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Abstract

Voltage scaling to values near the threshold voltage is a promising technique

to hold off the many-core power wall. However, as voltage decreases, some SRAM

cells are unable to operate reliably and show a behavior consistent with a hard

fault. Block disabling is a micro-architectural technique that allows low-voltage

operation by deactivating faulty cache entries, at the expense of reducing the

effective cache capacity. In the case of the last-level cache, this capacity reduction

leads to an increase in off-chip memory accesses, diminishing the overall energy

benefit of reducing the voltage supply. In this work, we exploit the reuse locality

and the intrinsic redundancy of multi-level inclusive hierarchies to enhance the

performance of block disabling with negligible cost. The proposed fault-aware

last-level cache management policy maps critical blocks, those not present in

private caches and with a higher probability of being reused, to active cache

entries. Our evaluation shows that this fault-aware management results in up to

37.3 and 54.2% fewer misses per kilo instruction (MPKI) than block disabling

for multiprogrammed and parallel workloads, respectively. This translates to

performance enhancements of up to 13% and 34.6% for multiprogrammed and

parallel workloads, respectively.
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1. Introduction

For recent CMOS technologies, power density is the main performance limiting

factor across most computing segments. Moore’s law continues to hold, with

a doubling of the number of transistors and integration density in each new

process generation, but Dennard scaling no longer applies, and we are not able5

to keep a constant power density across technology generations. Power budgets

prevent us from utilizing all the available transistors, leading to dark silicon [1].

For years, industry has relied on scaling the supply voltage (Vdd) to reduce

power consumption, but this trend has dramatically slowed since the 90 nm

generation because of leakage. Reducing operating voltages to values near the10

threshold voltage (Vth) would minimize leakage and switching power consumption.

The resulting power reduction could be used to activate more chip resources and

potentially achieve performance improvements [2].

Unfortunately, Vdd scaling is limited by the tight margins of the on-chip

cache SRAM transistors. Excessive parameter variations in SRAM cells limit the15

voltage scaling of memory structures to a minimum voltage, Vddmin , below which

SRAM cells may not operate reliably. Vddmin
usually determines the minimum

voltage of the whole processor, and in current technologies is typically of the

order of 0.7–1.0 V, when regular 6T SRAM cells are employed.

In the literature, various solutions have been proposed to enable reliable20

cache operation at low voltages. At the circuit level, the use of larger transistors

or more transistors (assist circuitry) improves SRAM cell resilience [3, 4]. The

main drawbacks of this approach are the associated increases in area and power

consumption. First-level caches in chip multiprocessors (CMPs) occupy little area,

and their access time often determines the processor cycle time. Commercial25

processors, such as the Intel Nehalem family, use robust 8T SRAM cells to

build reliable first-level caches, since this represents an affordable overhead [5].
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In contrast, last-level caches (LLCs) are usually shared and have larger sizes

and associativity, accounting for much of the die area [6]. Hence, for LLCs,

minimum-geometry 6T cells are preferred to achieve higher densities.30

At the architectural level, fault-tolerant cache designs rely on disabling faulty

resources at different granularities [7], or correcting defective bits through either

error correction codes (ECCs) [8] or a distributed duplication of blocks [9, 10].

Block Disabling (BD) is a simple technique that disables a cache entry when

a defective bit is found [11]. It is already implemented in modern processors35

to protect against hard faults [6]. However, due to the random distribution

of defective cells, the capacity of the cache is rapidly compromised. Complex

techniques based on ECCs or the combination of faulty resources are able to

rescue more cache capacity, but incur large storage overheads and sometimes

require complex remapping that penalizes the cache access latency.40

In our work, we have developed a new approach to mitigate the impact of

SRAM failures in LLCs due to parameter variations, based on BD but also

relying on the underlying structures already present in CMPs. We identify a

natural source of on-chip data redundancy that arises because of the replication

of blocks in inclusive multi-level cache hierarchies and exploit this redundancy45

through a smart fault-aware cache management policy.

In this paper, we make the following contributions. First, we provide an

evaluation of BD techniques in a shared-memory coherent CMP running parallel

and multiprogrammed workloads with a complete and detailed memory model,

exploring SRAM cells with different probabilities of failure. Second, we introduce50

a technique that keeps the tags of the LLC and, therefore, the tracking capabilities

of the coherence directory operational. This way, a block not physically stored

in the LLC can reside in the private level and be made available to other cores.

As an alternative to main memory supply, we set up a cache-to-cache copy

service to support code or data sharing (thread migration, operating system, or55

parallel workloads). Finally, we propose a fault-aware cache management policy

that predicts the usefulness of a block based on its use pattern, and guides the

allocation of blocks to faulty and non-faulty cache entries, adding no overhead
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to the original replacement policy.

Our fault-aware cache management policy is able to decrease the LLC misses60

per kilo instruction (MPKI) by up to 37.3%, with respect to BD, which translates

to speedup improvements of 2 to 13% for multiprogrammed workloads. For

parallel workloads, the MPKI values decrease by 5 to 54.2%, with respect to BD,

for the different SRAM cells considered, improving performance up to 34.6%.

This paper extends our previous work [12] in several significant ways: i) a new65

fault-aware cache management policy aiming at caches operating at low voltages,

ii) a detailed implementation of block disabling with operational tags (BDOT)

technique, iii) a more realistic SRAM fault model, improving the accuracy of

the results, and iv) a more detailed evaluation including multi-programmed

workloads and cache capacity/energy analysis.70

The rest of the paper is organized as follows. Section 2 introduces the problem

of process variations and its effect on SRAM cell reliability. Section 3 comments

on BD and its impact on large cache structures. In Section 4, we describe how to

take advantage of the coherence infrastructure to operate at low Vdd. Section 5

introduces a fault-aware cache management policy for LLC operating at low75

voltages. Section 6 describes the methodology. Section 7 presents our evaluation.

Section 8 discusses the system impact. In Section 9, we comment on related

work, and in Section 10, we outline our conclusions.

2. Process Variations in SRAM cells

SRAM structures are especially vulnerable to failures due to process variations,80

as they are aggressively sized to meet high density requirements, and because

of the vast number of cells that comprise on-chip SRAM structures [13]. In

particular, intra-die random dopant fluctuations (RDFs) are the main cause of

threshold voltage variation [14]. The stochastic nature of the ion implantation

process leads to a distribution of Vth values across a chip, which reduces the85

already tight transistor margins. Hence, SRAM structures have a minimum

voltage, Vddmin , to guarantee reliable operation, which is typically of the order
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of 0.7–1.0 V in current process generations, when 6T cells are used.

The robustness of SRAM cells under the Vddmin
range has been extensively

analyzed in the literature [10, 9, 3, 8, 15]. Zhou et al. studied six different90

sizes of 6T SRAM cells in 32 nm technology, and their probabilities of failure as

Vdd decreases [4]. According to that study, at 0.5 V, the probability of failure of

an SRAM cell (Pfail) is between 10-3 and 10-2. The use of larger cells reduces

the probability of failure, as non-uniformities average out, increasing read and

write margins and resulting in more robust devices. However, large cells reduce95

the density and increase power and energy consumption.

Table 1 describes the six SRAM cells of Zhou’s study (C1, C2, C3, C4, C5,

and C6) in terms of their area relative to the smallest cell (C1), and lists the

percentage of non-faulty entries in caches built from these cells operating at 0.5

V, assuming 64-byte cache entries. An entry is considered faulty if it contains at100

least one defective bit.

As Table 1 shows, less than 10% of the cache entries are non-faulty for the

small cells C1 and C2 at 0.5 V. If the cache is implemented with the more robust

C6 cells, however, the percentage of non-faulty cache entries rises to 60%, but at

the cost of a 58% increase in area (relative to C1), and the consequent increase105

in leakage, which is not a suitable option for a large structure such as an on-chip

LLC.

In this work, we take Zhou’s reliability study as a reference to test our

proposals on a wide range of failure probabilities. We will only consider C2 to

C6 operating at 0.5 V (our target near-threshold Vdd), as at this voltage, a cache110

built with C1 cells would have all its capacity compromised.

Table 1: Area relative to cell C1 and percentage of non-faulty 64-byte entries in a cache

operating at 0.5 V, for the 6 bit cells introduced in [4].

Cell type C1 C2 C3 C4 C5 C6

Relative area 1.00 1.12 1.23 1.35 1.46 1.58

% non-faulty 0.0 9.9 27.8 35.8 50.6 59.9
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Figure 1: Available associativity of a 16-way set associative block disabling cache (64-byte

block) made up of cells C6-C1 operating at 0.5 V.

3. Impact of Block Disabling on Large Shared Caches at Ultra-low

Voltages

A simple approach to handling hard faults is the disabling of faulty elements.

BD deactivates resources at block (cache entry2) granularity: when a fault is115

detected at a given cache entry, that entry is marked as defective and it can

no longer store a cache block [11]. This technique is implemented in modern

processors to enable them to tolerate hard faults [6].

BD has also been studied for operation at low voltages because of its easy

implementation and low overhead [15]. From the implementation perspective,120

2In this work, we differentiate between cache block and cache entry: block refers to the

transfer unit, the content per se, while entry refers to the physical group of cells that store a

block.
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only one bit per entry suffices to mark the entry as faulty. The main drawback

of this approach is that the amount of capacity dramatically falls when the

probability of failure increases, as shown in Table 1. Even if the total count of

faulty cells in the cache is less than 1%, the effective cache capacity is strongly

affected because of the random distribution of faulty cells. BD results in caches125

with variable associativity per set, determined by the number and distribution

of faults in the cache.

The interaction between BD and a system’s cache organization also plays

an important role. Modern commercial processors, such as the Intel Core i7,

implement inclusive hierarchies to facilitate coherence management. Inclusive130

hierarchies require that all the blocks cached in a private cache are also stored

in the shared LLC. The coherence information is embedded in the LLC; i.e., the

sharing state and a bit vector to represent the current sharers are added to each

block. To force inclusion, when a block is evicted from the LLC, explicit back

invalidations are required to remove the copies of the private cache blocks, if135

present (inclusion victims) [16].

Inclusive hierarchies perform poorly when the aggregated size of the private

caches is similar to the size of the LLC [17], and BD exacerbates the problem

because of the substantial associativity and capacity degradation in the LLC.

Figure 1 shows the available associativity in a 16-way set associative cache bank140

with 64-byte blocks, when built with cells C1-C6 (Table 1) operating at 0.5

V. The number of faulty ways per set follows a binomial distribution B(n, p),

where n is the associativity, and p denotes the probability of failure of a cache

entry. Figure 1 shows how the associativity degrades as more faulty cells appear

on the cache structure. On average, 50% of the ways are faulty if the cache is145

built with C5 cells, and this percentage rises to 90% when using C2 cells. The

associativity loss directly translates to a significant increase in the number of

inclusion victims. For instance, the number of invalidations in a cache built with

C3 cells is 10 times larger than in a cache implemented with fault-free SRAM

cells.150

This finding suggests that inclusive hierarchies are not particularly suitable
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for systems that implement BD in the presence of a significant number of faults.

From the coherence management perspective, however, only directory inclusion

is required: blocks present in the private levels have to be tracked only in the

shared level tag array, without the need for a replica in the data array [16]. This155

observation is the basis for the techniques we propose in this paper.

Our proposal has been designed for inclusive memory hierarchies, but most of

the proposed ideas could benefit non-inclusive and exclusive hierarchies as well.

The objectives of our replacement and promotion algorithms are to assign the

non-faulty entries to blocks with reuse and to blocks that are not present in the160

private caches. On the one hand, these objectives are still valid in a non-inclusive

hierarchy; however, their relative importance is different, and our algorithms

should consider different priorities for allocation and promotion decisions. On

the other hand, our proposal alleviates a specific problem of inclusive hierarchies,

such as the need to invalidate a block in a private cache when it is evicted from165

the shared cache. This problem does not exist in non-inclusive hierarchies, and

therefore our proposal is not applicable in this specific aspect.

Note on Figure 1 that, when using cell types C3 and C2, 0.6% and 18.9%

of the sets have no operative ways, respectively. To be able to offer a complete

comparison with BD, we assume that at least one of the ways in each set is170

non-faulty, although this is not a requirement for the techniques we present in

this paper, and the LLC is able to operate even when all the ways of a set are

faulty.

4. Exploiting Inclusive Hierarchies to Enable Ultra-low Voltage Op-

eration: Block Disabling with Operational Tags175

The BD scheme simply assumes one extra bit per entry to identify faulty

cache entries in the data array (one or more faulty cells). Faulty data entries

are excluded from tag search and replacement, involving a net reduction in

associativity, and a consequent increase in inclusion victims. From the coherence

management perspective, however, tracking blocks in the shared level tag array180
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suffices to ensure directory inclusion. This is the basis of our previous work, [12],

and the starting point of the first technique we propose: Block Disabling with

Operational Tags (BDOT).

Assuming a two-level inclusive hierarchy, to force directory inclusion, we turn

on the tags of faulty entries in the LLC, including them in the conventional185

operations of search and replacement. The tag of a faulty entry, if valid, tracks

a cache block that might be present in the private caches, but that cannot

be stored in the shared cache. Enabling the tags of the faulty entries restores

the associativity of the shared cache as seen by the first-level private caches,

eliminating the problem of the increase in the number of inclusion victims caused190

by the loss in associativity.

In this situation, two kinds of LLC entries have to be distinguished: tag-only

(T ), where the associated data entry is faulty and only the tag is stored, and

tag-data (D), where the associated data entry is non-faulty and both tag and

data are stored. From the implementation perspective, one resilient bit still195

suffices to indicate whether the entry is faulty or not. The coherence protocol

needs to be adapted to this new situation, where a T entry only stores the block

tag and directory state. Whenever a request to a block stored in a T entry

arrives to the LLC bank, the request needs to be sent to the next level (in this

case, the off-chip memory) to recover the block, and the same occurs with dirty200

blocks, which need to be written back to memory after being evicted from a

private cache.

To fully exploit this scheme, no failures should occur in the cells of the

tag array. This can be accomplished, for example, by using robust cells (e.g.,

increasing the number of transistors per cell) or increasing the strength of the205

ECC. Tags occupy very little area in comparison to the data array (around 6%

for our configuration, see Table 2 in Section 6), and increasing the cell size by

33% (assuming 8T SRAM cells [18]) will only increase the total area of a cache

bank by 2%. Since using sophisticated ECCs could increase the access latency of

the tag array, while using resilient tag cells involves little overhead, we opt for the210

latter. This approach is also consistent with prior work [9, 10]. Moreover, many
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of today’s CPUs use different cell types for tag and data arrays [19]. Contrary

to other proposals, our mechanism works even when all entries of a set are faulty.

Contrary to other proposals, our mechanism works even when all entries of a

set are faulty. The LLC saves the tags for both faulty and non-faulty entries,215

maintaining the coherence status of all the blocks, and allowing blocks to be

stored in the private levels without the need of a data replica in the shared level.

Hence, it is possible to store a block in the private caches even if all the data

ways of the corresponding LLC set are faulty.

4.1. BDOT Limitations220

BDOT, as described above, has two potential limitations, both related to the

allocation of blocks to faulty entries.

First, BDOT always forwards requests to blocks allocated to faulty entries

to the off-chip memory. However, a block allocated to a faulty entry might

be present on-chip, if it is being used by a private cache (L1). This situation225

is common in parallel workloads, which share data and instructions. In this

case, the directory information can be used to orchestrate cooperation among L1

caches. When the directory protocol receives an L1 request to a shared block

mapped to a T entry, it forwards the request to one of the sharers of the block,

namely, the L1 cache closest to the requester in terms of Manhattan distance.230

That L1 will serve the block through a cache-to-cache transfer.

Cache-to-cache transfers are already implemented in the baseline coherence

protocol for exclusively owned blocks. Hence, no additional hardware is required

and a slight modification of the directory protocol suffices to trigger a shared

block transfer. So from now on, we assume that BDOT includes this feature.235

The second limitation comes from allocating blocks to LLC entries without

taking into account their T or D nature. Unfortunately, this blind allocation

can result in heavily reused blocks being attached to faulty entries. Indeed, if a

particular block of the LLC is required repeatedly from an L1 cache (i.e., the

block shows reuse), any replacement algorithm will tend to protect it, reducing240

its eviction chances. Thus, if a block with reuse is initially allocated to a T entry,
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unless replicated in other cores, all L1 cache misses will be forwarded off-chip by

the LLC.

In the next section, we introduce a specific allocation and reallocation policy

for BDOT caches that differentiates between T and D entries.245

5. Fault-aware Cache Management Policy for BDOT Caches

Conventional cache management policies assume that every cache entry can

store a block, while BDOT breaks this assumption: each set in an N -way set

associative cache contains T entries that store only tags, and D entries that

store tags and data. Keeping in mind the main goal of improving the overall250

LLC performance under BDOT, this section introduces a fault-aware cache

management policy that takes into account the distinct nature of T and D

entries, and the reuse pattern of the reference stream. In particular, we seek to

achieve the following two goals:

1. To allocate blocks that are most likely to be used in the future to D entries.255

2. To maximize the amount of on-chip data by giving greater priority (higher

chances of being allocated to D entries) to blocks that are not present in

private cache levels.

Prior work has shown that reuse is a very effective predictor of the usefulness

of a given block in the LLC [20, 21]. Reuse locality can be described as follows:260

lines accessed at least twice tend to be reused many times in the near future, and

recently reused lines are more useful than those reused earlier [20]. Therefore,

seeking to achieve our first goal, we exploit reuse locality to predict which blocks

should be allocated to D entries. With respect to our second goal, a request

to a block allocated to a T entry and present in L1 can be serviced through a265

cache-to-cache transaction, whilst if the block is not present in L1, the request

will always be forwarded to the off-chip memory, incurring a penalty in access

time and energy. Therefore, it is preferable to dedicate D entries to blocks not

available on the L1 caches.
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Figure 2: Reuse and inclusion states for a block in LLC. NR, R, C, and NC represent: Non-

Reused, Reused, Cached (in L1), and Non-Cached (in L1), respectively. Replacement and

coherence transitions are not shown.

These goals may be added to any management policy. In this work, we270

will build on top of a state-of-the-art reuse-based replacement algorithm: Not-

Recently Reused (NRR) [20]. Next, we describe the baseline replacement in

some depth and then we add awareness of the existence of faulty entries.

5.1. Baseline NRR Replacement Algorithm

The NRR algorithm requires four states per LLC block, as depicted in275

Figure 2. When a block not present in the LLC is requested by the processor (1st

use: L1 request), it is stored in the L1 and the LLC (to force inclusion), its state

being in the LLC NR-C (Non-Reused, Cached). When the block is evicted from

the private cache (L1 eviction), its LLC state changes to NR-NC (Non-Reused,

Non-Cached). On a new request (2nd use: L1 request), a copy of the block is280

stored again in L1, and its LLC state is R-C (Reused, Cached). At this point, the

block has shown reuse in the LLC and, very likely, it will be reused many times

in the near future. Finally, when the block is evicted again from the L1, the

state becomes R-NC (Reused, Non-Cached). Subsequent requests and evictions

switch between the R-NC and R-C states.285

Having LLC blocks classified this way, the replacement policy can exploit L1

temporal locality and LLC reuse. In an inclusive hierarchy, the replacement of a

block in the LLC forces the invalidation of its copies in the private caches, if any,

and this usually implies performance degradation, assuming that blocks in L1 are

12



being actively used [17]. Therefore, the highest priority (protection) is given to290

blocks stored in private caches. As a secondary objective, the highest priority is

given to blocks that have shown reuse in the LLC. Hence, NRR selects victims in

the following order: NR-NC, R-NC, NR-C, R-C. Reuse recency is taken into account

by resetting the reuse bit when all the non-cached blocks are marked as reused

(transition from R-NC to NR-NC). This way, more recently reused blocks become295

more protected.

The implementation of NRR only requires one reuse bit per block. The

protection of private copies can be implemented in various different ways [17],

but one simple solution is to use the presence bit-vector of the coherence directory,

assuming non-silent tag evictions of clean blocks.300

LLC

tags data

faulty faulty
P S

X from main memoryx

p q r s

(a) Insertion from main memory after LLC

miss.

from L1 private cache

3

demotion candidates LLC
faulty faulty

P Sp q r s

Rr

writeback to memory (if dirty)

2

1

swap tags

promotion

demotion

insert R data

(b) Insertion from L1 after L1 eviction (promo-

tion and demotion).

Figure 3: Insertion and promotion actions for a fault-aware cache management policy example

in a cache set with two faulty cache entries. Lowercase and capital letters indicate tag and

data, respectively.

5.2. Reused-based and Fault-aware Management for BDOT Caches

Seeking to guarantee that valuable blocks remain in the LLC, we devise a

fault-aware management policy by distinguishing between T and D entries. One

option is to promote blocks by reallocating them from T to D entries, if needed,

to improve the overall cache performance. The design choices include where305

the promoted data comes from and which victim is chosen as a target of the

consequent demotion. At the same time, we want to continue exploiting reuse in

the simple and efficient way offered by an NRR-like replacement algorithm, which
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is unaware of faulty entries. Thus, our goal is to design a comprehensive cache

management policy, merging reuse exploitation and faulty entry management.310

Below, we elaborate on the two mechanisms that are key to achieving this,

namely block insertion/replacement and block promotion/demotion.

5.2.1. Insertion and Replacement of Blocks

On a first insertion (LLC miss), an incoming block has not shown reuse, and

hence allocating it to a T entry seems a reasonable idea. Figure 3a shows an315

example of a cache block to be inserted in a 4-way cache set with two T entries

(those storing q and r tags) and two D entries (those storing p and s tags and

the corresponding P and S data). A victim is selected among the blocks allocated

to T entries. The baseline replacement policy dictates which of those blocks

(Q and R) is selected for replacement. This is equivalent to predicting that the320

incoming block X is not going to be reused. If the reuse pattern of the block is

mispredicted, block X should be reallocated to a D entry, to reduce its access

time and transfer energy in future L1 misses. This reallocation will be performed

using the promotion mechanism we detail in the next subsection.

Dealing with first insertions this way is very simple but has a clear disad-325

vantage, related to the distribution of T and D entries, with respect to the

percentage of reused and non-reused blocks. For example, if the number of T

entries is small, the insertion policy would place considerable pressure on these

scarce entries. Blocks would be unavoidably forced to leave the LLC before

having had enough time to show a reuse pattern, even though there are many330

available D entries. In an extreme case, when all the entries in a set are D

type, this cache management policy could not be implemented. Solving this

problem is not easy. We explored various adaptive mechanisms in which some D

entries are used as T . However, it is difficult to determine the optimal number

of T entries, this being highly dependent on the workload. After carrying out335

several experiments (data not shown in Section 7, for the sake of brevity), the

performance returns were disappointing given the required complexity.

Given that our promotion mechanism reallocates reused blocks to D entries
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and non-reused ones to T entries (as we will see in the following subsection), we

realized that the baseline NRR replacement policy itself suffices to achieve our340

initial goals because it protects reused blocks. Since NRR gives lower priority

to non-reused blocks, blocks allocated to T entries will have more chances to

be evicted. This implies that, with a balanced distribution between T and D

entries, an incoming block will have a higher probability of being inserted in

a T entry than in a D entry. If the number of T entries in a set is very low,345

and even if there are no T entries in a set, the mechanism still works correctly.

NRR periodically resets the reuse bit of those blocks not present in private

caches, so some D entries become replacement candidates with the same priority

as T entries. Hence, the initial insertion does not necessarily have to consider

the nature of the entry, and our implementation relies only on the baseline350

replacement policy to select the victim block.

5.2.2. Promotion and Demotion of Blocks

A blind allocation of blocks to cache entries may result in valuable blocks (i.e.,

those with reuse) being initially allocated to T entries, and vice versa. However,

this undesirable situation can be tracked on the fly through the reuse footprint,355

and reversed by swapping a T entry with a D entry: when a block allocated to

a T entry shows reuse, we will promote it to a D entry. Promotion involves a

complementary demotion of the block stored in the selected D entry.

To select which block is demoted, we also rely on reuse and L1 presence

information. Reused blocks should be kept in the LLC, but unlike in the360

baseline replacement policy, block demotion does not involve an LLC tag eviction.

Furthermore, if the block is present in L1, losing the contents of the LLC is

not critical, because there is at least one on-chip copy of the block, which can

be supplied by a cache-to-cache transaction. Thus, to maximize the amount of

on-chip data, the demotion algorithm will select the victim block among those365

present in L1. Among the blocks in L1, non-reused ones should have more

chances of being demoted.

Note that the promotion of a block can be performed at two different times:
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at reuse detection (i.e., on a second L1 request to a block stored in a T entry) or

after the second eviction from L1 (i.e., on eviction after reuse). Performing the370

promotion after the second request from L1 duplicates the content, as a copy

of the block is also stored in a private cache, whilst performing the promotion

after the L1 eviction meets the goal of maximizing the amount of on-chip data.

Therefore, we opt for the latter and trigger promotions only after L1 evictions,

non-silent block data evictions being necessary.375

The promotion/demotion process is illustrated in Figure 3b. When block

R, which is stored in a T entry, is evicted from the L1 cache and selected for

promotion (i.e., its reuse bit is set), we select a victim among the demotion

candidates (P and S in Figure 3b). Once the victim is selected (P in our example),

we swap the cache contents in three steps: 1 discard the data entry P, writing380

back the data to memory, if dirty; 2 swap p and r tags; and 3 copy the data

(R) to the available D entry, which was occupied by the demoted block (P).

5.2.3. Summary and Implementation

Figure 4 illustrates the implementation of the aforementioned ideas. The

states of the baseline replacement algorithm shown in Figure 2 are now superstates385

split into T and D states. The initial allocation of blocks (1st use: L1 request

in Figure 4) does not take into account the nature of the entry, and it solely

depends on the victim selection arising from reuse and L1 presence; i.e., it only

depends on the baseline replacement algorithm. After insertion, blocks will

move along NR-C, NR-NC, R-C, and R-NC superstates as they would do in a cache390

without considering faulty entries.

To guarantee that high value blocks—those showing reuse—remain in the

LLC, the policy reallocates them from T to D entries when they are evicted

from the L1 and reside in a faulty LLC entry: R-C-T state. After L1 eviction,

blocks in R-C-T trigger a promotion, which results in the transition to an R-NC-D395

state and reallocation to a D entry, with the consequent demotion of another

block within the set to a T entry. A block being demoted can be in any of the

superstates, and according to the victim selection algorithm, we first demote

16



R-C-D R-C-T

R-NC-D R-NC-T

NR-NC-D NR-NC-T

NR-C-D NR-C-T NR-CDemotion
(LLC swap)

       L1 eviction:
Promotion (LLC swap)

1st use:
L1 request

L1 eviction

NR-NC

2nd use (reuse):
L1 request

R-C

R-NC

L1 eviction Reuse:
L1 requestReuse:

L1 request

Demotion
(LLC swap)

Demotion
(LLC swap)

Demotion
(LLC swap)

L1 eviction

2nd use (reuse):
L1 request

1st use:
L1 request

LLC block state (T/D)

LLC block superstate
Transition trig. by another block

Transition trig. by L1 action

Transition trig. by repl. algorithm

Reset
reuse bit

Reset
reuse bit

INVALID
(not present)

Figure 4: Reuse and inclusion states for a block in LLC with BDOT.

blocks that are present in the private levels, in order to maximize the amount

of data available in the on-chip hierarchy. As a secondary objective, the policy400

attempts to first demote low priority blocks, that is, those without reuse. In

particular, it selects blocks in the following order: NR-C-D, R-C-D, NR-NC-D, and

R-NC-D.

This reuse-based, fault-aware policy adds no extra storage overhead to the

baseline reuse-based replacement policy, as only the bit indicating reuse and the405

presence bit vector are needed to orchestrate the replacement and promotion

decisions. Moreover, swapping blocks only requires some extra control logic to

perform the following actions: first, the logic reads the demoted victim and

inserts the promoted block, as for conventional block insertion, and, then, it

writes back the tag of the demoted block. Promoting blocks after L1 eviction410

implies non-silent eviction of data blocks. This overhead does not affect latency,
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as L1 replacements are not in the critical path, and has a negligible impact on

energy consumption.

The fault-aware cache management technique here presented could be im-

plemented on top of other replacement algorithms (such as LRU or NRU). We415

decided to rely on NRR because of its simple, yet efficient implementation, and

because it fits the general principles behind our ideas. Finally, and regarding the

reallocation from T to D entries and vice versa, other policies are also possible.

For example, instead of relying on the reuse information of the blocks, a future

use predictor [22] could be utilized to decide which blocks should be allocated to420

D entries, or a dead block predictor [23] could be used to indicate which blocks

may be demoted to T entries, but these solutions add complexity to the cache

logic as well as requiring more storage overhead.

6. Methodology

6.1. Overview of the System425

Our baseline system consists of a tiled CMP, with an inclusive two-level cache

hierarchy, where the second level cache or LLC is shared and distributed among

the processor cores. Tiles are interconnected by means of a mesh. Each tile has a

processor core with a private first level cache (L1) split into instructions and data,

and a bank of the shared LLC, both connected to the router (Figure 5). Similarly430

to most CMP, the write-policy for L1 data caches is write-back because other

policies, such as write-through, may collapse the interconnection network [24].

The mesh will have to convoy every single store from the cores to the LLC

banks to guarantee content inclusion. The CMP includes two memory controllers

located at the edges of the chip. Table 2 shows the parameters of the baseline435

processor, memory hierarchy, and interconnection network.

We assume it runs at a frequency of 1 GHz with an operating voltage of 0.5

V. Note that the DRAM module voltage is not scaled like the rest of the system,

and hence, the relative speed of main memory with respect to the chip increases

as the voltage decreases. This model is consistent with prior work [9, 10].440
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Figure 5: Modeled 8-core CMP.

Our baseline coherence protocol relies on a full-map directory with Modified,

Exclusive, Shared, Invalid (MESI) states. We use explicit eviction notification

of both shared and exclusively owned blocks. L1 caches are built with robust

SRAM cells that can run reliably at low or near-threshold voltages, while LLC

data banks are built with conventional 6T SRAM cells and, therefore, they are445

sensitive to failures [5].

As in previous studies [9, 10], we assume that the LLC tag arrays are hardened

by using upsized cells such as 8T [18]. The baseline LLC replacement policy is

Not-Recently Used (NRU) [25] extended with private copy protection [17]. We

implement this protection by using coherence directory information updated by450

non-silent L1 block evictions.

6.2. Experimental Set-up

Regarding our experimental set-up, we model the CMP system described

in Table 2. We use Simics [26] in combination with GEMS [27] to simulate the

on-chip memory hierarchy and interconnection network, and DRAMSim2 [28]455

to simulate the DDR3 DRAM in detail. To obtain timing, area, and energy

consumption, we use the McPAT framework [29] for the on-chip components,

and DRAMSim2 for the DRAM module. We extend the Ruby module (GEMS)

to simulate the cache swaps in detail in order to take into account their dynamic

energy overhead.460
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Table 2: Main characteristics of the CMP system.

Cores 8, Ultrasparc III Plus, in-order, 1 instr./cycle, single-threaded, 1 GHz at

Vdd 0.5 V

Coherence proto-

col

MESI, directory-based (full-map) distributed among LLC cache banks

Consistency model Sequential

L1 cache Private, 64 KB data and instr. caches, 4-way, 64 B block size, LRU, 2-cycle

hit access time

LLC cache
Shared, inclusive, interleaved by line address, 1 bank/tile, 1 MB/bank,

16-way, 64 B block size, NRU replacement

8-cycle hit access time (4-cycle tag access + 4-cycle data access)

Memory
2 memory controllers, located at the edges of the chip; 1333 MHz DDR3

2 channels, 8 Gb/channel, 8 banks, 8 KB page size, open page policy; raw

access time 50 cycles

NoC
Mesh, 2 virtual networks (VNs): requests and replies; 2 virtual channels

per VN; 16-byte flit size

1-cycle latency hop, 2-stage routing

We use a set of 20 multiprogrammed workloads built as random combinations

of the 29 SPEC CPU 2006 applications [30], with no special distinction between

integer and floating point programs. Each application appears on average 5.5

times with a standard deviation of 2.5. Programs were run on a real machine

until completion with the reference inputs. Hardware counters were used to465

locate the end of the initialization phase. Every multiprogrammed mix was run

for as many instructions as the longest initialization phase, and a checkpoint

was created at this point. We then run cycle-accurate simulations including 300

million cycles to warm up the memory hierarchy and 700 million cycles for data

collection.470

We also include a selection of shared-memory parallel applications from

PARSEC [31] with a significant memory footprint (MPKILLC ≥ 1.0) when

running the sim-large input in the baseline system: canneal (MPKILLC = 4.3),

ferret (1.6), streamcluster (1.0), and vips (1.2). We proceed in a similar
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way to that used for multiprogrammed workloads3 and run 300 million cycles to475

warm up the memory structures once the parallel phase has started, and then

collect statistics for 700 million cycles.

One challenge for analyzing fault mitigation techniques is the large set of

required simulations. Running all workloads and simulated models combinations

for a single fault map can lead to wrong results, as other authors have de-480

scribed [32, 33]. For example, if all the faults affect to the most/least frequently

accessed cache sets, the observed speed-up would be much lower/higher than in

reality.

To address this issue, we rely on statistical sampling to generate random

fault maps and run Monte Carlo experiments to guarantee a 5% margin of error485

with a confidence level of 95% [34]. In other words, the number of samples is

increased as necessary to reach the target margin of error within the desired level

of confidence. For our workloads, simulated models, metrics, margin of error

and confidence level, each point of the design space has to be simulated between

20 and 30 times, each one with a different fault map. We pick the 5% margin490

of error and the 95% confidence level as a good trade-off between simulation

time and accuracy, increasing both has a large impact in the required number

of simulations. To ensure all simulations have similar numbers of faults but at

different locations, we compute the faultiness of each memory cell randomly and

independently of other cells [35, 36]. Finally, we consider that the number and495

location of faulty cells do not change during workload execution.

7. Evaluation

This section evaluates the effectiveness of the proposed BDOT management

technique for LLC caches in terms of MPKI, adding up the misses in all LLC

3We observed that no OS activity appeared when our parallel applications were run and

the ratio of CPU utilization between the different threads was practically constant across the

simulations.
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banks and dividing by the aggregated instruction count of all cores. Later, in500

Section 8, we analyze the impact on system performance, area, and energy.

To assess the effectiveness of our proposals, we include several additional

configurations. First, as an upper bound in performance, a robust cache built

with unrealistically robust cells (Robust); i.e., cells that operate at ultra-low

voltages with neither failures nor power or area overheads, which corresponds to a505

perfect unattainable solution. Then, we also include block disabling (BD), as our

proposal emerges from it. Finally, we add results for word disabling (WD) [10].

Word disabling is a more complex technique that combines consecutive faulty

cache entries to recreate fully functional ones, at the cost of reducing the

cache capacity. Section 9 presents a comprehensive discussion of this and other510

techniques versus our proposals.

In summary, we consider the following configurations:

• Robust: reference system; the LLC is built with unrealistically robust

cells. All data are presented with respect to this system.

• BD: system implementing block disabling, as presented in Section 3, with515

NRU replacement.

• BDOT-NRU: system implementing block disabling with operational tags,

as presented in Section 4, with NRU replacement.

• BDOT-NRR: system implementing BDOT with NRR replacement, as

presented in Section 5.1.520

• BDOT-NRR-FA: system implementing BDOT with fault-aware NRR

replacement, as presented in Section 5.2.

• WD: system implementing word disabling with NRU replacement [10].

As in the case of NRR, the NRU implementation also includes private

copy protection. Our detailed results include multiprogrammed workloads (the525

20 SPEC CPU 2006 mixes) and parallel workloads (the 4 selected PARSEC

applications), for the five cell types considered (C6, C5, C4, C3, and C2).
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Figure 6: Normalized MPKI (average for SPEC mixes) with respect to Robust for the different

proposals and cell types. Average MPKI for Robust: 5.09.

7.1. Multiprogrammed Workloads

Figure 6 shows the LLC MPKI results for the multiprogrammed workloads.

BD is a valid solution for a cache with few defective entries, like one built530

with C6 cells, where the average MPKI penalization is 23.9%. However, this

penalization increases rapidly with the number of faulty entries, reaching 136%

for C2. Using the tags of the defective LLC entries to keep the coherence state

of blocks stored in L1 allows BDOT-NRU to incur fewer MPKI than BD for C2,

but it does not offer any advantage (the MPKI value increases) for the rest of535

the cells.

To differentiate and quantify the benefit of a reuse-based replacement and

our fault-aware cache management policy, we first implement NRR on top of

BDOT (BDOT-NRR), without taking into account the nature of cache entries

(faulty or non-faulty). This naive implementation offers a slight improvement540

with respect to BDOT-NRU for all cell types, but it is still worse than BD,

except for C2, as in the case of BDOT-NRU. The explanation for this behavior is

the blind allocation of blocks to entries, without taking into account whether the

entry can store only the tag (T ) or both the tag and the data (D). Allocating a

23



block that shows reuse to a T entry implies that all the requests to that block545

are forwarded to the next level (in this case, off-chip). Besides, due to the

reused-based policy, this block will remain in the defective entry of the LLC,

protected by the replacement algorithm. However, blocks with reuse allocated

to D entries are also protected from replacement, and that explains why the

relative differences between BDOT-NRR and BDOT-NRU are larger when using550

larger cells (i.e., with less faults, like C6 and C5).

BDOT-NRR-FA addresses this issue, adding the information of defective

entries to the cache management policy. The penalization in terms of MPKI is

14.6%, 15.1%, 16%, 18.3%, and 37.3% lower than with BD for C6, C5, C4, C3,

and C2, respectively. If we compare BDOT-NRR-FA with BDOT-NRR, there555

are 20% fewer MPKI, irrespective of the cell type, demonstrating the goodness

of the design.

Regarding WD, although there are significant differences in terms of the

number of defective entries among the cell types considered (Table 1), the MPKI

for the different configurations is almost constant. Two reasons explain this560

behavior: i) a single defective cell forces the entry to be classified as faulty, and

ii) the number of defective cells per entry is usually small (three on average

for the smallest cell: C2 [37]) and, therefore, very often blocks are successfully

stored by combining two consecutive entries. Thus, the average number of ways

per set in our system when implementing WD is eight across the different cell565

configurations. Compared to BD, WD obtains better results when the average

number of defective entries is greater than half, which is the case of cells C4, C3,

and C2, as shown in Table 1. BDOT-NRR-FA lowers the MPKI with respect

to WD by 20%, 16.1%, 8.5%, and 3.4%, for C6, C5, C4, and C3, respectively.

WD only beats BDOT-NRR-FA in caches with a high number of defective cells570

(C2, where on average 90% of the entries are faulty). However, BDOT-NRR-FA

requires no additional overhead, whilst WD requires additional storage and logic

to reconstruct blocks.
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Figure 7: Normalized MPKI (average for PARSEC) with respect to Robust for the different

proposals and cell types. Average MPKI for Robust: 2.01.

7.2. Parallel Workloads

Figure 7 shows the relative LLC MPKI for the parallel workloads, with575

respect to the baseline. As with multiprogrammed workloads, BDOT-NRR-FA

has a lower average MPKI than BD and non fault-aware implementations of

BDOT. In particular, BDOT-NRR-FA improves MPKI with respect to BD

by 5%, 5%, 9.6%, 19.2%, and 54.2% on average for C6, C5, C4, C3, and C2,

respectively. Comparing with the multiprogrammed workloads, the relative580

MPKI numbers shown in Figure 7 are larger, moving away from the Robust

system to a greater extent for all cell types, even for the winning alternatives

(WD and BDOT-NRR-FA). But it is worth noting that the absolute MPKI

values for the parallel applications considered are low (Section 6), which makes

the relative increases appear more substantial.585

Upon closer examination of the results, we can make some interesting obser-

vations. Figure 8 shows the LLC MPKI analysis per application for the different

cell types. BD is better than plain BDOTs (BDOT-NRU, BDOT-NRR) in C6-C3

cells (C3 in canneal is an exception), while in cell C2 the trend clearly reverses.

On the contrary, BDOT-NRR-FA is better than BD in most cases, being vips590
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the only exception (cells C6-C3), and giving very noticeable reductions in the

smallest cell C2. For vips, BDOT-NRR-FA only beats BD in C2 because its

image processing algorithm shows very little reuse with a small working set. In

such non-demanding environment, BD can store the vips working set.

Finally, the costly WD shows a similar tendency to that observed with multi-595

programmed workloads, with a relatively constant performance independently

of the cell type. In this case, BDOT-NRR-FA beats WD when using C6 or C5

(12.7% and 6.6% lower MPKI values, respectively), but it cannot reach WD

performance for C4, C3, or C2 (5.5%, 12.4%, and 33.3% higher MPKI values,

respectively).600

8. System Impact

This section analyzes the impact of our proposals on the system in terms

of performance, area, and energy consumption. As in the previous section, we

present results relative to the Robust system and compare with the BD and WD

mechanisms.605

8.1. Performance

Figure 9 shows the performance relative to the robust cell for both multipro-

grammed and parallel workloads.

For multiprogrammed workloads (Figure 9a), performance follows the same

trend as MPKI, BDOT-NRR-FA being the best design option except in the case610

of C2 cells, for which WD outperforms BDOT-NRR-FA by 2.2%. In particular,

BDOT-NRR-FA shows a performance degradation with respect to the Robust

reference system of 1.3%, 2%, 3.4%, 4.3%, and 6.9% for C6, C5, C4, C3, and C2,

respectively, or, in other words, a performance improvement with respect to BD

of 2%, 2.2%, 2.7%, 3.6%, and 13.1%.615

As in the case of multiprogrammed workloads, speedup in parallel application

performance (Figure 9b) also follows the same trend as in the MPKI results, with

a notable exception. For C3, BDOT-NRU and BDOT-NRR perform slightly
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Figure 8: Per-application normalized MPKI (PARSEC) with respect to Robust for the different

proposals and cell types. Average MPKIs for Robust: 4.26, 1.59, 1.0 and 1.19, for canneal,

ferret, streamcluster, and vips, respectively.
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(a) Multiprogrammed workloads.
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(b) Parallel workloads.

Figure 9: Normalized speedup (average) with respect to Robust for the different proposals and

cell types.

better than BD on average, while in Figure 7, the average MPKI value with these

techniques was higher than with BD. As we already mentioned, the LLC MPKI620

for the parallel applications in the baseline system is small (Section 6), and small

MPKI increases with respect to this system appear relatively large in Figure 7.

Nevertheless, for C3, streamcluster has a dramatic speedup degradation with

BD. This is due to the large number of back invalidations to L1 blocks to force

directory inclusion (inclusion victims). Specifically, in this application, the625

number of invalidations to L1 blocks decreases 20 times when implementing

BDOT. The MPKI numbers are similar, but the number of instructions executed

differ considerably. For this application, we observe a performance improvement

of 6.1% when using BDOT-NRU (6.2% for BDOT-NRR), with respect to BD.

On average, BDOT-NRR-FA shows a similar performance to BD for C6 and630

C5, where the performance degradation with respect to the reference system is

2.2% and 2.9%, respectively, and for C4, C3, and C2, the performance is better,

by 1.8%, 7.1%, and 34.6%, respectively. BDOT-NRR-FA and WD have similar

performance (within 1%), except for in the case of C2, for which WD achieves a

3.1% better performance.635

In summary, BDOT-NRR-FA is an excellent choice for caches with different
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numbers of defective entries, as it achieves as good performance as more complex

fault-tolerant techniques without adding any extra storage overhead to the cache.

8.2. Area and Energy
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(a) Multiprogrammed workloads.
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Figure 10: Normalized EPI (average) with respect to Robust for the different proposals and

cell types.

Larger SRAM cells are less likely to fail, but at the cost of larger areas and640

higher power consumption. Even the largest cell considered by Zhou’s study

(C6), which requires a 41.1% larger area than C2, is far from reaching fully

functional performance: 40.1% of the cache entries are faulty at 0.5 V (Table 1).

Our fault-aware mechanism has a minimal impact on area. Only two extra

bits suffice to implement BDOT-NRR-FA: one bit marks entries as defective (as645

in BD), and the other one stores the replacement policy (i.e., NRR) information.

Thus, no extra storage overhead is added compared to the BD system.

Minimizing area helps to reduce energy in the LLC. Signals traveling smaller

distances require less dynamic power for switching, and, most importantly, small

cells consume less static power. To estimate the sub-threshold current, Isub,650

causing the static consumption, we assume that Isub is directly proportional

to the transistor width of the cells considered, and estimate it with respect to

C2 [4]. For the unrealistically robust cell, we assume that it is the same size as
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C2, but with a null probability of failure. Energy consumption also includes the

dynamic overhead of LLC block swaps and L1 clean data eviction required by655

the fault-aware BDOT policy. Finally, we account for both the on-chip power

and the off-chip DRAM power.

Figure 10 shows the energy per instruction (EPI) for all the systems and

cell types considered, both for multiprogrammed (Figure 10a) and parallel

(Figure 10b) workloads, with respect to a system implemented with robust cells660

at 0.5 V, distinguishing between on-chip and off-chip consumption.

For BD, the 2.4-fold higher MPKI for C2 escalates the off-chip DRAM traffic,

and in turn, significantly increases off-chip DRAM EPI for both multiprogrammed

and parallel workloads. On average, BDOT-NRR-FA results in a 5.4%, 5.8%,

6.8%, 8.2%, and 20.4% lower overall EPI than BD for C6, C5, C4, C3, and665

C2, respectively, for the multiprogrammed workloads. In the case of parallel

workloads, the EPI of BDOT-NRR-FA is within 2% of BD for C6, C5, and C4,

and 7.4% and 26.8% lower for C3 and C2, respectively.

Regarding WD, the results show the same trend as performance, namely,

BDOT-NRR-FA EPI results are 7.5%, 9.8%, 7%, and 4% lower for C6, C5, C4,670

and C3, respectively, when considering multiprogrammed workloads, while for

parallel workloads, the EPI values of the two techniques are very similar for C6

and C5, but BDOT-NRR-FA cannot achieve the efficiency of WD for the other

cell configurations.

The energy results shown above do not consider any block power gating675

technique [38]. Assuming a more aggressive approach, where fine-grained block

power gating is affordable [39], the benefits of BD-based techniques in terms

of power and energy will be enhanced, as faulty entries do not consume static

power during operation. Applying this technique, the EPI with BDOT-NRR-FA

would be 6.2%, 6.7%, 7.2%, 6.3%, and 5.5% lower for the multiprogrammed680

workloads than the EPI values in Figure 10 with C6, C5, C4, C3, and C2 cells,

respectively. The same tendency is observed in the parallel workload results.

Figure 11 compares the EPI values with BD and BDOT-NRR-FA when

implementing block power gating with those obtained with WD. We observe that
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for multiprogrammed workloads all the cell configurations achieve significant685

improvements in terms of EPI with respect to WD, and in the case of parallel

workloads, only the C2 configuration is not able to reach the WD efficiency.
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Figure 11: Normalized EPI (average) with respect to word disabling, when implementing

fine-grained block power gating.

9. Related Work

Conventional 6T SRAM cells fail to operate reliably in the near-threshold

regime, as the ratio constraints for read stability and writability of transistors690

cannot be guaranteed, especially in view of Vth variations. Prior proposals to

mitigate the impact of SRAM cell failures due to parameter variation at ultra-low

voltages can be categorized into circuit and architectural solutions.

Circuit solutions include methods that improve the bit cell resilience by

increasing its size [4], or by adding assist/spare circuitry [18, 3]. Increasing the695

cell size or the number of transistors per cell comes at the cost of significant

increases in the SRAM area (lower density) and power consumption. Since

the LLC accounts for much of the die size, increasing its area (e.g., ST SRAM

cells [3] double the area of the SRAM structure) is not a design option.

Architectural solutions include redundancy through ECCs, disabling tech-700

niques, and duplication mechanisms. Our proposal fits in this category.

ECCs are extensively employed to protect designs against soft errors. Some

31



studies have extended the use of ECCs to protect against hard errors when

running at ultra-low voltages [40, 8]. ECCs are usually optimized to minimize

their storage requirements, at the cost of complex logic to detect and correct705

errors. Thus, the ability to detect and correct more errors comes at the cost of

increasing the complexity of the decoding stage, or the storage requirements of

the check bits [8]. Our proposal is orthogonal to the use of ECCs to provide

more functional entries (or any other technique that increases the number of

functional entries), as it adapts seamlessly to the amount of functional and710

non-functional data entries in the cache.

Regarding BD [11], Lee et al. examine performance degradation of disabling

cache lines, sets, ways, ports, or the complete cache in a single processor envi-

ronment [7]. Ladas et al. implement a victim cache to compensate for the loss

in associativity [15]. Our approach also relies on BD, but does not require any715

additional structures.

Ghasemi et al. propose the use of heterogeneous cell sizes, in order that when

operating at low-power, ways or sets made of smaller SRAM cells are deactivated

if they start to fail [41]. Khan et al. propose a mixed-cell memory design, where

a small portion of the cache is implemented with robust cells, which store dirty720

cache blocks, and the remainder with non-robust cells [19]. They modify the

replacement policy to guide the allocation of blocks based on the type of request

(load or store). Zhou et al. combine spare cells, heterogeneous cell sizes, and

ECCs into a hybrid design to improve on the effectiveness obtained by any

single technique alone [4]. In contrast to these techniques, we do not rely on725

the existence of robust ways and we guide the allocation of blocks to faulty or

operational LLC entries based on their reuse.

The granularity at which capacity is disabled could be finer, though this

would add complexity to cache accesses. Word disabling tracks defects at word-

level granularity, combining two consecutive cache entries into a single fault-free730

entry, halving both associativity and capacity [10]. Abella et al. propose to

bypass faulty subentries rather than disable full cache lines, but this technique

is suitable only for the first-level cache, where accesses are word wide [42].
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Palframan et al. follow a similar approach, patching faulty words from other

microprocessor structures, such as the store queue or the miss status holding735

register [43]. Ferrerón et al. compress cache blocks to fit them in faulty entries,

allowing the utilization of 100% of the cache entries [37]. More complex schemes

couple faulty cache entries using a remapping mechanism [9, 44, 45]. They group

collision-free cache entries (from the same or different cache banks) relying on

the execution of a complex algorithm and structures to store all the mapping740

strategy. Re-mapping mechanisms add a level of indirection to the cache access

(increasing its latency), and the combination of cache entries to recreate a cache

block adds complexity. Besides, several cache accesses are needed to obtain a

fault-free cache block, increasing the energy consumption and/or the block access

latency. Unlike the aforementioned proposals, we do not add any additional745

structures or re-mapping mechanisms, only minor changes to the coherence

protocol and replacement policy.

In the context of ultra-low voltages, Keramidas et al. use a PC-indexed spatial

predictor to orchestrate the replacement decisions among fully and partially

usable entries in first-level caches [46]. We based our allocation predictions on750

reuse patterns, which simplifies the hardware, and we do not consider the use of

partially faulty entries.

Regarding the implementation of our techniques, it is worth referring to

the work of Jaleel et al. [17]. In inclusive hierarchies, the private caches filter

the temporal locality and hot blocks (i.e., blocks being actively used by the755

processor) are degraded in the replacement algorithm of the LLC, eventually

being evicted. They address this problem by protecting blocks present in the

private caches and preventing their replacement in the LLC through several

techniques, including: sending hints to the LLC, identifying temporal locality

via early invalidation, and querying the private caches about the presence of760

blocks. We also protect private copies in all the replacement policies considered

(including the baseline one), in our case by using the coherence information and

assuming non-silent evictions of clean blocks.

Albericio et al. base replacement decisions on block reuse locality [20]. They
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propose the Not-Recently Reused (NRR) algorithm, which protects blocks present765

in the private caches and blocks that have shown reuse in the LLC. Their simple

yet efficient implementation achieved better performance than more complex

techniques such as RRIP [47]. Our proposal uses NRR as the base replacement

policy.

10. Summary and Conclusions770

Voltage reduction has been the primary driver to reduce power during recent

decades, but ultra-deep-submicron technologies have suddenly stopped this

trend because of problems with leakage and stability. Manufacturing-induced

parameter variations make SRAM cells unstable at lower voltages, meaning that

they require a minimum voltage to operate reliably. SRAM cell failures can be775

tolerated by deactivating faulty cache entries. This technique is called Block

Disabling (BD) and requires only one bit per tag. Unfortunately, as the number

of defective entries increases, so does performance degradation, and the energy

saved from decreasing Vdd does not compensate for the extra energy required

for the additional main memory accesses.780

The reduction in associativity and capacity experienced by inclusive LLCs

extended with BD has two specific drawbacks in multicore systems. First,

the number of inclusion victims in private L1 caches increases. Second, the

MPKI values also grow, increasing LLC miss latency and main memory energy

consumption.785

To cope with the first problem, we propose Block Disabling with Operational

Tags (BDOT), which uses robust cells to implement the LLC tag array. BDOT

enables some cache blocks to be only in private levels by simply tracking their

tags (T entries), and extends the existing cache-to-cache coherence service to

clean blocks. Thus, with regard to inclusion victims, the LLC associativity is790

fully restored. BDOT requires a small amount of extra control, and it adds

no storage overhead to BD (the bit that marks operative entries sufficing to

distinguish between LLC T and D entries). Any replacement algorithm may work

34



with BDOT, and we have tested NRU and NRR, two low-cost state-of-the-art

proposals for LLCs.795

After the last copy L1 eviction of a block tracked by a T entry, a future

reference to this block will involve an off-chip access, even though we know

that reuse chances are high. Hence, we tackle the second problem from the key

observation that we can preserve the data cached on-chip by exchanging the

valuable, just evicted T entry block (promotion), for an L1-present D entry block800

(demotion). Furthermore, if all blocks allocated to D entries lack L1 copies, we

can still resort to demotion, losing effective on-chip capacity, assuming that an

incoming L1 block showing reuse (second L1 replacement) is more valuable than

any older block allocated to a D entry. We have implemented these ideas in

BDOT-NRR-FA, the fault-aware version of BDOT that selects for demotion a805

D entry victim block that has a backup copy in L1 (first criterion), and has

not shown reuse in the LLC (second criterion). Compared to a BDOT LLC

using NRR replacement, BDOT-NRR-FA improves performance and energy

efficiency with no area overhead, because the bits per block required, namely for

the presence vector, operative entry, and reuse are required, respectively, by the810

coherence mechanism, BD, and conventional replacement.

We tested our proposals against a wide range of multiprogrammed and

parallel workloads under different Pfail situations. Our best proposal, BDOT-

NRR-FA, beats BD, results in up to 37.3% and 54.2% lower MPKI values for

multiprogrammed and parallel workloads, respectively. These decreases translate815

to performance improvements of 13% and 34.6%, respectively. Regarding energy

use, our proposal decreases EPI by between 5.4% and 20.4% for multiprogrammed,

and between 2% and 26.8% for parallel workloads. The largest savings come

from LLCs with the most faulty cells, and gains are consistent across programs,

making our proposal very suitable for the operation of multicore LLCs at low820

voltages for current and future technology nodes.
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