
1-4244-0910-1/07/$20.00 ©2007 IEEE.

Abstract
This paper proposes and evaluates a new microarchitec-

ture for out-of-order processors that supports speculative
renaming. We call speculative renaming to the speculative
omission of physical register allocation along with the
speculative early release of physical registers. These
renaming policies may cause a register operand not to be
kept in the Physical Register File (PRF). Thus, we add a
low-ported Auxiliary Register File (XRF) located outside
the processor core that keeps the values absent in PRF and
supplies them at higher latency. To support the location of
register operands being either in PRF or XRF, we use vir-
tual registers. We consider omission and release policies
directed by hardware prediction. Namely, we will use a sin-
gle Last-Use Predictor that directs both speculative omis-
sion and release. We call this mechanism SR-LUP
(Speculative Renaming based on Last-Use Prediction). Two
Last-Use predictor designs of incremental complexity and
performance are analyzed. In a 256-ROB, 8-way processor
with an 80int+80fp PRF, SR-LUP with an 11-port
256int+256fp XRF, speeds up computations up to 11.5%
and 29% for INT and FP SPEC2K benchmarks, respec-
tively. For FP benchmarks, if the PRF limits the clock fre-
quency, a conventionally managed 128int+128fp PRF can
be replaced using SR-LUP by a 64int+64fp PRF backed up
with a 10-port 224int+224fp XRF, showing 19% IPS gain.

1. Introduction

Out-of-order superscalar processors working at high
clock frequencies often rely on Physical Register Files
which merge committed and non-committed versions of
logical registers. This is the case of current processors such
as Intel Pentium4 or IBM Power5 [14][16].

The Physical Register File (PRF) is located in a critical
path and can limit the processor clock frequency [2][11], so
several directions have been proposed to reduce its access
latency, such as reducing the number of ports
[2][5][9][12][24], reducing the number of physical registers
[3][4][10][20][22][28], or using a few, narrow entries to
encode frequent values [18].

In order to reduce the number of physical registers with-
out losing performance it is required to act on the renaming
policy to reduce the time a physical register is allocated.

This paper follows this approach and details the design of a
microarchitecture that supports speculative renaming, that
is, to omit allocation and to perform the release of physical
registers in a speculative way.

The baseline to improve is what we call the conventional
renaming mechanism. Register renaming is a common
technique used to increase the Instruction Level Parallelism
in processors that have a centralized Register File
[13][14][17][29]. Renaming removes false dependencies
by allocating a physical place in the PRF to every instruc-
tion writing to a logical register. Therefore, a physical reg-
ister p serves two functions: p acts as an identifier for
tracking dependencies and addressing PRF (p identifier),
and also p acts as a value container (p value). Releasing a p
identifier under conventional renaming only proceeds after
making sure that the p value is not going to be read anymore
(p identifier is un-mapped by the next instruction writing to
the same logical register, and such instruction reaches the
commit stage [23]). This strict condition is easy to track and
only involves returning p identifier to a Physical Free List,
being the dead p value still retained in PRF until p identifier
is allocated to another instruction that writes a new p value,
overwriting the previous one. This way, conventional
renaming supports precise exceptions and its implementa-
tion is simple, but for tight PRFs (# physical registers <<
logical registers + # entries in ROB) performance can
raise quite a lot if dead values are not retained in PRF [21].

Several improvements have been proposed aimed at
relaxing the release conditions in order to recycle a physical
register identifier quite before the redefining instruction
commits [1][2][3][10][15][19][22]. We can distinguish
between safe and speculative policies. In the first group,
either software or hardware approaches exist. The former
takes advantage of the limited compiler knowledge in order
to safely release a register read by its only consumer [15].
Any hardware approach monitors program execution so as
to safely release a physical register provided that some con-
ditions are met, such as register dependences, conditional
branch outcomes or capability to raise exceptions [19][22].

On the other hand, speculative policies have been pro-
posed to release registers earlier, to the extent that a physi-
cal register can be released before all its consumers have
read it [1][2][3][10]. This kind of policies has to set the con-
ditions under which a physical register can be released
early, and also needs recovery resources to retrieve those
incorrectly early released values. The referenced work
addresses the first issue either by tracking continuously
such conditions [2][3][10] or by predicting which instruc-

Microarchitectural Support for Speculative Register Renaming

Jesús Alastruey1, Teresa Monreal1, Víctor Viñals1, and Mateo Valero2

1Universidad de Zaragoza
Dept. Informática e Ingeniería de Sistemas-I3A

Zaragoza, Spain
{jalastru, tmonreal, victor}@unizar.es

2Universitat Politècnica de Cataluña and BSC
Dept. d’Arquitectura de Computadors

Barcelona, Spain
mateo@ac.upc.edu

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 05:52 from IEEE Xplore. Restrictions apply.

tion uses a given physical register for the last time [1]. For
the recovery issue, different back-up structures are used,
namely, an Auxiliary Register File [1], a two-level Register
File [2] or a Checkpointed Register File [3][10].

Related to the allocation of physical registers, there are
also safe and speculative policies. The first one delays the
allocation of physical registers until the execution stage
[20]. The second one omits the allocation of a physical reg-
ister under some circumstances: either it is predicted that a
destination register will be never read [1][7] or it is pre-
dicted that a destination register with a single consumer will
be supplied by the bypass network (a short-lived value) [4].

In this work we propose a microarchitecture that sup-
ports any kind of speculative renaming. We call speculative
renaming (SR) to the omission of physical register alloca-
tion and the early release of physical registers. Both policies
are speculative because they rely on prediction and so they
may require recovery actions in case of a misprediction.
Our proposal relies on the management of a low-ported
Auxiliary Register File (XRF) located outside the processor
critical paths. Instruction results not allocated to physical
registers are written directly to XRF, whereas early released
registers are transferred from PRF to XRF. To support the
location of register operands being either in PRF or in XRF,
the dependence tracking is decoupled from physical register
identifier through the concept of virtual registers [20].

This SR support is orthogonal with the specific policies
that identify the values to be sent to the XRF. As far as we
know, this is the first proposal of a microarchitecture that
supports any policy of allocation omission and release of
physical registers, no matter it comes from compiler hints
or from a hardware predictor (the case we evaluate later).

The main microarchitectural modifications and exten-
sions for supporting SR are the following:

Auxiliary Register File. XRF keeps values until it is
safe to discard them, therefore supporting precise excep-
tions as well as control speculation. Both an instruction
result lacking physical register allocation and an early
released physical register that has been overwritten are sup-
plied from XRF to the instructions reading them (unexpect-
edly), paying a penalty of some cycles but without restoring
it to the PRF.

Dependence tracking. Under SR, operands can be read
from PRF or from XRF. To solve this double operand loca-
tion, the dependence tracking is decoupled from physical
register identifiers through the use of virtual registers [20].

Speculative issue. In order to benefit the frequent case,
we predict for all instructions having source physical regis-
ters that their operands still reside in PRF. In parallel with
the PRF access, it is verified that the physical register read
has not been prematurely released and then overwritten by a
younger instruction reusing it. Source operands without
allocated physical registers are read directly from XRF.

Misprediction recovery. When an instruction is reading
a physical register and it realizes that such physical register
has been overwritten by a younger instruction, the instruc-
tion itself and all its already issued dependent instructions
have to be squashed and issued again. This is accomplished
by means of chained recovery, a selective recovery policy
proposed to cope with latency predictions [27].

To evaluate the SR microarchitecture we choose a Last-
Use Predictor (LUP) because it can direct at once allocation

omission and early release. Other choices are possible, but
the potential of this predictor is quite attractive when con-
sidering ideal components (oracle LUP, unlimited XRF and
free recovery) [1].

In this paper we consider two LUP designs: the “Sticky”
LUP (SLUP) predictor proposed in [1] and a new one LUP
based on the concept of register Degree-of-Use [8]. SLUP
is a simple predictor in which a last-use prediction can not
be untrained, that is, once made it “sticks” until the whole
prediction entry is replaced. The Degree-of-Use LUP
(DULUP) leverages from the work of Butts and Sohi in [8],
offering better performance but greater complexity than
SLUP.

The paper is structured as follows. Section 2 details the
SR microarchitecture and the processor model. Section 3
describes the implementation of the SR-LUP mechanism.
Section 4 presents the experimental methodology and ana-
lyzes the results. Section 5 comments related research.
Finally, we summarize the conclusions in Section 6.

2. SR Microarchitecture

We first present the SR microarchitecture. Section 2.2
describes the processor model. Section 2.3 details our pro-
posal on how to use virtual registers in order to manage
PRF and XRF values. Finally, Section 2.4 describes alloca-
tion and release of physical, auxiliary and virtual registers.

2.1 SR rationale

Under SR, one or more registers of an instruction can be
tagged with speculative renaming predictions. More
detailed, source registers can receive an early release of
physical register prediction (ERPRpred) and the destination
register can receive an omission of physical register alloca-
tion prediction (OPRApred). For instance, in Figure 1, let’s
suppose the predictor tags the physical register p of an
instruction I. If p is a source register, after reading its value
from PRF, I itself returns the p identifier to the Physical
Free List and also copies the p value into the XRF (A circuit
in Figure 1). If p is a destination register, I is going to pro-
duce a dead value, so now the p value is written directly into
the XRF (B circuit in Figure 1). Besides, in this case it is not
needed to waste a p identifier for the logical register desti-
nation of I, being sufficient the allocation of an auxiliary
register (x id in Figure 1).

A misprediction or a late read due to out-of-order execu-
tion may require a value without an allocated physical reg-
ister or a prematurely released value. Unexpected uses of
speculatively omitted registers will read their operands
from XRF, whereas unexpected uses of speculatively
released registers will read the required values either from
PRF (if the value has not yet been overwritten) or from
XRF (C circuit in Figure 1). Virtual registers will help us in
dealing with this double value location [20] (Section 2.3).

2.2 Processor Model

We model a superscalar processor with a ten-stage pipe-
line (see top of Figure 2). It supports back-to-back execu-
tion, so a dependent instruction is speculatively woken up
based on the issue of their parent instructions. Concerning
the memory model, a load is not issued until all previous

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 05:52 from IEEE Xplore. Restrictions apply.

stores have computed their addresses and there is no
address match. Besides, load instructions are issued with
the blind latency prediction of L1 data cache hit, so every
load remains in the Issue Queue until the hit is verified. In
case of a cache miss, the load and its issued dependent
instructions are squashed by means of a simple chained
recovery mechanism used in the context of cache bank pre-
diction [27]. It is selective (only its dependent instructions
are reissued) and starts recovery as soon as the mispredic-
tion notification reaches the IQ. The recovery is called
chained because every issue cycle all the instructions to be
cancelled are squashed except the ones that are being
selected.

To cope with misspeculations, SR leans on the same
recovery approach. The IQ schedules dependent instruc-
tions assuming all source register operands lie in PRF. If
any source value is not in PRF, the offending instruction has
to be reissued and all its direct dependents re-scheduled at
the higher latency of accessing XRF. If one source operand
lies in XRF and the other in PRF, the functional unit is
reserved from the time the first value arrives from PRF until
the second value arrives from XRF.

2.3 PRF and XRF Register Value Management

Let´s consider two instructions A and B, A executing
before B, whose logical destination registers will become
consecutively allocated to the same physical register pd.
Let’s also assume a third intervening instruction between A
and B, I, that speculatively early releases pd. After instruc-
tion A executes, the computed value is only present in the
pd register of PRF, but after the Register Read stage of I, the
A value is also in XRF. The A value remains in PRF until
instruction B completes execution. After the overwritten
moment, the pd register in PRF stores the B value, whereas
A value is again only present in a single place, the XRF. So,
under SR, an instruction result can be either only in PRF,
both in PRF and XRF or only in XRF.

This SR feature makes physical identifiers unable to
locate register operands. We suggest to overcome this prob-
lem by using the concept of virtual registers, previously
proposed in the context of physical registers allocation [20].

A pair of identifiers is allocated to every logical destina-
tion register: a physical register and a virtual register, let’s
call them the <p, v> pair. Figure 2 presents the structures
implementing the SR circuit. The new double mapping is
supported by a number of mapping tables that manage spec-

ulative renaming and provide a way to locate values. The
Global Map Table (GMT) supports the double mapping. A
Physical to Virtual (P2V) Table, a Virtual to Auxiliary
(V2X) Table, a match structure (set of comparators), and a
mux selecting between PRF and XRF (belonging to the
bypass network) allow value location. The P2V Table is
accessed in parallel with PRF and keeps the current virtual
mapping associated to a given physical register. This P2V
Table and the match structure verify whether the value read
from PRF is the correct one or not. The V2X Table acts as
an Auxiliary Map Table and stores the mapping between a
virtual identifier and the auxiliary register that holds a value
with no physical register allocated or an early released
value. The Virtual and Auxiliary Free Lists manage virtual
and auxiliary free identifiers, respectively.

For every instruction, its predictions (OPRApred and/or
ERPRpred) are stored into the RAM Payload. In the
Rename stage, an instruction reads from the GMT the <p,
v> pair corresponding to its source registers. Also in the
Rename stage, the GMT is updated with a new pair of iden-
tifiers <p, v> that map the logical destination register. An
OPRApred set in the destination register forces the alloca-
tion of only a virtual identifier, so no physical register iden-
tifier is reclaimed. For every source and destination register
coming with a prediction, an auxiliary register x from the
Auxiliary Free List is reclaimed. The V2X Table stores
such mappings (virtual to auxiliary register identifiers).
After that, instructions are dispatched to the IQ and all the
relevant information is stored into the RAM Payload
(opcode, physical registers, predictions, etc.). Under SR,
dependence tracking in IQ is managed by virtual identifiers.

At the same time a value is written into PRF (register p),
its virtual identifier is stored in the P2V Table (P2V[p]=v).
Concerning to speculative releasing, an instruction with
some source register tagged as ERPRpred performs three
actions in the Register Read stage: i) reads the register value
from PRF, ii) writes it into XRF, and iii) releases the register
identifier to the Physical Free List. In case of a destination
register tagged as OPRApred, the ALU or cache output
writes it directly into XRF.

Under SR, except for operands with no physical register
allocated, source register locations are not known at issue
time, so every selected instruction uses the <p, v> pair to
locate their operands. The p identifier is used to access in
parallel PRF and P2V Table, looking for the current virtual
mapping of p (v_current=P2V[p]). The v identifier is com-
pared with the v_current mapping; if they match, the p
value from PRF is the right one, but when the virtual check
fails, the operand should be read from XRF and recovery
actions undertaken. Reading XRF requires an access to
V2X Table to find the auxiliary identifier that contains the
saved value. As regards recovery actions, the offending
instruction is reissued and its dependent instructions
rescheduled to the XRF latency (Section 2.2). Note that
recovery is only needed after the speculative early release
of a register p whose p value has been overwritten in PRF
by the instruction that reallocated the released p identifier.

2.4 Virtual, Physical and Auxiliary Register
Releasing

Under SR up to three kinds of register identifiers have to
return to three different Free Lists (Virtual, Physical and

Figure 1. Basic components and circuits
required in SR microarchitecture.

FU

Predictor

PC

OPRApred p or

mux

A

C

Bp id release
p value copy

x id

PRF

XRF

dead value

identifier
value

ERPRpred p

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 05:52 from IEEE Xplore. Restrictions apply.

Auxiliary Free Lists in Figure 2). Both virtual and auxiliary
identifiers are managed in conventional way, being released
at the Commit stage of redefining instructions. On the other
hand, a physical identifier experiences either an early or a
conventional release. In order to distinguish the kind of
release two bit-vectors are needed. These bit-vectors have
several functionalities: permitting the conventional release
of physical registers not tagged with ERPR predictions,
controlling that early released registers will not be released
twice and canceling ERPR predictions to registers yet pre-
viously tagged.

We call Speculative Renaming Prediction List (SRP) to
the bit-vector that informs about what values have received
an OPRA or ERPR prediction. The SRP List is indexed by
virtual identifier and it is set in the Rename stage for every
received OPRA or ERPR prediction. So, for every instruc-
tion, a bit set in the SRP entry for its destination register
cancels the conventional release of the physical identifier
and activates the conventional release of the auxiliary one.
Besides, a SRP bit set in a source register inhibits new
ERPR predictions received by that register. The SRP bit is
unset when a virtual register is allocated. As for GMT, an
SRP copy has to be done after each predicted branch.

The Committed Early Release List (CER) is a bit-vector
used to perform the SRP recovery. The CER informs
whether any speculative release scheduled during a mispre-
dicted path has finished or not (the value is in the XRF or
not). The CER List is also indexed by virtual identifier. An
entry is set when the speculatively released value related to
the virtual identifier is written in the XRF. With this, only
such SRP entries that are not set in the CER List are recov-
ered in case of a branch misprediction. Any SRP bit recov-
ered also implies the conventional release of the auxiliary
identifier and the CER bit unsetting.

3. An SR-LUP Mechanism Design

In SR-LUP, the Last-Use predictor (LU predictor)
directs both speculative omission and early release of phys-
ical registers. We use LU predictors indexed with program
counter whose entries have partial tags. For every matching
instruction, the LU predictor predicts a pattern of use, a bit-
vector telling for each register operand whether further
reads, in program order, are going to appear or not. Accord-
ingly, when a register operand has a prediction of no further
use we call it a Last-Use prediction (LUpred).

SR-LUP takes advantage of a Last-Use prediction on a
source register (ERPRpred) by performing an early release
just after reading it. A Last-Use prediction on a destination
register (OPRApred) is processed earlier, in the rename
stage, by omitting the allocation of a physical register.

Two LU predictors of incremental complexity and per-
formance are used in this work. The first one is the Sticky
LU predictor (SLUP) suggested by Alastruey et al. in [1].
We propose a second predictor based on the degree-of-use
concept introduced by Butts and Sohi [8] (we call it Degree
of Use LU predictor, DULUP). Both LU predictors benefit
from enhancements such as replacing tags by branch-aware
signatures or adding confidence bits, but in order to keep
complexity low in the prediction part, we will use the fol-
lowing simplified designs.

3.1 SLUP: Sticky Last-Use Predictor

The SLUP consists in the predictor itself and an In-Order
Last-Use table (IO-LUT) -see Figure 3-. The predictor is
organized as an associative cache with partial tags. Each
entry accumulates the last-use operands observed for an
instruction over all past executions (LUpred bits s1, s2, and
d), and untraining is only possible by means of entry
replacement. The predicted pattern of use flows across the
pipeline, filling the RAM payload when the instruction is

Figure 2. SR microarchitecture. Hardware components (dark grey) are placed below their
corresponding stage in the pipeline.

IDs
values

IQ
Predictor

PCs

Fetch Decode Rename Dispatch Issue Payload Reg. Read Execution Writeback Commit

ps1, vs1

ps2, vs2

p

Payload

rd

Free
List

Physical

Global
Map Table

v

Free
List

Virtual

virtual
regs.

physical

predict.
regs. id

FU

p

=

x
V2X

P2V

v

x
Free
List

Auxiliary

etc.
PRF

XRF

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 05:52 from IEEE Xplore. Restrictions apply.

dispatched. An LUpred bit set for any source register drives
the early release of that register. A destination register with
the LUpred bit set forces the Rename stage not to allocate a
physical register and the Writeback stage to write only into
XRF. Whenever a prediction is not available for an instruc-
tion, all register values are assumed alive.

The IO-LUT keeps the last use, in program order, expe-
rienced by every logical register. So, each IO-LUT entry
has the program counter and the operand type (destination,
source 1 or 2) of the last instruction referencing a given log-
ical register. Every time an instruction having a destination
register commits, a previous instruction becomes the last-
use of such destination register. By reading the IO-LUT
entry corresponding to the destination register, the PC of the
last-use instruction is used to train the SLUP, setting the
proper LUpred bit in the pattern of use. If the last-use
instruction was already in the predictor, this action does not
change the remaining LUpred bits, being this the reason
that once a prediction is made it “sticks” during the whole
entry lifetime.

3.2 DULUP: Degree of Use Last-Use Predictor

DULUP derives from the degree of use predictor pro-
posed in [8]. The predictor starts with a Degree-of-Use
Table (DUT) organized as an associative cache with partial
tags -see Figure 4-. For an instruction with a destination
register, an entry in the DUT has the expected number of
readings such a destination register is going to experience.
Every time a new instance of the instruction commits, a
new training is performed, overwriting the previous one.

By looking up DUT in parallel with Fetch, it can be
known for the found instructions the expected number of
uses their destination registers have, storing next such num-
bers in the Pending Uses Array (PUA), which is indexed by
physical register (pd in Figure 4). From now on, every time
an instruction is renamed, a PUA counter is decremented
for each one of its physical source registers (ps1 and ps2 in
Figure 4). After that, a source register achieving a zero-
value counter in PUA receives an LUpred, and the corre-
sponding instruction will proceed to an speculative early
release. Note that decrementing PUA counters is done at the
Rename stage so an accurate management requires value
restore after a branch misprediction. As before, a zero
degree-of-use set for a destination register tells the Rename
stage to omit physical register allocation and the Writeback
stage to write only into the XRF.

Training DUT is accomplished by means of a Dynamic
Training Table (DTT) that tracks the number of committed
readings performed to every logical register.

4. Experimental Results and Analysis

First, we describe the experimental framework and the
methodology used. Section 4.2 analyzes the performance of
several configurations of SLUP and DULUP predictors.
Next, we analyze the performance of SR microarchitecture
directed by the two LU predictors.

4.1 Simulation Environment and Methodology

In all experiments we have used a detailed cycle-based
simulator derived from SimpleScalar v3.0 [6] to model the

Figure 3. Sticky Last-Use Predictor implementation: SLUP and IO-LUT.

Payload

d s1 s2

d s1 s2

IO-LUT

PC d s1 s2

rd = rs1 op rs2PCs

Fetch Decode Rename Dispatch Issue Payload Reg. Read Execution Writeback Commit

Reorder
Buffer

Sticky
LU Predictor

LU pred

logical
register

Figure 4. Degree of Use Last-Use Predictor implementation: Degree-of-Use Table, Pending Uses
Array and DTT.

Payload

d

Degree-of-Use rd = rs1 op rs2

PCs
Table

Fetch Decode Rename Dispatch Issue Payload Reg. Read Execution Writeback Commit

Pending
Uses Array

pd

ps1
ps2

==0? yes
no

Reorder
Buffer

PC DU

DTT
==0?

yes

Degree of Use
LU Predictor

d s1 s2

logical
register

LU pred

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 05:52 from IEEE Xplore. Restrictions apply.

processor described in Section 2.2. The main parameters of
the simulated microarchitecture are given in Table 1. As
workload we use all the benchmarks of SPEC2000. We use
the Alpha binaries compiled by C. Weaver and simulate a
contiguous run of 100M instructions from the points sug-
gested by Sherwood et al. [26].

4.2 The LU predictor design

In this section we change the size and associativity of
SLUP and DULUP, and analyze the variation of two met-
rics that correlate with performance: last-use mispredic-
tions (incorrect last-use register identifications that produce
Unexpected Uses, UUs) and opportunity loss (last-use reg-
isters that have not been identified). Figure 5 shows these
metrics for several sizes and associativities of both predic-
tors.

As can be seen, the opportunity loss rate decreases as
sizes increase in both predictors. When capacity increases,
conflicts decrease and therefore there are more available
last-use predictions. On the other hand, last-use mispredic-
tions increase with predictor sizes: the more entries the pre-
dictor has, the more last-use predictions will be made, and
so more last-use mispredictions. These two effects are more
noticeable for SLUP. As expected, associativity increasing
behaves as size increasing: opportunity losses decrease and
last-use mispredictions increase. This effect is more notice-
able for integer benchmarks.

If we compare both predictors, we can observe that
SLUP suffers more last-use mispredictions than DULUP
for all predictor configurations. This is because SLUP
keeps last-use predictions to an instruction having a last-use
register in any of its past executions, even when in its very
last execution its pattern of use does not show any last-use
register. In contrast, DULUP due to its different update and
prediction mechanism, is able to catch changes in the pat-
tern of use. Concerning opportunity losses, they are less fre-
quent for DULUP, specially with the smaller predictors. In
spite of more instructions entering DULUP (68% of
dynamic instructions have destination register vs. 58% that
have a last-use register), the SLUP simple training and
update policy makes it less efficient managing its entries.

In the following sections we will use direct-mapped, 5-
bit tagged 1k-entry LU predictors. For DULUP, the Degree-

of-Use Table and the Pending Uses Array contain 3-bit
counters, and the latter will not be restored when recovering
from a branch misprediction. We choose these simple con-
figurations (hardware budgets of around 1 KB for the pre-
dictors and 0.1 KB for their training mechanisms) as a good
point in the complexity/performance trade-off. As expected
from Figure 5, performance (IPC) increases with larger pre-
dictors (up to 4k entries, 4-way set-associativity for SLUP
and 2k-entries, 2-way set-associativity for DULUP). We
have not included these experiments by lack of space.

4.3 Performance sensitivity to the Auxiliary
Register File design

The goal of this section is to find a realistic design of
XRF that provides good performance without compromis-
ing the processor complexity. We have considered an XRF
with an access time of one cycle and two more cycles to
drive the data to and from it. Therefore, we have rejected
any XRF design (ports, size) exceeding the access time of
the considered PRF. Next, we detail the effects of restricting
the number of entries and ports of XRF and evaluate several
XRF configurations in order to find XRFs that exploit well
SR-LUP.

XRF size. As stated in before, at the Rename stage there
should be supplied as much auxiliary registers as the total
number of LUpred registers identified by the LU predictor.
The lack of auxiliary registers supposes an LUpred cancel-
lation, and possibly a loss opportunity of omitting a physi-
cal register allocation or an early register release. To exploit
at maximum the potential of SR-LUP, the number of auxil-
iary registers must be enough to make the number of
LUpred cancellations negligible. The maximum theoretical
XRF size for our processor is 288 entries, close to the max-
imum observed (274 for XRFint and 270 for XRFfp).

Number of ports in XRF. The XRF write ports allow the
copy of the LUpred register values. So, their number is
determined by the number of source LUpred registers
(instructions in the Register Read stage) and destination
LUpred registers (instructions in the Writeback stage). Lack
of write ports causes contention when selecting in IQ
instructions with LUpred registers, and therefore, the delay

Table 1. Processor parameters.

Parameter Value Parameter Value
Fetch, decode and

rename width
8 instructions.

Up to 2 taken branches fetched
L1 I-cache 64 KB, 4-way set-associative

32-byte line size, 1-cycle hit time
Branch prediction Hybrid predictor: bimodal + gshare

16-bits with speculative update
L1 D-cache 32 KB, 2-way set-associative

64-byte line size, 2-cycle hit time
Functional Units

(latency)
8 simple int (1), 2 mult int (7), 4 load/store,

4 simple FP (4), 4 FP mult/div (4/16)
L2 U-Cache 256 KB, 8-way set-associative

128-byte line size, 10-cycle hit time
Issue Queue size int+mem: 64 entries;

fp: 32 entries
L3 U-Cache 4 MB, 4-way set-associative

128-byte line size, 16-cycle hit time
Reorder Buffer 256 entries Main Memory unbounded, 200-cycle access time

Load/Store Queue 128 entries, store-load forwarding TLB 256 entries, 4-way set-associative
Issue width 8int + 4fp PRF 36-288 int / 36-288 fp (32 int / 32 fp logical)

Commit width 8 instructions XRF 32-288 int / 32-288 fp, 3-cycle access time

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 05:52 from IEEE Xplore. Restrictions apply.

of the scheduled speculative omission and release of physi-
cal registers (up to three predictions in the same instruc-
tion). To avoid this contention, the number of write ports
should not be a limiting factor (a maximum of 30 write
ports in XRFint, 16+14 for sources and destinations,
respectively).

The XRF read ports supply values not kept in the PRF to
the functional units when executing UU instructions. The
number of needed ports comes from the amount of register
reads from the XRF due to values that have not been pro-
vided by the PRF and omission of physical register alloca-
tion mispredictions that have not been provided by the
bypass network. Lack of read ports involves contention
when issuing UU instructions, so delaying the advance of
this kind of instructions (additionally penalized with two
cycles due to the XRF access). To avoid this contention, the
number of read ports should allow all possible UUs to read
simultaneously from XRF (a maximum of 16 ports for
XRFint).

According our experiments with 1k LU predictors, the
real use of the read and write ports observed suggests that
their number may be significantly reduced with negligible
contention rates.

XRF size and number of ports trade-offs. Summarizing,
we need an XRF with enough entries not to cancel LU pre-
dictions, and with enough ports to write LUpred registers

and to read UU registers. To explore a reasonable amount of
design points, we have proceeded by selecting several XRF
sizes, and several combinations of read and write ports with
similar UU and LUpred issue contention rates. Then we
have mixed together sizes and ports to obtain different XRF
configurations. For each PRF size, we have discarded the
XRFs with more access time than the considered PRF. As a
result, we obtain different XRF configurations for each PRF
size (from highly-ported XRFs with few entries to low-
ported XRF with many entries). In order to reduce the
experimentation points, for each XRF size we have chosen
the most highly-ported, i.e. XRFs performing the most
(likewise, for each number of ports, we have chosen the
largest XRF). We have considered XRFint and XRFfp
biased to the most limiting one (the XRFint). Finally, we
have evaluated the obtained XRFs configurations in order
to find the best performing one.

For each PRF size, Table 2 shows the XRF configura-
tions that obtain the best performance (IPC) among all the
selected samples. Table 2 stops at PRFs of sizes greater than
160 because larger PRFs do not benefit from SR-LUP. The
number of write ports have been broken down into source
and destination ports (s, d).

We observe that the number of XRF ports has been pro-
portionally more reduced than the number of entries (for the
XRF with 160-entries and 7-ports, almost an 85% reduction
in the number of ports, and less than 45% entries). From

Figure 5. Last-use predictor rates for several sizes and associativities of SLUP and DULUP
predictors. The two figures on the left/right correspond to direct-mapped (s=1), and 4-way set
associative (s=4) predictors.The two figures above/below show last-use predictor rates for int/fp
benchmarks. Last-use prediction rates are split into opportunity loss (dashed lines) and last-use
mispredictions (solid lines). An 80int+80fp PRF and an unbounded XRF have been used.

SPECint

SPECfp

s = 1 s = 4

s = 1
s = 4

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 05:52 from IEEE Xplore. Restrictions apply.

these results and with the performance goal in mind, it is
preferable to delay the issue of either UU or LUpred
instructions rather than to cancel last-use predictions.
Although the read and write contention avoids the advance
of UUs and LUpreds, the issue stage is not blocked, since
other instructions can advance. Opposite from this, the can-
cellation of an LUpred due to lack of XRF registers may
imply a lost opportunity of early release. With tight PRFs,
this may produce a rename stall due to lack of physical reg-
isters, what negatively impacts performance. For the small-
est PRFs (up to 80 registers), it can be observed that 2 or 3
read ports are enough to UU reads, whereas LUpreds (both
source and destination) can be written with only 5 to 8
ports. These read and write ports numbers are far from the
theoretically needed to avoid contention (a maximum of 16
and 30 ports for XRFint).

4.4 SR-LUP performance (IPC and IPS)

Figure 6 shows for every PRF size the IPC harmonic
mean obtained by the XRFs listed in Table 2 for both SLUP
and DULUP predictors. Conventional (conv) and SR-LUP
with an oracle-based predictor (SR-OB) are shown as the
lower and upper performance limits, respectively. We can
observe how the benefits of SR-LUP for floating point
codes are much more significant than for the integer ones.
This is an expected result since FP programs in general
cause a much higher register pressure. SR-LUP signifi-
cantly outperforms the conventional renaming and reaches
gains close to the limits. For tight PRFs of 36 and 40 regis-
ters and any kind of benchmark, performance is more than
doubled for both SR-SLUP and SR-DULUP configura-
tions.

A combination of an 80-entry PRF and a 256-entry XRF
of 11 ports with SR-SLUP obtains speedups of 8.6% and
25.3% for INT and FP benchmarks, respectively. The same
figures with SR-DULUP are of 11.5% and 29.0%. With
PRF sizes larger than 128/160 registers for INT/FP bench-
marks and any SR-LUP configurations, speedups decrease
up to be negligible or even negative. As regards the limits,
SR-DULUP supported by an 80-entry PRF and a 256-entry
XRF of 11 ports reaches 98% and 96% of the SR-OB IPC
for integer and floating point benchmarks, respectively.
Besides, it reaches 97% and 96% of the IPC obtainable with
unlimited number of physical registers.

When the processor cycle time is constrained by PRF
access time, a reduction in the PRF size may lead to a clock
frequency increase and to an added performance improve-
ment. Figure 7 shows the harmonic mean of the instructions
per second (IPS) executed by processors working with the

four configurations under study (conv, SR-SLUP, SR-
DULUP and SR-OB, all supported by the XRFs listed in
Table 2). Cycle times have been obtained according to the
0.18µ Rixner model [25].

For integer benchmarks, the best performance for con-
ventional renaming is obtained with a 96-entry PRF. Apply-
ing SR-SLUP/SR-DULUP and an 192-entry XRF of 8
ports, PRF size is reduced to 48 also achieving almost the
same IPC and 13%/14% of IPS increase. For FP bench-
marks, the best performance for conventional renaming is
now obtained with a 128-entry PRF. A combination of a 64-
entry PRF supported by a 224-entry XRF of 10 ports reports
about the same IPC and IPS gains of 16%/19% (SR-
SLUP/SR-DULUP). The additional structures (extra regis-
ters, tables and bit vectors) needed to support these SR con-
figurations require around 4 KB (3.80 KB for
48PRF+192XRF and 4.14 KB for 64PRF+224XRF), a rea-
sonable hardware cost for current processors.

5. Related Work

The potential of an ideal last-use prediction was studied
in [1], but this work lacked the design of any real imple-
mentation. Unlike that approach, our paper shows up the
main aspects about the design of an entire SR microarchi-
tecture and proposes feasible and real SR-LUP designs that
reach gains close to the limits.

Borch and Tune in [5] propose a way of reducing the
issue-to-execute latency in the pipeline. Their Distributed
Register Algorithm (DRA) moves the entire PRF out of the
issue-to-execute path and places it in the decode-issue path.
Instead of that approach, our SR-LUP design relies on the
movement of dead values to a non critical and farther XRF
without compromising any other processor critical paths.

As regards other early register release proposals, either
speculative [2][3][10] or not [19][22], all of them still check
the un-mapping condition used in the conventional release
conditions. Besides, to identify dead values, all these pro-
posals use array-counters that keep track of the pending
consumers for every physical register. For the mechanisms
leading to correct program execution, those counters must
be restored when recovering from a branch misprediction.
Under SR-LUP, there is no need to wait for the renaming
instruction in order to identify a last-use instruction. Even
more, and different from the other techniques, physical reg-
isters can be released far before their unmapping instruc-
tions are fetched. In the SR-SLUP design, both the
hardware to check the unmapped register condition and the
array counters are replaced by a simpler LU predictor. For

Table 2. XRFint and XRFfp biased configurations that best adapt to SR-LUP (PRF sizes bigger
than 160 entries are not shown because they do no benefit from SR-LUP).

Physical PRF
36 40 48 64 80 96 128 160

XRF size 160 160 192 224 256 256 256 256

XRF total ports 7 8 8 10 11 14 18 22

XRF read ports 2 2 2 3 3 5 6 8
XRF write ports

(source+destination)
5

(4s+1d)
6

(5s+1d)
6

(5s+1d)
7

(5s+2d)
8

(6s+2d)
9

(7s+2d)
12

(10s+2d)
14

(12s+2d)

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 05:52 from IEEE Xplore. Restrictions apply.

the SR-DULUP design, the check hardware does not exist
either, and the mechanism can execute a program correctly
without restoring the pending uses array.

Related on the speculative proposals, Balasubramonian
et al. change the PRF organization by a two-level PRF
whose second-level (L2) acts as a container for the detected
dead values [2]. Ergin et al. [10] and Barkan et al. [3] use an
entire copy of the PRF (the Checkpointed Register File,
CRF) to keep early released values. Different from the SR
virtual register management, both proposals return all the
incorrectly released values back to the PRF, even if they are
not going to be read in the future. Besides, with CRF only
two instances of a physical register can be alive at the same
time. Even more, the CRF size is constrained to the PRF
size. As we have analyzed in Section 4.3, restrictions in the
back-up structure size seriously damage performance due to
the cancellation of predictions.

With respect to register allocation, Butts and Sohi sug-
gest not allocating a physical register to the instructions
predicted to produce dead values, and even not executing
such dead instructions [7]. The predictor used is a precursor
of the DUP [8] that we have used for developing DULUP.

More recently, Balkan et al. do not allocate a physical reg-
ister to a short-lived value with only one consumer that is
predicted to read it from the bypass network [4]. Another
restrictive condition is the absence of branches between the
producer of the value and the instruction redefining its cor-
responding logical register. Because those values are
dropped in case of correct predictions, this mechanism
requires additional hardware to support precise exceptions
and interrupts. To relax such requirements, this policy could
take advantage of our SR microarchitectural support.
Besides, it could be combined with other policies such as
LUP.

6. Conclusions

This paper presents a microarchitectural design that sup-
ports speculative renaming, proposing all the structures and
control required to exploit such renaming alternative.
Under SR, register values are available either from a low-
ported XRF located outside the processor core or from PRF
even many cycles after their register identifiers have been
released. A double mapping of physical and virtual register

Figure 6. IPC harmonic mean vs. PRF size for conventional, SR-SLUP, SR-DULUP and SR-OB
configurations. For every PRF, the corresponding XRF dimensions as shown in Table 2.

SPECfpSPECint

Figure 7. IPS harmonic mean vs. PRF size for conventional, SR-SLUP, SR-DULUP and SR-OB
configurations. For every PRF, the corresponding XRF dimensions are shown in Table 2.

SPECfpSPECint

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 05:52 from IEEE Xplore. Restrictions apply.

identifiers resolves the correct location of register operands
without charging the IQ complexity.

A Last-Use predictor that implements both speculative
omission and release of physical registers is used to evalu-
ate the SR design, but it is also open to other predictive
renaming policies that could be proposed, either hardware
or software.

The microarchitecture has been analyzed with two dif-
ferent LU predictors of incremental complexity and perfor-
mance. With the simple predictor, a 256-ROB processor
with a 80int+80fp PRF shows a speed-up of 8.6% and
25.3% for integer and floating point benchmarks, respec-
tively, when it is enhanced with an SR-LUP with a low-
ported 256int+256fp XRF. The former figures translate into
11.5% and 29.0% with the best predictor. As regards the
limits and with the same figures and the best predictor, a
98% of the SR-OB IPC is reached for integer benchmarks.
Also with the best predictor and for FP benchmarks, a con-
ventionally managed 128int+128fp PRF can be replaced in
a processor with SR-LUP by a 64int+64fp PRF backed up
with a low-ported 224int+224fp XRF, showing 1.2% IPC
gain. If PRF is limiting clock frequency, the former figures
translate into 16% and 19% IPS gain for the simple and
complex predictors, respectively.

7. Acknowledgments

This work was supported in part by Diputación General
de Aragón grant "Grupo Consolidado de Investigación"
(BOA 20/04/2005), Spanish Ministry of Education and Sci-
ence grant TIN2004-07739-C02-01/02, and European
Union Network of Excellence HiPEAC (High-Performance
Embedded Architectures and Compilers, FP6-IST-
004408).

8. References
[1] J. Alastruey, T. Monreal, V. Viñals and M. Valero, “Speculative

Early Register Release”. ACM Int’l Conference on Computing Fron-
tiers (ICCF 06), May 2006, pp. 291-302.

[2] R. Balasubramonian, S. Dwarkadas and D. Albonesi, “Reducing the
Complexity of the Register File in Dynamic Superscalar Processors”.
Proc. 34th Int’l Symp. Microarchitecture (MICRO 01), Dec. 2001,
pp. 237-249.

[3] D. Balkan, J. Sharkey, D. Ponomarev and A. Aggarwal, “Address-
Value Decoupling for Early Register Deallocation”, Proc. 35th Int’l
Conf. on Parallel Processing (ICPP-06), Aug. 2006, pp. 337-346.

[4] D. Balkan, J. Sharkey, D. Ponomarev and K. Ghose, “SPARTAN:
Speculative Avoidance of Register Allocation to Transient Values
for Performance and Energy Efficiency”, Proc. 15th Int’l Conf. Par-
allel Architectures and Compilation Techniques (PACT 06), Sept.
2006, pp. 265-274.

[5] E. Borch, E. Tune, S. Manne and J. Emer, “Loose Loops Sink
Chips”, Proc. 8th Int’l Symp. High-Performance Computer Architec-
ture (HPCA 02), Feb. 2002, pp. 299-310.

[6] D. Burger, and T.M. Austin, The Simplescalar Tool Set v2.0, Tech-
nical Report 1342, Computer Science Dept., University of Wiscon-
sin-Madison, June 1997.

[7] J.A. Butts and G. Sohi, “Dynamic dead-instruction detection and
elimination”, Proc. 10th Int’l Conf. Architectural Support for Pro-
graming Languages and Operating Systems (ASPLOS 02), Oct.
2002, pp. 199-210.

[8] J.A. Butts and G. Sohi, “Characterizing and Predicting Value Degree
of Use”, Proc. 35th Int’l Symp. Microarchitecture (MICRO 02),
Nov. 2002, pp. 15-26.

[9] J.L. Cruz, A. González, M. Valero and N.P. Topham, “Multiple-
Banked Register File Architectures”, Proc. 27th Int’l Symp. Com-
puter Architecture (ISCA 00), June 2000, pp. 316-325.

[10] O. Ergin, D. Balkan, D. Ponomarev and K. Ghose, “Early Register
Deallocation Mechanisms Using Checkpointed Register Files”,
IEEE Transactions on Computers, vol. 55, no. 9, Sept. 2006, pp.
1153-1166.

[11] K. Farkas, N. Jouppi and P.Chow, “Register File Considerations in
Dynamically Scheduled Processors”, Proc. 2nd Int’l Symp. High-
Performance Computer Architecture (HPCA 96), Feb. 1996, pp. 40-
51.

[12] K. Farkas, P. Chow, N. Jouppi and Z. Vranesic, "The Multicluster
Architecture: Reducing Cycle Time Through Partitioning”, Proc.
30th Int’l Symp. Microarchitecture (MICRO 97), Dec. 1997, pp. 149-
159.

[13] L. Gwennap, “MIPS R12000 to Hit 300 MHz,” Microprocessor
Report, vol. 11, no. 13, Oct. 1997, pp. 1-4.

[14] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker,
and P. Roussel, “The Microarchitecture of the Pentium 4 Processor”,
Intel Technology Journal Q1, Feb. 2001.

[15] T.M. Jones, M.F.P. O’Boyle, J. Abella, A. González, and O. Ergin,
“Compiler Directed Early Register Release”, Proc. 14th Int’l Conf.
on Parallel Architectures and Compilation Techniques (PACT 05),
Sept. 2005, pp. 110-122.

[16] R. Kalla, B. Sinharoy, and J.M. Tendler, “IBM Power5 chip: a dual-
core multithreaded processor,” IEEE Micro, vol. 24, no. 2, Mar.-Apr.
2004, pp. 40-47.

[17] R.E. Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, vol.
19, no. 2, Mar.-Apr. 1999, pp. 24-36.

[18] M.H. Lipasti, B.R. Mestan, and E. Gunadi, “Physical Register Inlin-
ing”, Proc. 31st Int’l Symp. Computer Architecture (ISCA 04), June
2004, pp. 325-335.

[19] J. Martinez, J. Renau, M. Huang, M. Prvulovich, J. Torrellas,
"Cherry: Checkpointed Early Resource Recycling in Out-of-order
Microprocessors", Proc. 35nd Int’l Symp. Microarchitecture
(MICRO 02), Nov. 2002, pp. 3-14.

[20] T. Monreal, A. González, M. Valero, J. González and V. Viñals,
"Delaying Physical Register Allocation Through Virtual-Physical
Registers", Proc. 32nd Int’l Symp. Microarchitecture (MICRO 99),
Nov. 1999, pp.186-192.

[21] T. Monreal, V. Viñals, J. González, A. González and M. Valero,
"Late Allocation and Early Release of Physical Registers", IEEE
Transactions on Computers, vol. 53, no. 10, Oct. 2004, pp. 1244-59.

[22] T. Monreal, V. Viñals, A. González and M. Valero, “Hardware
Schemes for Early Register Release”, Proc. Int’l Conf. Parallel Pro-
cessing (ICPP 02), Aug. 2002, pp. 5-13.

[23] M. Moudgill, K. Pingali and S. Vassiliadis, “Register Renaming and
Dynamic Speculation: an Alternative Approach”, Proc. 26th Int’l
Symp. Microarchitecture (MICRO 93), Nov. 1993, pp. 202-213.

[24] I. Park, Michael D. Powell, and T. N. Vijaykumar, “Reducing Regis-
ter Ports for Higher Speed and Lower Energy”, Proc. 35th Int’l
Symp. Microarchitecture (MICRO 02), Nov. 2002, pp. 171-182.

[25] S. Rixner, W. Dally, B. Khailany, P. Mattson, U. Kapasi and
J.Owens, “Register Organization for Media Processing” Proc. 6th
Int’l Symp. High-Performance Computer Architecture (HPCA 00),
Jan. 2000, pp. 375-386.

[26] T. Sherwood, E. Perelman, G. Hamerly and B. Calder, “Automati-
cally Characterizing Large Scale Program Behavior,” Proc. 10th
Int’l Conf. Architectural Support for Programing Languages and
Operating Systems (ASPLOS 02), Oct. 2002, pp. 45-57.

[27] E. Torres, P. Ibáñez, V. Viñals and J.M. Llabería, “Counteracting
Bank Misprediction in Sliced First-Level Caches,” Proc. 9th Int’l
Conf. on Parallel and Distributed Computing (Euro-Par 03), Aug.
2003, pp. 586-596.

[28] S. Wallace, and N. Bagherzadeh, “A Scalable Register File Architec-
ture for Dynamically Scheduled Processors,” Proc. 5th Int’l Conf.
Parallel Architectures and Compilation Techniques (PACT 96), Oct.
1996, pp. 179-184.

[29] K.C. Yeager, “The MIPS R10000 Superscalar Microprocessor,”
IEEE Micro, vol. 16, no. 2, Apr. 1996, pp. 28-40.

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 13, 2010 at 05:52 from IEEE Xplore. Restrictions apply.

