a given resource allocation policy, selects the
PRF size that maximizes IPS and obtains for Hmean-
wliIPC a value close to its maximum. According to our
results, Hill-climbing with a 320-entry PRF achieves the
best figures for 2-threaded workloads. When executing 4-
threaded workloads, Hill-Climbing with a 384-entry PRF
achieves the best throughput whereas Static obtains the
best throughput-fairness balance.

1. Introduction

Simultaneous Multithreading (SMT) processors extend
the superscalar execution allowing the issue of instruc-
tions coming from different threads in the same cycle. In
modern out-of-order SMT processors, this execution
model implies the sharing of several resources among the
threads, for instance, the Physical Register File (PRF)
[6][7]. Therefore, the PRF must be big enough to store the
committed and speculative states of all the threads and it
must supply every cycle all the operands required by the
instructions of the different executing threads. Conse-
quently, SMT processors require large and highly-ported
PRFs with high power consumption, area and access time.
This last fact may affect the processor’s cycle time, limit-
ing its frequency and reducing its performance.

Hence, there exists a trade-off for the processor
designer according to the PRF sizing. On the one hand,
large PRFs can reduce the number of rename stalls due to
the lack of physical registers, improving performance
measured in instructions per cycle (IPC). On the other
hand, small PRFs may allow higher processor frequencies,

leading to more performance measured in instructions per

second (IPS).

Another important decision in the SMT processor
design is the resource allocation policy, which determines
the way processor shared resources are distributed among
all running threads. Several policies have been proposed
claiming benefits over previous existing ones, but the
evaluation of these policies has been carried out for a fixed
PRF size [1][2][4][S][11][14][15][16].

The main contributions of this paper are:

* A combined analysis of the performance impact of
the PRF size and the resource allocation policy. We
consider both a large range of PRF sizes and a broad
set of allocation policies (Icount [16], Stall, Flush
[15], Flush++ [2], static [7][11], Dcra [1], and Hill-
climbing [4]). We have found that relative perfor-
mance among policies strongly depends on the PRF
size. For instance, Flush is the best policy to manage
small PRFs but the worst with large PRFs.

* A simple procedure that, for a given allocation policy,
selects a PRF size according to a performance trade-
off between throughput and fairness. Thus, we con-
sider two metrics: instructions per second (IPS) to
measure throughput while taking into account the
effect of accessing PRFs of different sizes, and the
harmonic mean of weighted IPCs (Hmean-wIPC) to
quantify fairness in the distribution of resources
among all running threads [9]. We have applied this
procedure to several allocation policies and found that
in all cases, there exists a PRF size that maximizes
IPS while reaching values close to the maximum of
Hmean-wIPC. Finally, for each allocation policy and
PRF size pair, we collect their throughput, fairness
and energy efficiency values so that to evaluate the
best design point according to a particular target.

The rest of the paper is structured as follows. In Section
2 resource allocation policies are classified and described.
Section 3 details the experimental framework and method-
ology. Section 4 discusses results and Section 5 concludes
the paper.

2. Resource allocation policies

Several SMT processor resources, like the Issue Queue
or the PRF, are usually shared by the different executing
threads. The distribution of these resources can be indi-
rectly controlled through the instruction fetch policy. This
way, resource allocation is driven by the distribution of the
fetch bandwidth among the threads.

1550-6533/08 $25.00 © 2008 IEEE 63 CO‘nE’lEpEuter
DOI 10.1109/SBAC-PAD.2008.17 soclety

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 05:52 from IEEE Xplore. Restrictions apply.

Distribution of fetch bandwidth among the threads

Based on Fetch Number of Number of Number of Oldest Confidence
Alternating unresolved inst!'uctions outstandin.g instruction on b.rarllch
(@) branches at pre-issue stages data cache misses position prediction
Fetch Round Robin Brcount Icount Misscount IQPOSN
policies DWarn
/ / \
Event that \ .
- . npending Largest cachel, Reached | Isolated Memory | unresolved
o [10, (e s | P oo o
i | rediction prediction evel miss rediction branches
actions | o/\ | P | usage | prediction P |
Action(s) | | (I.) (!) [(5 I $ [J)
?ﬁg ltlﬁfe;% Ifetch fetch stall | fotch stall fetch stall fetch stall | fetch stall | fetch stall ~ fetch stall | fetch stall
triggering stall and squash | O/\O II |
theevent | ! ! | ! ! ! | O .I| ! ! | !
| | | I I jstatic dynamicy | [|
| | | | threshold I | [I [
|| ! I I I | I
A Col
® 1 g ' se Do | I
Stall DG PDG L2MP Sra Dera | MLP-aware PEEP FPG
Resource | Flush++ | F |
allocation , l Hill-Climbing |
policies Gt ! G2 . G3 , G4 I Gs
—_— 7 —_— N o /

Figure 1. Classification of fetch and resource allocation policies.

Figure 1a shows different fetch policies. Except Round
Robin, that equally shares the fetch unit among all threads,
all the schemes give priorities to the threads according to
different heuristics such as their number of unresolved
branches (Brcount), pending data cache misses (Miss-
count), L1-Dcache outstanding misses (DWarn), instruc-
tions in the pre-issue stages (Icount) or the age of their
oldest instructions (/QPOSN) [3][16]. Among all these
fetch policies, Icount is considered the one that achieves
best performance and has been adopted as baseline of
nearly all the academic proposals of allocation policies.

As stated before, the Icount fetch policy gives higher
priority to the threads with fewer instructions in the front-
end stages [16]. It obtains good results with high-ILP
threads, however, when a thread suffers many long-
latency loads (loads missing the largest cache level or data
TLB), Icount keeps allocating resources to this stalled
thread. As a result, it may hold many resources, clogging
the pipeline and decreasing the processor throughput [6].

There exist more complex proposals that try to over-
come the drawbacks of the fetch policies. Some of these
schemes react when a thread experiences a long-latency
operation, while others try to anticipate their reaction by
way of prediction (for instance, predicting L2 cache
misses). The goal in both cases is to distribute resources
among the threads to maximize performance. We call

64

resource allocation policies to those enhanced fetch poli-
cies. Figure 1b shows a classification of several academic
and industry proposals. Even though all resource alloca-
tion policies can be based on any fetch policy, all but one
(FPG) are built on top of Icount because of its best perfor-
mance.

A first group of policies (G1) deal with the resource
starvation produced by memory-bound threads by under-
taking certain actions when a long-latency load is
detected. Stall is an Icount improvement that prevents
threads with a pending long-latency load from instruction
fetching [15]. Nevertheless, when a long-latency load is
detected, it may be too late to prevent a thread from allo-
cating resources. On the contrary, a thread may be stalled
although there exists many free resources, arising resource
underuse and maybe avoiding exploitation of memory
level parallelism.

Flush is an extension of Stall that squashes a thread
when it experiences a long-latency load. All the instruc-
tions younger than the offending load are squashed in
order to release their allocated resources [15]. Neverthe-
less, these released resources may not be required by the
other threads. Furthermore, power consumption increases
as a result of the squashed instructions re-execution.

Flush++ is based on the fact that Stall performs better
than Flush for workloads that do not require many
resources (few long-latency loads) and that Flush per-

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 05:52 from IEEE Xplore. Restrictions apply.

forms better than Stall for workloads that require many
resources (many long-latency loads) [2]. Thus, Flush++
tries to combine the best of Flush and Stall to increase per-
formance. The number of stalled threads is used to switch
between Stall and Flush. A thread suffering a long-latency
load is only squashed if it is the only non-stalled thread.

A second group of proposals (G2) try to anticipate
long-latency loads by different approaches. Data Miss
Gating (DG) stalls threads with frequent L1 data cache
misses (n pending misses) [10]. This way, resources can
be released shortly after being allocated avoiding resource
clogging. In a similar way, Predictive Data Miss Gating
(PDQG) stalls a thread with more than n outstanding data
cache misses, either counted or predicted [10]. Since miss
prediction is performed when a load is fetched, threads
can be stalled before than in DG. The main goal of these
policies is to reduce the issue queue size occupation, not to
improve performance. Hence, they can degrade perfor-
mance of memory-bounded threads. Finally, L2ZMP uses a
load miss predictor to detect largest cache level misses
[18]. Threads with predicted long-latency loads are stalled
until they are resolved [2].

A third group of policies (G3) explicitly controls
resource distribution by setting a threshold that limits the
maximum resource usage of a thread. Hence, a thread is
prevented from fetching when it consumes all the
resources of its share. These strategies can be classified as
static or dynamic depending on the share being fixed of
variable during execution.

Static resource allocation (Sra) assigns static resource
shares to each of the n executing threads. These quotas can
range between one nth of the resource (no sharing, parti-
tioning) and all the resources (full sharing) [11]. For
example, Intel Pentium 4 partitions the fetch, micro-op
and retire queues, uses a threshold sharing scheme for the
schedulers (IQs) and fully shares its caches [7]. Power5
microprocessor uses a threshold sharing policy for the
Global Completion Table and the Load Miss Queue. This
resource-balancing logic also detects a thread reaching a
threshold of L2 cache and TLB misses [6].

Dynamically Controlled Resource Allocation (Dcra)
dynamically distributes processor resources among
threads depending on their cache behaviour: threads with
frequent L1-Dcache misses (likely to suffer long-latency
misses) are assigned a limited share so as to prevent
stalled threads from clogging resources [1]. This threshold
is greater than a proportional share so these threads are
allowed to exploit parallelism beyond long-latency loads.
Moreover, Dcra computes partitions for each thread based
on their resource needs, allowing a thread to borrow
resources from threads that do not require them.

Hill-climbing evaluates different resource distributions
trying to find the partition that optimizes performance [4].
It uses a learning algorithm that dynamically selects the
partitions that achieved the best runtime performance in
the last trial period. Performance monitoring is carried out
continuously, so Hill-climbing is able to respond to the
different resource needs of the workload over time.

Two recent policies exploit memory-related predictions
(G4). Memory-Level Parallelism aware (MLP-aware)
tries to overlap the execution of independent long-latency
loads, thus hiding memory access penalties [5]. It relies on
two mechanisms: one detects or predicts long-latency
loads and the other tries to determine whether such offend-

65

ing loads are isolated or not (MLP prediction). In the latter
case, the predictor must also determine the number of
additional instructions that should be fetched to overlap
multiple long-latency loads. A thread suffering an isolated
long-latency load is stalled, and could be even flushed.
Compared with Icount, this policy is better when execut-
ing MLP intensive workloads but it degrades performance
when executing ilp-intensive workloads (more than 20%
of slowdown in some cases). This policy relies on the rel-
atively hard load miss and MLP predictions. In a different
approach, a later proposal exploits the high predictability
of memory dependencies. Proactive Exclusion-Early
Parole (PEEP) stalls a thread when a fetched load is pre-
dicted to have a dependence with a previous store [14].
Another prediction mechanism tries to restart the stalled
thread so that to resume its execution as soon as the depen-
dence has been resolved.

Finally (GS5), Fetch Prioritization and Gate (FPG) sets
up priority to a thread according to its number of unre-
solved low-confidence branches [8]. Besides, a thread is
excluded from fetching when it reaches a threshold of
pending low-confidence branches. This is the only
described policy not built on top of Icount.

Unfortunately, none of the previously reported refer-
ences performs a comprehensive evaluation of PRF size,
using most of times a fixed PRF size. We have evaluated
the performance of some of these policies with a large
range of PRFs sizes with two goals in mind: analyze the
joint effect on performance of PRF size and resource allo-
cation policy, and find out the best PRF size that optimizes
performance for a given allocation policy. On the one
hand, this work warns the processor designer that resource
allocation policy and PRF size should be considered
together to maximize performance. For instance, the best
policy for a certain PRF size could be the worst for a dif-
ferent PRF size. On the other hand, we propose a simple
procedure that, for a given allocation policy, selects the
PRF size that achieves the best throughput-fairness bal-
ance. Since we have applied it to a broad range of resource
allocation policies, it could also assist an SMT designer to
find a suited allocation policy for a given PRF size.

It is not our aim to determine which resource allocation
policy achieves the best performance for each PRF size.
Some policies have design options that greatly affect their
performance (for instance, predictor sizing and training).
Thus, an accurate performance comparison would require
fine tuning of many parameters for a lot of resource allo-
cation policies. Moreover, it would require a comprehen-
sive evaluation with several processor configurations and
different kinds of workloads. That goal is out of the scope
of this paper. Hence, we have focused on the classical
(G1) and threshold-based resource allocation policies
(G3) to give empirical evidence of our contributions.

3. Experimentation
3.1 Processor model

We use a detailed cycle-based simulator consisting of a
trace-driven front-end and an improved version of smtsim
back-end [17]. A basic-block dictionary that contains all
the static instructions allows mispredicted-path execution.

We model a wide-issue SMT processor with an 11-
stage pipeline (see Figure 2). The details of the simulated

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 05:52 from IEEE Xplore. Restrictions apply.

| Fetch Rename | Dispatch Issue

Decode1 ‘ Decode2

Payload ‘Reg.Read Exe (n

Writeback | Commit

@ Dcache1 | Dcache2 | Writeback | Commit

Figure 2. Pipeline of the modelled microarchitecture.

Table 1. Parameters of the simulated SMT processor.

commit width

Parameter Value Parameter Value
Number of 2 and 4 L1 Ieach 64 KB, 4-way, 4 banks,
threads cache 64 byte lines, latency: 1 cycle
. 8 instructions 64 KB, 8-way, 4 banks,
Fetch width (max: 2 threads) L1 Deache 64 byte lines, latency: 2 cycles
Decode and 8 instructions L2 Ucache 2048 KB, 8-way, 8 banks,

64 byte lines, latency: 15 cycles

Issue width 6 int + 3 fp+ 4 mem

Main memory

Access time: 300 cycles

Reorder Buffer 512 entries, shared, ITLB: 64 entries, DTLB: 128 entries,
(ROB) per-thread commit miss penalty: 360 cycles
Issue Queue int: 80 entries, fp: 80 entries | Functional Units 6 int (simple: 1, mult/div: 4), 4 load/store (2),
sizes (IQ) mem: 80 entries (latency) 3 fp(simple/cmp/mult: 4,div: 17, sqrt: 19)
Branch gshare 16K entries int: 80-640 entries, 16r+10w ports
prediction BTB: 256, 4-way, RAS: 256 fp: 80-640 entries, 6r+7w ports, access time: 1 cycle

microarchitecture are shown in Table 1. Issue queues,
issue width and ROB have been oversized so as to adapt to
the biggest PRF sizes. This way, the effect of the PRF size
variation can be better analyzed. A bypass network pro-
vides operands to dependent instructions issued back-to-
back avoiding PRF reads. The L1-Dcache is made up of
four 16KB line-interleaved banks whose conflicts are
properly modelled and penalized.

3.2 Implementation details of evaluated
resource allocation policies

The main parameters used in the implementation of the
considered allocation policies are shown in Table 2.

With respect to the G1 group, we have implemented
Stall, Flush and Flush++ with an improvement called
Continue the Oldest Thread (COT) [2]. When all the
threads are stalled due to long-latency misses, the thread
with the oldest offending load is allowed to continue
fetching. The idea is to advance the execution of the thread
most likely to be the first that resolves its cache miss.

Related to the policies that explicitly control resource
allocation (G3), all have been built on top of Icount. Our
Dcra implementation distributes the Issue Queue entries
(integer, floating point and memory) and the integer and
floating point rename registers, whereas our Sra and Hill-
climbing implementations distribute the integer Issue
Queue entries, the integer rename registers and the Reor-
der Buffer. Per-thread caps of Sra correspond to hard par-
titioning (no resource sharing) for 2-threads and very
limited sharing for 4-threads. According to [11], these
thresholds provide good performance and enforce fair-
ness. We have explored other resource limits and have not
found better throughput and fairness figures. We choose
IPC to direct SMT performance feedback to the Hill-
climbing algorithm (named HILL-IPC in [4]) because it
allows the most complexity-effective implementation. All
other metrics considered in [4] need to evaluate the stan-
dalone IPC of each thread, so they have to be periodically

executed alone during certain periods of time, whereas
IPC measurement can be done without disabling SMT
execution. In order to adapt its value to a wide range of
PRF sizes, the Delta parameter (constant value of 4 in [4]),
has been replaced by a value proportional to the number of
rename registers. Finally, the minimal amount of shared
resources assigned to each thread has been set to Delta.

3.3 Workload

All the benchmarks of SPEC2000 have been used but
fma3d which could not be executed within our framework.
Traces of 300-millions of instructions have been built
according to the ideas introduced in [13]. Benchmarks
have been categorized into high-ILP and low-ILP accord-
ing to their single-threaded IPC. This way, three different
workloads types can be distinguished: high-ILP (all
threads are high-ILP), Jow-ILP (all threads are low-ILP)
and mix (composed by high-ILP and low-ILP threads). For
each workload type, eight combinations of two bench-
marks and four combinations of four benchmarks have
been selected, see Table 3. We have tried to equally
include all the benchmarks and to balance integer and
floating point combinations. Simulations end when all the
threads have finalized its execution at least one time (last
methodology [19]). When a thread finalizes before the end
of the simulation, it is re-executed. This way, the workload
is composed always by the specified number of threads.

3.4 Metrics

We consider two metrics to evaluate performance. IPS
considers the effect of the different PRF access times on
performance. Hmean-wIPC has been widely used to char-
acterize SMT performance [1][2][3][4]1[51[9][14].

« IPS: it quantifies the performance (throughput)
obtained by an SMT microarchitecture. It is the ratio
between the IPC and the cycle time of the processor
(T,). IPC is obtained as the addition of the multi-

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 05:52 from IEEE Xplore. Restrictions apply.

Table 2. Main parameters of the implemented resource allocation policies.

Policy Parameter Value
Stall, Flush, Flush++ L2 delay to suppose a miss 20 cycles
Sra Per-thread caps [11] 2 threads: 50%, 4 threads: 30%
S e g Epoch Si 64k cycl
Hill-climbing Poch S1ze cy.c e
Delta #rename registers / 64

Table 3. Multithreaded workloads.

Workload type
high-ILP low-ILP mix
int bzip2-eon, gzip-gec vpr-mcf, vortex-twolf | perlbmk-vortex, gec-gap
. perlbmk-apsi, crafty-galgel | gap-swim, parser-mgrid | crafty-art, gzip-mgrid
2 threads | int-fp : .
bzip2-mesa, eon-sixtrack vpr-lucas, mcf-equake | twolf-galgel, parser-ammp
fp | mesa-sixtrack, ammp-wupwise | lucas-equake, applu-art | apsi-applu, facerec-swim
int bzip2-eon-gzip-gce vpr-mcf-vortex-twolf | perlbmk-vortex-gce-gap
. perlbmk-apsi-crafty-galgel | gap-swim-parser-mgrid crafty-art-gzip-mgrid
4 threads | int-fp - .
bzip2-mesa-eon-sixtrack vpr-lucas-mcf-equake | twolf-galgel-parser-ammp
fp mesa-sixtrack-ammp-wupwise | lucas-equake-applu-art | apsi-applu-facerec-swim

threaded IPC reached by each thread (IPC;) divided
by the number of threads (N). We assume that the pro-
cessor cycle time is constrained by the PRF access

time, computed for each PRF size according to the
Rixner model for 0.18p [12].

SIPC,
i

N
T,

IPC

T,

IPS =

* Hmean-wIPC: it considers the weighted IPCs of each
thread (WIPC;), that is, the ratio between multi-
threaded and single-threaded IPCs (IPCst;), and aver-
ages them through the harmonic mean. It combines
performance and fairness in the allocation of
resources to the threads [9], so it penalizes policies
that obtain high performance speeding up high-ILP
threads at the expense of slowing down low-ILP
threads. This metric does not depend on the processor
cycle time and it could also be stated as the harmonic
mean of the weighted instructions per second (WIPS)

of each thread.
Hmean wIPC = N = II]-YCst =
> (wIPC)™ > i
- ~IPC,
1
= 1]1\315, = N = Hmean wIPS
3 S wIPs)

IPS,

i 1

4. Results
Figure 3 shows IPS and Hmean-wIPC for all the 2-

threaded workloads (left column) and all the 4-threaded
workloads (right column). In order to make the figures

67

clearer, we have not plotted the Flush~++ lines (they are
similar to the Flush ones).

For each metric, we first describe its behaviour when
PRF size (equally-sized integer and floating point register
files) varies. Then we compare the performance obtained
by the considered resource allocation policies. Finally, we
compare the figures for 2 and 4-threaded workloads.

4.1 IPS

In order to evaluate this metric we considered that the
PRF access is in the processor critical path, so that the
PRF access time limits the processor frequency.

The upper graphs of Figure 3 show that the smallest
PRFs obtain low performance. In spite of their access time
allowing high processor frequencies, the effect of the large
number of rename stalls is more pronounced. On the other
hand, the high access time of the largest PRFs limits the
processor frequency, so affecting performance. An inter-
esting design point is the PRF size that maximizes IPS.
This size varies with the resource allocation policy: for 2-
threaded workloads, maximum IPS is reached between
224 and 320 registers, meanwhile for 4-threaded work-
loads it is reached between 320 and 448 registers. Pressure
on resources is higher in the latter case, so all polices ben-
efit from bigger PRFs.

If we compare resource allocation policies, we can
observe that for 2-threaded workloads, Flush obtains the
best performance with small PRFs (below 160 registers).
This is because it avoids rename stalls by squashing
stalled threads so as their allocated registers can be
assigned to other active threads. For larger PRFs, Hill-
climbing outperforms the rest of the policies: its adapta-
tive resource allocation algorithm is able to find the best
resource distribution. Pipeline squashes of Flush are less
effective due to the reduction of register stalls. Icount (the
simplest policy) becomes the worst choice for all sizes.

When executing 4-threaded workloads, PRFs below
320 registers reach the best IPS with Flush. Pressure on

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 05:52 from IEEE Xplore. Restrictions apply.

IPS (x1€9)

1M - ‘ ‘ n 1.3p

0.9
hillclimb
0.8 “P-dcra
07l Arsra
B-flush
06 stall
05 ©-icount
1 L L L L Il Il 1 L L L L Il L L L L
8096 128 160 192 224 256 288 320 384 448 512 160 192 224 256 288 320 384 448 512 576
PRF size PRF size
Hmean-wIPC

0.8 - - 0457
0.4r
0.35F
0.3
0.25- = hillclimb i
g “P-dcra
)
028 /" "sra }
“F B-flush
stall
7 015, ©icount 1
1 L L L L Il L 1 L L L L 1 L L L Il L L Il
8096 128 160 192 224 256 288 320 384 448 512 160 192 224 256 288 320 384 448 512 576
PRF size PRF size

Figure 3. IPS (top) and Hmean-wlPC (bottom) vs. PRF size for Icount, Stall, Flush, Sra, Dcra
and Hill-climbing policies. The two figures on the left and the two ones on the right
correspond to 2 and 4-threaded workloads, respectively. Note the different scales of both x
and y axes for the 2 and 4-thread figures.

resources is higher than in 2-threaded mode, so this policy throughput speed-up when executing 4-threads instead of
is now more effective up to sign@ﬁcat.ive .bigger PREFs. 2-threaded workloads. With smaller PRFs, Flush is the
Beyond that amount ofreglsters, Hzll—clzmbzng obtains the Only pohcy that exploits thread-level parallehsm_

best results, but with smaller speedups respect to the rest
of the policies than with the 2-threaded workloads. Icount 4.2 Hmean-wIPC
is the worst choice for small PRFs but it is the policy that

keeps improving its performance up to the biggest PRFs This metric is low with small PRFs and increases to sat-

s1ze (448 rc_eglsters), overcoming Stall above 320.r.eg1sters uration with larger PRFs, except for Flush, that reaches its

and achieving IPS figures close to the rest of policies. maximum value with much less registers (160 and 256
It is interesting to point that in spite of its different registers for 2 and 4-threaded workloads, respectively).

threshold settings (dynamic and static), Dcra and Sra
behaves in a very similar way for both 2 and 4-threaded
workloads and for all register file sizes.

Finally, we compare the throughput obtained by a given

When executing 2-threaded workloads, tight PRFs (up
to 160 registers) are best managed with Flush. Likewise
IPS, it is able to reduce register rename stalls by way of
policy for 2 and 4-threaded workloads. If we are interested rc?leasing resources allocat@d to stalled threads. Medium-
in the maximum IPS point, in all cases it is reached with 4- sized PRFs (up to 288 registers) obtain the best Hmean-
threaded workloads but at the expense of bigger PRFs. If wIPC with Hill-climbing and larger PRFs reach the best
we compare the throughput obtained by a given PRF size, fairness figures with policies of the G3 group, with Hill-
it can be seen that at least 224 registers are needed to get climbing slightly outperforming Sra and Dcra.

68

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 05:52 from IEEE Xplore. Restrictions apply.

a) 1PS b) Hmean-wIPC

IPSypax Hyiax
90%IPSypx e O0%Hy —_—
Rrgorpg / _________
- |
Rips Roops umber of Rigon number of
registers registers
Figure 4.Ranges Rrggps, Rrggy and

parameters R;pg and Rgqps (a, b)

For 4-threaded workloads, Flush is again the best pol-
icy if the PRF is small or medium sized (up to 288 regis-
ters), whereas Dcra and Sra are the best schemes with
large PRFs. In this case, Hill Climbing may be affected by
the use of IPC as the performance feedback metric for its
learning algorithm. If the goal is to maximize fairness,
Hmean-wIPC should be used to direct SMT performance
feedback (named HILL-HWIPC in [4]).

Finally, Hmean-wIPC figures are much higher for 2-
threaded workloads. It provides up to a 100% speed-up
relative to the 4-threaded workload in the case of Hill-
climbing. If a design needs to enforce fairness, it has to be
taken into account that, when executing 2 threads, any of
our evaluated PRF sizes obtains Hmean-wIPC values that
are unreachable when 4-threads are executed.

4.3 PREF sizing and resource allocation policy
selection

In the previous subsections we have observed that the
PREF size and the resource allocation policy should not be
selected in an isolated way. Now, our aim is to select both
the PRF size and the resource allocation policy that maxi-
mizes processor performance and fairness. The selection
procedure is carried out in two steps. First, for each
resource allocation policy, we look for a PRF size that bal-
ances the two metrics considered in this paper (IPS and
Hmean-wIPC). This analysis simplifies the throughput-
fairness comparison among different allocation policies.
Secondly, we compare the selected design points using
performance and energy efficiency metrics.

According to our results, Hmean-wIPC increases with
the number of registers saturating at sizes close to the ones
that achieve the peak value of IPS. Such sensitivities to the
PRF size suggest that IPS could be maximized while
obtaining a Hmean-wIPC value close to its maximum.

Thus, for a given allocation policy, our procedure con-
siders the PRF sizes that obtain at least the 90% of the two
metrics maximum values (see Figure 4):

* Rrggps: range of registers needed to obtain 90% of
the maximum IPS. We also define R pg as the maxi-
mum value in that range and Rjpg as the number of
registers needed to reach the maximum IPS.

* Rrggy: range of registers needed to obtain 90% of the
maximum Hmean-wIPC.

Table 4 collects these ranges and Rypg for each resource
allocation policy and for both 2 and 4-threaded workloads.
It can be seen that in all cases, the two ranges overlap and
that Rypg lies in that intersection.

69

To summarize, for each resource allocation policy, the
procedure searches for a PRF size that obtains simulta-
neously at least 90% of the maximum IPS and Hmean-
wIPC. For all the analyzed policies, we have found sev-
eral PRF sizes meeting these requirements. Among those
design points and with performance as main target, we
have selected the PRF size that maximizes IPS. These
sizes are highlighted in Table 4 with shadowed back-
ground. The procedure can be easily modified to meet
other design goals. For example, if hardware costs were
the main target, we could select the smallest PRF size that
lies in the Rrgypg and Rrggp intersection.

Finally, for these selected PRF size and allocation pol-
icy pairs, Table 5 collects IPS and Hmean-wIPC (best
scores are highlighted). It also collects dynamic energy
per instruction (Epl) consumed by the PRF as a first-order
approximation for energy efficiency. Total energy has
been computed by multiplying the number of PRF
accesses by the energy per each access, obtained for each
PREF size according to the Rixner model [12]. Epl is used
because instruction counts executed by each policy may
be very different. We find that the Epl values of the best
performance design pairs are very similar. We have also
observed that Flush does not take advantage of its smaller
PREF sizes due to the energy cost of reexecuting squashed
instructions.

Hill-climbing with a 320-entry PRF seems the best
choice for executing 2-threaded workloads. If our target is
a 4-threaded SMT processor, we could either optimize
throughput or fairness. If we are more interested in
throughput, the best option is Hill-climbing with a 384-
entries because it obtains the best IPC and IPS figures.
However, if we prioritize the performance-fairness trade-
off, Sra and Dcra are the best policies.

5. Conclusions

This paper analyzes the combined impact of the PRF
size and the resource allocation policy on SMT perfor-
mance, showing that a decoupled analysis is not a right
choice. We have explored a large range of PRF sizes and a
broad set of allocation policies and have found that for
small PRFs, Flush is the policy that obtains the best
throughput (IPS) and fairness (Hmean-wIPC) figures. For
larger PRFs, our results show that Hill-climbing always
achieves the best throughput and fairness scores, except
for processors supporting 4 threads that have to be exe-
cuted in a balanced way (with Hmean-wIPC). In that case
Sra and Dcra are the best policies.

Related to simultaneously achieving the best through-
put and fairness, we propose a simple procedure to find the
best PRF size for a given resource allocation policy.
Applying such procedure to a broad set of allocation poli-
cies, our results show that it is possible to find a PRF size
that maximizes IPS while reaching values close to the
maximum of Hmean-wIPC. Among the selected design
points, Hill-climbing with 320 registers is the best scheme
for 2-threaded workloads. For 4-threaded workloads, 384
registers is the best choice, either with Hill-climbing (best
throughput) or with Sra or Dcra (best fairness). This last
design point provides an average IPS improvement of
23% with respect to the 2-threaded SMT processor, at
the expense of a 17% increase in the PRF size.

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 05:52 from IEEE Xplore. Restrictions apply.

Table 4. For each allocation policy, ranges of registers that obtain 90% of the
maximum IPS (Rrgg,ps), 90% of the maximum Hmean-wIPC (Rrggy), and numbers

of registers that obtain the maximum IPS (Rpg).

2-threads 4-threads
Rrggps | Rrgoy Rips Rrogrps | Rrggy Ryps
Hill-climbing 192-512 192+ 320 256+ 288+ 384
Dcra 224-512 192+ 320 288+ 320+ 384
Sra 224-512 256+ 320 288+ 320+ 384
Flush 128-448 128+ 224 192-576 192+ 288
Stall 160-512 160+ 256 224-576 256+ 320
Icount 192+ 256+ 320 320+ 384+ 448

Table 5. For each allocation policy, PRF sizes (R) selected through the procedure
described above and figures for those PRF sizes: IPS (billions), Hmean-wIPC and
dynamic energy per instruction (Epl, measured in nJ) consumed by the PRF.

2-threads 4-threads
R IPS | Hmean | Epl R IPS |Hmean | Epl
Hill-climbing 320 1.03 0.72 2.5 384 1.27 0.36 2.7
Dcra 320 0.92 0.71 2.5 384 1.22 0.40 2.8
Sra 320 0.93 0.72 2.5 384 1.23 0.40 2.8
Flush 224 0.93 0.63 2.2 288 1.27 0.37 2.7
Stall 256 0.84 0.65 2.1 320 1.10 0.34 24
Icount 320 0.78 0.63 2.5 448 1.14 0.39 33

6. Acknowledgments

This work was supported in part by Diputacion General
de Aragon grant "gaZ: Grupo Consolidado de Investi-
gacion”, Spanish Ministry of Education and Science
grants TIN2007-66423 and TIN2007-60625, and Euro-
pean Union Network of Excellence HIPEAC-2 (High-Per-
formance Embedded Architectures and Compilers,
FP7/ICT 217068).

7.
(1]

References

F. J. Cazorla, A. Ramirez, M. Valero and E. Fernandez.
Dynamically Controlled Resource Allocation in SMT Pro-
cessors. Int’l Symp. on Microarchitecture (MICRO), pp.
171-182. IEEE Computer Society, December 2004.
F.Cazorla, E.Fernandez, A.Ramirez and M.Valero.
Improving Memory Latency aware fetch policies for SMT
processors. Int’l Symp. High Performance Computing,
Oct. 2003.

F.Cazorla, A.Ramirez, M.Valero and E.Fernandez.
DCache Warn: an I-Fetch Policy to Increase SMT Effi-
ciency. IPDPS, pp. 74-83, 2004,.

S.Choi and D.Yeung. Learning-Based SMT Processor
Resource Distribution via Hill-Climbing. Int’l Symp. on
Computer Architecture (ISCA), 2006, pp. 239-251.
S.Eyerman, L.Ecckhout. A Memory-Level Parallelism
Aware Fetch Policy for SMT Processors, HPCA, 2007, pp.
240-249.

R.Kalla, B.Sinharoy and J.Tendler, IBM Power5 Chip: A
Dual-Core Multithreaded Processor, IEEE Micro, vol. 24,
no. 2, Mar.-Apr. 2004, pp. 40-47.

D.Koufaty, D.Marr, Hyperthreading technology in the net-
burst microarchitecture, JEEE Micro, vol 23, no 2, Mar.-
Apr. 2003, pp.56-65.

70

K.Luo, M.Franklin, S.Mukherjee and A.Seznec. Boosting
SMT Performance by Speculation Control. /PDPS, pp. 9-
16, April 2001.

[9] K.Luo, J.Gummaraju and M.Franklin. Balancing through-
put and fairness in SMT processors. ISPASS, Nov. 2001.

[10] A.EI-Moursy and D.Albonesi. Front-End Policies for
Improved Issue Efficiency in SMT processors. HPCA, pp.
31-40, February 2003.

[11] S.E.Raasch, S.K.Reinhardt, The impact of resource parti-
tioning on SMT processors, PACT, pp. 15-25, Sept. 2003.

[12] S. Rixner, W. Dally, B. Khailany, P. Mattson, U. Kapasi
and J.Owens, Register Organization for Media Processing.
HPCA, pp. 375-386, Jan. 2000.

[13] T.Sherwood, E.Perelman, G.Hamerly and B.Calder. Auto-
matically Characterizing Large Scale Program Behavior.
ASPLOS, pp. 45-57, Oct. 2002.

[14] S.Subramaniam, M.Prvulovic and G.Loh. PEEP: Exploit-
ing Predictability of Memory Dependences in SMT Pro-
cessors. HPCA, pp. 137-148, Feb. 2008.

[15] D.Tullsen and J.Brown. Handling long-latency loads in a
simultaneous multithreaded processor. Int’l Symp. on
Microarchitecture (MICRO), pp. 318-327. Dec. 2001.

[16] D.Tullsen, S.Eggers, J.Emer, H.Levy, J.Lo, and R.
Stamm. Exploiting choice: Instruction fetch and issue on
an implementable simultaneous multithreading processor.
ISCA, pp. 191-202, Apr. 1996.

[17] D.Tullsen, S. Eggers and H. Levy. Simultaneous multi-
threading: Maximizing on-chip parallelism. Int’l Symp. on
Computer Architecture (ISCA), pp. 392-403, 1995

[18] A.Yoaz, M.Erez, R.Ronen and S.Jourdan. Speculation
techniques for improving load related instruction schedul-
ing. ISCA, May 1999.

[19] J.Vera, F.Cazorla, A.Pajuelo, O.Santana, E.Fernandez and

M.Valero. FAME: FAirly MEasuring Multithreaded

Architectures. PACT. September 2007.

(8]

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 05:52 from IEEE Xplore. Restrictions apply.

