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Compressed Sparse FM-Index:
Fast Sequence Alignment Using Large K-Steps
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Abstract—The FM-index is a data structure used in genomics for exact search of input sequences over large reference genomes.
Algorithms based on the FM-index show an irregular memory access pattern, resulting in a memory bound problem. We analyze a
recent implementation of the FM-index and highlight existing throughput-memory trade-offs, showing that memory requirements limit
implementation of large k-steps. We propose COFI, a COmpressed FM-Index for large K-steps. COFI enables a 15-step FM-index
using less than 16 GB for a human genome reference of 3 giga base pairs. An algorithm based on this new layout is evaluated on both
a Knights Landing (KNL) and an Skylake-based system (SKX). We achieve average speed-ups of 1.46× and 1.39×, respectively, with
respect to an state-of-the-art FM-index implementation that is already well optimized.

Index Terms—Compressed FM-index, sequence alignment, Knights-Landing, Skylake.
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1 INTRODUCTION

P RECISION medicine holds promise for improving
healthcare by leveraging genomic information. Due to

the steep decrease in genome sequencing costs in recent
years, the amount of data to be processed is increasing dra-
matically, leading to a significant computation and storage
challenge. High-throughput sequencing systems produce a
large amount of reads that need to be post-processed. These
reads will typically be used for several genomic studies
based on sequence alignment pipelines. Most of these soft-
ware packages require several CPU hours to perform each
of these studies [1].

The objective of sequence alignment is to find for each
read the best matching locations when compared to a refer-
ence genome. In order to reduce the computation and mem-
ory requirements, exact matching is performed to restrict
the search space. Recent work shows that popular software
packages are able to align up to 80% of the reads without
errors (exact matches) [2]. Reads that cannot be aligned
with exact matching need to go through additional steps.
A common approach is to use a seed-and-extend algorithm
where reads are partitioned into small chunks (seeds). These
chunks are again searched using exact matching in order
to find seeds in the reference genome. Candidates are then
assigned an alignment score in the extend phase, typically
using a dynamic programming scheme based on the Smith-
Waterman local alignment algorithm [3].
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• A. Armejach and M. Moretó are with the Barcelona Supercomputing Cen-
ter, Barcelona, Spain and Universitat Politècnica de Catalunya, Barcelona,
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Exact matching is therefore a key component in sequence
alignment pipelines. Since typically used reference genomes
are in the range of giga base-pairs (Gbp), significant efforts
are needed to reduce memory size requirements. For this
reason, many popular sequence aligners are based on the
FM-index structure [4, 5, 6, 7, 8], which is well suited for fast
exact matches of short reads to a large reference genome. A
recent study that characterizes one of these popular tools
(BWA-MEM2), shows that time spent using the FM-Index
is significant. It consumes between 20% and 45% of the
execution time [7].

In this paper we analyze throughput and memory
trade-offs in state-of-the-art solutions based on FM-index
structures. We show that while a linear improvement in
computational throughput can be achieved by increasing
the number of bases searched per step (k), the memory
requirements quickly become prohibitive as they increase
exponentially. To overcome this limitation we propose COFI,
a COmpressed FM-Index for large K-steps. We make the
following contributions:
• We provide a detailed memory footprint analysis for a

state-of-the-art FM-index implementation. We make the
key observation that the amount of useful data stored
within the FM-index structures remains constant as k
increases.

• Based on this observation we propose COFI, a compres-
sion scheme for the FM-index data structures and an
accompanying algorithm to navigate them. Unlike in prior
approaches, COFI’s main data structure has a constant
size with respect to k. This enables search steps to be
performed over a large number of bases at a time. In
particular, COFI can perform 15 k-steps with a manageable
memory footprint of 16 GB.

• We evaluate COFI on two different modern hardware
platforms: an Intel Xeon Phi 7230 (KNL) and an Intel
Xeon Platinum 8160 Skylake-based (SKX). We employ
two reference genomes and a representative set of eleven
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Fig. 1: Procedure to build the FM-index. (a) Step 1: cyclic rotations to generate matrix M . (b) Steps 2 and 3: sort M
alphabetically and extract the last column (BWT ) and the suffix array (SA). (c) Step 4: build C and Occ structures.
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Fig. 2: Backward search example. (a) sp and ep initialization. (b) LF operation for sp and ep. (c) Final state of the query.

different input sequences. We show that COFI consistently
outperforms a state-of-the-art FM-index implementation
for all inputs, with average speed-ups of 1.46× and 1.39×
in KNL and SKX, respectively.

2 BACKGROUND

The FM-index is a data structure that allows fast string
searches over large texts [9]. It is widely used in multiple
genomics pipelines to find exact matches of DNA sequences
on a reference genome [10, 11]. In particular, in genome
sequence alignment where query sequences typically have
a few hundred bases and references can range from a subset
of chromosomes to entire genomes. As an indication, the
human genome is around 3 giga base pairs (Gbp). Given
a fixed alphabet, the complexity of a sequential search is
O(n), where n is the length of the reference, while a query
based on the FM-index has complexity O(m), where m is
the length of the sequence to be searched.

In this section, we first describe how to build the FM-
index and the search algorithm based on this data structure.

Then, we explain several optimizations proposed by prior
work that aim to reduce the memory footprint and to speed
up the computation.

2.1 FM-index: Construction and Usage
To construct the FM-index of a reference string, its Burrows-
Wheeler Transform (BWT) has to be computed [12]. This
is achieved by appending a special symbol $, which is
lexicographically smaller than all other symbols, and by
performing all the circular shifts as shown in Figure 1a
for the string “AGATGCCAGGCCAT”. Then, all the rows
of the resulting matrix M are sorted lexicographically, as
shown in Figure 1b. The last column of M is the BWT of the
reference string. For each row of M , its starting position in
the original reference is stored in an structure called suffix
array (SA) [13], see Figure 1b. When a query finishes, the
suffix array is looked up to locate the matching positions in
the original reference.

The two structures that constitute the FM-index, C and
Occ, can be generated from the BWT (see Figure 1c). C is an
array of size σ+1, where σ is the number of symbols in the
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Fig. 3: Several FM-index implementations. (a) Full FM-index with reference length n. (b) Sampled FM-index, one out of
d counters is stored. (c) 2-step sampled FM-index, uses an alphabet of 16 symbols. (d) Split bit-vector FM-index, each bit
indicates whether a base is in a given BWT position or not.

alphabet. Since DNA has 4 symbols (bases) {A,C,G, T}, the
size of C is 5. C[s] contains the number of bases alphabeti-
cally smaller than s in BWT. Occ has a column for each base,
and a row for each BWT symbol. Each row corresponds to a
BWT position and contains the number of bases of each type
in the BWT up to (but not including) that position. Hence,
Occ[p, s] contains the number of occurrences of the base s in
the BWT range [0, p). For example, in Figure 1c, theOcc[6, 3]
cell indicates the number of T s until the 6th position of the
BWT, that is, in the range [0-5).

To perform exact matching of a query Q[1..n], the back-
ward search (BS) algorithm based on the FM-index can be
employed [9]. BS defines two pointers (start and end, sp
and ep) that indicate the range where are all the possible
candidates of the current search appear in the matrix M .
Note that M is not a necessary data structure, we show its
instantiation for clarity. BS starts processing the last base in
Q, i.e., s = Q[n − 1]), by initializing the sp and ep pointers
with C[s] and C[s+1], respectively (see Equations 1 and 2).
Figure 2a shows an example of this stage for the sequence
GCC. For each of the remaining bases in the query string,
two Last-to-First Mapping operations (LF) are performed,
one for each pointer (sp and ep). LF is defined in Equation 3
for a pointer p and a base s [9].

sp = C[s] (1)
ep = C[s+ 1] (2)

p = LF (p, s) = C[s] +Occ[p, s] (3)

Following the example, Figure 2b shows the effect of
the LFs corresponding to the second base Q[n − 2] = C.
The updated pointers indicate the range of rows in M that
would contain the partial query we have searched so far.
Finally, Figure 2c shows the final position of the pointers
after performing all the LF operations. The values of sp and
ep indicate the first and last rows of M prefixed by the query
Q[1..n].

Each row of M corresponds to one rotation of the
original reference. With the SA, we can obtain the starting
positions in the original reference of the matches found
between sp and ep.

2.2 Sampled FM-index
TheOcc structure requires as many rows as the length of the
reference (Figure 3a), leading to a large memory footprint.
As an example, for the human genome, the Occ structure
would occupy around 48 GB. To reduce this footprint, a
sampling technique that stores one row out of every d
rows of Occ can be applied [14]. The reduced structure,
called rOcc (see Figure 3b), can be defined by the following
expression: rOcc[p, s] = Occ[p × d, s]. This reduction in
memory footprint comes at a computational cost. In order to
reconstruct the discarded entries, both the reduced rOcc and
the original BWT are needed. The additional computation
uses the BWT to count the bases from the last sampled
counter in rOcc to the desired position, as in Equation 4.

Occ[p, s] = rOcc[p/d, s]+occur(s,BWT [(p−p mod d)..p])
(4)

For instance, to compute the number of ’A’ symbols up
to the tenth row of Occ, we add the counter corresponding
to the ’A’ base found in the second row of the rOcc, i.e.,
0 (see ’A’ counter in blue in Figure 3b), to the number of
occurrences of that base in the first two positions of its
corresponding BWT block, i.e., 1 (see coloured BWT-block
in Figure 3b).

2.3 K-step Sampled FM-index
The k-step sampled FM-index (see Figure 3c) searches k bases
in a single step [15]. k bases per iteration are processed
instead of one, and the rest of the algorithm remains the
same.

For example, for k = 2 the alphabet changes from
{A,C,G, T} to {AA,AC,AG,AT,CA, ..., TT}. The size of
C and rOcc structures increases by a factor of 4 (the size of
the original alphabet), every time k is incremented by one.
In this case, the trade off is an exponential memory footprint
increase for a linear increase in computation throughput as
k increases.

2.4 bvSFM: Improving Data Locality
The split bit-vector sampled FM-index (bvSFM) speeds up
computation by improving data locality [16]. The sampled
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Fig. 4: bvSFM column for the symbol G. Each bvSFM
entry has a counter (blue boxes, left) and a bit vector (right,
4 bits). C[′G′] = 9 is already added to the counters, so there
is no need to add it during the LF operation as in Equation 3.

FM-index layout is changed in order to store all the data
needed to compute an LF in a single cache block. The
counter for a base in a sampled rOcc row is placed close
to a bit-vector that encodes the occurrences of that base in
the corresponding BWT block. The length of each bitmap
in a rOcc row is equal to the sampling rate. A bit set
to 1 indicates that the BWT contains the symbol at that
position, as shown in Figure 3d. Instead of iterating the BWT
to count the occurrences of a base, we just need to count
the number of bits set in the bit vector. This operation can
be efficiently implemented by the popcount instruction. We
term bvSFMentry the set of sampled counters and their
corresponding bitmaps in a rOcc row (see Figure 3d). As
proposed in Chacón et al. [15], a preprocessing step adds
the C values to the rOcc counters in order to avoid a C read
and an addition operation for each LF.

2.5 bvSFM example

To illustrate how this approach works, lets consider the
FM-index shown in Figure 3b. We take as example the
last LF operation of the example shown in Figure 2b. The
current values of the pointers are sp = 7 and ep = 9, and
the next symbol to be processed by the backward search
algorithm is Q[i] = G. Figure 4 shows the bvSFM column
corresponding to the symbol G.

The two LF operations, one for sp and one for ep,
required for each symbol s in the query are performed as
follows:
• Calculate the bvSFM entry indexes: p/d (7/4 = 1 for
sp, and 9/4 = 2 for ep).

• Load the bvSFM entries, which contain the sampled
counters rOcc[p/d, s] (rOcc[1, G] = 9 for sp and
rOcc[2, G] = 11 for ep), and its corresponding bit-
vectors in contiguous memory locations (1001 for both
sp and ep).

• Calculate the bit-vector indexes: p mod d (7 mod 4 = 3
for sp and 9 mod 4 = 1 for ep).

• Select the bits to perform the popcount. These bits,
shaded in Figure 4, are obtained by performing a bit-
wise and operation between the bit vector and a mask
of “p mod d” 1s (1110 and 1000 masks for sp and ep,
respectively).

• Perform a popcount over the selected bits
(popcount(1002) = 1 for sp and popcount(12) = 1 for
ep).

• The number of occurrences of the symbol G up to
each pointer position is computed by adding the

sampled counter to the result of the popcount op-
erations: rOcc[p/d, s] + popcount(masked bit vector)
(9 + popcount(1002) = 9 + 1 = 10 for sp, and
11 + popcount(12) = 11 + 1 = 12 for ep).

The values of sp and ep will be 10 and 12, respectively.

3 TRADE-OFFS IN FM-INDEX OPTIMIZATIONS

3.1 Summary

The FM-index algorithm is widely used in genomics
toolflows as it enables linear-cost exact matching over large
references with manageable memory footprints. The most
efficient way to increase computational throughput is by in-
creasing the number of symbols searched per step (k). How-
ever, it quickly imposes a prohibitive memory consumption.
With k = 2, the full FM-index is almost 200 GB for the
human genome. Therefore, sampling techniques must be
used to lower the memory footprint, trading-off some of the
performance gains, as additional computation is necessary.
Finally, bvSFM, a state-of-the-art technique, proposes an FM-
index layout that uses bitmaps to speed-up this additional
computation while improving memory locality.

The bvSFM structure of an FM-index with a sampling
rate of d = 64 and k = 2 steps occupies 12 GB. This was
found to be the best configuration as increasing k further
led to worse memory management. Moreover, increasing
the sampling rate to keep the memory footprint in check
requires a chain of dependent mod and popcount operations
that degrades performance.

3.2 Memory Footprint Analysis

The FM-index memory usage grows exponentially with
k. However, the difference between two consecutive rows
of the Occ structure is just on one of the counters (see
Figure 1c). For instance, with k = 5, each Occ row has
1024 counters (4k) but only one changes its value from
one row to the next. Thus, the fraction of useful counters
is 1/4k, i.e., one per row. With a sampled FM-index, at
most d counter increments occur over consecutive rows of
the rOcc. Hence, the maximum fraction of useful counters
is d/4k. A key observation is that the maximum number
of useful counters in a rOcc row is equal to d, regardless of
the value of k. Therefore, as k grows, the fraction of useful
counters decreases exponentially.

For bvSFM , the 4k bitmaps in a bvSFMentry have a
constant number of set bits, equal to the sampling factor d
(length of each bitmap). That is, if BWT [i] is equal to the
symbol s, the bitmap of the symbol s contains a set bit (1) in
the ith position, and the rest of the symbols have an unset
bit (0) in the ith position of their bitmaps (see Figure 3d).
The fraction of useful bits in the bitmaps is 1/4k, and the
total number remains constant regardless of the value of k.
For instance, with k = 10 and d = 64, each bvSFM entry
contains 64 Mb (64 ∗ 410 bits), of which only 64 are set.

Figure 5 shows how the size of a sampled (d = 64)
bvSFM structure increases with k (black line, right y-
axis), quickly becoming intractable. Stacked bars show the
percentage of the bvSFM size dedicated to counters (white
background) and bitmaps (gray background). Moreover, we
also show the percentage of the bvSFM size allocated to
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useful and redundant counters, and to useful and redundant
bits in the bitmaps. We can observe that the amount of
redundant data quickly becomes dominant. Almost all the
data is redundant for k ≥ 5, because the amount of useful
data stays constant while the size of the data structure
increases. Therefore, there is an opportunity to devise a
new data structure and an accompanying algorithm that
can perform large k-steps if we are able to store only useful
data.

4 COFI: COMPRESSED SPARSE FM-INDEX

A large k leads to better throughput. However, memory us-
age grows exponentially with k, quickly becoming unman-
ageable. By leveraging the observation that the amount of
useful information stored in the FM-index remains constant,
we propose to use a large k-step and compress the sparse
FM-index information while keeping a low overhead to
reconstruct the index from the compressed data structures.
The following subsections introduce COFI, a COmpressed
FM-Index for large K-steps.

4.1 COFI Data Structures: Offsets and Changes
If we take as a reference the full FM-index Occ structure
(see Figure 1c), we propose to store only the row indexes
where a counter changes for each symbol in the alphabet. In
other words, a column would now store the indexes where
its corresponding symbol appears in the BWT. We call this
new structure Changes . The size of Changes is constant for
any value of k: there are as many elements as in the BWT.
The size of the columns is now variable, we store them
consecutively as shown in Figure 6. In order to find where
each column starts and ends, we can reuse the C structure,
no modifications are needed. In COFI, we call this structure
Offsets despite being the same as the original C. If we count
the occurrences of the symbol s, the limits of its column are
Offsets[s] and Offsets[s + 1]. The final layout of COFI is
shown in Figure 6.
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Fig. 7: COFI data structures size for various values of k.
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Fig. 8: Histogram of column sizes for the human reference
GRCh38. Both axis are in logarithmic scale.

4.2 Memory Footprint Analysis
In previous proposals, the size of the main data structures
increases exponentially with k. In COFI, the size of Offsets
also increases exponentially at the same rate. However, it
is a small structure, only 4 entries for k = 1, or 16 entries
for k = 2. On the other hand, Changes is an array with
the same number of elements as the BWT, keeping its size
manageable for any value of k. Figure 7 shows the size
of the proposed data structrures for a full human genome
reference (GRCh38, 3 giga base pairs) and different values
of k. Changes occupies a constant amount of 12 GB. For
k = 15, Offsets occupies 4 GB, totaling 16 GB. As a
comparison point bvSFM requires 12 GB with k = 2 and
d = 64.

An important consideration of COFI is that the columns
in the Changes structure have different sizes, leading to non-
uniform search times for different symbols. Figure 8 shows
the distribution of the column sizes for the human reference
GRCh38 with k = 15. The X axis represents the column
size in bins that follow a logarithmic scale. The Y axis,
also in logarithmic scale, indicates the number of columns
within each bin. The size of most columns is smaller than
that of a 64-byte cache block: 98% of the columns have 0
to 16 elements. Nevertheless, large columns can impose a
large overhead and are more likely to appear during the
search, as we show in our evaluation. Hence, the proposed
search algorithm has to take large columns into account,
even if they represent a small fraction of the total number of
columns.

4.3 Backward Search in COFI
To perform the two LF operations for symbol s and pointers
sp and ep in COFI, the following steps need to be taken:
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Algorithm 1 Backward Search in COFI

Input: Q query, length = |Q|, Changes, Offsets
Output: sp, ep

1: sp = Offsets[Q[lenght-1]]
2: ep = Offsets[Q[lenght-1]+1]
3: for i = length− 2 to 0 do
4: left = Offsets[Q[i]]
5: right = Offsets[Q[i]+1]
6: sp = find col index(Changes, left, right, sp)
7: ep = find col index(Changes, left, right, ep)
8: end for
9: return sp, ep

1) Load Offsets[s] and Offsets[s + 1] to obtain the start
and end positions in the Changes array of the column
corresponding to symbol s.

2) Find in Changes the first element of the column that is
equal or greater than the values of sp and ep.

3) Return the indexes of the Changes array for the found
elements.
Algorithm 1 shows the pseudocode to perform a back-

ward search for one sequence and k = 1. After initializing
sp and ep in lines 1 and 2, two LF operations are performed,
one for sp and one for ep, for each one of the remaining
symbols. First, the start and end indexes of the column are
read in lines 4 and 5. Then, the first element greater or equal
than sp and ep is searched. The find col index function
in lines 6 and 7 returns the index of the found element
in Changes . In the case of sp, this index is the starting
position of the found sequences so far in matrix M (defined
in Section 2.1), while ep indicates the first sequence that is
not a match. Therefore, all sequences between sp and ep in
M would currently be query matches. Finally, we return the
pointers with the indexes that delimit found sequences in
M (line 9).

As shown in Figure 8, the size of the columns repre-
sented in Changes can be significantly large. Therefore, in
order to perform the search operation quickly, the function
find col index implements a simple binary search algo-
rithm. The current implementation takes advantage of the
fact that columns are already sorted in ascending order. The
function receives as parameters:
• array: array to search in.
• left: left limit of the binary search.
• right: right limit of the binary search.
• pointer: element to search.
As mentioned above, sp and ep keep track of the found

sequences; therefore, after each iteration the distance be-
tween both pointers (d = ep − sp) will decrease or remain
the same. Thus, we can modify the left and right limits in
line 7 to perform the search over a subset of the column.

We can illustrate this optimization with the query shown
in Figure 2. At the beginning of the second loop iteration, the
values of sp and ep are 7 and 9 respectively (see Figure 2b).
This indicates that d = 2 contiguous rows start with CC, a
suffix of the pattern being queried. In the last iteration, once
the new value of sp is calculated in line 6 of the algorithm
(sp = 10, see Figure 2c), the [left , right ] = [9, 13] range for
the ep search can be constrained: (i) we can set the left limit

to the recent computed sp value, left = sp = 10, and (ii) we
can set the right limit according to the maximum distance
between sp and ep: right = sp + d = 10 + 2 = 12. This
is possible because Changes is sorted in ascending order
and has no repeated elements. Note that this optimization
is very effective because the distance between the left and
right limits becomes smaller as the query progresses. This
optimization can be implemented by changing line 7 of
Algorithm 1 to:

ep = find col index(Changes, sp, sp+ d, ep) (5)

where d is calculated as d = ep − sp at the beginning of
the for loop.

4.4 COFI Example
We show how the previous example shown in Figure 4
for bvSFM takes place in COFI. As a reminder, the initial
values of the pointers are sp = 7 and ep = 9, and the next
symbol to be processed by the backward search algorithm
is Q[i] = G. Figure 6 shows COFI data structures with
the pertinent information for column G. The operations
followed in COFI are:
• Read the start and end indexes of the G column in

Changes : Offsets[G] = 9 and Offsets[G+ 1] = 13.
• Apply binary search over the G column to find the

elements greater or equal than sp and ep. The elements
found have values 7 and 11 for sp and ep, respectively.

• Update sp and ep with the indexes of the found ele-
ments, i.e., 10 and 12, respectively.

Although the computational complexity of COFI is
higher in the common case, with COFI we can perform
larger k-steps. We can increase k to 15 in COFI while keeping
a manageable FM-index size of 16 GB.

4.5 Performance Optimizations
The memory access pattern to perform an LF calculation
does not present good locality. By inspecting Algorithm 1,
we can observe that the LF loop first performs an access
to Offsets , which is dependent on the current symbol, and
then performs binary search over a subset (column) of the
Changes array. The accessed column is unlikely to be visited
in the near future in the current or subsequent searched
sequences, precluding temporal locality. In addition, the
access pattern in binary search does not present spatial
locality. Therefore, each memory access is likely to be long
latency as it will miss in the caches.

Sequence interleaving: in order to hide memory latency,
as previously implemented in the bvSFM proposal, we
search multiple sequences at the same time, overlapping
long-latency memory requests. Figure 9 shows four over-
lapped searches in COFI, i.e., each iteration of the LF loop
operates over four different query sequences. As can be seen
in the figure, the size of the Changes column determines the
number of binary search steps for each pointer. Therefore,
overlapped searches can finish at different steps in the
binary search algorithm.

Software prefetching: with the same objective to reduce
memory access latency, we also employ a simple software

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on June 07,2020 at 15:49:52 UTC from IEEE Xplore.  Restrictions apply. 



1545-5963 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2020.3000253, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 7

MEM OPSEQ 1

Access Offsets Binary search for start pointer Binary search for end pointer

OPSEQ 2

OPSEQ 3

OPSEQ 4

MEM

MEM

MEM

MEM BS MEM BS MEM BS MEM BS MEM BS MEM BS

MEM BS MEM BS

MEM BS MEM BS MEM BS MEM BS MEM BS MEM BS

MEM BS MEM BS MEM BS MEM BS

Fig. 9: Depicts four interleaved sequences to hide memory
latency. OP denotes the time spent computing the limits
of the columns, MEM is the time spent waiting for a re-
sponse from memory, and BS stands for the time spent on
binary search. BS depends on column size, therefore, some
sequences finish this phase before others (red boxes).

prefetching scheme. When processing the current symbol,
prefetch operations are issued for the next symbol to retrieve
from memory the necessary Offsets elements. Additionally,
the first pivot point for sp’s binary search is prefetched once
the column to be accessed is known.

Conditional moves: finally, COFI’s LF computation is
slightly more complex since it involves executing binary
search. Binary search is known to exhibit poor branch pre-
diction performance, as branches are difficult to predict, i.e.,
there is a 50% chance to take the branch. A branch mis-
prediction flushes the pipeline and causes a significant per-
formance penalty in processors with deep pipelines. Condi-
tional move instructions can be an alternative to branches.
These instructions write the contents of one register over
another only if the defined predicate value is true, and can
be executed speculatively on a processor’s pipeline without
the associated predication of branches. Therefore, in order
to avoid branches, we have implemented our binary search
algorithm with conditional moves.

Section 7.1 evaluates each optimization separately, and
reports their contribution to performance improvements.

5 EXPERIMENTAL METHODOLOGY

5.1 Test Machines
To evaluate COFI, we use two different HPC platforms: (i)
an Intel Xeon Phi 7230 (KNL), and (ii) an Intel Xeon Plat-
inum 8160 Skylake-based (SKX). The main characteristics of
these machines are specified in Table 1. In both machines we
use the Intel C Compiler (version 18.0.1).

We deactivate hardware prefetchers in both systems,
as done by the authors of bvSFM [16], since all evalu-
ated algorithms do not benefit from them due to random
memory access patterns. For all the evaluated proposals,
disabling hardware prefetchers yield mild performance im-
provements between 1% and 2%. In addition, both machines
are configured to use transparent huge pages of 1 GB.

5.2 Reference Genomes
We perform experiments using two human reference
genomes: GRCh37 [10] and GRCh38 [11]. The column size
distribution of GRCh38 can be seen in Figure 8. GRCh37 has
a similar distribution. Since we extract some of the input
sequences from the GRCh38 reference, as we detail in the
next section, we use GRCh37 to cross-reference the input
search sequences and show that similar results are achieved.

We note that GRCh37 contains around 2.86 Gbp, while
GRCh38 is slightly larger with 3.05 Gbp. For k = 15,

TABLE 1: Test machines configuration.

Intel Xeon Phi Intel Xeon Platinum
7230 (KNL) 8160 (SKX)

Cores × Threads 64 × 4 24 × 2
Issue width 2 4
Frequency (GHz) 1.3 2.1
Last-level Cache (MB) 32 33

MCDRAM
capacity (GB) 16 N/A
bandwidth (GB/s) 480 N/A

Main
capacity (GB) 192 96

memory bandwidth (GB/s) 90 120

TABLE 2: Error rates for Mason inputs.

Inputs Modifications Insertions Deletions

mason1 3% 0% 0%
mason2 1% 1% 1%
mason3 6% 0% 0%
mason4 0% 6% 0%
mason5 0% 0% 6%

the size of the Offsets data structure is constant at 4 GB,
while Changes occupies 10.67 GB and 11.35 GB, respectively.
Therefore, all experiments performed in KNL allocate the
main data structures in the MCDRAM memory region us-
ing flat mode [17]. We measure the index build time for
GRCh38 on SKX and observe that it grows linearly when
using k values of up to 12: for k = {2, 4, 8, 12} it takes
{13, 17, 24, 35} minutes respectively. For k = 15, it takes 55
minutes, presenting a superlinear growth due to the increase
in memory usage (see Figure 7). These index build times
have low relevance as the index is built once and can be
used across multiple experiments and projects.

5.3 Inputs

We use 11 representative sets of inputs sequences selected
from different use cases; including reads from particular cell
lines, as well as sequences generated using Mason [18], a
read simulator.
• sanger: it has been extracted from the GRCh38 reference

using Mason, simulating the Sanger process [19] with-
out errors. This input has been also used to evaluate
bvSFM [16].

• Five inputs coming from real reads made by an Illu-
mina HiSeq 2000 machine, which outputs sequences
with a length of 101 bases.
– ocily7-s: reads from the cell line OCI-LY7 over RNAs

smaller than 200 nucleotides [20].
– ocily7-1 and ocily7-2: reads from the same cell line

OCI-LY7, but over RNAs greater than 200 nu-
cleotides [21].

– a375-1 and a375-2: reads from the cell line A375 over
RNAs greater than 200 nucleotides [22].

• mason{1..5}: we use Mason over GRCh38, simulating
an Illumina machine to generate 5 inputs. We replicate
the simulations described on the appendices of Alser
et al. [23] with adjusted error rates. Table 2 shows the
error introduced for each simulation.
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TABLE 3: Number of sequences, length of each sequence
and occurrences in GRCh37 and GRCh38 for each input.

Input No seqs Length Occu. GRCh37 Occu. GRCh38

sanger 20M 200 15.49M 46.71M
ocily7-s 35.21M 101 13.09M 26.41M
ocily7-1 70.38M 101 46.04M 54.45M
ocily7-2 70.89M 101 34.27M 39.21M
a375-1 115.32M 101 61.54M 79.81M
a375-2 115.27M 101 57.11M 106.96M
mason1 10M 150 103,432 384,139
mason2 10M 150 109,470 385,207
mason3 10M 150 898 3,431
mason4 10M 150 758 3,402
mason5 10M 150 1,005 3,407

Table 3 shows the total number of sequences, their
length, and the occurrences on each reference for all the
inputs. The number of occurrences is higher for GRCh38,
as it contains around two million bases more than GRCh37,
and all inputs generated using Mason employ GRCh38 as
input. In addition, we note that the number of occurrences
is higher for mason1-2 than for mason3-5 because the error
introduced is lower, 3% and 6% respectively (see Table 2).

Our inputs are based on short reads because FM-Index
methods dominate in this scenario. However, COFI would
perform similarly for any read length, as the algorithm and
data structures are read length agnostic, and the perfor-
mance characteristics would not change.

For each experiment, we perform 128 executions. For
each execution, we search all sequences on the target ref-
erence. To measure the throughput, we use the number of
LF operations performed per second (LFOPs/s). We discard
the first execution in order to avoid cold start effects of
hardware structures. We calculate the arithmetic mean with
the rest of the executions.

6 PERFORMANCE ANALYSIS

A common metric used to measure the theoretical peak
performance a workload can exhibit on a particular target
machine is the arithmetic intensity [24]. This metric defines
the number operations, typically floating-point operations,
performed per byte brought from off-chip memory. In our
study, we will employ search intensity (SI) for this purpose.
Defined as the number of LFs performed per byte brought
from memory [16]. Equation 6 computes the SI of a search
for a k-step FM-index:

SI =
2× k
α×B

(6)

where 2×k is the number of LFs performed per iteration,
α is the average number of cache misses per iteration, which
depends on the algorithm, and B is the cache block size
(typically of 64 bytes).

Backward search algorithms are typically memory
bound, i.e., little computation is done per byte brought from
memory. Therefore, increasing search intensity is paramount
in order to increase performance. In the case of bvSFM ,
it has k = 2 and computes four LFs per iteration. We
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need to bring two cache blocks, one for sp and another
one for ep. The ep pointer could produce a cache hit if it
is close enough to sp. For this algorithm, the reported α
is 1.088 [16]. Therefore, bvSFM has a search intensity of

2×2
1.088×64 = 0.057.

In COFI, SI is input dependent as iterations over large
columns result in low SI values due to additional memory
accesses. Contrarily, iterations over small columns result in
high SI values. To calculate α, we have to take into account
the number of memory accesses in Offsets and Changes.

For Offsets, two 4-byte accesses are required, one for
the left index and another one for the right index. Since
both values are stored in contiguous memory positions, the
probability of having a cache miss for the second element
is 1/16. Hence, an average of 1.0625 memory operations are
performed due to the two Offsets accesses. For Changes,
the number of accesses depends on the number of 4-byte
elements in the column, ne. When ne is 0 or 1, the number
of Changes accesses is 0 and 1, respectively. When ne is
16 or less, the worst case results in two cache misses, and
each time we double the size of the column, one extra cache
miss has to be added. Hence, when ne is larger than 16, the
number of cache misses is

⌈
log2(ne)− 2

⌉
for the worst case.

Using k = 15, SI is 2×15
(1.0625+a)×64 , where a is the number

of cache misses caused by the Changes accesses, and it is
defined in Equation 7.

a =


ne, if ne = 0, 1

2, if 2 ≤ ne ≤ 16⌈
log2(ne)− 2

⌉
, otherwise

(7)

Figure 10 shows the bvSFM SI (dotted black line) and
COFI’s SI (grey bars) for different column sizes. Note that
the SI numbers for COFI represent worse case behaviour
of the binary search algorithm, as the searched element
could be found in one of the pivot points. We can see that
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Fig. 13: Average performance across all inputs for different
numbers of interleaved sequences.

COFI presents higher SI than bvSFM for values of ne lower
than 1024 elements. This metric is directly correlated with
performance.

In order to calculate SI for each input, we measure
the size of the columns that the algorithm accesses dur-
ing execution. We can see the percentage of accesses per
column size in Figure 11 for the inputs sanger, ocily7-s and
ocily7-1 and the reference genome GRCh38. For sanger, we
can observe that there are no accesses to empty columns,
this is because sanger was extracted from GRCh38 without
introducing errors. The percentage of accesses to columns
bigger than 1024 elements is 10.54%, 0.1% and 4.55% for
sanger, ocily7-s and ocily7-1, respectively.

By using the SI values from Figure 10 and the number
of accesses per column type, as shown in Figure 11, we plot
the calculated SI for each input in Figure 12. We can observe
that the SI in COFI is significantly higher than that of bvSFM,
up to 3.28× for ocily7-s input. This is likely to lead to better
performance as the workload is memory bandwidth bound.

7 EVALUATION

In this section, we present the results obtained with COFI.
First, we evaluate the performance impact for each of the
optimizations described in Section 4.5. Second, we compare
COFI against a state-of-the-art proposal, bvSFM [16]. bvSFM
is a 2-step 64 sampled FM-index that uses a bitmap to recover
the original Occ values (see Section 2.4). Third, we discuss
how inputs affect performance by relating time spent in
large columns and SI with performance. Finally, we describe
other experiments we performed and our findings.

7.1 Optimizations
We evaluate the performance impact when applying each
of the three optimizations described in Section 4.5. There-
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Fig. 14: Speed-up when using software prefetching.

fore, we analyse the impact on the number of interleaved
sequences, the benefits of the software prefetching scheme,
and the impact of conditional moves in binary search. We
use software prefetching and conditional moves in these
experiments except when evaluating their own impact. For
this set of results, we just show numbers with the GRCh38
reference due to space constrains. Results with GRCh37 are
similar and lead to the same conclusions.

7.1.1 Number of Interleaved Sequences
Figure 13 shows average performance across all inputs
when changing the number of interleaved sequences from 1
to 32. In both test machines, KNL and SKX, we obtain the
best average performance with 16 interleaved sequences.
After 16 sequences, performance remains stable because
the memory subsystem is already saturated. A few inputs
behave slightly better with 8 or 32 interleaved sequences;
however, to be consistent we employ 16 interleaved se-
quences for all inputs from now on.

7.1.2 Software Prefetching
Figure 14 shows the speed-up when using the described
software prefetching scheme. As previously specify, we
are prefetching acceses to the Offsets vector and the first
pivot of the binary search, but not the remaining pivots.
On average, we obtain a speed-up of 10% and 14% for
KNL and SKX, respectively. Therefore, we consider this
optimization useful and we will use it throughout the rest
of the evaluation.

7.1.3 Conditional Moves
Figure 15 shows the speed-up of using conditional moves in
the binary search algorithm. We can observe a significantly
different impact on each of the test machines. For SKX, we
obtain speed-ups of up to 1.85× (1.48× on average). This
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Fig. 15: Speed-up when employing conditional moves in the
binary search algorithm.

is because the Skylake core is heavily penalized by branch
mispredictions due to its aggressive speculative execution
on predicted branches, which in this case have a high
probability of being mispredicted. These mispredictions are
likely to perform additional memory accesses on the wrong
execution path, further hindering performance. Prior work
already showed that conditional moves are an effective way
to speed-up binary search algorithms for the mentioned
reasons [25].

For KNL, however, performance is not altered signif-
icantly, leading to a marginal 1% slowdown on average.
Branch mispredictions do not impose such a large penalty
in KNL due to a shallower pipeline and less aggressive
speculative execution. Since this optimization fails to deliver
performance improvements in KNL we chose not to enable
it from now on in KNL experiments. It will be used only on
SKX experiments.

7.2 Throughput

Figure 16 shows the speed-up of COFI with respect to the
best performing bvSFM (2-step 64-sampled), for references
GRCh37 and GRCh38. For KNL, we observe speed-ups of
up to 1.81× (1.46× on average) when using the GRCh38
reference. Performance differences across inputs come from
the different column access profiles in the Changes data
structure (see Figure 11 for examples). The obtained re-
sults correlate well with these profiles. For example, ocily7-s
presents the lowest amount of accesses to large columns and
attains the best performance. On the other hand, sanger has
more accesses to larger columns and COFI has the same
performance as bvSFM. We present further details on input
sensitivity in Section 7.3. The results for the GRCh37 refer-
ence show the same trends, with an average performance
improvement of 1.5×.

TABLE 4: Raw throughput in GLFOPs/sec using GRCh38.

KNL SKX
Input bvSFM COFI bvSFM COFI

sanger 10.26 10.25 5.65 6.73
ocily7-s 11.69 21.16 12.55 17.81
ocily7-1 11.25 17.45 7.58 9.59
ocily7-2 11.11 17.60 7.56 9.74
a375-1 11.46 18.93 7.97 10.39
a375-2 11.52 19.16 7.98 10.44
mason1 9.61 12.51 5.86 8.57
mason2 10.00 13.59 5.87 7.86
mason3 9.92 14.10 5.83 9.42
mason4 10.05 15.07 5.87 9.65
mason5 10.01 14.25 5.88 9.36
geo. mean 10.60 15.51 6.94 9.68

For SKX, we obtain speed-ups of up to 1.64× (1.39×
on average) when using the GRCh38 reference. Here we
also find similar trends for the different inpus. However,
since the binary search component of the algorithm per-
forms significantly better in SKX due to the conditional
move optimization, we can see that performance differences
between inputs with different column access profiles (i.e.,
sanger and ocily7-s) are much narrower. In fact, COFI is 1.19×
faster than bvSFM with sanger on SKX. Again, similar trends
can be seen for the CRCh37 reference, with an average
improvement of 1.44×.

Table 4 shows the raw throughput measured in
GLFOPs/sec for each input and the GRCh38 reference
genome. In KNL, the bvSFM version maintains a constant
performance among the inputs. However, in SKX, the ocily7-
s input shows a much higher throughput than the others.
This is due to two reasons. Firstly, ocily7-s contains a high
number of repeated sequences. Secondly, SKX has larger
last-level cache slices per core and it can exploit data locality
for these repeated sequences.

7.3 Input Sensitivity

There is a noticeable difference on performance depending
on the input. We have previously mentioned that perfor-
mance is correlated with the SI associated to an input, and
consequently, with the number of accesses for each column
size.

In Figure 17, we can see the percentage of time spent on
each column size for sanger, ocily7-s and ocily7-1 inputs. In
order to obtain representative results of the cost to perform a
search for a given column size, we perform this experiment
using 1 thread and 1 interleaved sequence on the KNL
using the GRCh38 reference. Multiple interleaved sequences
would slowdown searches over small columns when they
interleave with searches over big columns.

As expected, the time spent searching on large columns
is directly correlated to the performance differences seen
across inputs. That is, inputs that spend more time on larger
columns obtain lower performance. sanger is the input that
spends more time in large columns, 37.5% of the time spent
on columns larger than 1024 elements, while ocily7-s and
ocily7-1 spend 0.81% and 22.58%, respectively.
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Fig. 16: Speed-up of COFI with respect to bvSFM for all inputs, two references, and two test machines.
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An important observation is that some exact search
algorithms avoid or even filter-out large columns [26]. The
reason is that these columns contain sequences that appear a
lot of times, and they provide redundant locations that other
columns already find. It is also the reason our inputs based
on real read data from cell lines (e.g., ocily7-s and ocily7-1)
access less large columns in percentage than sanger, which
is produced using a read simulator over the entire genome
reference. Therefore, COFI could further benefit from this
fact if columns with small SI are filtered-out.

Finally, to illustrate how higher SI improves perfor-
mance in COFI, we show the roofline models [24] for
both test machines in Figure 18. Our roofline model ties
together throughput, SI, and memory performance in a
two-dimensional graph. The Y-axis is GLFOPS per second
(throughput) and the X-axis is SI, i.e., LF per byte of off-chip
memory traffic. Theoretical ceilings can be derived using
hardware specifications. The diagonal black line (memory
ceiling) depends on memory bandwidth available and de-
termines the maximum performance achievable for a given
SI value. Horizontal lines denote compute ceilings for each
input, calculated by dividing the number of executed in-
structions to perform all LF operations and the number of
instructions each machine can retire per cycle. Note that the
compute ceilings are input dependent.
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Fig. 18: Roofline models for bvSFM (input independent)
version and three inputs of COFI.

We can observe that bvSFM performs close to the mem-
ory ceiling in both machines, and it is therefore memory
bound rather than compute bound. However, COFI man-
ages to increase SI significantly, and for the ocily7-s input
we are able to break the computational ceiling of bvSFM on
both machines.

Even though SI has increased, the achieved performance
with COFI is far from the theoretical compute ceilings.
Therefore, we can conclude that the main performance
limitation has now shifted from memory bandwidth to the
algorithm itself, due to branches and data dependencies in
the code.

7.4 Discussion
We have tried to apply other ideas to improve performance
even further. Among these ideas, we highlight two: (i) to
rearrange the columns of Changes in order to be cache-
friendly, and (ii) the use of larger k-steps using SKX.

When performing binary search we can imagine the
columns of Changes as trees. When the column is large,
cache misses arise when traversing the first levels of the
tree. In order to avoid this problem, we thought of two
approaches. Firstly, to place the children together as in
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the Eytzinger layout [25]. This would allow us to apply
software prefetching to several levels in advance. The main
drawbacks that made this implementation not feasible are
irregular column sizes, and that the algorithm to recover the
original index becomes too costly. Secondly, to group several
levels of the tree together [27]. We place n levels of the tree at
the center of the column, and perform binary search (in this
case n-ary search) for n pivots knowing that they are close in
memory. Then, we have to search into one of the 2n subtrees
applying recursion. We have a threshold from which we
do not rearrange the column, at which point we use the
normal binary search algorithm. The problem is that with
this layout we can not limit the end pointer search, because
the columns are not sorted in ascending order. Therefore,
we have to repeat the binary search for the whole column
for ep, precluding any performance improvements.

We also did experiments using k = 16 and k = 17
for SKX, we already fill up completely the MCDRAM of
the KNL with k = 15. In both versions, we obtain a small
slowdown due to the size of the FM-index causing a large
amount of TLB misses, as the amount TLB entries for huge
pages is exceeded.

8 RELATED WORK

There are many software libraries available that perform
sequence alignment. Some examples targeting conventional
computing infrastructures include HITSAT [28], BWA [5, 6,
7], Bowtie [4] or SOAP [8, 29]. Additionally, in order to cope
with the increasing demand to post-process read data, sig-
nificant efforts have been devoted to efficiently exploit other
architectures. For GPGPUs, examples are CUSHAW2 [30],
Arioc [31], BarraCUDA [32], SARUMAN [33], and NVIDIA.
The latter includes an FM-index implementation in its bioin-
formatics library NVBIO [34]; for clusters, CUSHAW3 [35];
and for cloud computing, BigBWA [36]. All of these libraries
make extensive use of exact search algorithms and would
benefit from COFI.

With a focus on exact search, Xin et al. [37] propose an
algorithm to find the best way to select the seeds from the
sequences. They also propose FastHASH [26], an algorithm
that applies several techniques using hash tables by filtering
seeds with occurrences above a threshold, i.e., filtering the
equivalent of large columns in COFI. Optimizations to sam-
ple structures and increase k have also been evaluated using
GPGPUs [14, 38, 39]. In addition, multiple accelerators based
on FPGAs have been proposed, such as Gatekeeper [23],
Shouji [40], Darwin [41], FHAST [42], a proposal by Olson
et al. [43], and GenCache [2].

With a focus on FM-index optimizations, Chacón et al.
also propose to extend the alphabet to have a k-step algo-
rithm [15], and a way to compress even further a sampled
FM-Index for GPU execution [14]. As in bvSFM, the em-
ployed data structures become too large for k > 4, as these
techniques do not solve the problem of exponential memory
footprint growth. In addition, Chacón et al. also propose a
cooperative scheme for GPU threads that enables good per-
formance scaling on different GPU architectures, and that
can be used to reduce the index size with negligible impact
on performance. GPU architectures cannot efficiently hide

random access memory latencies, which penalizes perfor-
mance significantly. However, both KNL and SKX have out-
of-order capabilities that help hide such latencies, especially
when employing the sequence interleaving optimization.

Wavelet trees [44] have also been used to navigate the
BWT structure. Prior work [16] evaluates wavelet tree im-
plementations using the Succinct Data Structure Library
(SDSL) [45]. In spite of requiring less memory, its perfor-
mance results cannot match those obtained by our baseline
and COFI. For example, when using k = 1 a wavelet tree
would have two levels, requiring two memory accesses to
traverse it plus one access for the base counter. For k = 2
the wavelet tree would have four levels, requiring four plus
one accesses. As a comparison point, our baseline needs
two accesses, one for the counter and one for the bitmap,
and both are in the same cache block. Therefore, while
wavelet trees are memory efficient, their performance is
several times worse than bvSFM and COFI.

Hash-based indexing methods are also extensively used,
especially when dealing with long reads obtained by Oxford
Nanopore and PacBio machines. A single read can contain
hundreds of thousands of bases. Hashing has been present
in sequence alignment tools for decades, for example in
BLAST [46] [47]. A more recent proposal, minimap2 [48],
also employs hashing to find seeds for long reads. A number
of proposals have proposed improvements over hashing
methods. Ma et al. [49] proposed to use non-consecutive
matches in order to increase the sensitivity. Lin et al. [50]
proposed an optimal way to choose the minimum number
of seeds given read length, sensitivity and memory usage.
Finally, Homer et al. [51] proposed a two-level hash table in
order to reduce the memory usage.

Finally, there have been efforts to improve seed-and-
extend algorithms based on Smith-Waterman [52], which
is the other time consuming part of sequence alignment.
Gotoh proposed improvements over the original algorithm
[53], and others focused on exploiting available SIMD hard-
ware [54, 55, 56]. Also, a recent work by Park et al. [57] uses
the new vector extensions from Arm (SVE) to vectorize the
Smith-Waterman algorithm.

9 CONCLUSIONS

This paper analyses the memory footprint of state-of-the-art
FM-index data structures and makes the key observation
that the amount of useful data stored remains constant as
the k-step size increases. Based on this insight, we propose
COFI, a COmpressed FM-Index for large K-steps. Contrary
to prior proposals, COFI’s main data structure has constant
size with respect to the value of k. This enables large
k-step searches that present better trade-offs in terms of
throughput per unit of moved data.

We evaluate COFI on two different high performance
hardware platforms, using two reference genomes and a
representative set of inputs. We show that COFI consistently
outperforms a state-of-the-art proposal with improvements
of up to 2.14×. On average, COFI obtains 1.46× and 1.39×
improvements on KNL and Skylake-based systems for the
GRCh38 reference, respectively.
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