This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TC.2025.3533086

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. YY, AUGUST 2024

A Complexity-Effective Local Delta Prefetcher

Agustin Navarro-Torres, Biswabandan Panda, Jesis Alastruey-Benedé, Pablo Ibaiez, Victor Vinals-Yufera, and
Alberto Ros

Abstract—Data prefetching is crucial for performance in
modern processors by effectively masking long-latency memory
accesses. Over the past decades, numerous data prefetching
mechanisms have been proposed, which have continuously re-
duced the access latency to the memory hierarchy. Several
state-of-the-art prefetchers, namely Instruction Pointer Classifier
Prefetcher (IPCP) and Berti, target the first-level data cache, and
thus, they are able to completely hide the miss latency for timely
prefetched cache lines.

Berti exploits timely local deltas to achieve high accuracy and
performance. This paper extends Berti with a larger evaluation
and with extra optimizations on top of the previous conference
paper. The result is a complexity-effective version of Berti that
outperforms it for a large amount of workloads and simplifies
its control logic. The key for those advancements is a simple
mechanism for learning timely deltas without the need to track
the fetch latency of each cache miss. Our experiments conducted
with a wide range of workloads (CVP traces by Qualcomm, SPEC
CPU2017, and GAP) show performance improvements by 4.0%
over a mainstream stride prefetcher, and by a non-negligible
1.4% over the previously published version of Berti requiring
similar storage.

Keywords-Data prefetching; hardware prefetching; first-level
cache; stride; local deltas; accuracy; timeliness.

I. INTRODUCTION

Data prefetching plays an important role in improving the
performance of modern processors. The prefetching mecha-
nisms aim to predict the data blocks that the processor will
request during program execution and to preload them in
cache. In this way, subsequent data requests may result in
fast cache hits instead of costly misses.

Hardware data prefetching mechanisms can be located close
to the first-level data cache (L1D), the second-level cache (L2),
or the last-level cache (LLC). Most of the recently proposed
storage-efficient prefetchers target L2 [9], [11], [13], [40],
[40]. Exceptions are the Multi-Lookahead Offset Prefetching
(MLOP) [36], the Instruction Pointer Classifier Prefetching
(IPCP) [32], and Berti [31], which are L1D prefetchers. An
L1D prefetcher has a higher performance potential than an L2
prefetcher for several reasons. First, an L1D prefetcher sees
all accessed virtual addresses, whereas an L2 prefetcher only
sees accesses for physical addresses that are missing in L1D.
Second, prefetching into L1D hides the latency better than
prefetching into L2. Third, an L1D prefetcher has easier access

Agustin Navarro-Torres and Alberto Ros are with the Computer Engi-
neering Department, University of Murcia, 30100 Murcia, Spain. E-mails:
agustin.navarro@um.es, aros@ditec.um.es

Biswabanda Panda is with the Computer Science and Engineering, Indian
Institute of Technology Bombay, Mumbai, India, E-mail: biswa@cse.iitb.ac.in.

Jesis Alastruey-Benedé, Pablo Ibdfiez and Victor Vifals-Yifera are
with the Computer and System Engineering Department, Universidad de
Zaragoza, Zaragoza, Spain. E-mails: jalastru@unizar.es, imarin@unizar.es,
victor@unizar.es.

/1 MLOP I IPCP s Berti
$ 100
> 75
c
S 50
[}
1)
< 25
fa)
4 0
CVP-FP CVP-INT CVP-SRV SPEC17 GAP

Fig. 1. Accuracy of L1D state-of-the-art prefetchers (MLOP, IPCP, and Berti),
across different memory-intensive traces taken from CVP, SPEC CPU2017,
and GAP.

to contextual information, such as the instruction pointer
(IP) [28] in Intel’s IP-Stride prefetcher [16].

However, the design of an L1D prefetcher is a challenging
task as the space constraints inherent to its placement impose
certain requirements that impact performance: (i) high prefetch
accuracy to avoid L1D pollution, eviction of useful cache
lines, and generation of memory traffic overhead, (ii) degree
of prefetch restricted by the limited size of structures such
as the prefetch queue (PQ) and the miss status holding
registers (MSHR), and (iii) limitation of the logic complexity
and the storage capacity needed to implement the prefetcher
mechanism.

A. Berti, an accurate local delta prefetcher

State-of-the-art data prefetchers push the limit of single-
thread performance, with average performance boosts from
3% to 5% [9], [13], [32]. However, some prefetchers load
a large amount of useless blocks, resulting in suboptimal
performance [26]. Fig. 1 shows the average prefetching ac-
curacy in various benchmark suites for three state-of-the-art
LID prefetchers: MLOP [36], IPCP [32], and Berti [31].
For example, in the GAP benchmark suite, the accuracy of
MLOP and IPCP is 44.7% and 12.1%, respectively. This
means that 55.3% and 87.9% of the cache blocks prefetched by
MLOP and IPCP enter L1D but are not accessed by memory
instructions.

On the other hand, Berti, a per-IP best request time delta
L1D prefetcher that makes a strong case for timeliness and
accuracy, brings only 9.6% useless blocks for GAP (90.4%
accuracy). Berti learns the deltas that result in timely prefetch
requests, and issues prefetch requests only for the deltas
predicted to provide high coverage, which translates to overall
high prefetch accuracy. Located in the L1D and seeing all
virtual addresses generated by the processor, Berti orchestrates
the prefetch requests for the memory hierarchy.

Timely local deltas. Berti defines local delta as the differ-
ence in cache line addresses between any two demand accesses
issued by the same memory access instruction (same IP).
On the other hand, stride refers to the difference between

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TC.2025.3533086

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. YY, AUGUST 2024

+3 +2 +3

. @7 @10 @12 @15
timeline — 3

+5

strides

local deltas 3 +8
: Latency @15

Timely local delta: +8 / Late local deltas: +3, +5

Fig. 2. Stride, local delta, and timely local delta. The values on the timeline
(@7, @10, @12 and @15) represent cache line addresses referenced by the
same instruction.

two consecutive addresses by the same IP. Fig.2 illustrates
an example of stride, local delta, and timely local delta. An
address sequence issued by a single load instruction (same IP)
is shown: 7, 10, 12, 15. The corresponding stride sequence is:
+3, +2, +3. However, access to address 15 is at delta +3, +5,
and +8 with respect to the previous three accesses. If the goal
of a prefetcher is to cover address 15, the prefetcher could
initiate prefetching with deltas +3, +5, or +8 upon seeing
demand accesses to addresses 12, 10, and 7, respectively.
However, considering the time to fetch the cache line with
address 15, prefetching with deltas +3 and +5 will not fully
mitigate the L1D miss latency, since they will be late prefetch
requests. In contrast, if a prefetcher issues a request for address
15 with delta +8 from demand access to address 7, the cache
line of address 15 could be prefetched early enough. For more
benefits about the use of delta versus stride, we refer the reader
to previous work [30], [31].

Berti finds the timely local deltas, and computes its respec-
tive coverage. It prefetches using deltas that used to show high
coverage, which translates to overall high prefetch accuracy.

B. Pushing the limits of Berti

This paper extends the Berti prefetcher [31] with two
objectives in mind. The first objective is to asses the benefits of
Berti for a larger number of workloads and fine-tune it, thus
setting a higher baseline for timely local delta prefetchers.
To this end, we performed an extensive characterization of
L1D prefetchers using also data center workloads that were
provided by Qualcomm for the first Championship Value Pre-
diction (CVP-1) [4] (see Section IV-C for further details). The
second objective is to take Berti a step forward towards a more
feasible hardware implementation by simplifying its logic. The
end result is a simpler design that brings performance benefits
over Berti.

Our first contribution is to extend the analysis of the state-
of-the-art prefetchers presented in Berti’s paper with a wider
range of traces (Section V). Fig. 3 shows the speedup results
of MLOP [36], IPCP [32], and Berti [31] prefetchers relative
to IP-Stride prefetching [16] in the proposed extended evalu-
ation, i.e., the CVP traces together with SPEC CPU2017 and
GAP. While Berti is the current leading prefetcher in SPEC
CPU2017 and GAP workloads, its performance falls behind
competitors like MLOP by 2.4% in CVP-FP (floating point)
traces. It also shows slightly worse or similar performance
to MLOP and IPCP in CVP-INT (integer) or IP-Stride in
CVP-SRYV (server), respectively. We found that this suboptimal

[MLOP @ IPCP mmm Berti

1.2
all
31.0
[

209
Y08

0.7

CVP-FP CVP-INT CVP-SRV SPEC17 GAP

Fig. 3. Speedup of L1D state-of-the-art prefetchers: MLOP, IPCP, and Berti
relative to IP-stride prefetching, across different memory-intensive traces taken
from CVP, SPEC CPU2017, and GAP.

performance is due to the lack of learning patterns in Berti
compared to its competitors, due to the limited number of
loads that Berti is able to track. Although the accuracy of
Berti is still high, its coverage drops.

Our second and most important contribution is reducing
Berti’s complexity without losing performance. We found that
to learn deltas accurately, it is not necessary to count cycle-
accurate latencies of all misses and prefetch requests; instead,
it is sufficient to know the identity of the memory level
that serves the cache miss and its average access latency
(Section III-A). Thanks to this finding, our design simplifies
the prefetcher logic and reduces its storage requirements.

Our third contribution relates to performance. We optimized
the prefetching structures used by Berti. We found that the
hash function used to reduce Instruction Pointer (IP) aliasing
is critical for performance in applications with very large code
footprints, as is the case for the server and compute-intensive
CVP traces. Hence, we explore set-associative structures with
different hash functions for indexing them and different re-
placement policies (Section III-B).

Our evaluation shows, that for Qualcomm data center, SPEC
CPU2017 and GAP workloads, our prefetcher consistently
outperforms a baseline IP-stride prefetcher (4.0% average
speedup) and improves Berti by a non-negligible 1.4% average
speedup, further pushing the limits of hardware prefetchers.

II. RECENT WORKS AND MOTIVATION
A. Recent advances in data prefetching

Data prefetching plays an important role in designing high-
performance processors. Recent developments in this field
come mainly from the last two Data Prefetching Champi-
onships, DPC-2 [2] and DPC-3 [5], co-located with ISCA 2015
and ISCA 2019, respectively.

Berti. Berti is the state-of-the-art hardware prefetcher. It
learns timely local deltas to ensure that prefetch requests are
performed on timely basis, with an accuracy higher than 90%.
A detailed description can be found in Section II-B.

Best offset prefetching (BOP). The winner of DPC-2 is a
degree one L2 prefetcher that finds a global offset that provides
the maximum likelihood of future use in the L2 cache [30]. An
offset of k means that a cache line is k cache lines away from
the current demand address. BOP takes timeliness into account
while selecting the best offset per application phase. Multi-
lookahead offset prefetching (MLOP) [36] is an extension of
BOP that is motivated by Jain’s Ph.D. thesis [21]. MLOP
considers multiple lookaheads for each offset and selects the
offset and lookahead that cover a specific cache miss. Both

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TC.2025.3533086

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. YY, AUGUST 2024

BOP and MLOP treat the demand addresses in isolation, and
for each demand access, trigger prefetch requests based on the
prefetch offset!. In general, MLOP provides better prefetch
coverage than BOP.

Variable Length Delta Prefetching (VLDP). This spatial
data prefetcher uses multiple histories of deltas between suc-
cessive cache lines observed within an operating system (OS)
page to predict future memory accesses in other OS pages [38].
One of the key features of VLDP is that it uses multiple
prediction tables and makes predictions based on different
lengths of history in terms of deltas.

Signature path prefetching (SPP). This state-of-the-art
delta prefetcher predicts irregular strides in L2 [27]. SPP
works by relying on the signatures (hashes of consecutive
strides) observed within an OS page to index into a table
that predicts future deltas. SPP uses a lookahead mechanism
that recursively finds out deltas to prefetch until a delta falls
below a given confidence. Perceptron prefetch filtering (PPF)
is a filter that further improves the effectiveness of SPP by
deciding whether to prefetch into L2 or not [13]. In general,
SPP combined with PPF (SPP-PPF) provides better prefetch
coverage than VLDP.

Bingo. This L2 prefetcher makes a case for associating
spatial access patterns to both short (such as IP) and long
events (IP+offset and memory region) and selecting the best
pattern for prefetching [9]. A key point of Bingo is the use of
only one hardware table for both short and long events. This
table enables multiple predictions from a single entry, provid-
ing better coverage than single-event prefetching. In general,
Bingo outperforms VLDP and SPP-PPF for SPEC CPU2017
traces. However, it requires significantly more storage than
VLDP and SPP-PPE.

Instruction pointer classifier prefetching (IPCP). The
winner of DPC-3 is a state-of-the-art L1D data prefetcher
that is composite in nature [32]. IPCP classifies an IP into
three classes: constant stride (CS), complex stride (CPLX), and
global stream (GS). IPCP uses three lightweight prefetchers
that issue prefetch requests according to the IP class. If it
fails to classify an IP into one of the three classes, it uses a
next-line prefetcher.

B. Berti: Overview

Berti is a state-of-the-art prefetcher capable of improving
performance over IPCP, the DPC-3 winner, by 3.5%. The
key concepts of Berti are timeliness and high-coverage deltas.
Next, we describe how Berti performs training and prediction
and list the hardware structures required for its implementa-
tion.

Training the prefetcher. Berti monitors the patterns of
each memory access instruction (loads and stores), learns the
timely local deltas, and computes the delta’s coverage as the
probability of being a useful prefetch request. The training
consists of four actions:

1) Building the history. Berti keeps a record of up to the
16 latest memory misses or prefetch hits for a given IP.

'For BOP and MLOP, we use the term global delta instead of offset for
the rest of the paper.

This record is stored in a history table that is written
to as demand misses and demand hits due to previous
prefetch requests occur.

2) Measuring fetch latency. In order to learn the timely
deltas of a memory access, it is required to know its fetch
latency. That is, the amount of time it takes for each
memory request to fill the L1D cache. The fetch latency
is calculated as the difference between two timestamps,
the L1D fill timestamp minus the timestamp of the L1D
demand access or prefetch that triggered the cache line
request to the higher cache levels. A new field of 16 bits
is required in all entries of the prefetch queue (PQ) and
the miss status holding registers (MSHR) to keep such
timestamps.

3) Learning timely deltas. Once the request fills the L1D
and its fetch latency is calculated, Berti searches the
history table for the previous demand miss or hit because
of a prefetch request of the same IP that could trigger
a timely prefetch request. The deltas are computed as
the difference between the actual address and the stored
address.

4) Computing timely delta coverage. In each search of
the history, Berti can retrieve a set of deltas that re-
peats frequently and covers a high fraction of misses,
while other deltas rarely repeat. These frequently seen
deltas, with high coverage, are candidates for triggering
prefetch requests, while the other deltas are discarded.
To calculate its coverage, Berti divides the number of
times a delta is seen by the number of searches in the
history. It is important to note that the local coverage of
a delta (as computed in Berti) is directly related to its
accuracy.

Issuing prefetch requests. Upon each IP access, Berti
retrieves the previously learned deltas and their coverage to
orchestrate prefetch requests. Deltas with coverage exceeding
a high-coverage watermark are targeted for L1D prefetch. If
the delta coverage surpasses a middle-coverage watermark, the
prefetch is directed to fill L2. Otherwise, the delta is discarded.
Berti also considers the L1D MSHR occupancy to select the
target level. If the occupancy is high, the prefetch will go to
L2 even if the delta has high coverage.

Hardware implementation. The hardware implementation
of Berti requires extending three existing data structures: L1D,
PQ, and MSHR, which account for 47% of Berti’s storage
overhead and are used for measuring fetch latency and learning
timely delta steps. Additionally, two new structures are added:
the history table, a cache-like structure that stores the history
of misses, and the delta table, a fully associative table indexed
by IP that keeps track of the most frequent deltas.

C. Complexity and effectiveness of Berti

Logical complexity: Berti achieves a significant perfor-
mance improvement with low-storage overhead. However, the
hardware implementation of Berti still requires a high number
of logical components (adders, comparators, multiplexers, and
highly-associative structures) to calculate and store the fetch
latency. These components make the implementation of Berti

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TC.2025.3533086

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. YY, AUGUST 2024

Global Lat.
L1D access —
VA VA [P, VA History table
L1D cache] .
a0 a1 i ([T .
L1 dTLB P W W way :5‘ Write) Search| 2
PA ‘ £
! 'Hit,, =
L =
£ = : [B
g = I I 'g ol
PA! e Delta table
STLB |——dL_d L4 g
4 7
§ MSHR z z g
4 g o
PQ 2
g
A {l—2

Next cache level (L2)
Fig. 4. Berti design overview. Hardware extensions for Berti are shown in
light gray, and Berto extensions in dark gray. Elements in red were present
in Berti but removed in Berto.

in real hardware although feasible, complex and expensive in
terms of logical components and energy consumption.

Size of the structures: As shown in Section I, Berti is
the best performing prefetcher in SPEC CPU2017 and GAP
workloads. However, it has a suboptimal performance in the
CVP-FP and CVP-INT traces. This is because Berti’s fully
associative structures are unable to track all the different IP
addresses associated with memory demand requests. However,
increasing its size is not optimal in terms of energy consump-
tion and logical components.

III. COMPLEXITY-EFFECTIVE LOCAL DELTA PREFETCHING

This section proposes a set of improvements over the
baseline Berti prefetcher, focusing on reducing the logical
complexity of Berti while improving performance for dat-
acenter workloads (CVP traces). We refer to our result-
ing prefetcher mechanism as Berto (Best-request-time delta
optimized). Fig. 4 depicts the hardware architecture of Berto
and highlights the original elements borrowed from Berti
(shown in light gray), the extensions introduced in Berto
(shown in dark gray), and the elements removed from Berti
(shown in red) and Table I details the storage requirements.
First, we explain the simplification of latency computation.
Next, we fine-tune the prefetching structures to accommodate
more IPs and reduce aliasing.

A. Simplifying latency computation

A large portion of Berti’s storage overhead and hardware
logical complexity is measuring and storing the fetch latency
of the L1D misses, needed to learn the timely deltas. Berti
uses a 12-bit field per L1D entry to store the fetch latency of
any prefetched cache line.

Berto replaces that expensive storage overhead with i) a
single bit per L1D entry indicating whether the block comes
from the L2/LLC or DRAM level, and ii) a global 64-bit field
(Global Lat.) that measures the average main memory
latency.

The average latency is calculated for each fill from DRAM
as a moving average: Avg,+1 = ¢ - Lat, + (1 —) - Avg,, where

4
TABLE I
STORAGE OVERHEAD OF BERTO.

[Structure [Storage |
History 8-set, 16-way (128-entry) cache, FIFO replace- | 0.74 KB
table ment policy. Each set: 4 bits (replacement pol-

icy). Each entry: 7-bit IP tag, 24-bit address,
16-bit timestamp
Delta 64 entries (16 sets, 4 ways), 4-bit NRU replace- 2.49 KB
table ment policy. Each entry: 10-bit IP tag, 4-bit
counter, and an array of 16 Deltas (13-bit delta,
4-bit coverage, 2-bit status)
PQ + 16+16 entries, 0.06 KB
MSHR 16-bit timestamp per entry
L1D 768 cache lines, 1-bit latency per line 0.09 KB
[Total [3.38 KB |

Avg, indicates the average in the n step, & is a value between
0 and 1 and Lat, is the latest measured DRAM latency (fill
cycle - request cycle). Once the memory level that serves the
cache line is known, Berto will look into the history table
to identify the previous memory requests of the same IP that
were able to trigger a timely prefetch request.

o If the block came from L2 or LLC, all entries with match-
ing IPs in the history table are selected as candidates. The
reason is that for short-latency misses there is no clear
advantage in skipping accesses from the history table.
This reduces the amount of computation required.

o If the block came from DRAM, the history entries that
arrived later than the current cycle minus the average
DRAM latency are discarded. For example, assuming that
in cycle 1000 a block arrives from main memory, which
shows an average latency of 100 cycles, all matching
entries in the history table with a timestamp greater
than cycle 900 will not be considered to compute deltas,
as they do not guarantee timeliness. This is similar to
that in Berti, but using the average latency to memory
offers extra performance benefits and saves considerable
storage requirements. In particular, this approach allows
us to reduce the additional hardware overhead of L1D
by reducing the latency field from 12 bits to a single bit
(91.6% less storage overhead).

We employ a value of & of 1/8, such that we do not require
performing multiplications and the update of the average
latency can be performed by shifting and adding registers.
This value obtained slightly better performance than 1/4.

B. Tracking effectively more IPs

Berto also modifies the hash function that indexes all
structures (history and delta tables) and extends the size of
the delta table to track more IPs, required by large-instruction-
footprint server workloads.

1) The hash function: To index history and delta
tables Berti employs the following hash function:
IPuash=(IP>>1)® (IP>>4), giving satisfactory results
on x86 traces. However, when considering CVP (Aarch64)
traces, an aliasing problem appears, i.e. several IPs with
different behaviors are mixed in the same entry, leading to
incorrect learning. To reduce aliasing Berto uses the hash
function used in the Entangling instruction prefetcher [35]:

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TC.2025.3533086

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. YY, AUGUST 2024

IPuash=IP® (IP>>1) @ (IP>>5). This hash function is
slightly more complex, but has proven to make better use of
space and improves performance.

2) Set-associative larger delta table: Berti uses a 16-way
fully associative table with a FIFO replacement for storing
deltas. However, server workloads require a larger number of
IPs to be tracked. Although further increasing the number of
ways is feasible, it would require more complex logic (re-
placement, more comparators, wider multiplexers), leading to
longer latency and higher energy consumption. Berto instead
implements the delta table with a set associative design (16
sets, 4 ways) and with an NRU replacement algorithm [42].
We noticed that NRU is the best of a set of simple replacement
algorithms (see Section V). This new organization offers three
key advantages: (1) the total number of entries increases from
16 to 64, (2) hardware complexity decreases (e.g., the number
of 13-bit delta comparators is reduced from 128 to 32 per read
port), and (3) the miss rate of the delta table becomes lower,
holding more IPs, and resulting in improved performance.

IV. EXPERIMENTAL METHODOLOGY
A. Experimental setup

We use a modified version of ChampSim [6] a trace-
driven simulator used for the 2nd and 3rd Data Prefetching
Championships (DPC-2 [2] and DPC-3 [5], master branch,
commit: b44625f). Recent prefetching proposals [9], [13],
[31], [32], [36] are also coded and evaluated in ChampSim.
Caches are non-inclusive, although Berto can work similarly
with exclusion policies just by bypassing the allocation of
memory blocks at the LLC. Table II summarizes our system
configuration, mimicking an Intel Alderlake microarchitecture.

B. Energy model

We also report the dynamic energy consumption of the
memory hierarchy. We obtain the energy consumption of reads
and writes to tag and data arrays at each cache level and
DRAM with the CACTI-P [29] model and the Micron DRAM
power calculator [3]. Then, we compute the total energy
consumption by accounting for the number of accesses of
each type across the memory hierarchy. We use 7 nm process
technology for our energy calculations.

C. Workloads

We evaluated Berto using a large number of traces
from SPEC CPU2017 [41], single-threaded GAP [10] and,
CVP [18] benchmark suites. Unless otherwise indicated, we
limit our study to memory-intensive traces (Memlnt), i.e.,
those traces that showed at least one miss per kilo-instruction
(MPKI) in LLC in our modeled baseline without any hardware
prefetcher.

SPEC CPU2017 is one of the most used benchmark sets in
academia and industry for measuring CPU performance. We
select the 43 Memlnt traces out of 95.

GAP is composed of 20 Memlnt traces that represent graph
workloads.

CVP traces are traces generated by Qualcomm for the
first Championship Value Predictor (CVP). These AArch64
ARM traces are of special interest to the research community
because they cover a wide range of workload types:

1) CVP-FP and CVP-INT, are composed of 137 (71
Memlnt) and 982 (374 Memlnt) float-point and inte-
ger compute-intensive traces, respectively. The memory
patterns of these traces are similar to those of SPEC
CPU2017 traces.

2) CVP-CRYPTO. 105 traces representative of cryptogra-
phy workloads. None of these traces exhibited memory-
intensive behavior.

3) CVP-SRV. 786 (182 Memlnt) traces representative of
data center/server-side workloads featuring a large num-
ber of different IPs with varying behaviors and cache
lines with long-distance reuse.

CVP traces have two characteristics that can hinder the
classification of memory instructions, necessary for access
pattern detection: they have a larger code footprint and they
come from a RISC ISA, with lower entropy in the instruction
addresses. The number of IPs contributing to the data footprint
is significantly higher in CVP-Memlnt traces compared to
GAP and SPEC CPU2017 Memlnt traces. We measure the
number of IPs responsible for 90% of the L1D misses. On
average, 143 and 1K IPs account for 90% of the misses in GAP
and SPEC, respectively. In contrast, this number increases
substantially to 2K, 6K, and 16K in CVP-FP, CVP-Int, and
CVP-SRY traces, respectively. This aligns with the observation
that server traces generally exhibit a larger footprint [8]. The
ARM instructions of the CVP traces have a fixed size, which
can decrease the entropy of the addresses of the memory
instructions with respect to those of the x86 SPEC and GAP
traces. A prefetcher that can track 16 IPs is sufficient to detect
the patterns in GAP and in most SPEC CPU2017. However,
for CVP-FP traces, we have found it necessary to increase the
number of tracked IPs to 64 and use a suitable hash function
to reduce aliasing.

For SPEC CPU2017 and GAP traces we warm-up the
caches for 50M [37] and collect statistics for the next 200M
sim-point instructions. Since CVP traces are smaller, to avoid
finishing the trace and starting it again, we warm-up for 25M
and simulate the next SOM instructions.

We report performance in terms of IPC improvement
(speedup) with respect to an L1D with an IP-stride prefetcher.
We use the geometric mean to average the speedups obtained
by the traces.

D. Evaluated Prefetching Techniques

We tested the effectiveness of Berto with several high-
performance LID and LID+L2 prefetchers. As Berto is
an L1D prefetcher, we first compare its performance with
prefetchers designed for L1D (no prefetching at the L2),
and then with multi-level prefetching combinations. The
L1D prefetchers are i) Berti’, the state-of-the-art L1D pre-
fetcher [31], ii) MLOP (3rd place in DPC-3 [36]), an extension

2We use the version available for the latest ChampSim Master branch (https:
//github.com/ChampSim/ChampSim/pull/486)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://github.com/ChampSim/ChampSim/pull/486
https://github.com/ChampSim/ChampSim/pull/486

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TC.2025.3533086

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. YY, AUGUST 2024

TABLE I
SIMULATION PARAMETERS OF THE BASELINE SYSTEM.

Core Out-of-order, TAGE-64KiB [24], 4 GHz with 6-issue width,
12-retire width, 512-entry ROB
TLBs L1 iTLB: 256 entries, 8-way, 1 cycle
L1 dTLB: 96 entries, 6-way, 1 cycle
STLB: 2048 entries, 16-way, 7 cycles
MMU 2-entry PSCLS5, 4-entry PSCL4, 8-entry PSCL3, 32-entry
Caches PSCL2, searched in parallel, one cycle.

L1I 32 KB, 8-way, 3 cycles

L1D 48 KB, 12-way, 4 cycles, with a 24-entry, fully associative
IP-stride prefetcher [14]

L2 1.25 MB 20-way associative, 9 cycles, LRU, non-inclusive

Il Berti
I Computing Latency
[Hash Function

Il Optimized Structures
o4 Berto-Perf

CVP-FP SPEC17 GAP

Fig. 5. Speedup over IP-stride of the different Berto modifications averaged
across memory-intensive CVP (FP, INT, and SRV), SPEC CPU2017 (FP and
INT) and, GAP traces.

CVP-INT CVP-SRV

LLC 3 MB/core, 12-way, 19 cycles, SRRIP [23], non-inclusive
MSHRs 16/16/48 in L11/L1D/L2, 64/core at the LLC
DRAM One channel/4-cores, 6400 MTPS [15], FR-FCFES, 64-entry TABLE IV
con- RQ and WQ, reads prioritized over writes, write watermark: STORAGE OVERHEAD AND PERFORMANCE OF DIFFERENT REPLACEMENT
troller 7/8th ALGORITHMS WITH 32 AND 64 ENTRIES.
DRAM 4 KB row-buffer per bank, open page, burst length 16, trp: Storage (Bits) | Speedup 32 entries | Speedup 64 entries
chip 12.5 ns, tgep: 12.5 ns, tcas: 12.5 ns NRU 16 4.5% 4.8%
LRU 160 4.4% 4.7%
TABLE III SRRIP 32 4.5% 4.8%
CONFIGURATIONS OF EVALUATED PREFETCHERS. FIFO 16 4.1% 4.4%
SPP- 256-entry ST, 512-entry 4-way PT, 8-entry GHR, Perceptron
PPF [13] weights: 4096x4, 20482, 1024x2, and 128x1 entries,
1024-entry prefetch table, 1024-entry reject table
Bingo [9] | 2 KB region, 64/128/4K-entry FT/AT/PHT by 1.4% over Berti’s. This is due to distributing better the
MLOP [36] | 128-entry AMT, 500-update, degree 16 .
TPCP [32] | 128-cntry IP table, S-entry RST table, and 128-entry CSpT | large number of loads in CVP-SRV workloads.
table . . .
Berti [31] 8-set 16-way history table, 16-entries 16-deltas delta table . TraCklng more IPS_' R.eplacmg the 16_entry fully assocla-
Berto 8-set 16-way history table, 16-set 4-way 16-deltas delta | tive delta table of Berti with a 16-set, 4-way cache-style delta
table table (black bar, Optimized structures), improves performance

of the BOP (DPC-2 winner), and iii) IPCP (DPC-3 winner,
published at ISCA 2020 [32]). For multi-level prefetching,
we evaluate two state-of-the-art L2 prefetchers along with
MLOP and Berti at the L1D: Bingo [9], and SPP-PPF [27].
We also compare with a multi-level IPCP that uses IPCP both
at the L1D and L2. The evaluated prefetchers have been briefly
described in Section II-A. For all prefetchers, we use a highly
tuned implementation as provided by the authors and tune
them again for the parameters mentioned in Table II. Table III
shows the configurations used for all evaluated prefetchers.

V. EVALUATION
A. Impact of our contributions

Fig. 5 shows the speedup (Y axis, higher is better) of
the Berti versions described in Section III. Next, we analyze
Berto’s sensitivity to some design choices and how these
modifications perform on top of the original Berti proposal.

Simplifying latency computation. Replacing the individual
measure of latency for each memory miss access (red bar,
Computing Latency) with a general DRAM latency counter
and searching the whole history table for misses resolved in
L2/LLC, does not impact average performance. Still, it reduces
memory storage and the number of performed operations.

Hash function. We now compare the performance of Berti’s
hash function against Berto’s hash function (yellow bar, Hash
Function). The new hash function gives similar performance
in Spec, CVP-FP, and CVP-INT benchmark suites. On CVP-
SRV workloads, Berto’s hash function improves performance

by 3.3% over Berti (blue bar) with a more logical and
hardware-friendly implementation. Benefits are seen in the
CVP suite, due to the large code footprint of its benchmarks.

Sensitivity analysis of the delta table. Increasing the
delta table size beyond 64 entries provides no measurable
benefit in any of the benchmark suites (not shown in the
figure). However, decreasing its size results in a performance
drop for the CVP-FP benchmark suite (0.97% decrease from
64 to 32 entries). CVP-INT benchmarks maintain the same
performance up to a delta table size of 32 entries, at which
point performance starts to decline. For the remaining bench-
marks (CVP-SRV, SPEC CPU2017, and GAP), the delta table
size can be reduced to 16 entries without any noticeable
performance loss.

Replacement algorithm in delta table Our delta table
utilizes a Not Recently Used (NRU) replacement policy. We
evaluated other common cache replacement policies, including
Least Recently Used (LRU), First-In-First-Out (FIFO), and
SRRIP. We chose NRU because of its high performance and
low implementation overhead in terms of both complexity and
storage requirements, as shown in Table IV.

Berto High-Performance We also tested our performance
improvements (hash function and optimized delta structure) in
Berti without including the modification tailored to reduced
complexity related to the latency computation (black bar with
white slash). This version obtains performance improvements
of 6.4% and 0.4% in the CVP-FP and SPEC CPU17 bench-
mark suites, respectively, compared to Berti. We can also
observe that our latency simplification can be beneficial for
some benchmark suites, but detrimental for others.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TC.2025.3533086

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. YY, AUGUST 2024

© MLOP @ Berti W Berto-Perf

@ |IPCP @® Berto
1.05

| |

1.04 ° o
51.03
g °
S 1.024 o
1.01{ @
1.00

o 1 2 3 4 5 6 71 8
Storage requirement for prefetching (KiB)

Fig. 6. Speedup vs. storage requirements (log scale). Speedup is normalized
to L1D IP-stride and averaged across memory-intensive CVP (FP, INT, and
SRV), SPEC CPU2017, and GAP traces.

B. Speedup vs. storage requirements

Fig. 6 summarizes the speedup (Y axis, higher is better)
of the evaluated prefetchers with respect to IP-stride for
CVP (FP, INT, and SRV), SPEC CPU2017, and GAP traces,
along with their storage requirements (X axis, left is better).
Berto complexity-effective (black circle) has two different
configurations: a low storage overhead configuration with a
32-entry delta table and a standard configuration with a 64-
entry delta table. Berto-Perf, i.e., without the simplified latency
computation, is shown as a black square.

Berto achieves the highest speedup using only 3.38 KiB
of storage. On average, Berto improves performance by 4.0%
over IP-Stride and by 1.4% over Berti. In addition, Berto-Perf
improves performance with respect to complexity-effective
Berto by 0.3% in exchange for a 2.06x increase in storage
overhead and more logical complexity. The smallest configu-
ration of Berto (32-entries) achieves better performance than
Berti (0.6%) while using 16.1% less storage.

C. Performance of Berto as an LID Prefetcher

Fig. 7 shows the speedup with respect to IP-Stride achieved
by the L1D prefetchers (Y axis) for CVP (FP, INT, and
SRV), SPEC CPU2017, and GAP traces (X axis). Berto in
the L1D improved or almost equal Berti’s performance in all
benchmarks suites. Excluding Berto, Berti achieves the best
performance in the CVP-SRV, SPEC CPU2017, and GAP
benchmark suites. However, on CVP-FP and CVP-INT, its
performance decreases by 1.7% (compare to MLOP) and 0.7%
(compared to IPCP), respectively. Among the other non-Berti
prefetchers, Berto outperforms all other prefetchers across all
suites, improving MLOP by 2.7% in CVP-FP, IPCP by 0.7%
in CVP-INT, and IP-Stride by 7.8% in GAP.

All L1D prefetchers achieve good speedups for compute
intensive benchmark suites (CVP-FP, CVP-INT, and SPEC
CPU2017). However, the speedup differences become more
significant for other workload types, such as CVP-SRV (server
workloads) and GAP (graph workloads). Notably, Berto and
Berti are the only prefetchers that do not suffer from perfor-
mance degradation in CVP-SRV workloads, while MLOP and
IPCP have a performance loss of 2.7% and 1.7%, respectively.
This trend is also observed in GAP benchmarks, where Berto
and Berti outperform IP-Stride by 7.8% and 7.0%, while
MLOP and IPCP experience performance degradations of
3.0% and 15.8%, respectively.

[MLOP I IPCP mmm Berti Emm Berto

1.2
a1l
31.0
o
009
Y08
0.7

CVP-FP

CVP-INT
Speedup of L1D prefetchers compared to a system with L1D IP-

CVP-SRV SPEC17 GAP

Fig. 7.
Stride.

In the following paragraphs, we analyze the behavior of
the L1D prefetchers on a suite-by-suite basis. Fig. 8, 9, 10, 11
and, 12 shows the individual speedup (Y axis) for the 25 traces
(20 for GAP workloads) that show the largest performance
gaps between the best and worst prefetchers, the geometric
mean of the memory intensive traces (GM), and the geometric
mean of all traces (GM_ALL) (X axis).

1) CVP-FP: Fig. 8 shows traces with a difference between
the worst and the best prefetcher of more than 17.3%. Berto
improves performance over IP-Stride in 53 of 71 traces
(74.6%) with a maximum of 1.81 (in compute_fp_101)
and only shows a performance degradation of more than 5% in
6 of 71 traces. MLOP, the second-best prefetcher in the suite,
improves performance over IP-Stride in 54 of 71 (76.0%) of
the traces (maximum of 1.57 compute_fp_58). However,
it only loses more than 5% of performance in 3 traces. Berto
outperforms Berti in 50 out of 71 traces. We identified that the
improved performance of Berto over Berti is due to its ability
to track a large number of IPs in its set-associative delta table.

2) CVP-INT: Fig. 9 shows traces with a difference between
worst and best prefetcher of more than 14.2%. Berto achieves
similar or better results than the other L1D prefetchers in
313 of 374 traces (83.7%). It only shows a performance
degradation of more than 5% in 3 traces. Compared to Berti,
Berto achieves better performance in 319 of 374 (85.2%) of
the traces and only experiences a performance degradation of
more than 5% in four traces.

3) CVP-SRV: Fig. 10 shows traces with a difference be-
tween the worst and the best prefetcher of more than 8.1%.
Unlike the CVP-FP and CVP-INT suites, in CVP-SRV only
Berti and Berto do not suffer performance degradation com-
pared to our baseline configuration. CVP-SRV traces exhibit
cache block reuse with high distance, e.g, trace srv105 issue
a demand load with address Oxf£££0000089dbdlc every
600 cycles, these patterns are difficult to detect and predict by
prefetchers like MLOP, IPCP, Berti, and Berto. However, the
confidence mechanism of Berti and Berto prevents triggering
incorrect prefetch requests when a pattern is detected with low
confidence, unlike MLOP and IPCP. Berto achieves slightly
better performance than Berti (1.3% improvement) due to the
improved hash function, which reduces aliasing. For example,
in trace srv105, Berti groups two different IPs into the same
entry in the history and delta tables, leading to a learning
process that triggers incorrect prefetch requests.

4) SPEC CPU2017: Fig. 11 shows traces with a difference
between worst and best prefetcher of more than 8.2%. Berto
achieves similar or significantly better results than Berti on all
traces except for 602.gcc-1805B, 603.bwa- (1740B,
2609B), 649.fot-(7084B, 10881B, 8225B), and

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TC.2025.3533086

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. YY, AUGUST 2024

[I:I MLOP [EEE IPCP HEE Berti | Berto]

2.0

Fig. 8. Speedup with Berti as an L1D prefetcher for CVP-FP traces.

I IPCP

Il Berti Il Berto l

S R A R I
SN A AR A

Fig. 9. Speedup with Berti as an L1D prefetcher for CVP-INT traces.

[l:l MLOP [E (PCP [Berti [N Berto]

©

9 A O X OO b O DD O
SCLEXPFEELE SN S S

Fig. 10. Speedup with Berti as an L1D prefetcher for CVP-SRV traces.

654.rom-1007B. In some traces, like 602.gcc-1805B,
performance degradation can be attributed to not accurately
accounting for memory instruction latency. This penalizes the
learning process because the deltas identified in the history
can be inaccurate, leading to fewer prefetch requests.

On the other hand, for traces such as 649.fot, the
new learning process in Berto triggers more prefetching re-
quests. For example, for 649 . fot-8225B Berti triggers 7.32
prefetch requests per kiloinstruction vs. 8.30 for Berto; in
theory this increase is positive, since it reduces the miss rate
in L1D (47.3 MPKI in Berti vs. 40.1 MPKI in Berto), but at
the same time it saturates the memory hierarchy more, and in
the end performance suffers.

Berti and Berto do not achieve any performance improve-
ment over our baseline configuration in a single benchmark,
cactuBSSN, where it can be seen that most memory in-
structions follow stride patterns. However, there are hundreds
of these instructions that execute in an interleaved fashion.
Therefore, to track the local behavior of such instructions,
Berti would need very large history and delta tables. In
contrast, prefetchers that detect patterns in the global address
stream do not have this problem, as is the case with MLOP
or the IPCP GS class.

5) GAP: Fig. 12 shows all GAP traces. Berto achieves
better or similar performance than Berti in all traces except
pr—10, pr-5, sssp-3, and sssp—-5. On average, Berto
improves the performance of Berti by 0.8%.

Excluding Berti, Berto is the best prefetcher for all bench-

marks but three (bfs-8, bfs-10 and bfs-14). It con-
sistently achieves similar or better results than IP-stride for
all traces except for bfs-10 and pr—10 where it suffer
performance degradation of 1.4% and 1.3% respectively, while
MLOP and IPCP perform worse than IP-stride in 17 and 28
benchmarks, respectively. In some cases, the IPCP slowdown
is very significant, for example, 32.1% in pr-5.

We have selected the application bc—5 to analyze in detail
the behavior of prefetchers in GAP. All memory instructions
of bc—5 show rather chaotic access patterns, except for one
which is very regular. IP-stride, Berti and Berto, by separately
tracing the IPs, detect the regular IP pattern and prefetch
correctly for it. They do not prefetch for the other IPs. MLOP
fails because of the use of a global delta. Accesses issued by
IPs with irregular patterns prevent the discovery of a global
delta and, therefore, the prefetcher issues very few requests
and is not able to prefetch for the regular IP. IPCP detects the
delta pattern for the regular IP through its CPLX component,
and prefetches correctly for it. However, the GS component
generates many useless prefetch requests that drastically de-
crease the IPCP accuracy and cause a performance loss.

Accuracy. Fig. 13 shows the accuracy (Y axis, higher is
better) of the L1D prefetchers (X axis). Berto achieves an
accuracy over 75.0% in all benchmark suites (CVP-FP, CVP-
INT, SPEC CPU2017, and GAP) except for CVP-SRV, where
all prefetcher accuracies are lower than 50.0%. Berto, with
a less complex hardware mechanism to measure latency, only
loses on average 3.4% accuracy against Berti in CVP-FP, CVP-

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TC.2025.3533086

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. YY, AUGUST 2024

[|:| MLOP [EE (PCP HEE Berti NN Berto]

2.0

Fig. 11.

[I:I MLOP [EEE IPCP HEE Berti I Bertol

Speedup with Berti as an L1D prefetcher for SPEC CPU2017 traces.

CTLTLY LY GG
SN

N O 6{9’ *QK(’/ QO &« C
Fig. 12. Speedup with Berti as an L1D prefetcher for GAP traces.

INT, SPEC CPU2017, and GAP, with a maximum loss of
6.6% observed in SPEC CPU2017. The new IP hash function
effectively reduces aliasing in CVP-SRYV, improving accuracy
from 37.0% for Berti to 45.2% for Berto.

MLOP and IPCP shows lower accuracy than Berti and,
Berto in all suites. Only on CVP-FP and SPEC CPU2017
their accuracy is similar (73.2% and 71.6% for MLOP and
81.5% and 70.7% for IPCP, respectively) to our proposal.
The effectiveness of IPCP is driven by the performance of
several tiny prefetchers: a global stream prefetcher (GS class),
a constant stride prefetcher (CS class), and a complex stride
prefetcher (CPLX class) that work in tandem. For regular
access patterns, the CS prefetcher provides high accuracy.
However, for complex access patterns, the effectiveness of the
CPLX prefetcher is low, with an accuracy of 52.7% and 9.8%
for SPEC CPU2017 [41] and GAP [10], respectively.

MLOP, like Berti and Berto, is based on the detection
of the best timely deltas. However, it achieves much lower
accuracy. The improvement of Berti and Berto over MLOP
is mainly due to two factors: i) MLOP uses global deltas
for the whole application, while Berti detects different deltas
for each IP. Benchmarks like mcf generate different delta
patterns for each IP, thus using a global delta results in
suboptimal performance. ii) Berti uses a strict policy to decide
which deltas to use to issue prefetch requests to L1D, while
MLOP generates prefetch requests for the best delta with each
lookahead regardless of its confidence.

Timeliness. The slashed part of each bar in Fig. 13 repre-
sents the prefetch requests whose retrieved data arrive late
to L1D. Almost all prefetch requests generated by Berto
and Berti are timely. MLOP and IPCP have more than 10%
of late prefetchers for CVP-FP, SPEC CPU2017, and GAP
benchmarks (MLOP only). Berto achieves similar timeliness
to Berti, and despite its simpler mechanism, it is able to discard
entries from the history that would produce late deltas. [PCP

Q;\"L”)?)Qb"’)%,\'/’),\y‘o

© O X H H 0 X » 5 NN
< N N & Y N N q [©) %
¢ & < T Q K L K S v
R xRS A
& & 9 0\“/
[l:l MLOP EEE IPCP mmm Berti mmm Berto]

=
o
o

L1D Accuracy (%)
w
o

N
o wu

GAP

CVP-FP CVP-INT CVP-SRV SPEC17

Fig. 13. Prefetch accuracy at the L1D. Percentages of useful requests are
broken down into timely (non-slashed) and late (slashed) prefetch requests.

does not use any mechanism to adapt the prefetch requests
timing to the miss latency, while MLOP, Berti and Berto
do. However, Berti and Berto achieves better timeliness than
MLOP due to specific and timely deltas for each IP.

Coverage. Fig. 14 shows demand misses per kilo instruc-
tions (MPKI) at the L1D, L2, and LLC (Y axis) with and
without L1D prefetching for every benchmark suite (X axis).
Berto achieves a lower MPKI at all cache levels for all suites
except GAP. Specifically, the percentage reductions in MPKI
for Berto relative to Berti at L1D, L2 and LLC are as follows:
CVP-FP (25.6%, 26.7%, 23.7%), CVP-INT (13.0%, 5.1%,
4.8%), CVP-SRV (4.0%, 15.4%, 23.5%) and, SPEC CPU2017
(2.8%, 1.8%, 1.7%). In contrast, Berti improves the coverage
in GAP, reducing MPKI by the following percentages: 23.8%,
2.0%, and 4.7% in L1D, L2, and LLC, respectively. This
is because counting cycles enables Berti to achieve a more
accurate learning process for IP. The similar performance is
explained by the reduced pressure applied to the memory
hierarchy due to fewer prefetch requests.

D. Energy efficiency

Fig. 15 shows the average dynamic energy consumption in
the memory hierarchy (L1D, L2, LLC, and DRAM) normal-
ized to no prefetching. Berto consumes more energy than Berti
for all benchmarks except GAP, with a maximum increase in
CVP-FP due to the extra prefetch requests it triggers. This

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TC.2025.3533086

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. YY, AUGUST 2024

(= No =1 MLOP mEN IPCP mmm Berti mmm Berto]

LLC MPKI

to%e!
CVP-INT

CVP-SRV

Fig. 14. Prefetch coverage in terms of average L1D, L2, and LLC demand
MPXKI for all L1D prefetchers.

E= MLOP+SPP PPF

Berti+SPP PPF

=3 MLOP [IPCP EEm Berti EEm Berto
MLOP+Bingo EEE IPCP+IPCP W Berti+Bingo SN Berto+Bingo

Berto+SPP PPF

13

0-7 cvp-Fp CVP-INT CVP-SRV SPEC17 GAP
Fig. 16. Speedup with multi-level prefetching normalized to L1D IP-stride.
== MLOP = (PCP = Berti = Berto
MLOP+Bingo E== IPCP+IPCP S Berti+Bingo SN\ Berto+Bingo

E= MLOP+SPP PPF

Berti+SPP PPF

== Berto+SPP PPF

43

[IP-Stride I IPCP I Berto
/1 MLOP Il Berti
2
>1.5
2
B g 1.4
Sd13
[NS]
EE1.2
2211
01.0
CVP-FP CVP-INT CVP-SRV SPEC17 GAP

Fig. 15. Dynamic energy consumption in the memory hierarchy normalized
to no-prefetching.

additional energy consumption aligns with the performance
improvement of Berto over Berti and it comes from the extra
L1D accesses. When considering other L1D prefetchers, the
average energy consumption is lower than MLOP and IPCP
across all benchmarks except CVP-FP (specifically, 0.3% and
2.3% higher than MLOP and IPCP, respectively).

E. Multi-level prefetching performance

Fig. 16 shows the speedup achieved (Y axis) with the multi-
level prefetching combinations compared to a system with IP-
Stride.

We combine the Bingo and SPP-PPF L2 prefetchers with
MLOP, Berti, and Berto L1D prefetchers. For IPCP, we use
its configuration as a two-level prefetcher. These multi-level
prefetching combinations offer a significant performance boost
for CVP-FP and SPEC CPU2017 traces. The best combina-
tions of L1D+L2 prefetchers use Bingo on L2. Bingo adds
19.0%, 17.0% and 12.4% performance increases to systems
with only MLOP, Berti and Berto in L1D, respectively for
CVP-FP. However, Berto+Bingo has a storage requirement
that is 65.3 times higher. For the other suites, Berto alone
achieves the same or slightly lower performance compared to
any other L1D+L2 prefetcher combination. IPCP at both L1D
and L2 (IPCP-IPCP), with a hardware budget comparable to
Berto, achieves a significantly lower speedup than Berto alone
in L1D, especially in GAP (26.5%).

Coverage. Fig. 17 shows demand MPKI at the L1D, L2
and LLC (Y axis) for the multilevel prefetching combinations.
MPKI decreases in both L2 and LLC when adding prefetchers
to the L2 cache for most of the L1 prefetchers and benchmark
suites. We only observed increases in MPKI for CVP-SRV (in
L2 when adding SPP PPF) and for GAP (when using IPCP
in L2 and when adding a prefetcher in L2 using Berto or
Berti in L1). Adding a prefetcher at the L2 cache level can
effectively reduce MPKI for both Berti and Berto prefetchers,
with a maximum improvement of 28.5% and 23.9% for L2

L2 MPKI L1D MPKI

LLC MPKI

PEC17 GAP

Fig. 17. Prefetch coverage in terms of average L1D, L2 and LLC demand
MPKI with multi-level prefetching.

MPKI in the CVP-FP suite using Berti and Berto with Bingo,
respectively.

With respect to the L1D MPKI, it decreases significantly
when any prefetcher is added to L2 for CVP-FP, SPEC
CPU2017 and GAP. A prefetch request issued by the L2
prefetcher brings a block into the L2 cache. When the L1D
prefetcher issues a request for the same block, it is found in
L2 instead of the LLC or main memory. This decreases the
number of late prefetch requests. For example, with MLOP
in CVP-FP, the percentage of late prefetches decreases from
30.0% to 17.0% when using PPF in L2. In the case of Berti
and Berto, the reduced latency seen by the prefetchers enables
the identification of more deltas in the history, which translates
to higher coverage. GAP is the only benchmark suite where
a lower L1D MPKI does not translate into a higher speedup.
This behavior is explained by the increased traffic introduced
by the use of L2 prefetchers, which increases the L1D miss
latency by 39.9% when using Berti with Bingo compared to
standalone Berti.

VI. RELATED WORK

In Section V we presented a quantitative comparison of
Berto with recent hardware prefetching techniques [9], [13],
[27], [30]-[32], [36]. In this Section we compare other relevant
prefetching techniques qualitatively.

Temporal prefetchers. Temporal prefetchers track the tem-
poral order of cache-line accesses (and not the deltas) [20],
[22], [25], [39], [43]. Temporal prefetchers usually demand
hundreds of KBs of storage, which requires the storage
of prefetch metadata in the off-chip memory. Some of the
recent works on temporal prefetching are in the pursuit of
improving the storage overhead without affecting the prefetch
coverage [44], [45].

Spatial prefetchers. Compared to temporal prefetchers,
spatial prefetchers are lightweight in terms of storage overhead

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TC.2025.3533086

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. YY, AUGUST 2024

and usually learn memory access patterns within a small
spatial region of a few KB. Conventional prefetchers such as
stride [16] and stream [19], [40]are already being used on com-
mercial processors. Timely Stride prefetching improves the
timeliness of conventional stride prefetchers [46]. However, it
does not provide better prefetch coverage compared to state-of-
the-art L1D and L2 prefetching techniques. Spatial prefetchers
like Spatial Memory Streaming (SMS) [40] (similar to Bingo)
usually learn single repeating deltas or bit patterns within a
spatial region, where a set bit denotes a cache line that should
be prefetched. All these techniques do not consider prefetch
timeliness.

Kill the program counter (KPC) proposes a holistic cache
replacement and prefetching framework [28]. However, the
prefetching technique is similar to SPP, with similar perfor-
mance improvements as SPP. Multi-level adaptive prefetching
based on performance gradient tracking [34] (3rd place in
DPC-1 [1]) is one of the first proposals that achieves a
correlation between IPs and delta sequences. DSPatch [12]
tunes a hardware prefetcher based on the available DRAM
bandwidth and selects memory access patterns based on
prefetch accuracy (if the available DRAM bandwidth is low)
and prefetch coverage (if the available DRAM bandwidth
is high). Overall, SPP-PPF performs marginally better than
SPP+DSPatch.

Prefetch filters and throttling mechanisms. Similar to
PPF [13] and DSPatch [12], there are proposals that control the
aggressiveness of prefetchers by controlling its prefetch degree
and distance, or decides whether to prefetch into the L2 or to
the LLC [7], [17], [33] These techniques incur additional
storage and perform well for conventional prefetchers with
low prefetch accuracy. However, with Berto, the accuracy is
significantly higher than prior prefetching techniques, and the
implicit confidence mechanism acts like a prefetch throttler.

VII. CONCLUSIONS

We propose Berto, an L1D prefetcher with less hardware
complexity than Berti. We demonstrate that Berto can learn
various memory access patterns while maintaining or increas-
ing the high accuracy and coverage of Berti. We quantify
the effectiveness of Berto on the CVP-FP, CVP-INT, CVP-
SRV, SPEC CPU2017, and GAP workloads. On average,
Berto outperforms state-of-the-art L1D and L2 prefetchers
in CVP and SPEC CPU2017 and only lag behind Berti on
GAP. In summary, Berto achieves similar or better prefetch
accuracy, timely prefetching, and good coverage while offering
a performance improvement over Berti with simplified logic.

ACKNOWLEDGEMENTS

This work was supported by the European Research
Council (ERC) wunder the European Union’s Horizon
2020 research and innovation programme (Berti-Chip,
GA No 101158023, ECHO, GA No.819134), by the
MCIN/AEI/10.13039/501100011033/ and the “ERDF A way
of making Europe”, EU (grants PID2022-1363150B-100,
PID2022-136454NB-C22, RTI2018-098156-B-C53), by the
MCIN/AEI/10.13039/501100011033/ the European Union

NextGenerationEU/PRTR (grant TED2021-130233B-C33),
and by Government of Aragén (T58_23R research group).
Views and opinions expressed are however those of the authors
only and do not necessarily reflect those of the European
Union or the European Research Council Executive Agency.
Neither the European Union nor the granting authority can be
held responsible for them.

REFERENCES

[1] “The 1st data prefetching championship (dpc-1),” Feb. 2009. [Online].
Available: https://jilp.org/dpc/

[2] “The 2nd data prefetching championship (dpc-2),” Jun. 2015. [Online].
Available: https://comparch-conf.gatech.edu/dpc2/

[3] “Micron dram power calculator,” Dec. 2015. [Online].
Available: https://www.micron.com/-/media/client/global/documents/
products/technical-note/dram/tn4007_ddr4_power_calculation.pdf

[4] “The First Championship Value Prediction,”
https://www.microarch.org/cvpl/cvpl/index.htm, Jun. 2018.

[5] “The 3rd data prefetching championship (dpc-3),” Jun. 2019. [Online].
Available: https://dpc3.compas.cs.stonybrook.edu/

[6] “ChampSim simulator,” May 2020. [Online]. Available: http://github.
com/ChampSim/ChampSim

[7] J. Albericio, R. Gran, P. Ibafiez, V. Viials, and J. M. Llaberia, “Abs:
A low-cost adaptive controller for prefetching in a banked shared last-
level cache,” ACM Transactions on Architecture and Code Optimization
(TACO), vol. 8, no. 4, pp. 19:1-19:20, Jan. 2012.

[8] G. Ayers, N. P. Nagendra, D. I. August, H. K. Cho, S. Kanev,
C. Kozyrakis, T. Krishnamurthy, H. Litz, T. J. Moseley, and P. Ran-
ganathan, “Asmdb: Understanding and mitigating front-end stalls in
warehouse-scale computers,” in 46th Int’l Symp. on Computer Archi-
tecture (ISCA), Jun. 2019, pp. 462-473.

[9] M. Bakhshalipour, M. Shakerinava, P. Lotfi-Kamran, and H. Sarbazi-
Azad, “Bingo spatial data prefetcher,” in 25th Int’l Symp. on High-
Performance Computer Architecture (HPCA), Feb. 2019, pp. 399-411.

[10] S. Beamer, K. Asanovié¢, and D. A. Patterson, “The GAP benchmark
suite,” CoRR, vol. abs/1508.03619, Aug. 2015.

[11] R. Bera, K. Kanellopoulos, A. Nori, T. Shahroodi, S. Subramoney, and
O. Mutlu, “Pythia: A customizable hardware prefetching framework
using online reinforcement learning,” in 54th Int’l Symp. on Microar-
chitecture (MICRO), Oct. 2021, pp. 1121-1137.

[12] R. Bera, A. V. Nori, , O. Mutlu, and S. Subramoney, “Dspatch: Dual
spatial pattern prefetcher,” in 52nd Int’l Symp. on Microarchitecture
(MICRO), Oct. 2019, pp. 531-544.

[13] E. Bhatia, G. Chacon, S. H. Pugsley, E. Teran, P. V. Gratz, and D. A.
Jiménez, “Perceptron-based prefetch filtering,” in 46th Int’l Symp. on
Computer Architecture (ISCA), Jun. 2019, pp. 1-13.

[14] Y. Chen, L. Pei, and T. E. Carlson, “Leaking control flow information
via the hardware prefetcher,” CoRR, vol. abs/2109.00474, Sep. 2021.

[15] DDR, “DDR standards.” [Online]. Available: https://en.wikipedia.org/
wiki/Double_data_rate

[16] J. Doweck, “Inside intel core microarchitecture and smart memory
access,” in Intel whitepaper, 2006.

[17] E. Ebrahimi, O. Mutlu, C. J. Lee, and Y. N. Patt, “Coordinated control
of multiple prefetchers in multi-core systems,” in 42nd Int’l Symp. on
Microarchitecture (MICRO), Dec. 2009, pp. 316-326.

[18] J. Feliu, A. Perais, D. A. Jiménez, and A. Ros, “Rebasing microar-
chitectural research with industry traces,” in Int’l Symp. on Workload
Characterization (IISWC). 1EEE, 2023, pp. 100-114.

[19] B. Grayson, J. Rupley, G. D. Zuraski, E. Quinnell, D. A. Jiménez,
T. Nakra, P. Kitchin, R. Hensley, E. Brekelbaum, V. Sinha, and A. Ghiya,
“Evolution of the samsung exynos cpu microarchitecture,” in 47th Int’l
Symp. on Computer Architecture (ISCA), Jun. 2020, pp. 40-51.

[20] Z. Hu, M. Martonosi, and S. Kaxiras, “Tcp: Tag correlating prefetchers,”
in 9th Int’l Symp. on High-Performance Computer Architecture (HPCA),
Feb. 2003, pp. 317-326.

[21] A. Jain, “Exploiting long-term behavior for improved memory system
performance,” Ph.D. dissertation, The University of Texas at Austin,
May 2016.

[22] A. Jain and C. Lin, “Linearizing irregular memory accesses for im-
proved correlated prefetching,” in 46th Int’l Symp. on Microarchitecture
(MICRO), Dec. 2013, pp. 247-259.

[23] A.Jaleel, K. B. Theobald, S. C. S. Jr., and J. S. Emer, “High performance
cache replacement using re-reference interval prediction (rrip),” in 37th
Int’l Symp. on Computer Architecture (ISCA), Jun. 2010, pp. 60-71.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://jilp.org/dpc/
https://comparch-conf.gatech.edu/dpc2/
https://www.micron.com/-/media/client/global/documents/products/technical-note/dram/tn4007_ddr4_power_calculation.pdf
https://www.micron.com/-/media/client/global/documents/products/technical-note/dram/tn4007_ddr4_power_calculation.pdf
https://dpc3.compas.cs.stonybrook.edu/
http://github.com/ChampSim/ChampSim
http://github.com/ChampSim/ChampSim
https://en.wikipedia.org/wiki/Double_data_rate
https://en.wikipedia.org/wiki/Double_data_rate

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TC.2025.3533086

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. YY, AUGUST 2024

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

(33]

(34]

(351

[36]

[37]

[38]

(391

[40]

[41]
[42]

[43]

[44]

[45]

[46]

D. A. Jiménez and C. Lin, “Dynamic branch prediction with percep-
trons,” in 7th Int’l Symp. on High-Performance Computer Architecture
(HPCA), Jan. 2001, pp. 197-206.

D. Joseph and D. Grunwald, “Prefetching using markov predictors,” in
24th Int’l Symp. on Computer Architecture (ISCA), Jun. 1997, pp. 252—
263.

N. S. Kalani and B. Panda, “Instruction criticality based energy-
efficient hardware data prefetching,” IEEE Computer Architecture Let-
ters, vol. 20, no. 2, pp. 146-149, 2021.

J. Kim, S. H. Pugsley, P. V. Gratz, A. L. N. Reddy, C. Wilkerson, and
Z. Chishti, “Path confidence based lookahead prefetching,” in 49th Int’l
Symp. on Microarchitecture (MICRO), Oct. 2016, pp. 60:1-60:12.

J. Kim, E. Teran, P. V. Gratz, D. A. Jiménez, S. H. Pugsley, and C. Wilk-
erson, “Kill the program counter: Reconstructing program behavior in
the processor cache hierarchy,” in 22nd Int’l Conf. on Architectural
Support for Programming Language and Operating Systems (ASPLOS),
Apr. 2017, pp. 737-749.

S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi, “Cacti-
p: Architecture-level modeling for sram-based structures with advanced
leakage reduction techniques,” in 2011 Int’l Conf. on Computer-Aided
Design (ICCAD), Nov. 2011, pp. 694-701.

P. Michaud, “Best-offset hardware prefetching,” in 22nd Int’l Symp. on
High-Performance Computer Architecture (HPCA), Mar. 2016, pp. 469—
480.

A. Navarro-Torres, B. Panda, J. Alastruey-Benedé, P. Ibdfiez, V. Vinals-
Yifera, and A. Ros, “Berti: an accurate local-delta data prefetcher,” in
55th Int’l Symp. on Microarchitecture (MICRO), Oct. 2022, pp. 975-
991.

S. Pakalapati and B. Panda, “Bouquet of instruction pointers: Instruction
pointer classifier-based spatial hardware prefetching,” in 47th Int’l Symp.
on Computer Architecture (ISCA), Jun. 2020, pp. 118-131.

B. Panda, “SPAC: A synergistic prefetcher aggressiveness controller for
multi-core systems,” IEEE Transactions on Computers (TC), vol. 65,
no. 12, pp. 3740-3753, Dec. 2016.

L. M. Ramos, J. L. Briz, P. E. Ibafiez, and V. Vifals, “Multi-level
adaptive prefetching based on performance gradient tracking,” The
Journal of Instruction-Level Parallelism, vol. 13, pp. 1-14, Jan. 2011.

A. Ros and A. Jimborean, “A cost-effective entangling prefetcher for
instructions,” in 47th Int’l Symp. on Computer Architecture (ISCA), Jun.
2021, pp. 99-111.

M. Shakerinava, M. Bakhshalipour, P. Lotfi-Kamran, and H. Sarbazi-
Azad, “Multi-lookahead offset prefetching,” in The 3rd Data Prefetching
Championship, Jun. 2019.

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” in 10th Int’l Conf. on Ar-
chitectural Support for Programming Language and Operating Systems
(ASPLOS), Oct. 2002, pp. 45-57.

M. Shevgoor, S. Koladiya, R. Balasubramonian, C. Wilkerson, S. H.
Pugsley, and Z. Chishti, “Efficiently prefetching complex address pat-
terns,” in 48th Int’l Symp. on Microarchitecture (MICRO), Dec. 2015,
pp. 141-152.

S. Somogyi, T. F. Wenisch, A. Ailamaki, and B. Falsafi, “Spatio-
temporal memory streaming,” in 36th Int’l Symp. on Computer Archi-
tecture (ISCA), Jun. 2009, pp. 69-80.

S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos,
“Spatial memory streaming,” in 33rd Int’l Symp. on Computer Architec-
ture (ISCA), Jun. 2006, pp. 252-263.

Standard Performance Evaluation Corporation, “SPEC CPU2017,”
2017. [Online]. Available: http://www.spec.org/cpu2017

I. Sun Microsystems, “Ultrasparc t2 supplement to the ultrasparc archi-
tecture 2007,” Draft D1.4.3, 2007.

D. A. Varkey, B. Panda, and M. Mutyam, “RCTP: Region correlated
temporal prefetcher,” in 35th Int’l Conf. on Computer Design (ICCD),
Nov. 2017, pp. 73-80.

H. Wu, K. Nathella, J. Pusdesris, D. Sunwoo, A. Jain, and C. Lin,
“Temporal prefetching without the off-chip metadata,” in 52nd Int’l
Symp. on Microarchitecture (MICRO), Oct. 2019, pp. 996-1008.

H. Wu, K. Nathella, D. Sunwoo, A. Jain, and C. Lin, “Efficient metadata
management for irregular data prefetching,” in 46th Int’l Symp. on
Computer Architecture (ISCA), Jun. 2019, pp. 449-461.

H. Zhu, Y. Chen, and X.-H. Sun, “Timing local streams: improving
timeliness in data prefetching,” in 24th Int’l Conf. on Supercomputing
(ICS), Jun. 2010, pp. 169-178.

Agustin Navarro Torres is a postdoctoral re-
searcher at the Computer Architecture and Parallel
Systems Group (CAPS) in the University of Murcia.
Prior to this, he received his Ph.D. in computer
sciences from the Universidad de Zaragoza (2023).
His research interests include processor microarchi-
tecture, data hardware prefetching, secure hardware
prefetching, and real hardware characterization.

Biswabandan Panda is a member of faculty at IIT
Bombay, India. Biswa’s well-known contributions
are the state-of-the-art high-performing cache com-
pressors and multi-level hardware data prefetchers.
Biswa is one of the recipients of the Qualcomm India
Faculty Award 2022, Google India Research Award
2022, Prof. Krithi Ramamritam Award for creative
research 2023, and Qualcomm Faculty Award 2024.

Jesiis Alastruey-Benedé is a Telecommunication
Engineer and holds a PhD in Computer Science from
the Universidad de Zaragoza (UNIZAR, 1997 and
2009). He is an associate professor in the Com-
puter Science and Systems Engineering Department,
UNIZAR. He is a member of the Computer Ar-
chitecture research group at UNIZAR (gaZ), within
the framework of the Aragén Institute for Engineer-
ing Research (I3A). His research interests include
processor microarchitecture, memory hierarchy, and
high-performance computing applications.

Pablo Ibafez received the MS degree in com-
puter science from the Universitat Politécnica de
Catalunya, Spain, in 1989, and the PhD degree in
computer science from the Universidad de Zaragoza,
Spain, in 1998. He is an associate professor with
the Computer Science and Systems Engineering De-
partment, Universidad de Zaragoza. His research in-
terests include processor microarchitecture, memory
hierarchy, parallel computer architecture, and high
performance computing applications.

Victor Viials-Yufera is a Telecommunications En-
gineer and holds a PhD in Computer Science from
the Universitat Politecnica de Catalunya (UPC, 1982
and 1987). He is currently Professor of Computer
Architecture and Technology in the Department
of Computer Science and Systems Engineering at
the Universidad de Zaragoza. He leads the Com-
puter Architecture research group at the Universi-
dad de Zaragoza (gaZ) since its inception in 1998.
His research interests include processor design,
performance-oriented and real-time cache memory
hierarchy, including network-on-chip, high-performance programming for
parallel architectures and energy-saving techniques for multiprocessor chips.
He is a member of the IEEE and the European HiPEAC network. He is also
President, since June 2024, of the Spanish Society of Computer Architecture
(SARTECO). He has supervised 10 theses and has been principal investigator
in 6 consecutive National Plan projects in Spain. He has published more than
100 contributions in prestigious journals and conferences.

Alberto Ros is full professor in the Computer
Engineering Department at the University of Mur-
cia, Spain. He received Ph.D. in computer science
from the University of Murcia in 2009. He received
an European Research Council Consolidator Grant
in 2018 to improve the performance of multi-core
architectures. Working on cache coherence, memory
consistency, and processor microarchitecture, he has
co-authored more than 100 peer-reviewed articles.
He has been inducted into the ISCA and MICRO
Hall of Fame. He is IEEE Senior member.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

http://www.spec.org/cpu2017

	Introduction
	Berti, an accurate local delta prefetcher
	Pushing the limits of Berti

	Recent Works and Motivation
	Recent advances in data prefetching
	Berti: Overview
	Complexity and effectiveness of Berti

	Complexity-effective local delta prefetching
	Simplifying latency computation
	Tracking effectively more IPs
	The hash function
	Set-associative larger delta table

	Experimental Methodology
	Experimental setup
	Energy model
	Workloads
	Evaluated Prefetching Techniques

	Evaluation
	Impact of our contributions
	Speedup vs. storage requirements
	Performance of Berto as an L1D Prefetcher
	CVP-FP
	CVP-INT
	CVP-SRV
	SPEC CPU2017
	GAP

	Energy efficiency
	Multi-level prefetching performance

	Related Work
	Conclusions
	References
	Biographies
	Agustín Navarro Torres
	Biswabandan Panda
	Jesús Alastruey-Benedé
	Pablo Ibáñez
	Víctor Viñals-Yúfera
	Alberto Ros

