
Developing an AI IoT application
with open software on a RISC-V SoC
Enrique Torres-Sánchez

Escuela de Ingenierı́a y Arquitectura
Universidad de Zaragoza

Zaragoza, Spain
https://orcid.org/0000-0002-3512-2396

Jesús Alastruey-Benedé, Enrique Torres-Moreno
Dept. Informática e Ingenierı́a de Sistemas - I3A

Universidad de Zaragoza
Zaragoza, Spain

{jalastru,ktm}@unizar.es

Abstract—RISC-V is an emergent architecture that is gaining
strength in low-power IoT applications. The stabilization of the
architectural extensions and the start of commercialization of
RISC-V based SOCs, like the Kendryte K210, raises the question
of whether this open standard will facilitate the development of
applications in specific markets or not.

In this paper we evaluate the development environments, the
toolchain, the debugging processes related to the Sipeed MAIX
Go development board, as well as the standalone SDK and the
Micropython port for the Kendryte K210. The training pipeline
for the built-in convolutional neural network accelerator, with
support for Tiny YOLO v2, has also been studied. In order to
evaluate all the above aspects in depth, two low-cost, low-power,
IoT edge applications based on AI have been developed. The
first one is capable of recognizing movement in a house and
autonomously identify whether it was caused by a human or
by a house pet, like for example a dog or a cat. In the context
of the current COVID-19 pandemic, the second application is
capable of labeling whether a pedestrian is wearing a face mask
or not, doing real-time object recognition at a mean rate of
13 FPS. Throughout the process, we can conclude that, despite
the potential of the hardware and its excellent performance/cost
ratio, the documentation for developers is scarce, the development
environments are in low maturity levels, and the debugging
processes are sometimes nonexistent.

Index Terms—RISC-V, IoT, AI, AIoT, Kendrite K210, Sipeed
MAIX, CNN Hardware Accelerators.

I. INTRODUCTION

Recent advances in embedded systems and artificial intel-
ligence (AI), in combination with lower manufacturing costs
and end-consumer prices, have led to the RISC-V architecture
being in the spot for embedded system development, research,
and education. This has also brought AI and deep learning to
low-power systems, with new silicon being added to chips,
such as neural networks hardware accelerators.

Deep learning has achieved many successes in various
domains. Recently, researchers and engineers make efforts to
apply AI algorithms to mobile or embedded devices. Machine
vision and hearing has gained popularity due to new low cost
and low power solutions. As a result, real time object detection
can be performed in a low cost and low power system.

The AIoT term is where AI and IoT meet, bringing intelli-
gence to the edge. As AI moves closer to the edge and into
devices, such as smart sensors and cameras, it may eliminate
the need for racks of cloud-based computing and instead move

the analysis to the IoT device itself, reducing bandwidth and
removing any delay in loosely connected devices or when
latency is critical.

AI is pervasive today, from consumer to enterprise appli-
cations. With the rapid growth of connected devices, com-
bined with a demand for privacy/confidentiality, low latency
and bandwidth constraints, AI models trained in the cloud
increasingly need to be run at the edge.

The European Commission published in 2018 its Artificial
Intelligence Plan under title “Coordinated Plan on the Devel-
opment and Use of Artificial Intelligence Made in Europe –
2018” [1]. It emphasizes the importance of university educa-
tion in different aspects of AI and highlights the importance
of moving concepts from the theoretical framework to the real
world of embedded systems as a priority in the context of
the transformation of the industry. These systems must have
enough computing power to read their sensors and extract
information by analyzing their environment and taking actions,
or through connectivity, share it with other intelligent devices.

Low-cost development boards with enough computing
power to run real-time object detection systems such as Tiny-
YOLO [2], MobileNet-v1 [3], and TensorFlow Lite [4] are
emerging. The usefulness of these systems in education of both
undergraduate courses in Computer Architecture and advanced
courses in Embedded Systems or Machine Learning depends
greatly on the maturity of the programming tools and available
documentation.

This paper is organized as follows: Section 2 introduces
the Sipeed MAIX Go development board and the RISC-
V SoC used. Section 3 describes the software development
environments available for the platform focusing particularly
on debugging tools. Section 4 combines the results from
the previous section to implement a practical AI embedded
application able to recognize and label whether a pedestrian
is wearing a face mask or not. Finally, Section 5 concludes.

II. HARDWARE

The Sipeed MAIX-Go development board [6] based on the
MAIX M1w module with the Kendryte SoC K210 [7] was
selected for this study due to its low cost and availability. In
this section we will describe its hardware components.

Fig. 1. K210 SoC block diagram [5].

A. System-on-Chip (SoC)

The Kendryte K210 (K210) is a system-on-chip (SoC) im-
plemented in TSMC ultra-low-power 28-nm advanced process
that integrates machine vision and machine hearing [5]. It
targets the embedded AI and IoT markets, but it can also be
used as a high-performance MCU. Released in Sep. 2018, its
current batch price is around $6.

Its main components are a dual-core RISC-V 64-bit proces-
sor (CPU), a convolutional neural network (CNN) hardware
accelerator (KPU), an audio accelerator (APU), hardcore FFT,
SHA256, and a 8 MiB static random-access memory (SRAM).
The SRAM is split into two parts: 6 MiB are devoted for
general-purpose computation and 2 MiB for the KPU. The AI
SRAM can be used as main memory if the KPU is not using
it. Figure 1 shows the block diagram of the K210 SoC.

The CPU cores implement the RISC-V 64-bit IMAFDC ISA
(RV64GC) [8]. This instruction set is suitable for general tasks
and provides support for different privilege levels to improve
safety and advanced interrupt management routeable to any
of the two cores for better power efficiency, stability and
reliability.

Each CPU core contains an IEE754-2008 compliant
floating-point unit (FPU) that supports single and double-
precision multiply, divide, and square-root operations. Each
core also has a 32 KiB instruction cache and a 32 KiB data
cache. Frequency can be adjusted from the nominal 400 MHz
up to 800 MHz. Power consumption is kept below 350 mW
when running face detection routines and 35 mW with both
cores in WFI mode (Wait For Interrupt instruction).

The Knowledge Processing Unit (KPU) is a general-purpose
neural network processor with built-in convolution (1x1 and
3x3 kernels), batch normalization, activation (e.g. ReLU, sig-
moid), and pooling operations (e.g. max, average). There is
no direct limit on the number of network layers. Each CNN
layer can be configured separately, including the number of
input and output channels, and the input and output line
width and column height. It supports a fixed-point model.
It reaches a peak performance of 0.25 TOPS (0.5 TOPS
overclocked) executing 16-bit multiplications from its 64 KLU
(576 bit SIMD datapath). Real time at ≥ 30 fps can be

Fig. 2. Knowledge Processing Unit (KPU) flow [5].

achieved if the size of neural network parameters is kept below
5.9 MiB. Available flash capacity is the limit in non real-time
applications. The KPU flow diagram is shown in Figure 2.

The APU pre-processing module is responsible for the pre-
processing of voice direction and voice data output. With up
to 8 channels of audio input data, it is able to implement a
mic array, simultaneous scanning, pre-processing, and beam-
forming for sound sources in up to 16 directions. It uses the
built-in FFT and the system DMAC to store output data in
system memory.

The DVP camera interface module supports cameras with a
maximum frame size of 640x480 at 30 fps or 60 fps at QVGA.
It can output images to both KPU and a LCD display through
the MCU interface. The flexible FPIOA (Field Programmable
IO Array) can map 255 functions to all 48 GPIOs on the chip
from many other accelerators and peripherals: UART, WDT,
IIC, SPI, I2S, TIMER, RTC, PWM, etc.

The K210 embeds AES and SHA256 algorithm accelera-
tors to provide users with basic security features. One-time
programmable memory unit (OTP) and the AES accelerator
allows firmware encryption and integrity check for tamper
resistance support.

Debugging is supported by a JTAG interface and a high-
speed UART. It allows hardware breakpoints and Debug Mode
operation and has monitoring registers.

B. MAIX-I module

Sipeed MAIX-I [6], also called M1, integrates the K210,
DC/DC power supply circuit, 8MiB/16MiB/128MiB Flash
(M1w add ESP8285 Wi-Fi chip) into a 1x1 inch breadboard-
friendly and SMT-able module. Its target is the Artificial
Intelligence of Things (AIoT) as an edge computing solution.
Crowdfunded in Indiegogo, Sipeed successfully reached a
428% of the initial goal.

Figure 3 shows a picture of the M1 module. The K210 is
located in the top-left, next to it is the ESP8285 and the IPX
antenna connector. The 16 MiB flash chip can be seen in the
bottom left.

Espressif’s ESP8285 is a highly integrated low-power SoC
with the complete and self-contained Wi-Fi networking capa-
bilities, in this case working as a slave to the host MCU [9].

C. MAIX Go Development Board

Sipeed MAIX Go (Figure 4) is a 88x60 mm development
board built around the M1w module. Its small physical size,

Fig. 3. SiPEED MAIX-1 Wi-Fi module [6].

low-power footprint and low cost make it really appealing for
developing and learning AI embedded systems. The on-board
USB type C connector can be used for powering as well as
UART. The JTAG connector may be employed for uploading
code, debugging or communication. JTAG support is based on
a STM32F103C8 so there is no need for an external Jlink.

The development board also comes with a 3-axis digital
accelerometer, an I2S Mic, a speaker, an RGB LED, a Mic
array connector, a three-way thumbwheel, a TF card Slot, a
lithium battery manager chip with power path management
function, and all the K210 GPIO pins available. The full suite,
with a consumer price of $40, comes with a 500 mAH lithium-
ion battery, a 2.8-inch LCD, a ov2640 with M12 lens DVP
camera, an Wi-Fi antenna, and a simple acrylic case.

Fig. 4. Sipeed MAIX Go development board [10].

III. SOFTWARE

During the development process of an application, one of
the most important steps is selecting the toolchain. Both the
integrated development environment (IDE) and the debugging
tools are key choices when developing code on a platform.
For newer platforms, the software and the libraries may be
very limited, and/or not mature. Thus, it might have bugs
due to its early stage of development, or it might have poor
documentation.

In the case of the RISC-V based K210, a developer can
either choose between a) one of the few existent IDEs for the
C programming language or b) the MicroPython port provided
by Sipeed in case of using a development board based on a
MAIX module.

The options for developing in C for the K210 are:
• PlatformIO [11]: free, open source, cross-platform IDE

based on Visual Studio Code that is catered towards
embedded development.

• VisualGDB [12]: proprietary add-on for Visual Studio.
• Plain Kendryte Standalone SDK [13].
In all three cases, the aforementioned Kendryte Standalone

SDK is used, which is a set of C tools and libraries for
developing software to run on a K210 without operating
system. The standalone SDK is open source and its code is
completely hosted on GitHub [13].

It is also possible to use FreeRTOS with a different toolchain
but we have not tested this option.

In case of having a Sipeed MAIX development board and
choosing the MicroPython port, the options are the following:

• Using the open source IDE provided by Sipeed, called
MaixPy IDE [14].

• Using the serial port MicroPython terminal that the
MaixPy MicroPython port provides over the development
board’s USB connection.

• Loading MicroPython code files from the SD card that
can be inserted into Sipeed development boards, from
either the IDE or the MicroPython terminal.

Both PlatformIO and VisualGDB have been tested, and
MaixPy IDE has been used to develop the object recognition
software that will be presented in a following section. Not
using the IDE is also a path that was taken in order to check
the possibility of improving the debugging process.

A. Low-level and C development in PlatformIO

Using the Sipeed MAIX Go development board initially
started as a research project which was focused on testing
whether the development board could be used as a base
for undergraduate students to learn working on bare metal
hardware, specifically on RISC-V based hardware. The testing
phase started by analyzing PlatformIO as a viable option for
an easy to use IDE, which let the students both abstract
themselves from the linking, compiling and mapping process,
and at the same time presented an easy to use debugging
interface where students could look into assembly code, as
well as the architectural state of the system.

The Sipeed MAIX Go on board JTAG and UART should
allow uploading and debugging through the USB port. When
this was tested, the PlatformIO debugger did not work. Ini-
tially, this was thought to be an error with PlatformIO universal
debugger. In order to eliminate some possible variables, Plat-
formIO was tested both in Windows and in Ubuntu operating
systems, with the proper drivers installed. In both cases, the
on-board JTAG debugger did not connect with PlatformIO
universal debugger. After some research, one blog post com-
ment made by a Sipeed developer was found mentioning
that the on-board debugging probe was not fully active as
its firmware development was not finished yet [15]. This
issue was mentioned neither in the documentation nor in the
specifications sheet.

After this problem was encountered, other methods were
pursued in order to debug the K210 via a debugging probe.
Some research led to a developer blog post indicating that
shorting two pins on the board allowed it to switch to DFU
mode, which permitted external debugging probes [16]. This
was tested to be true by using an Olimex-Tiny-H external
debugging JTAG with the proper pinout set up on the board,
as well as the USB driver installed in Ubuntu. With this
external probe, the board in DFU mode, and the correct board
specification in PlatformIO, the initial test code, which was a
sleep-based LED blink, could be debugged.

The debugger, which is based on OpenOCD but modified
to support the K210, was found to have poor performance.
In addition to this, PlatformIO was able to read the processor
physical registers but not to dissasemble code in real time.
Even though C step by step execution is possible, following
the execution path, the same could not be performed at the
assembly level (RISC-V machine instructions). Another main
issue of the Olimex-Tiny-H was the inability to upload code
through the USB port. The development board had first to
be started without DFU mode to upload the code through
USB using either Kendryte provided tools for code flashing,
or PlatformIO’s uploader, which ends up using the same tool
but abstracts the user from using the command line.

After successfully debugging the initial test code, a new
version of the LED blink code based on timer interrupts was
tested. This second test code did not result in a success-
ful debugging procedure. The code executed correctly and
provided the expected functionality, but when the debugging
probe was started, the code did not stop at any break point, and
the program running on the K210 crashed. The problem was
initially theorized to be linked to the Olimex-Tiny-H JTAG,
and a SEGGER’S J-LINK was acquired to test this hypothesis.
Using the J-LINK, PlatformIO was unable to connect to the
SoC. This was tested in Ubuntu and in Windows, with the
appropriate drivers installed, but it did not function in any of
the two platforms.

B. Low-level and C development in VisualGDB

In order to eliminate possible failure points, another IDE
was tested. In this case, the free trial for VisualGDB was used
to test both its debugging capabilities via the external debug-
ging probes, as well as the possibilities that the IDE offered for
disassembly and memory look ups. The VisualGDB add-on for
Visual Studio was found to be successful at debugging with
the Olimex-Tiny-H, but not with the J-LINK. Furthermore,
VisualGDB was able to inject code to RAM memory directly
using the JTAG interface, so no further procedures like the
ones used for PlatformIO were needed to upload the code
and debug it. On the other hand, VisualGDB was not able to
retrieve the physical registers from the cores, so during the
debugging process the developer is not able to analyze the
architectural state of the machine.

In addition to the results mentioned above, VisualGDB
was able to correctly debug the timer interrupt based LED
blink. Further analysis showed that VisualGDB had a modified

TABLE I
COMPARISON OF PLATFORMIO AND VISUALGDB FEATURES.

PlatformIO VisualGDB
On Board Olimex On Board Olimex

Upload Yes No No Yes

Step by Step No Yes No Yes

Multicore Brk No No No Yes

RISC-V ASM No No No No

Register Values No Yes No No

version of the OpenOCD. This version of the software was
able to set breakpoints on both cores of the K210. The
explanation for the fix is given by Sysprogs, the developers of
VisualGDB, in a GitHub page [17] where the modified version
of Kendryte OpenOCD is uploaded. The original software
requires the developer to select which core will be probed at
the start of the session. This causes an issue when a breakpoint
is triggered on the SoC other core, and the debugging session
will crash instead of the breakpoint being acknowledged by
OpenOCD. Sysprogs fixed this by modifying the polling logic
to check the status of both cores and automatically switching
to debugging the core that triggered the last breakpoint. On the
other hand, this causes OpenOCD to fail when polling for the
contents of the registers, which is the result that was observed
when debugging the code with VisualGDB.

C. Observations

Both the Sipeed MAIX Go development board and the K210
have been seen as not mature enough in order for them to be
viable as educational devices in computer architecture courses.
The toolchain has some bugs which sometimes completely
disrupt the development process. The development environ-
ments are not mature enough for a teacher to base any type of
educational assignment on the platform, and they lack features
that are deemed mandatory in most of the fields in which the
development board could be used as an educational tool. E.g.,
VisualGDB can debug any software programmed in C for the
K210, even if the code uses both cores when running, but it
can not analyze the architectural state of the cores, whereas
PlatformIO is able to manage the latter (Table I). Furthermore,
the most viable option for development and debugging on the
platform in C language is proprietary and requires funding,
which would make it inaccessible to some students.

IV. APPLICATION DEVELOPMENT UNDER MAIXPY

Following the testing phase as a viable educational tool, the
AIoT capabilities of the platform were tested. Specifically, the
object detection capabilities of the K210 hardware accelerator.

Even though the Kendryte standalone SDK libraries support
C programming and using the KPU for object detection or
classification, the abstraction that the Sipeed MicroPython port
provides to the SoC machine vision components gives the
developer an appealing alternative that makes both prototyping
and development more efficient. This comes at a cost, as
the required MicroPython interpreter and the MicroPython

libraries reduce the amount of RAM available for model
parameter loading. In the case of the developed application,
MicroPython port MaixPy was chosen as the programming
language because of the advantages mentioned above.

A. Development Process

The proposed application is an AIoT domestic surveillance
camera which is capable of recognizing movement in a house
and autonomously identify whether it was caused by a human
or by a house pet, like for example a dog or a cat, using
object detection with the YOLO v2 object detection backend.
Then, the camera would only send real-time video when it
has recognized a human, instead of reacting to any type of
movement, and thus saving bandwidth and storage. In order
to achieve this, several steps were taken.

Firstly, the toolchain was set up. When using MaixPy,
different versions of the port can be chosen, with different
components being available or not through importing libraries.
In order to minimize the RAM memory that the MicroPython
interpreter uses, the 0.5.0 minimum version of MaixPy has
been used for the application, with IDE support. The other
options come with LVGL support, which consumes more
RAM, or without IDE support. The IDE support was chosen
as a feature because it provides an easy to use environment
to write code, link to the MicroPython interpreter through
the serial port, and directly allows code execution on the
development board. Furthermore, if the camera sensor is used,
its images will be saved to a frame buffer on the RAM, which
is then directly shown on the IDE. This frame buffer can
be modified during run time, allowing the developer to draw
bounding boxes around detected objects, as well as text, and
it will be displayed in the IDE window. The IDE is cross
platform, and it was tested for both Windows and Linux.

Secondly, the K210 was discovered to use a specific bi-
nary file format for neural network weights. This file format
could be obtained by converting any TFLite [4], Caffe [18],
PaddlePaddle [19] or ONNX [20] based network using
NNCASE [21], an open source tool provided by Kendryte. The
binary file obtained is referred to as KModel or K210Model,
and it is a compiled weights format optimized to run on
the K210 KPU. A training pipeline based on Tensorflow and
Keras can be developed, which in the end outputs a TFLite
file. This TFLite file can then be converted to a KModel
file using NNCASE, which in turn can be loaded into RAM
and executed by the KPU. For the sake of the development
of this application, a working training pipeline was found
on GitHub, called aXeleRate [22]. This software provides a
training pipeline that can directly export to KModel format.
It uses the Pascal VOC annotation format to tag classes in an
image, and assign a bounding box to the object in the image.

The first network models were compiled using a human
data set to test the real-time object recognition capabilities of
the K210 KPU. Initial tests proved that the object recognition
was accurate enough for the intended application, and the
performance, with a mean of 13 frames per second, was
enough for a surveillance camera. This performance was

Fig. 5. Mask detection application sample images. Left side shows a correct
mask placement detection. Right side shows the opposite.

achieved by using the camera sensor to capture 224 x 224
pixels photos, which would then be ran on the KPU with the
pre-trained model. Once the KPU returns bounding boxes it
has recognized, they are drawn on the frame buffer, followed
by a string that specifies what object class is recognized.

After having a complete toolchain, with a working training
pipeline, a human, dog, and cat classes data set was gathered
from the VOC 2012 competition [23]. The data set consisted
of 2274 images, evenly distributed between all the different
included classes. It was used to train different models with
different numbers of epochs. Specifically, two models were
trained: one with 50 epochs and one with 250 epochs. The
precision of the models could be inferred using aXeleRate’s
inferring script, and it was found to be 67% and 70% for
the first and second model, respectively. A testing script was
programmed to check the accuracy of the model once it
was compiled into the KModel file format. The script while
running the second model on the KPU was able to recognize
all the objects in the given validation images, which was the
same subset of images used to infer the precision of the model
previous to the conversion.

Finally, in the context of the COVID-19 pandemic, a data
set was published by PyImageSearch [24]. It contained tagged
pictures of people wearing a mask, some correctly and some
incorrectly. This, in connection with the research that was
on going about the viability of the Sipeed MAIX Go as an
educational tool, motivated the development of a surveillance
camera application to check whether a person was wearing a
mask correctly or not (Figure 5).

The data set was not provided with Pascal VOC annotation
files, so Intel’s VOTT software was used to tag and assign
bounding boxes to the given data set manually, and to export
the data set with these annotations. A model was trained using
the same training pipeline as the one used in the human-pet
model. When the precision was inferred prior to the conversion
to KModel format, the model was found to have a precision of
99%. This model was then loaded by the previous surveillance
camera application. The camera application was then able to
recognize when a person was correctly wearing a mask or
not, with a high degree of precision if the camera was taking
images in good lightning conditions.

B. Observations

The surveillance camera application proved to be a viable
concept, and also proved that MaixPy is suitable for embedded
AI teaching. It was also found to have a generic purpose,
as depending on the model and the classes given to it, it
could also function as a mask detector. On the other hand, the
hardware that comes with the Sipeed MAIX Go development
board was found to be insufficient for a real world use, as the
camera sensor is only suitable on good-lightning conditions.
The K210 is also very limited in terms of RAM memory, as
the pre-trained models that can be run on the KPU are small
and thus take some precision compromises.

V. CONCLUSIONS

This paper describes the initial process that a developer
needs to follow to develop software for a SoC implementation
of the RISC-V architecture, focusing on the Kendryte K210.
Its toolchain, its ease of use from a developer’s perspective and
its real-time AI capabilities have also been the main concepts
that have been put to test.

Throughout the initial research process, where the focus of
the study was on using the platform as an educational tool,
some issues were found. Even though the performance of the
SoC is high, taking into account its low power consumption
and its low cost, the development toolchain for the platform
is not ready for these purposes. Although available IDEs do
provide code auto completion when programming in C, the
debugging capabilities are not complete. Both PlatformIO and
VisualGDB fail to provide low-level debugging.

The two IDEs use a version of OpenOCD that is optimized
by Kendryte for the K210 SoC, which has bugs and is missing
features like run-time disassembly which are necessary for
embedded systems labs. Furthermore, VisualGDB is propri-
etary and needs a paid license, which makes the IDE not
viable for widespread student use. The documentation for the
platform is also scarce, and the libraries given by Kendryte are
obscure and documentation could be improved. All in all, the
C language toolchain is not yet fully ready, as can be expected
from a new platform without widespread use.

On the other hand, the AI capabilities of the SoC, in
conjunction with Sipeed’s port of MicroPython for its de-
velopment boards, brings a new use to the platform. The
MicroPython port and the MaixPy IDE are easy to use for
a developer. Training a model and converting the trained
weights to the KModel file type is not a complicated task
for a developer that has trained any type of AI model with
Keras or TensorFlow, and the performance of the hardware
accelerator is more than acceptable, averaging at 13 fps when
doing real-time object recognition and running the developed
surveillance camera application.

With all the downsides that the C language toolchain has,
the low cost of Sipeed development board, the K210 low
power consumption even under heavy load and the AI capabil-
ities of the SoC, the platform is an interesting opportunity for
IoT to become more intelligent and efficient in the near future.

The surveillance camera application will be open-sourced on
GitHub to help future developers.

VI. ACKNOWLEDGMENTS

This work was supported by MINECO/AEI/ERDF (EU)
(grants TIN2016-76635-C2-1-R and PID2019-105660RB-
C21), Aragón Government (T58 20R research group), and
ERDF 2014-2020 ”Construyendo Europa desde Aragón”.

Thanks to Red-RISCV and the RISC-V ISA - European
Processor Initiative for promoting open hardware.

REFERENCES

[1] European comission, coordinated plan on the development
and use of artificial intelligence made in europe – 2018.
[Online]. Available: https://ec.europa.eu/digital-single-market/en/news/
coordinated-plan-artificial-intelligence

[2] R. Huang, J. Pedoeem, and C. Chen, “Yolo-lite: A real-time object
detection algorithm optimized for non-gpu computers,” in 2018 IEEE
International Conference on Big Data (Big Data), 2018, pp. 2503–2510.

[3] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[4] Tensorflow lite. [Online]. Available: https://www.tensorflow.org/lite/
[5] K210 datasheet. [Online]. Available: https://s3.cn-north-1.

amazonaws.com.cn/dl.kendryte.com/documents/kendryte datasheet
20181011163248 en.pdf

[6] Sipeed home page, https://www.sipeed.com. [Online]. Available:
https://www.sipeed.com

[7] Kendryte home page, https://kendryte.com/. [Online]. Available:
https://kendryte.com/

[8] A. Waterman, Y. Lee, D. Patterson, and K. Asanovic, “The risc-
v instruction set manual, volume i: user-level isa, version 2.0, eecs
department,” University of California, Berkeley, Tech. Rep. UCB/EECS-
2014-54, 2014.

[9] Esp8285 datasheet. [Online]. Available: https://www.espressif.com/sites/
default/files/documentation/0a-esp8285 datasheet en.pdf

[10] Sipeed maixgo datasheet v1.1. [Online]. Available:
https://dl.sipeed.com/MAIX/HDK/Sipeed-Maix-GO/Specifications/
Sipeed%20MaixGo%20Datasheet%20V1.1.pdf

[11] (2020) Platformio: A new generation ecosystem for embedded
development. [Online]. Available: https://platformio.org/

[12] (2020) Visualgdb - serious cross-platform support for visual studio.
[Online]. Available: https://visualgdb.com/

[13] Github page for the standalone sdk for kendryte k210. [Online].
Available: https://github.com/kendryte/kendryte-standalone-sdk

[14] (2020) Maixpy - micropython to k210. [Online]. Available: https:
//maixpy.sipeed.com/

[15] Github issue: Debugging maixgo on platformio using kendryte
standalone sdk. [Online]. Available: https://github.com/sipeed/
platform-kendryte210/issues/10#issuecomment-510744986

[16] Sipeed - blog: Platformio ide’s debugging guide. [Online]. Available:
https://blog.sipeed.com/p/727.html

[17] Github page for sysprogs’ modified openocd. [Online]. Available:
https://github.com/sysprogs/openocd-kendryte

[18] Caffe deep learning framework landing page. [Online]. Available:
https://caffe.berkeleyvision.org/

[19] Paddlepaddle deep learning framework landing page. [Online].
Available: https://www.paddlepaddle.org.cn/

[20] Onnx open machine learning model format landing page. [Online].
Available: https://onnx.ai/

[21] Github page for nncase: Open deep learning compiler stack for
kendryte k210. [Online]. Available: https://github.com/kendryte/nncase

[22] Github page for axelerate: Keras-based framework for ai on the edge.
[Online]. Available: https://github.com/AIWintermuteAI/aXeleRate

[23] Visual object classes challenge 2012. [Online]. Available: http:
//host.robots.ox.ac.uk/pascal/VOC/voc2012/

[24] Covid-19: Face mask detector with opencv. [Online].
Available: https://www.pyimagesearch.com/2020/05/04/
covid-19-face-mask-detector-with-opencv-keras-tensorflow-and-deep-learning/

https://ec.europa.eu/digital-single-market/en/news/coordinated-plan-artificial-intelligence
https://ec.europa.eu/digital-single-market/en/news/coordinated-plan-artificial-intelligence
https://www.tensorflow.org/lite/
https://s3.cn-north-1.amazonaws.com.cn/dl.kendryte.com/documents/kendryte_datasheet_20181011163248_en.pdf
https://s3.cn-north-1.amazonaws.com.cn/dl.kendryte.com/documents/kendryte_datasheet_20181011163248_en.pdf
https://s3.cn-north-1.amazonaws.com.cn/dl.kendryte.com/documents/kendryte_datasheet_20181011163248_en.pdf
https://www.sipeed.com
https://www.sipeed.com
https://kendryte.com/
https://kendryte.com/
https://www.espressif.com/sites/default/files/documentation/0a-esp8285_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/0a-esp8285_datasheet_en.pdf
https://dl.sipeed.com/MAIX/HDK/Sipeed-Maix-GO/Specifications/Sipeed%20MaixGo%20Datasheet%20V1.1.pdf
https://dl.sipeed.com/MAIX/HDK/Sipeed-Maix-GO/Specifications/Sipeed%20MaixGo%20Datasheet%20V1.1.pdf
https://platformio.org/
https://visualgdb.com/
https://github.com/kendryte/kendryte-standalone-sdk
https://maixpy.sipeed.com/
https://maixpy.sipeed.com/
https://github.com/sipeed/platform-kendryte210/issues/10#issuecomment-510744986
https://github.com/sipeed/platform-kendryte210/issues/10#issuecomment-510744986
https://blog.sipeed.com/p/727.html
https://github.com/sysprogs/openocd-kendryte
https://caffe.berkeleyvision.org/
https://www.paddlepaddle.org.cn/
https://onnx.ai/
https://github.com/kendryte/nncase
https://github.com/AIWintermuteAI/aXeleRate
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detector-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detector-with-opencv-keras-tensorflow-and-deep-learning/

