
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CF'06, May 3–5, 2006, Ischia, Italy.
Copyright 2006 ACM 1-59593-302-6/06/0005...$5.00.

Speculative Early Register Release

Jesús Alastruey, Teresa Monreal, Víctor Viñals
gaZ-I3A-HiPEAC, Universidad de Zaragoza

Spain

{jalastru, tmonreal, victor}@unizar.es

Mateo Valero
DAC-BSC-HiPEAC, UPC

Spain

mateo@ac.upc.edu

Abstract
The late release policy of conventional renaming keeps many
registers in the register file assigned in spite of containing
values that will never be read in the future. In this work, we
study the potential of a novel scheme that speculatively
releases a physical register as soon as it has been read by a
predicted last instruction that references its value. An auxiliary
register file placed outside the critical paths of the processor
pipeline holds the early released values just in case they are
unexpectedly referenced by some instruction. In addition to
demonstrate the feasibility of a last-use predictor, this paper
also analyzes the auxiliary register file (latency and size)
required to support a speculative early release mechanism that
uses a perfect predictor. The obtained results set the
performance bound that any real speculative early release
implementation is able to reach. We show that in a processor
with a 64int+64fp register file, a perfect early release
supported by an unbounded auxiliary register file has the
potential of speeding up computations up to 23% and 47% for
SPECint2000 and SPECfp2000 benchmarks, respectively.
Speculative early release can also be used to reduce register
file size without losing performance. For instance, a processor
with a conventionally managed 96int+96fp register file could
be replaced for equal IPC with a 64int+64fp register file
managed with perfect early register release and backed with a
64int+64fp auxiliary register file, this representing a 12% IPS
(Instructions Per Second) increase if the processor frequency
were constrained by the register file access time.

Categories and Subject Descriptors
C.1.1 [Computer Systems Organization]: Processor
Architectures — Single Data Stream Architectures.

General Terms
Design, Performance, Measurement.

Keywords
Register renaming, physical register release, register file
optimization.

1. INTRODUCTION
Current designs of monolithic register files in dynamically
scheduled superscalar processors implement a register
management scheme where the release of a physical register is
delayed until the commit stage of its redefining instruction
[8][10][17]. While this is the simplest way for recovering a
value contained in the register after a branch misprediction or
an exception, it is also the most conservative one in terms of
register reuse and pipeline stalls. Such problems are supposed
to become more critical with the increase in instruction
window size and in issue width expected in next generation
processors. New proposals are needed in order to overcome
such a conservative management in an efficient and
complexity-aware form.

Several works have proposed some form of early register
release to speedup computations, save register file area or
reduce energy consumption [1][5][11][13]. But no one has
tried to abstract from any concrete implementation and show
the potentials of early register release when it is pushed to its
limits: reuse any physical register as soon as the last consumer
has read it, no matter the next register redefinition has entered
the pipeline or not.

This work analyzes the performance potential of a novel and
more aggressive policy of speculative early release of physical
registers. By applying this policy, a physical register is
released by means of predicting its last consumer in program
order. As a result, it is reduced the average time a physical
register remains allocated, so performance could be either
increased or maintained with a smaller register file. In order to
ensure correctness in presence of mispredictions, the value
read for the predicted last consumer is saved in an auxiliary
store placed outside of critical paths. Unexpected uses of
prematurely discarded values (code of exception handlers,
branch mispredictions) can be solved by recovering the value
either from the register file, without paying any penalty, or
from the auxiliary store, depending on the required physical
register has been overwritten or not.

By delaying the release of a physical register until the commit
stage of a redefining instruction, the conventional release
mechanism makes sure that the value stored in that register
will not be read anymore. However, there are other times, prior
to the commit stage, where it may be possible to discard the
value that a register stores. In this context, several register
management techniques have been proposed to advance
register release [11][13]. In [11] a register is released when all
consumers have read the value and the redefining instruction
becomes non-speculative (it can not be squashed because of a
branch misprediction). In [13] the release responsibility is
transferred to the last-use instruction that consumes the value,
but once again, register release is only done after the
redefining instruction becomes non-speculative.

In the same context of early register release, other designs try
to be more aggressive by relaxing the non-speculative
condition of the redefining instruction to allow a register
release even though the redefining instruction is speculative
[1][5]. The condition these Speculative Early Release (SER,
for short) schemes still demand is the renaming of the
redefinition. In contrast, our SER proposal is the first one that
does not impose delaying the register release until the
redefining instruction is renamed.

In order to be precise, an SER proposal has to address two
issues. On the one hand, the conditions under which a physical
register can be released earlier -because its value is expected
not to be used anymore-. On the other hand, how to recover the
value if the early release becomes premature. The referenced
work addresses the first issue by tracking continuously the
selected conditions, but the hardware needed for this kind of
polling is complex [1][5]. Concerning this, our proposal
predicts an instruction that reads a value for the last time, the
predicted last-use instruction, and associates to that instruction
the release of the corresponding physical register.

To solve the second problem, previous work saves an early
released value to a register placed in a second level register file
[1] or in a shadow register file (checkpointed register file in
[5]). In both cases, when recovering from a branch
misprediction, all values released (prematurely) due to
redefinitions arising from a mispredicted code path have to
return to their previous physical registers within the main
register file. Because those reinserted values may not be read
anymore, register pressure may remain high. Instead, we
propose a simple auxiliary register file where released values
are saved, and where consumer instructions appearing after an
early release, unexpected uses, are redirected to read theirs
operands. The use of virtual tags associated to physical
registers can solve this redirection in a simple way [12].
Virtual tags will address instructions to locate their operand
values either in the register file -if the value still remains in the
released register- or in the auxiliary register file when the
physical register has been overwritten.

We present two main contributions in this work. First, the
concept of patterns of use is defined and used to characterize
both last-use patterns and last-use instructions. This
characterization demonstrates the feasibility of a last-use
predictor to support an SER policy. Second, the potential of
this novel policy is evaluated for a superscalar processor, and
exploited by either boosting performance of reducing the size
of the physical register file. The promising results obtained
encourage future research on cost-effective implementations.

The remainder of this paper is organized as follows: Section 2
discusses conventional register release. Section 3 shows the
rationale behind our SER policy, introduces the concept of
patterns of use, analyzes the behaviour of last-use instructions
in SPEC2000 benchmarks, and suggests some basic elements
to exploit SER based on last-use prediction. Section 4 presents
the experimental methodology and the potential gains that a
perfect speculative early release policy achieves. Section 5
reviews the related work. Section 6 summarizes the
conclusions of the paper.

2. CONVENTIONAL RELEASE.
MOTIVATION

In this section we review the conventional model for renaming
registers and give experimental evidence of the low efficiency
in its releasing part.

The conventional release of physical registers is inefficient in a
sense that a register is not released until the commit stage of
the next redefinition of the corresponding logical register. This
model is used in many current processors such as Alpha 21264,
MIPS R10/12K and Intel P4 [7][8][10][17]. This releasing
mechanism has a simple implementation supporting both
control speculation and precise exception recovery. However,
it releases registers late, causing unnecessary stalls if the
processor runs out of physical registers while having registers
holding values that will not be read anymore.

Instructions named V and NV in Figure 1 create two
consecutive versions for the same logical destination register
r1. Free physical registers p1 and p2 are mapped to r1 in the
rename stage of V and NV, respectively. U and LU are
intermediate instructions having r1 as operand. We say an
instruction is the last use of any of its registers (LU for p1 in
Figure 1), when it is the last instruction in program order that
references the operand value, either to consume it (Figure 1a)
or to produce it (Figure 1b). A conventional register release
will not return p1 to the free list until NV commits.

Figure 2a shows the states of physical register p1 under the
conventional mechanism. p1 changes from Free to Allocated
when instruction V is renamed, and returns to the Free state
when NV is committed. During the cycles p1 remains
Allocated, it passes through three more states. Until V
executes, p1 does not contain any value and we say it is in the
Empty state. After the writeback of instruction V, p1 contains
the value to be read by its consumer instructions. p1 is now in
the Used state. The Non-Used state begins with the read of the
last-use instruction (LU) and ends when NV commits.

Figure 1. Instructions with last-use operands, either a source operand (a) or a destination operand (b).

V: r1 = ; p1 =

...

U: = r1 ; = p1

...

LU: = r1 ; = p1

...

NV: r1 = ; p2 =

V,LU: r1 = ; p1 =

 ...

NV: r1 = ; p2 =

(a) (b)

no use
of r1

no use
of r1

The state evolution of physical register p1 under our SER
scheme can be observed in Figure 2b, where predLU
instruction has been signalled by the last-use predictor.
Releasing p1 after its predicted last read completely eliminates
the Non-Used state, significantly reducing register pressure.
According our simulations of SPEC2000, it is possible to
advance the releasing an average of 41 and 64 cycles for
integer and floating point programs, respectively. It is also
interesting to note how many destination registers hold a value
that will never be read (9% for integer programs). When the
predictor labels a destination register as last-use, our policy
does not allocate any physical register. This action will further
reduce the register file pressure.

To get an insight into the inefficiency of conventional
releasing and the potential of the perfect SER scheme
presented in Section 4, we have measured the average number
of Allocated registers being either Empty, Used or Non-Used
in an 8-way superscalar processor detailed in Section 4.
Figure 3 shows conventional releasing (left bars) and perfect
SER releasing (right bars). It can be observed the high pressure
that a conventional release imposes in both integer and floating
point codes. In both kind of codes, the average number of Free
registers across applications is very low (9% and 11% for int
and fp, respectively), this number being near zero in almost
half of fp programs. And due to the late release of physical
registers, a large number of registers is maintained in the Non-
Used state: on average, nearly half of the Allocated registers
are Non-Used. Notice that eon, gcc and swim have more than
60% of all the Allocated registers in this state.

Figure 3 also shows the potential effect of the perfect SER
scheme to the register states. The most important effect would
be the register pressure reduction due to the elimination of the
Non-Used state. On average, under perfect SER, up to 32% and
27% of the integer and floating point registers becomes Free.

In addition, the elimination of the Non-Used state also implies
an appreciable growth in Empty registers and an increase in
Used registers.

3. SER-LUP, SPECULATIVE EARLY
RELEASE BASED ON LAST-USE
PREDICTION

SER-LUP releases a physical register based on the prediction
that a given instruction is using it for the last time before being
redefined. SER-LUP, in contrast with previous proposals, can
release a physical register even when the register redefinition
is yet far from being fetched, achieving good resource usage
when the Reorder Buffer becomes full and several register
redefinitions are about to be renamed.

In the frequent case of an instruction having a last-use
prediction on a source register, SER-LUP labels the instruction
so that the value read from the register file is sent to a separate
store and the physical register identifier is immediately
released. We call this separate store auxiliary register file
(XRF). Instructions with a predicted last-use destination
register write their results directly to XRF, and the renaming
mechanism does not allocate any physical register. This avoids
useless writes to the register file as well as reduces the register
pressure, specially for integer codes as can be seen below.

Due to several reasons we detail below, an instruction may
require a value saved in XRF. In that case, we say the
instruction performs an unexpected use of a (perhaps
prematurely) released register. In order to manage the location
of register operands, either present in the register file or in
XRF, we use virtual tags to represent register dependences as
suggested in [12].

Figure 2. Example of state evolution of physical register p1 under a conventional rename policy (a) and under
an SER policy based on last-use prediction (b). R = Rename, Rr = Register read, Wb = Writeback, C = Commit.

no use
of r1

R Wb

R C

A L L O C A T E DFREE FREEp1 state

V: r1 = ...

LU: r4 = r1 + r3

NV: r1 = ...

r1 renamed
to p1

p1 released

R Rr

EMPTY NON-USEDUSED

R Wb

A L L O C A T E DFREE FREEp1 state

V: r1 = ...

predLU: r4 = r1 + r3

r1 renamed
to p1

p1 released

R Rr

EMPTY USED

(a)

(b)

The following subsections analyze the feasibility of a last-use
predictor and outline the auxiliary store (XRF) required to
exploit SER-LUP. It is not the goal of this paper to search for a
specific implementation, so we do not detail the remaining
structures needed.

3.1 Patterns of register use
During program execution, instructions can be classified
according to the future use of the registers they reference. So,
any register whose next reference is a write can be labelled as a
last-use. Otherwise, a register reference having one or more
reads before being written is labelled as a non last-use. We
define the pattern of use of an instruction as the set of labels of
all its registers. Different instances of the same static
instruction can have different patterns of use, as illustrated by
Figure 4.

Next, the dynamic frequency and predictability of the patterns
of use is analyzed in order to assess the viability of a last-use
predictor.

3.1.1 Dynamic frequency of patterns of use
Figure 5 shows the distribution of patterns of use found in
SPEC2000. According to the number of last-use source
registers (2, 1 or 0) and the number of last-use destination
registers (1 or 0), we can distinguish among six patterns of use,
namely: 2s+1d, 2s+0d, 1s+1d, 1s+0d, 0s+1d, 0s+0d. There is
no distinction between last use of source 1 and source 2.

Our experiments show that on average, almost 60% of
instructions have a pattern with some last-use register. The
most common pattern is “last-use of one source register”
(1s+1d and 1s+0d), showing a 42% and a 40% on average for
integer and floating point, respectively. “Last-use of both
source registers” (2s+1d and 2s+0d) is observed in 10% and
22% of the executed instructions (int and fp, respectively).
Finally, notice that for the integer benchmarks, 9% of
destination registers hold a value that will never be read and
under SER-LUP will not need a physical register allocation.

These figures give an insight into the continuous renewal of
the values stored in the physical registers. Also, it can be stated
that the release of at least one physical register could be
advanced for more than half of the instructions (around 60%).

3.1.2 Predictability of patterns of use

Different instances of the same static instruction can change
the pattern of use depending on the execution path. Figure 6
shows the number of different patterns of use experienced by
every static instruction. Only committed instances have been
taken into account for each static instruction. For both
SPECint2000 and SPECfp2000, nearly 100% of all static
instructions present at most two different patterns, and almost
90% and 95% of static instructions present always the same
pattern of use for integer and floating point benchmarks,
respectively.

Figure 3. Average number of Allocated registers being either in Empty, Used, or Non-Used states for a processor with a 64int+64fp
register file. For each benchmark, the two bars represent figures for conventional (left) and perfect SER policy (right).

64 registers64 registers

SPECint SPECfp

Figure 4. Execution of a code fragment showing several patterns of use. Note that if this code executes
again by following the not-taken path, the pattern of use of ldl 0(r3)-> r3 may change.

 last-use
 s1 s2 d (y=yes, n=no)

addq r1, r2 -> r3 ; n n n
stl r1 -> 0(r3) ; n n -
ldl 0(r3)-> r3 ; y - y
bne r2, A ; n - - taken branch
 ...

A: ldl 8(r1) -> r3 ; y - n
addq r3, r2 -> r1

Therefore, we can conclude that conditional branches do not
affect too much the pattern of use shown by static instructions.
This fact encourages the design of low-complexity last-use
predictors, which can rely on associating pattern of use to
static instructions, instead of to dynamic instances. Next
Section presents and evaluates a simple last-use predictor able
to capture the register behaviour with a limited memory
budget.

3.2 Last-Use predictor
A last-use predictor (LUpred) could be organized as an
associative cache indexed by program counter where each
entry holds a pattern of use for a single instruction having at
least one last-use in a past execution. Figure 7 shows a two-
way set associative LUpred with two required fields per entry:
address tag and 3-bit vector representing pattern of use. A table
located in the commit stage tracks last-use instructions and
trains LUpred by adding to the current pattern the observed
last-use register. This simple update policy “sticks” last-use
predictions to an instruction even though its subsequent

executions do not exhibit the same pattern. Untraining is only
possible by means of entry replacement.

Next we analyze how misprediction rates vary with predictor
size. Figure 8 shows the percentage of mispredictions for all
register references. The five bars of each group, from left to
right, represent a 4-way LUpred with 32, 128, 512, 2k and 8k
entries. Mispredictions are split into two classes:

• misses when predicting “last-use register” (solid bar): a
register is labelled as last-use but it is really not. For
instance, predicting a pattern of use <n,y,n> in the first
instruction in Figure 4 has a misprediction of this kind,
which leads to the prematurely release of a physical
register. So, it may impact performance because of the
more costly access to XRF.

• misses when predicting “not a last-use register” (hollow
bar): they occur when a true last-use register is not
identified. For instance, predicting a pattern of use <y,-
,n> in the first ldl in Figure 4 shows this kind of
misprediction, which implies a lost opportunity of
releasing a register with a dead value.

Figure 5. Distribution of patterns of use. AM is the arithmetic mean.

SPECint SPECfp

Figure 6. Predictability of patterns of use: distribution of static instructions according to the number of
different patterns of use observed in their committed instances. Please, note the offset of the y-axis.

SPECint SPECfp

Concerning “last-use register” mispredictions, they increase as
the number of entries vary from 32 to 8k: from 1.4% to 6.2% in
integer and from 1.1% to 3.3% in floating point, on average.
This is because a large predictor tends to keep infrequent last-
use patterns that become (correctly) replaced in small
predictors. On the other hand, “not a last-use register”
mispredictions are more frequent in small-sized predictors (for
a 32-entry predictor, 22% and 26% for integer and floating
point, respectively) and decrease noticeably with larger
predictors, being negligible with the largest ones (for a 8k-
entry predictor, 0.05% and 0.02% for integer and floating
point, respectively).

Although the overall misprediction ratio is lower for the
largest predictor, notice that the obtained performance may not
be the best. This is because the gain obtained by correctly
identifying more last-use registers must make up for the
penalty of prematurely releasing more registers.

A suitable LUpred configuration depends on the recovery
policy supporting SER-LUP and the corresponding
misspeculation penalty. Such evaluation requires a detailed
SER-LUP implementation beyond the scope of the paper.

3.3 Auxiliary Register File (XRF)
As stated in Section 3.2, a “last-use register” misprediction can
cause a premature movement to XRF of a value required later
on for some instruction. But this unexpected use (UU, from
now on) is not the only one that can appear in the presence of

control speculation and out-of-order execution. UUs may still
appear even with a correct last-use prediction. Figure 9 shows
examples of the two additional situations in which UU
instructions can appear. In Figure 9a, a correctly predicted
last-use instruction (predLU) issues out-of-order before a
previous instruction (U) reads the register r1. The U
instruction, when issued, finds released the value of r1,
becoming an out-of-order unexpected use (oooUU). Figure 9b
shows the case in which a branch misprediction directs the
program execution towards a path using the released value. We
call mispredicted-path unexpected use (mpUU) to this case. A
final case of unexpected uses can be found inside exception
handlers, but their impact on performance should be
negligible.

The XRF handles all UUs by supplying the prematurely
released values at a higher latency than the register file.
Eventually, a value is released from XRF when the right
redefinition commits.

In order to locate a value stored in XRF neither logical nor
physical identifiers can be used. Figure 10 shows an example
illustrating this fact, where it can be seen that the instruction
UU has lost the link to value1, which has been moved to
XRF. To solve this problem, we can allocate an unique virtual
tag to each redefining instruction, as suggested by Monreal et
al. in [12]. Virtual tags support instruction wakeup in the Issue
Queue while physical register identifiers are still used to
access the register file. By adding some additional mapping

tag1 no yes no tag2 no no yes

Figure 7. Two-way set associative last-use predictor.

tag
source1

tag

tag
 pattern of use

set index

way selection

source2 source1 source2dest. dest.

ind1PC ind1tag2

 pattern of use

Figure 8. Misprediction rates for all register references. For each benchmark, the five bars represent the
misprediction rates of 32, 128, 512, 2k and 8k-entry predictors. The solid (hollow) bars represent a

register reference wrongly labelled as a “last-use register” (“not a last-use register”).

SPECint SPECfp

tables it is possible finding the right XRF register identifier
and using it to satisfy any unexpected use. But notice that from
the moment a physical register experiences an early release
until the moment it is overwritten, several cycles can pass.
Therefore, it is an implementation option whether to take profit
or not from this situation. Section 4.2 will elaborate more on
this topic, showing the performance margin separating both
options.

4. RESULTS
First, we describe the simulation environment and the used
workload. Next we analyze the performance potentials of the
SER-LUP policy based on a perfect predictor and an
unbounded XRF with all the necessary number of entries and
ports. Finally, a limited-size XRF is taken into account.

4.1 Simulation Environment and Workload
In all experiments, we have used a detailed cycle-based
simulator derived from SimpleScalar v3.0 [2]. We have
modified the SimpleScalar RUU-based management of
resources by modelling an explicit use of separate register files
(RFint, RFfp, XRFint and XRFfp), a Reorder Buffer and two
Instruction Issue Queues (int+mem, fp). The main parameters
of the simulated microarchitecture are given in Table 1.

All the benchmarks of SPEC2000 have been used as workload
except for sixtrack, which could not be executed within our
framework. We use the Alpha binaries compiled by C. Weaver

(www.simplescalar.com) and simulate a contiguous run of
100M instructions from the points suggested by Sherwood et
al. in [16].

In the following analysis, a processor with conventional
renaming is compared to a processor enhanced with our SER-
LUP proposal. We use a 64int+64fp register file, the design
point considered in Section 2. In order to set performance
bounds, we consider first an unbounded XRF along with and
ideal last-use predictor. The chosen predictor is an oracle
having perfect knowledge of the last instruction that references
a register in program order. We also consider that XRF is the
only provider of unexpected uses, the conservative option
mentioned above. From now on, we will refer this
configuration as SER-OB (SER-Oracle Based).

4.2 Sensitivity of performance to XRF latency
Figure 11 shows the average number of instructions committed
per cycle (IPC) for conventional (conv) and SER-OB schemes
working on a 64int+64fp register file. The leftmost bar in each
group represents conventional renaming, and the following
bars represent SER-OB with an unbounded XRF with
unexpected use penalty of 0, 2 or 4 cycles.

It can be observed that, for both integer and floating point
codes, the SER-OB mechanism significantly outperforms the
conventional one. SER-OB backed by the fastest XRF gives an
average speedup of 23% and 47% for integer and floating
point, respectively. In particular, the improvements obtained in

Figure 9. Examples of an out-of-order unexpected use (oooUU) (a) and a mispredicted path unexpected use (mpUU) (b).

V: r1 =

...

U: = r1

...

predLU: = r1

if predLU is executed before U,
U becomes an oooUU

(a) (b)

V: r1 =

...

predLU: = r1

...

branch

...

U: = r1

if U is executed in the mispredicted path,
U becomes a mpUU

V1: r1 = ; p1 <- value1

predLU: = r1 ; = p1

V2: r2 = ; p1 <- value2

UU: = r1 ; = p1

Figure 10. Instruction UU wants to read the logical register r1, but its current
mapping (p1) does not contain the right value, which was saved in XRF.

after being read, value1 is moved to XRF

p1 is reallocated, and contains value2

unexpected use of r1

and p1 is released

How to retrieve value1?

swim and applu are impressive (211% and 85%, respectively).
These were the floating point benchmarks with the fewest
number of Free registers and the highest number of Allocated
registers in the Non-Used state (see Figure 3).

Figure 11 also shows that for almost two thirds of the
programs, IPC is nearly insensitive to the the XRF latency.
Since a mpUU slows down the mispredicted path execution, it
does not affect performance, so it is expectable that
benchmarks affected by the increase in the XRF latency are
mostly the ones that suffer from a large number of oooUUs.
Whenever these unexpected uses are on any critical path, their
negative effect on performance will be higher.

As stated previously, a given implementation of SER-OB can
take profit of early released physical registers until the moment
in which they are overwritten, avoiding some fraction of XRF
accesses. Next we consider this option, calling it SER-OB+1.

Figure 12 compares the percentage of XRF reads (number of
values read from XRF divided by total number of values read)
of SER-OB and SER-OB+ assuming a 4-cycle, unbounded
XRF. From left to right, the two bars in each group represent
SER-OB (all unexpected uses supplied by XRF), and SER-
OB+. All reads directed to XRF correspond to unexpected
uses, and each bar is split according to the contribution of
mispredicted-path instructions (mpUU) and out-of-order
execution (oooUU). In SER-OB, just as stated above, it can be
verified that the benchmarks with higher number of oooUUs
also suffer the largest performance reduction when increasing
the XRF latency (see gcc, parser, twolf, ammp and mesa in
Figure 11).

As Figure 12 shows, taking advantage of the unexpectedly
referenced values still being in the register file removes most
of oooUUs (from almost 2% to around 0.1%, for both integer
and floating point benchmarks). For integer benchmarks, more
than half of mpUUs are also suppressed with SER-OB+. This
results in an average IPC improvement of 4.6% and 1.3% for
integer and floating point programs, respectively. This

enhancement is supposed to be more effective with a real last-
use predictor because it will possibly hide last-use
mispredictions.

Unless noted otherwise, from now on all metrics are computed
with SER-OB+ working with a 4-cycle XRF.

4.3 Sensitivity of performance to XRF size
The upper limit on the number of entries needed for each XRF
(int and fp) is determined by both the ROB size and the
number of logical registers: ROBsize+NLR-1 (287 entries in
our configuration). Figure 13 shows the average and maximum
number of allocated entries for the unbounded XRF for SER-
OB+. The average number of entries allocated in XRF is 73 for
integer benchmarks, and 95 for floating point codes, far lower
than the upper limit. These figures suggest that XRFs of
reasonable sizes may sustain good performance levels, since
few opportunities of early register release would be lost due to
lack of XRF entries.

In order to analyze the performance sensitivity to the XRF
size, Figure 14 shows IPC for conventional and the SER-OB+
scheme. The leftmost bar in each group represents
conventional renaming and the following bars represent SER-
OB+ scheme with XRFs of 32, 64, 128 and 287 entries. All
these figures apply to a 64int+64fp register file.

Once again, it can be observed that any SER-OB+
configuration significantly outperforms the conventional one
for both integer and floating point codes. Comparing with
Figure 11 we notice that SER-OB working with the biggest,
zero-cycle XRF performs the same than SER-OB+ working
with the biggest 4-cycle XRF. Figure 14 also shows that for
most integer benchmarks IPC does not increase noticeably
with the XRF size (crafty, vortex, twolf and vpr are
exceptions). Nevertheless, the opposite occurs for floating
point benchmarks where all but two programs (equake and
lucas) take advantage of larger XRFs. These results suggest a
design with XRFs of different size for the integer and floating
point data paths.

Table 1. Processor parameters.

Parameter Value Parameter Value

Fetch, decode and
rename width

8 instructions,
up to 2 taken branches fetched

L1 I-cache 64 KB, 4-way set-associative
32-byte line size, 1-cycle hit time

Branch prediction hybrid predictor: bimodal + gshare
16-bits with speculative update

L1 D-cache 32 KB, 2-way set-associative
64-byte line size, 2-cycle hit time

Functional Units
(latency)

8 simple int (1), 2 mult int (7), 4 load/store,
4 simple FP (4), 4 FP mult/div (4/16)

L2 U-Cache 256 KB, 8-way set-associative
128-byte line size, 10-cycle hit time

Reorder Buffer
Issue window size

256 entries
int+mem: 64 entries; fp: 32 entries

L3 U-Cache 4 MB, 4-way set-associative
128-byte line size, 16-cycle hit time

Load/Store Queue 128 entries with store-load forwarding Main Memory unbounded size, 200-cycle access time

Issue width 8int + 4fp TLB 256 entries, 4-way set-associative

Issue mechanism Out of order. Loads are executed when all
previous store addresses are known

Physical
registers

36-288 int / 36-288 fp
(32 int / 32 fp logical)

Commit width 8 instructions XRF 32-287 int /32-287 fp
0-2-4 cycles read penalty

1 This is also the perfect SER scheme used in Figure 3.

4.4 Reducing the register file size
It is also interesting to analyze the effect of varying the register
file size. Figure 15 illustrates how IPC varies according to the
number of physical registers for five sample configurations
(conventional, SER-OB+ with XRF of 32, 64, 128 and 287
entries). We can see how SER-OB+ makes the processor
performance less dependent on the register file size. For
integer codes and XRF of 287 entries, IPC is nearly insensitive
to the register file size. The smaller simulated size of 36
physical registers, reaches nearly 90% of the IPC obtained with
the largest register file. For floating point codes, the maximum
IPC is reached from 96-entry register files when XRFs of 128
or more entries are used. Combining the biggest XRF with
register files of 48 and 64 entries gives 90% and 97% IPC,
respectively.

If the processor cycle time is constrained by the register file
access time, a reduction in the number of registers may lead to
an increase of the clock frequency, and an added performance
improvement. Figure 16 shows billions of instructions per

second (BIPS2) executed by processors with conventional
renaming and SER-OB+ with XRFs of different sizes. For
integer benchmarks, the best performance for conventional
renaming is obtained with 96 registers. But when SER-OB+ is
applied with a XRF of 32 entries, this number is reduced to 64.
With XRFs of 64, 128 and 287 entries, the best figures
correspond to a register file of only 40 entries. For floating
point programs, the best performance for conventional
renaming is obtained with 128 registers. When adding SER-
OB+ with a XRF of 32, this number is reduced to 96. With a
XRF of 64, best performance is obtained with 80; and with
XRFs of 128 and 287, the best figures correspond to a register
file with 64 entries.

From these figures, we can conclude that SER-OB+ achieves
both a great reduction in the register file size and a
performance increase. For instance, considering both integer
and floating point code, a processor with a conventionally

Figure 11. IPC for a 64int+64fp register file. The rightmost bar group of each plot is the harmonic mean (HM).
Percentage figures report speedups between conventional and SER-OB releasing with the fastest XRF.

SPECint SPECfp

Figure 12. Percentage of XRF reads for SER-OB releasing and a 64int+64fp register file. For each benchmark, the two
bars represent the access ratio for SER-OB and SER-OB+. The rightmost bar group is the arithmetic mean (AM).

SPECint SPECfp

2 Cycle times have been obtained according to the Rixner et al.
model [15].

managed 96int+96fp register file could be replaced for equal
IPC with a 64int+64fp register file managed with SER-OB+
and backed with a 64int+64fp XRF, this achieving a 12% IPS
increase.

5. RELATED WORK
Farkas et al. were also interested in setting performance
bounds on the mechanism that controls the release of physical
registers [6]. Nevertheless, they focused on an imprecise
exception model where early released values are not saved in
any auxiliary store. The release policy they test can not act
until the redefinition is executed, delaying register release
when the redefinition is far from the last-use. Moreover, to be
able to recover from branch mispredictions a register can not
be released while its redefining instruction is speculative.
These conservative conditions delay register release and keeps
their performance bound far from the SER-OB+ limit.

The use-based register caching proposed by Butts and Sohi
pursues a goal similar to ours’ [4]. They suggest a small
register cache holding the physical registers with more

predicted pending references. Insertion and replacement is
directed by a degree of use predictor which is very accurate for
low degree of uses [3]. In contrast to SER-LUP they need to
swap contents and mappings between the cache and the main
register file in the event of a cache miss. Moreover, the main
register file is managed in a conventional way, without any
early release policy.

In the context of the register management several mechanisms
have been proposed to release physical registers early and
eagerly [1][5][9][11][14]. Jones et al., proposed a technique
based on a compiler analysis to release a physical register as
soon as it has been read by its only consumer [9]. To do that,
several logical registers are reserved to hold the values that the
compiler has been able to identify as degree of use one. The
drawback of this technique is the limited knowledge of the run-
time behaviour that prevents the identification of all values
having only one consumer instruction. Moudgill et al.,
proposed to release registers as soon as last-use instructions
complete out of order [14]. Their last use tracking is based on
counters which record the number of pending reads for every
physical register. This proposal does not support precise

Figure 13. Average and maximum number of allocated XRF entries (64int+64fp register file).
The rightmost bar is the arithmetic mean (AM).

SPECint SPECfp

limit = 287 limit = 287

Figure 14. IPC for a 64int+64fp register file. The rightmost bar group is the harmonic mean (HM).
Percentage figures report speedups between conventional and SER-OB+ with the biggest XRF.

SPECint SPECfp

exceptions since counters are not correctly recovered when
instructions are squashed. In Cherry, the release of any
physical register also requires the instruction that redefines its
logical register becoming non-speculative [11]. The support of
precise exception recovery in this mechanism is achieved by a
periodical checkpoint of all the values held in the register file.

Balasubramonian et al. proposed a precise exception model for
releasing registers based on the movement of inactive registers
to the second level (L2) of a two-level register file [1]. A value
is reinstalled back to the level of active registers (the first
level, L1) when redefinitions arising from a mispredicted path
are squashed. Ergin et al. implements a mechanism similar to
the proposed by Moudgill et al. where a precise exception
support is added by means of the management of a shadow
register file where released values are kept [5]. Early release of
short-lived values is performed in the commit stage of their
generating instructions, whenever all consumers have executed
and the corresponding redefining instructions have been
renamed. A complementary technique is responsible for the
release of physical registers whose redefining instructions are
decoded after the commit of their value producers. The number

of early released values kept in the shadow file is limited by
the physical register file size, so small register files lose a lot
of opportunities of recycling their entries.

All previous hardware schemes are not able to release a
physical register until the next redefinition of the logical
register it is mapped to is renamed [1][5]. Some of them
require in addition that the redefinition becomes non-
speculative [11][14]. This hard condition delays the early
release of a register in case its redefining instruction appears
many cycles later (according to our experiments, an average of
12 cycles -64int+64fp register file-). On the other hand, the
array of counters used in all these works to track the pending
consumers of a physical register must be restored after every
mispredicted branch, this involving the need of a complex
hardware. Besides, when a redefining instruction is squashed
because of a mispredicted branch, the incorrectly superseded
register revives, so in [1] and [5] it is proposed the return of
the speculatively released values to their previous physical
registers, even if they will not be referenced again. Acting in
this form, the high pressure in the register file is still
maintained.

Figure 15. IPC harmonic mean vs. number of physical registers for conventional
and SER-OB+ working with XRFs of 32, 64, 128 and 287 entries.

SPECint SPECfp

Figure 16. Billions of instructions per second executed (BIPS harmonic mean) vs. number of physical
registers for conventional and SER OB+ working with XRF of 32, 64, 128 and 287 entries.

SPECint SPECfp

Opposite to this kind of solutions, our policy does not wait
until the rename of a redefining instruction to release the
physical register allocated to the previous version. A last-use
predictor replaces the complex hardware that other proposals
need to verify the release conditions. Moreover, the values
released by mispredicted path instructions do not return to the
physical register file. Instead of this, these values continue
feeding unexpected uses during the cycles they reside in the
physical register file before being overwritten, this avoiding
most XRF reads.

As this paper presents an idealized scheme of SER-LUP, we
believe it would be unfair to compare it with the real
implementations referenced in [1] and [5]. A quantitative
comparison should include not only performance figures, but
also complexity, cost and cycle time estimates. Our future
work on real SER-LUP implementations will address such
detailed comparisons.

6. CONCLUSIONS
In this paper we have analyzed the performance potentials of a
novel and more aggressive speculative early release policy
based on last-use prediction (SER-LUP). Under this policy the
usefulness of a register value is determined by means of the
prediction of its last consumer, and early released values are
recovered either from the register file without paying any
penalty, or from a separate auxiliary register file (XRF) if the
released physical register has been overwritten. As a result,
this new policy will permit optimized designs for the register
file reaching at the same time a performance increase and a
size reduction.

Following the same idea presented in [13], SER-LUP shifts the
release responsibility from redefining instructions to predicted
last-use instructions. But, in contrast with previous proposals,
it can release a physical register even when the register
redefinition has not been fetched, achieving good register
recycling when several register redefinitions are stalled prior
to be renamed. The idea of using a last-use predictor also
replaces the hard checking of conditions proposed by other
authors. Besides, the introduction of virtual tags to keep track
of instruction dependences also enables the location in XRF of
the released values.

Apart from showing the SER-LUP potentials, in this paper we
have also analyzed the viability of a real pattern of use
predictor by demonstrating that last-use instructions can be
accurately predicted. All of these results encourage the study
of a real design where last-use registers are predicted by a real
predictor, and the released values are backed up with a low-
ported XRF.

7. ACKNOWLEDGMENTS
This work was supported in part by Diputación General de
Aragón grant "Grupo Consolidado de Investigación" (BOA
20/04/2005), Spanish Ministry of Education and Science grant
TIN2004-07739-C02-01/02, and European Union Network of
Excellence HiPEAC (High-Performance Embedded
Architectures and Compilers, FP6-IST-004408).

8. REFERENCES
[1] R. Balasubramonian, S. Dwarkadas and D.H. Albonesi,

“Reducing the Complexity of the Register File in Dynamic
Superscalar Processors”. Proc. 34th Int’l Symp.
Microarchitecture (MICRO 01), Dec. 2001, pp. 237-249.

[2] D. Burger, and T.M. Austin, The Simplescalar Tool Set v2.0,
Technical Report 1342, Computer Science Dept., University
of Wisconsin-Madison, June 1997.

[3] J.A. Butts and G. Sohi, “Characterizing and Predicting Value
Degree of Use”, Proc. 35th Int’l Symp. Microarchitecture
(MICRO 02), Nov. 2002, pp. 15-26.

[4] J.A. Butts and G. Sohi, “Use-Based Register Caching with
Decoupled Indexing”, Proc. 31st Int’l Symp. Computer
Architecture (ISCA 04), June 2004.

[5] O. Ergin, D. Balkan, D. Ponomarev and K. Ghose,
“Increasing Processor Performance Through Early Register
Release”. Proc. 22nd Int’l Conf. on Computer Design (ICCD
04), Oct. 2004, pp. 480-487.

[6] K.I. Farkas, N.P. Jouppi and P. Chow, “Register File
Considerations in Dynamically Scheduled Processors”, Proc.
2nd Int’l Symp. High-Performance Computer Architecture
(HPCA 96), Feb. 1996, pp. 40-51.

[7] L. Gwennap, “MIPS R12000 to Hit 300 MHz,”
Microprocessor Report, Micro Design Resources, vol. 11, no.
13, Oct. 1997, pp. 1-4.

[8] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A.
Kyker, and P. Roussel, “The Microarchitecture of the
Pentium 4 Processor,” Intel Technology Journal Q1, Feb.
2001.

[9] T.M. Jones, M.F.P. O’Boyle, J. Abella, A. González, and O.
Ergin, “Compiler Directed Early Register Release”, Proc.
14th Int’l Conf. on Parallel Architectures and Compilation
Techniques (PACT 05), Sept. 2005, pp. 110-122.

[10] R.E. Kessler, “The Alpha 21264 Microprocessor,” IEEE
Micro, vol. 19, no. 2, Mar.-Apr. 1999, pp. 24-36.

[11] J. Martinez, J. Renau, M. Huang, M. Prvulovich, J. Torrellas,
"Cherry: Checkpointed Early Resource Recycling in Out-of-
order Microprocessors", Proc. 35nd Int’l Symp.
Microarchitecture (MICRO 02), Nov. 2002, pp. 3-14.

[12] T. Monreal, A. González, M. Valero, J. González and V.
Viñals, "Delaying Physical Register Allocation Through
Virtual-Physical Registers", Proc. 32nd Int’l Symp.
Microarchitecture (MICRO 99), Nov. 1999, pp.186-192.

[13] T. Monreal, V. Viñals, A. González and M. Valero,
“Hardware Schemes for Early Register Release”, Proc. Int’l
Conf. Parallel Processing (ICPP 02), Aug. 2002, pp. 5-13.

[14] M. Moudgill, K. Pingali and S. Vassiliadis, “Register
Renaming and Dynamic Speculation: an Alternative
Approach”, Proc. 26th Int’l Symp. Microarchitecture
(MICRO 93), Nov. 1993, pp. 202-213.

[15] S. Rixner, W. J. Dally, B. Khailani, P. Mattson, U. J. Kapasi
and J.D. Owens, “Register Organization for Media
Processing”, in Proceedings of the 6th Int’l Symposium on
High-Performance Computer Architecture (HPCA 00),
January 2000, pp. 375-386.

[16] T. Sherwood, E. Perelman, G. Hamerly and B. Calder,
“Automatically Characterizing Large Scale Program
Behavior,” Proc. 10th Int’l Conf. Architectural Support for
Programing Languages and Operating Systems (ASPLOS
02), Oct. 2002, pp. 45-57.

[17] K.C. Yeager, “The MIPS R10000 Superscalar
Microprocessor”, IEEE Micro, vol. 16, no. 2, Apr. 1996, pp.
28-40.

