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ABSTRACT
For students of any Computer Engineering program, attaining an
integrated vision of the different abstraction levels is paramount to
fully understand and exploit a computer system, especially when
tough topics such as parallelism, concurrency, consistency, or atom-
icity are involved at the hardware-software frontiers. However, the
structure of typical engineering programs leads to the creation of
self-contained courses, where a single level of abstraction is studied
and the overall picture is lost.

This paper provides a practical approach to show actual interac-
tions between abstraction levels. This is achieved by implementing
multiple components of a parallel ray tracer from the algorithmic
level of the tracer to the atomic instructions required to guarantee
atomicity. The students implement the full project throughout labo-
ratories of different courses. Each lab focuses on a single abstraction
level, but shows students the interactions with the rest of the lev-
els. In addition, the hardware and software requirements of the
approach are introduced, leading to the conclusion that Raspberry
Pi is a suitable single-board computer for this project. Finally, this
work also includes a preliminary assessment study of the proposed
approach through the analysis of pre/post surveys filled out by the
students.

1 INTRODUCTION
The development of a Computer Engineering (CE) program must
catch upwith the fast evolution of the field. Since the end of the Den-
nard scaling and Moore’s Law era poses significant challenges in
computing, hardware-software system co-design seems a promising
approach to sustain the increasing performance trend. Performance
is not granted for free anymore by just cramming more components
in a similar area, and power consumption becomes a serious issue.
This is one of the main reasons why a professional profile with an
integrated vision of a computer system is highly appreciated. Be-
sides, such a global picture allows professionals to assess risks and
to deal with further professional training (specialized or not) with
guaranteed success [1]. On the other hand, in most CE programs,
each course typically resorts to abstractions in order to design and
explain computer systems.

Abstractions establish clear boundaries across different parts
of a system and aim to hide unnecessary details in the context
of a given system level [12]. Abstractions help to strengthen the

learning process as well, since they make the students focus on
specific aspects. However, in our experience, students often lose the
desired overall vision of a computer system with such an approach.
This may lead students to the conclusion that some courses are
self-contained and do not relate to each other. Many of them forget
the hardware implications underlying high-level abstractions, in
terms of performance and power.

Previous work proposes distinct high-level abstractions to ease
both algorithm and software designs [9, 11]. On the contrary, we
tackle the mentioned problem from the highest to the lowest level
of abstraction that underlie complex parallel applications in a com-
puter system [6]. More precisely, this work exposes to the students
how the Instruction Set Architecture (ISA) and the operating sys-
tem provide the required support to high-level synchronization
operations, which in turn help strengthen the knowledge on how
the essential concepts of parallelism, concurrency, consistency, and
atomicity entangle among them and with the hardware [1, 13, 19].

To better understand the relations among the aforementioned
concepts, this paper proposes to develop a cross-cutting project
involving several laboratory sessions of different courses of a CE
program. The proposal consists of a parallel ray-tracing algorithm
as a motivating example that uses a concurrent queue to assign
tasks to different execution threads. The queue is accessed inmutual
exclusion to preserve data integrity. With this purpose, the access
to the queue is managed according to each abstraction level, with
mutexes or futexes (fast userspace mutexes) implemented with li-
brary functions, system calls, or directly in assembly language. This
way, the proposed project covers the abstraction levels of Applica-
tion, Library, Operating System, and ISA, implicating the courses of
Computer Graphics (CG), Distributed and Concurrent Systems Pro-
gramming (DCSP), Operating Systems (OS), and Multiprocessors
(MP), respectively.

Each project lab is related to a specific level of abstraction, and
purposely endowed with a context referring to the rest of the levels,
contributing this way to integrate the different abstraction levels.
In this work, we introduce the main guidelines and objectives of
the project, which allow to implement other projects reinforcing
cross-cutting learning.

Prior work has proved the suitability of a single-board com-
puter like Raspberry Pi for teaching parallel computing over mobile
devices, student laptops, virtual machines, or remote multicore



servers [14]. We build upon this study by using a common hard-
ware board in all the project labs, which contributes to consolidate
an integrated view of the system. To this end, we analyze several
boards and conclude that Raspberry Pi meets the vast majority of
the hardware and software requirements of a cross-cutting project.

The presented project is intended to be deployed in a CE program
during the next academic year, but initial assessment studies of the
proposal have already being carried out in the current academic year
thanks to a set of volunteer students. This paper shows experimental
results for the OS lab, including both the technical details of the
lab assignment and the students learning outcomes using pre/post
surveys. These surveys expose that students effectively demand a
deeper understanding of the interactions between the operating
system and the remaining levels, and such demands are fulfilled
after the completion of the lab.

The remainder of this paper is organized as follows. Section 2
introduces the context of the CE program in which the proposed
project is intended to be established. Section 3 describes the project.
Section 4 presents the requirements to implement cross-cutting
projects and the suitability of the selected boards. Section 5 shows
the experimental results. Finally, Section 6 summarizes the paper.

2 CONTEXT OF THE CE PROGRAM
The proposed project is planned to be integrated in the CE program
at the Universidad de Zaragoza (UNIZAR). This program consists
of four academic years, 240 ECTS1 credits in total2. The first two
and a half years are common for all students. The core courses
in this period mostly focus on the knowledge that any CE gradu-
ate should learn. Afterward, students reinforce their knowledge in
the major that most interests them within five available options:
Computing, Computer Engineering, Information Systems, Informa-
tion Technology, and Software Engineering. Each major consists of
eight compulsory courses. In addition, students select two optional
courses from any other major, as well as two core courses that
are studied regardless of the chosen major. Finally, the students
achieve the program by undertaking an undergraduate dissertation
of 12 ECTS.

The CE program is a very practical degree, where the theory
always applies to the resolution of problems and the development
of labs and projects. This practical load is the ideal scenario to
assimilate those concepts studied in the different courses, although
it usually adds a sizable burden. The lab sessions are mostly oriented
to reinforce the theoretical contents of each specific course. At best,
they are coordinated with other courses that belong to the same
area of knowledge. As mentioned above, this can lead students to
perceive a course, or a group of courses, as isolated islands, which
makes it difficult for them to apply the knowledge acquired in each
course in their professional career. In fact, these divisions are purely
organizational and all the courses have many interactions with
each other. According to the Computer Engineering Curricula [1],
students should learn the development of a whole computer in the
lab experiences that include exposure to hardware and operating

1ECTS refers to European Credit Transfer and accumulation System:
http://ec.europa.eu/education/resources-and-tools/european-credit-transfer-and-
accumulation-system-ects_en
2https://estudios.unizar.es/estudio/ver?id=148

Table 1: Relations among the abstraction levels, courses, ac-
tivities, academic years, and semesters.

Abstraction Course Activity Academic Semester
level year

Application CG Ray tracer 4th Fall
Library DCSP Task queue 2nd Fall

Operating OS Futex 2nd Fall
System system calls
ISA MP Futexes with 3rd Spring

assembly code

systems in the context of a relevant application, which is, in our
project, the ray-tracing algorithm.

3 CROSS-CUTTING PROJECT PROPOSAL
This section presents the proposed project that help the students to
accomplish a holistic view of a computer system. The lab material
and resources for each abstraction level, which is available upon
request, consists of a description of the work to be done, code
snippets, and a series of milestones, where each one builds on top
of the previous one. Each lab session comprises two hours in the
course associated with the level. The project involves a total of
eight hours.

3.1 Overview
The proposed project allows students to consolidate the concepts of
parallelism, concurrency, consistency, and atomicity exploitable in
current multicore computers. We focus on a ray tracer, an appealing
application which can be efficiently parallelized by learning and
using the above concepts. Table 1 shows the involved four levels of
abstraction, as well as the courses that have been selected within
the program to face the problem jointly; for each course associated
with a level of abstraction, the table shows the academic year and
semester in which the activity will take place.

According to the chronological distribution of the chosen courses
throughout the different academic years, the students will start the
project in the second year. The first lab, which belongs to the DCSP
core course, focuses on the library level. This lab deals with the
implementation and management of a task queue with concurrent
access by multiple threads. Such an access must be done in mutual
exclusion to avoid race conditions. To do so, the students implement
a mutex with library functions.

The subsequent lab will take place shortly, during the same
academic year and semester, and focuses on the Operating System
level. In this core lab, a mutex is implemented in userspace with a
futex mechanism through atomic primitives and operating system
calls that are only invoked when the mutex is contended [10], thus
replacing the library functions from the above level.

The following academic year covers the third project lab, that is,
the Assembly level, which is developed in the MP optional course.
In this lab, assembly instructions are used to implement the mu-
tex/futex, which allow to achieve a greater efficiency in energy
consumption and performance compared to library functions and
system calls.
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Finally, in the fourth course, the students focus on the Applica-
tion level by implementing a ray-tracing algorithm in a lab of the
CG optional course. In this activity, the tasks to be performed on an
image can be parallelized by dividing the image into regions. These
regions are assigned to different threads by using the concurrent
task queue. At this moment, the students will fully evaluate and
state the differences of protecting the task queue by using library
functions, system calls, or assembly instructions.

Note that the development of the presented project is subject
to certain risks; e.g., students transferring from one institution to
another, or students failing a course or simply not choosing the
involved optional courses would not complete the full project. To
mitigate such risks, all the labs include two parts. The first one,
which is self-contained, includes the material for the actual lab, and
the second part links the lab with the others. Therefore, if a student
does not complete a preceding or following lab assignment, the
faculty can provide a solution, so that students can accomplish the
second part of the lab and establish the links between the abstraction
levels.

3.2 Abstraction Levels
The application under study is presented in the next sections fol-
lowing the chronological order that students will experience.

3.2.1 Concurrent Task Queue. The aim of this lab is to teach
students the implementation of one of the most common concur-
rent data structures: a queue. Queues, whose sequential version
is already described in a previous Data Structures and Algorithms
lecture, are a very suitable mechanism for the collaborative reso-
lution of problems where several items need to synchronize. This
way, producers and consumers can use one or more queues to share
information and to coordinate [24]. As in any shared data structure,
in order to preserve data integrity, the concurrent access to shared
data requires the use of some synchronization mechanisms.

The main objectives of this lab are as follows: i) implementation
of a concurrent bounded queue. Controlling concurrent access to
a queue requires to consider not only mutual exclusion access
to the components, but also condition synchronization (no first
element exists in an empty queue, or no new element can be inserted
when the queue is full), ii) understand high-level representations
of execution such as C++11 std::thread, and iii) identify and use
common low-level synchronization elements such as mutexes.

The contents of this lab are organized in two different parts.
The first one consists of the bounded queue type implementation,
according to the specification seen in the Data Structures and Algo-
rithms course. Subsequently, the operations should be redesigned
in order to consider synchronization aspects: in addition to ensur-
ing access in mutual exclusion to the data structure, insertion and
deletion operations should be implemented as blocking operations.

Following the focus proposed for the DCSP course, as a first
assignment, students have to design the concurrent access to the
queue using the coarse-grain atomic statement <await B S>, where
B is a boolean guard, usually concerning shared data, and S is a block
of sequential statements. The semantics of the statement ensures
that S starts its execution being B true and no internal state of S is
visible for the rest of processes. The high-level point of view of such

an statement makes easier the task of designing correct concurrent
programs, which is one of the aims of the course.

In a previous lecture, the students have studied the token passing
technique (as proposed in [2], for instance) as a way of implementing
<await ...> statements by using a mutex. For the second part of
this lab, students will adapt the studied general approach to the
design of the bounded concurrent queue data type that they propose.
Notice that, at this level, the mutex is the lowest abstraction level to
manage synchronization, considered as an abstract data type. The
students do not know how the mutex operates internally, whether
it spins until the access is granted or it goes to sleep controlled
by the operating system. This issue is succinctly outlined in the
lab, and students will find out the answer by implementing the
mutex abstract data type in the two following activities: Task queue
protection with futex system calls (see Section 3.2.2) and Futexes with
assembly code (see Section 3.2.3).

As the final result, students will develop two versions of the
concurrent bounded queue data type. In the first one, each operation
on a queue must be executed in mutual exclusion. In the second
one, students will have to adapt the readers-writers approach so as
to allow multiple access to reading operations (operations with no
side effects) while preserving mutual exclusion access for writing
operations, giving priority to writers in case of conflict.

After completing this lab, students will have reinforced their
knowledge about the main concepts related to synchronization in
concurrent systems. Besides, the proposed assignment also deals
with the use of design techniques focusing on the synthesis of
correct concurrent programs.

3.2.2 Task Queue Protection with Futex System Calls. This
lab is intended to present the mechanisms required by the operat-
ing system to provide synchronization in concurrent algorithms.
The main objectives of this lab are: i) show the operating system
as a service provider for the user through system calls, ii) learn an
efficient use of the futex system calls and the primitives of atomic
instructions provided by the operating system and the C language
library, iii) understand the necessary mechanisms to provide exe-
cution in mutual exclusion with futexes and atomic instructions,
and iv) show and use self-implemented lock and unlock primitives
of a mutex abstraction to manage the access to the concurrent task
queue implemented in the previous activity.

The lab material firstly describes the C11 atomic instructions
from stdatomic.h and solicits the students to implement a mutex
with spin-lock based on atomic instructions. Next, the sleep version
of a mutex is motivated, introducing the mandatory intervention
of the operating system to change the thread status, and providing
a naive version of the sleep mutex using hypothetical sleep and
wakeup system calls as well as management operations on a system
queue. The limitations of this approach are used to motivate the
futex system calls. Then, the syntax and use of the parameters of
the futex_wait and futex_wake system calls are described. By using
these calls, the students are guided to implement an intuitive and
straightforward version of the sleep mutex referred to as basic im-
plementation. Finally, the pseudo-code algorithm of a more efficient
mutex is offered as a guideline to code an advanced implementation.
This approach is based on the mutex implementation proposed by
U. Drepper [7], which is integrated into the Linux kernel [8].
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(a) Spin-lock

Critical section

if(val==1) {
enqueue(th);
sleep();

}
val=1;

val=0;
if(!empty_queue()) {
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(b) Naive-sleep

Critical section

c=test_and_set(&val);
while(c==1) {

futex_wait(&val,c+1);
c=test_and_set(&val);

}

val=0;
futex_wake(&val,1); u

n
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(c) Basic-sleep

Critical section

if((c=cmpxchg(val,0,1))!=0)
do {

if(c==2
|| cmpxchg(val,1,2)!=0)

futex_wait(&val,2);
} while((c=cmpxchg(val,0,2))

!= 0);

if(fetch_sub(val)!=1) {
val=0;
futex_wake(&val,1);

}

u
n
lo

c
k

lo
c
k

(d) Advanced-sleep

Figure 1: Lock and unlock procedures of spin-lock and sleep mutexes. The sleep versions include operating system calls to
change the thread status.

Figure 1(a) shows the lock and unlock procedures of a spin-lock
mutex protecting a critical section. The value of the userspace val

variable represents the two states of the mutex: not taken (val=0)
and taken (val=1). The test_and_set atomic instruction changes
the mutex state3. More precisely, this instruction sets val to 1 and
loads its previous value into c without the overhead of a system
call. Then, a thread enters into the critical section if the lock is
uncontended (c=0). Otherwise, the thread keeps spinning in the
lock. In the unlock procedure, the thread simply sets val to 0 to
release the mutex. Since the spin-lock mutex leaves all the waiter
threads in the lock awake, it suffers significant system performance
losses when the mutex is contended.

Figure 1(b) illustrates the naive-sleep version of a mutex. These
procedures are similar to other versions offered in textbooks of
operating system concepts such as [18, 20], and [4]. This code is
only correct if both procedures are executed atomically. Unlike
the spin-lock mutex, assuming a non-atomic execution presents
several problems that are listed in the lab material and should be
understood by the students, specifically: i) the reading and writing
operations of val are not atomically performed, which can lead to
multiple threads reading the mutex as not taken, ii) the reading of
the mutex and the insertion of the thread in the queue are neither
atomic, which can lead to an indefinitely suspended thread if the
mutex is freed between the reading and insertion operations, and
iii) after waking up from the sleep call, a thread has no guarantee of
obtaining the mutex in mutual exclusion since another thread can
enter into the critical section before the former takes the mutex.

Figure 1(c) shows the basic-sleep implementation addressing
all the incorrect behaviors stated above. In the lock function, the
atomic operation changes the state of the mutex. If the lock is un-
contended, the kernel is not invoked and the thread enters into the
critical section. Otherwise, the futex_wait system call is invoked.
It suspends the calling thread in a system queue if the lock is still
taken (val=1), or it returns immediately if the lock has been released
in the meantime (val=0). In the first case, the thread remains sus-
pended until another thread wakes it up. Notice too that every time
futex_wait returns, the thread tries to acquire the lock again.

The unlock procedure sets val to 0 and calls futex_wake. This
call wakes up a number of threads stated in the second argument (1

3For the sake of brevity, we have shortened the original stdatomic.h function names;
e.g., test_and_set corresponds to atomic_flag_test_and_set and the assignment
operator for val refers to atomic_store.

in the example as only a single thread is allowed to enter into the
critical section) from those suspended in the system queue. Notice
that such a call is invoked regardless of the mutex is uncontested
or not, which can impact on the system performance.

The advanced-sleep implementation shown in Figure 1(d) ad-
dresses the performance problem of the basic version. In this case,
there are three mutex states: not taken (val=0), taken and no waiter
threads (val=1), and taken and at least one waiter thread (val=2).
In the lock procedure, test_and_set is no longer useful since val

takes three values. Instead, the atomic cmpxchg primitive is used,
in which a 1 (desired third argument) is loaded into val on a suc-
cessful comparison between val and 0 (expected second argument).
Regardless of the result of the comparison, the original value of
val is loaded into c. If c==0, the calling thread updates the state of
the mutex as taken and no waiters and then enters into the critical
section. Otherwise, the thread is suspended in the system queue by
calling futex_wait. Previously, the second cmpxchg sets val to 2 if
necessary, updating the state of the mutex as taken and at least one
waiter. Note that, if the mutex is freed between the first and second
cmpxchg, the latter returns 0 and the thread is not suspended. The
third cmpxchg ensures that a thread takes the mutex only if a 0 is
returned. In such a case, val is set to 2 because there is no certainty
of the number of waiters.

The unlock method subtracts 1 to val with the atomic fetch_sub,
which returns the previous value of the argument. The futex_wake

call is invoked just in the case of a suspended thread in the lock,
avoiding such costly system calls when there are no waiter threads.
The reader is referred to [7] for further details about the advanced-
sleep mutex implementation.

At the end of the lab, the students use the different mutex ver-
sions to support a complex abstraction, that is, the concurrent task
queue implemented in the previous activity. Additionally, they are
also encouraged to assess the suitability of each version to different
contention scenarios (see Section 5.1). Overall, the students will be
able to use futex system calls and atomic instructions to implement
spin-lock and sleep versions of a basic synchronization abstraction
such as a mutex.

3.2.3 Futexes with Assembly Code. The main idea of this lab
is to help students understand the support provided by the ISA
level to implement fast and reliable mutual exclusion, in terms
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loop:

w2, [@lock]ldaxr

w2, loopcbnz

w3, #1mov

w4, w3, [@lock]stxr

w4, loopcbnz

wzr, [@lock]stlr u
n
lo

c
k

lo
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Critical section

(a) Spin-lock

Critical section

wzr, [@lock]stlr u
n
lo

c
k

lo
c
k

sevl

loop:

wfe

w2, [@lock]ldaxr

w2, loopcbnz

w3, #1mov

w4, w3, [@lock]stxr

w4, loopcbnz

(b) Sleep mode

Figure 2: Lock and unlock procedureswithARMv8 assembly
code.

of consistency and atomicity. The ARM processors include load-
link/store-conditional instructions and barriers, providing the core
for higher level structures such as mutexes and futexes. Besides,
these instructions do not require any privilege level for them to
execute, so programmers can directly exploit them to improve
efficiency and reduce the overhead of systems calls.

By the end of this lab, students will have accomplished the fol-
lowing goals: i) understand how atomic instructions operate at the
ISA level for the ARMv8 processors, ii) know why data memory
barriers are often required when writing atomic instructions, and
iii) learn the performance and energy implications of the different
implementations of mutexes (spin-lock and sleep mode).

The assignments of this lab are designed to help students to
engage with complex code enhancing their low-level programming
skills, especially concerning performance and energy efficiency. In
addition, they show how important is for an ISA to provide sup-
port for complex high-level constructors such as the mutexes used
by operating systems, libraries, and applications. Finally, students
gain knowledge on the relationship between the C/C++11 memory
model and the corresponding consistency models at the ISA level.

The lab material of this session is organized in two parts. In
the first part, the students are asked to generate a race condition
with the writing of a multi-threaded program that reduces an array
by adding all the elements without synchronization primitives.
Then, the students code a fetch and add primitive with ARMv8’s
load-link (ldaxr) and store-conditional (stlxr) instructions [3]. The
implemented fetch and add is included in the previous program to
verify that the code is now free of race conditions.

The second part comprises two assignments. The first one pro-
poses a basic implementation of lock and unlock mutex functions
based on ldaxr/stlxr instructions as plotted in Figure 2(a). Threads
in the lock function spin until they acquire the lock. The spinning
can occur at the two cbnz instructions. Either if the lock is already
taken (first cbnz) or the stxr instruction fails the attempt to take the
lock (second cbnz), the branch instructions return the flow to the
beginning of the loop. Notice too that, differently from the previous
advanced implementation based on futex system calls, just two
mutex states, taken and not taken, are considered in this level. By
completing this assignment, the students find out that both func-
tions can be the synchronization primitives for the concurrent task
queue.

The second assignment proposes an advanced implementation of
the lock function by replacing the power-hungry spin-lock with a

wfe instruction. This instruction puts the core into a low-power state
without returning the control to the operating system. Figure 2(b)
shows such an energy-efficient sleep implementation, also with the
two mutex states taken and not taken. The student will learn how
the operating system considers that the program is running, while
it is actually waiting for the lock to be released, and how the thread
can regain the lock without a system call. In particular, the stlr

instruction, located in the unlock function, performs a store with a
release barrier and wakes up any core that could be sleeping after
executing a wfe instruction. To guarantee progress, the threads also
wake up after an interruption occurs.

With both spin-lock and sleep mode implementations, students
will carry out a quick comparison between them in terms of per-
formance and energy consumption. For the latter purpose, since
the Raspberry Pi does not provide any hardware counter for en-
ergy, measurements can be done reading the current drawn at the
USB power input of the board. To do so, a low-cost alternative is
a USB voltage and current meter with display. Another option for
more accurate results is a power analyzer such as the Newtons4th
PPA500 [15]. Power analyzers support a much higher sampling rate
and enable to download the samples in CSV files to perform offline
analyses.

3.2.4 Parallel Ray Tracing. The CG course proposes a practical
assignment involving the implementation of a path-tracing algo-
rithm [23], which is parallelized by assigning different tasks to
execution threads using a concurrent task queue. The main ob-
jectives of this lab are: i) find and understand the computational
bottlenecks of the algorithm, ii) devise parallelization strategies
that affect performance without any accuracy loss, and iii) test,
explore, and analyze the impact (and overhead) of the combination
of different parallelization strategies and concurrent task queues
on performance.

The contents of this lab include a description of the path-tracing
algorithm and why it can be parallelized. This algorithm generates
a 2D image from a 3D representation of a virtual scene, including
geometry and optical properties of the objects and physical charac-
terizations of sensors (cameras) and light sources. In practice, the
algorithm simulates light transport paths across the virtual scene
in order to obtain the final color that reaches each of the pixels
of the image. A fundamental part of path tracing is ray tracing,
that is, generating the paths from a pinhole camera representation
that traverse each pixel. Parallelizing the ray tracer is worthwhile,
since it is computational intensive and it takes quite a long time to
converge (about 1 or 2 hours for a good quality result for a simple
virtual scene).

A common ray-tracing parallelization strategy is to subdivide
the image into different regions, converting the computation of
each of the regions into a render task to be assigned to an execution
thread. The students are required to explore different parallelization
strategies in different dimensions as illustrated in Figure 3(a):

• Different kinds of image regions: pixels, lines, columns, or
rectangles.

• Different region sizes: smaller or larger rectangles and line
or column batches.

Depending on the geometry and other properties of the virtual
scene, and the different implementation details of the algorithm, the
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Figure 3: Diagrams of a 2D image split into render tasks and
a concurrent thread-safe task queue to assign tasks to differ-
ent worker threads.

computational load can vary greatly from one region to another [16].
For this reason, we need a safe mechanism to distribute tasks among
threads. In addition, since it is impossible to estimate the computa-
tional load of each task beforehand, a concurrent thread-safe task
queue such as the one depicted in Figure 3(b) is required. In this
queue, a main thread enqueues all the render tasks and multiple
worker threads dequeue those tasks and perform the corresponding
calculations.

The students should not only implement the parallelization
strategies but also combine them with the different thread-safe
task-queues coming from previous labs, identifying the different
pros and cons of each of the approaches and analyzing and justify-
ing their impact on performance. For instance, the students should
answer questions such as which is the optimal region size? Which of
the thread-safe queue implementations and mutex versions work best
and under which circumstances?

Overall, the implementation and parallelization of the path-
tracing algorithm together with the performance evaluation of
each concurrent queue and mutex will help students understand
and analyze the effect of low-level mechanisms, decisions, and im-
plementation details with high-level applications and algorithms,
which will reinforce the cross-cutting vision of a computer system.

4 EXPERIMENTAL ENVIRONMENT
To consolidate the overall vision of the presented computer system,
a single-board computer is proposed to be used in all the labs. To
this end, we analyze a subset of commonly used boards. The selected
boards are Raspberry Pi [22], DragonBoard 410C [17], HiKey 9604,
and BeagleBoard X-15 [5]. Table 2 summarizes the main hardware
and software requirements that are considered as relevant for the
development of this project and which of them are met by the
selected boards.

The list of requirements is mainly focused on the subset of
courses taking part in the presented project. Nevertheless, it is
desirable to choose a base board that allows future expansions by
4https://www.96boards.org/documentation/consumer/hikey960/hardware-
docs/hardware-user-manual.md.html

Table 2: Hardware (H) and Software (S) requirements eval-
uated for the considered boards: Raspberry Pi (RP), Drag-
onBoard 410C (DB), HiKey 960 (HK), and BeagleBoard X-15
(BB).

Type Description RP DB HK BB
H&S Multiprocessor ✓ ✓ ✓ ✗

H JTAG ✗ ✗ ✗ ✓

H Ethernet ✓ ✗ ✗ ✓

H WiFi ✓ ✓ ✓ ✗

H Camera ✓ ✓ ✓ ✗

H Virtualization support ✓ ✓ ✓ ✗

H I/O Extensions (screen, buttons...) ✓ ✓ ✓ ✓

H GPU ✓ ✓ ✓ ✓

H DSP ✗ ✓ ✓ ✓

S Development Framework options ✓ ✓ ✓ ✓

S GPU programming options ✓ ✓ ✓ ✗

S DSP programming options ✗ ✗ ✗ ✓

S High-level/Standard OS support ✓ ✓ ✓ ✓

H&S Bare metal (no OS) support ✓ ✗ ✓ ✓

H&S High reliability ✓ ✓ ✓ ✓

H&S Low cost ✓ ✗ ✗ ✗

H Good aging properties ✓ ✓ ✓ ✓

addingmore courses to the project. Therefore, we consider a broader
range of requirements that would facilitate the use of the selected
board for additional courses, such as Computer Architecture and
Organization, Systems Administration, Computer Networks, Secu-
rity, Artificial Intelligence, Machine Learning, Embedded Systems,
Robotics, Video-games, or Computer Vision, among others.

Considering the results from our study of boards, requirements,
and potential courses that could use them, both Raspberry Pi and
HiKey turn out good choices to be used in our project, since they
have multiple cores, support for multiple operating systems, ex-
ecution without an operating system (bare metal operation), and
virtualization support [22]. However, we finally chose Raspberry
Pi primarily due to its low cost, broad usage, and large amounts of
open source and available materials [21].

5 EXPERIMENTAL RESULTS
This section discusses experimental results for the OS lab. First,
the main results and conclusions that should be obtained by the
students from this lab assignment are highlighted. More precisely,
the impact on performance of the different spin-lock and sleep
versions of a mutex is analyzed. Then, a study of the students
learning outcomes is presented.

5.1 Impact on Performance of the Mutex
Implementations

To quantify the impact on performance of different mutex imple-
mentation alternatives, we have measured the execution time (in s)
of a varying number of threads dequeueing tasks from a concur-
rent task queue protected with a mutex. Three different mutexes
are evaluated: spin-lock (Figure 1(a)), basic-sleep (Figure 1(c)), and
advanced-sleep (Figure 1(d)). Two different contention scenarios
are considered, referred to as real and synthetic. In the real scenario,
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Figure 4: Performance of the different mutex implementa-
tion alternatives varying the number of threads.

once the threads dequeue a task from the queue, they compute a pri-
vate work before coming back to the lock function. In the synthetic
scenario, the threads come back to the lock function as soon as they
release the mutex without performing any additional work. This
scenario covers an extreme case where students can observe how a
change in the amount of private work leads to unexpected conclu-
sions. Figure 4 plots the results. All the experiments are run in a
Raspberry Pi with a fixed CPU frequency of 600 MHz to guarantee
reproducibility and avoid thermal issues.

In the real scenario, all the analyzed mutexes obtain very similar
performance results for a relatively low number of threads (from
1 to 36 threads). From this point forward, spin-lock dramatically
enlarges the execution, since a higher number of threads spin in a
contended lock. On the other hand, the sleepmutexes keep reducing
the execution time with the number of threads, extracting paral-
lelism when threads compute work. Notice too that advanced-sleep
slightly mitigates the execution time with respect to the basic-sleep.
This is mainly because the former does not invoke costly futex_wake

system calls when there are no waiter threads in the lock.
In the synthetic scenario, compared to the sleep mutexes, spin-

lock progressively increases the execution time with the number of
threads, since all of them are competing for the lock. On the con-
trary, the sleep mutexes speed up the execution by keeping awake

just the thread that gains the mutex. Note that no performance ben-
efits can be seen in the sleep mutexes with the number of threads.
This is due to threads do not exploit any parallelism as they do
not compute any work besides the critical section. An interesting
observation is that on single-thread executions, basic-sleep largely
drops performance. This is because the unlock function forces the
futex_wake system call, which produces at least a context switch
overhead, which possibly leaves the CPU to another process. The
performance differences between the sleep mutexes are mainly
due to the advanced version translates into more instructions in
both lock and unlock procedures. Moreover, advanced-sleep does
not take advantage of the conditioned futex_wake, since there are
always waiter threads in the lock and the system call is always
invoked as the basic version does.

5.2 Students Learning Outcomes
This section provides a preliminary qualitative assessment of the
proposed OS lab. This lab was scheduled once the OS and DCSP
courses finished, giving the students the opportunity to compare
between the current lab assignment (i.e., no direct interactions with
any DCSP lab) and the proposed lab assignment. The enrollment to
this lab was voluntary, and 15% of the student’s class accepted to
do it.

Two different satisfaction surveys were designed, referred to
as pre-survey and post-survey, and filled out by the students be-
fore and after completing the proposed lab session, respectively,
totalling 17 questions. Each survey consisted on Likert-scale (i.e.,
1=strongly disagree, 5=strongly agree) items and yes/no and open-
answer questions. All were aimed at measuring the perceptions of
the students about the lab design, its usefulness, the quality of the
materials and resources, and the faculty assistance.

The main conclusions of the pre-survey are summarized as fol-
lows. First, students considered that all the courses of the degree
are somehow related between them (3.75 on average). Namely, 83%
of the students perceived that the OS course strongly relates to
computer architecture and parallel and distributed computing ar-
eas. However, students gave a score of 4.15 to the necessity for a
deeper comprehension of these ties, which confirmed us the need
of this type of cross-cutting projects. From the set of technical ques-
tions, we observed that students see clear interactions between the
operating system and the ISA, but not so many between the oper-
ating system and high-level concurrent constructs such as library
mutexes. This confirms that professors from different areas should
collaborate even more.

The post-survey revealed that the lab session was well received.
More than 4 out of 5 students successfully completed the lab, and
they gave an overall score of 4.42 to the quality of the lab design,
the materials and resources, and the faculty assistance. After the lab,
students have reached a broader vision of the relations among oper-
ating systems, computer architecture, and parallel and distributed
computing, rising the perception of such interactions from 83% (pre-
survey) to 92%. As a learning outcome, students discerned among
the three mutex implementation alternatives and clearly identified
the programmability, execution time, and efficiency trade-offs.
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6 CONCLUSIONS AND FUTUREWORK
The current structure of the Computer Engineering (CE) program,
arranged in isolated courses, causes students to lose sight of the
overall view of a typical computer system organized in abstraction
levels. This paper has presented a cross-cutting project that aims
to reinforce this vision as a whole.

The presented project covers the abstraction levels of Applica-
tion, Library, Operating System, and Instruction Set Architecture,
and consists in the implementation of a parallel ray-tracing al-
gorithm that uses a concurrent queue to assign tasks to different
execution threads. The accesses in mutual exclusion to these queues
are managed by mutexes or futexes implemented with library func-
tions, system calls, or assembler.

The aforementioned abstraction levels have been introduced and
related to each other in a subset of courses of the CE program,
allowing students to consolidate the concepts of parallelism, con-
currency, atomicity, and consistency. The project is supported by
the elaboration of the corresponding laboratory materials and re-
sources, as well as a detailed study of the hardware and software
requirements and the consequent choice of Raspberry Pi as the
hardware development platform.

The proposed project is currently being deployed in the chosen
courses of the CE program. So far, the feedback received by the
students is encouraging. Most students see the need to consoli-
date a holistic vision of CE concepts. After the proposed learning
experience, the students show an improvement in the integrated
perception of the presented concepts. Moreover, in the evaluated
lab session, the students also showed acquisition of the knowledge
addressed in the session.

As for futurework, we plan to involvemore courses to strengthen
the project and to obtain a more detailed analysis of assessment
results from the remaining lab sessions.
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