AISC: Approximate Instruction Set Computer

Alexandra Ferrerón¹, Jesús Alastruey-Benedé¹, Darío Suárez-Gracia¹, Ulya R. Karpuzcu²
¹Universidad de Zaragoza, Spain ²University of Minnesota, Twin Cities

Abstract
This paper makes the case for a single-ISA heterogeneous computing platform, AISC, where each compute engine (be it a core or an accelerator) supports a different subset of the very same ISA. An ISA subset may not be functionally complete, but the union of the (per compute engine) subsets renders a functionally complete platform-wide single ISA. Tailoring the microarchitecture of each compute engine to the subset of the ISA that it supports can easily reduce hardware complexity. At the same time, the energy efficiency of execution can improve by exploiting algorithmic noise tolerance: by mapping code sequences that can tolerate the incomplete ISA-subsets to the corresponding compute engines.

1 Motivation
The ISA specifies semantic and syntactic characteristics of a practically functionally complete set of machine instructions. Modern ISAs are not necessarily mathematically functionally complete, but provide sufficient expressiveness for practical algorithms. For software layers, the ISA defines the underlying machine – as capable as the variety of algorithmic tasks the composition of its building blocks, instructions, can express. For hardware layers, the ISA rather acts as a behavioral design specification for the machine organization. Accordingly, the ISA governs both the functional completeness and complexity of a machine design.

This paper makes the case for an alternative, single-ISA heterogeneous computing platform, AISC, which can reduce the ISA complexity, and thereby improve energy efficiency, on a per compute engine (be it a core or an accelerator) basis, without compromising the functional completeness of the overall platform. The distinctive feature of AISC is that each compute engine supports a different subset of the very same instruction set. Such per compute engine ISA subsets may be disjoint or overlapping. An ISA subset may not be functionally complete, but the union of the (per compute engine) subsets renders platform-wide a functionally complete single ISA. Therefore, software layers perceive AISC as a single-ISA machine. On the other hand, we can tailor the microarchitecture of each compute engine to the subset of the ISA that it supports. The result is less complex, more energy efficient compute engines, without compromising the overall functional completeness of the machine. To be able to exploit this potential, we have to address many questions including

• Which subset of the ISA should each compute engine support?
• How to guarantee that each sequence of instructions scheduled to execute on a given compute engine only spans the respective subset of the ISA (with potential accuracy loss)? More specifically, how to map instruction sequences to the compute engines?
• How to keep the potentially incurred accuracy loss confined?

We can approximate the ISA per compute engine along two dimensions:

• Horizontal approximation simplifies instructions by reducing complexity (e.g., precision) on a per instruction basis. To be more specific, the subset of the ISA a compute engine implements in this case would selectively contain lower complexity (e.g., lower precision) instructions, by construction. Well-studied precision reduction approaches [2, 5, 6, 8, 10–12, 14, 16, 17] are directly applicable in this context. Reducing the operand width often enables simplification in the corresponding arithmetic operation, in addition to a more efficient utilization of the available communication bandwidth for data (i.e., operand) transfer.

• Vertical approximation eliminates complex and less frequently used instructions.

The combination of the two dimensions, Vertical+Horizontal, is also possible: In this case, the compute engine concerned would be able to approximately emulate complex and less frequently used instructions (that its ISA subset does not contain) by a sequence of simpler instructions. Along both dimensions, AISC trades computation accuracy for the complexity (and thereby, energy efficiency) on a per compute engine basis. The compiler and the runtime scheduler have to carefully choose compute engines in scheduling instructions to keep any potential accuracy loss below acceptable thresholds. At the same time, as the entire platform still supports the full-fledged ISA, instruction sequences not prone to approximation can still run at full accuracy.

AISC can also be regarded as an aggressive variant of architectural core salvaging [9] or ultra-reduced instruction set coprocessors [15], where actual hardware faults impair a compute engine’s capability to implement a subset of its ISA (and all compute engines support the same ISA by construction). Both of these studies detail how to achieve full-fledged functional completeness under the hardware-fault-induced loss of support for a subset of instructions. AISC, on the
other hand, features compute engines with approximate, i.e., incomplete, ISAs by construction.

2 Proof-of-concept Implementation

Let us start with a motivating example. Fig. 1 shows how the (graphic) output of a typical noise-tolerant application, SRR 

changes for representative Vertical, Horizontal, and Horizontal + Vertical approximation under AISC. The application is compiled with GCC 4.8.4 with `-O1` on an Intel® Core™ i5 3210M machine. As we perform manual transformations on the code, high optimization levels hinder the task; we resort to `-O1` for our proof-of-concept and leave for future work more exploration on compiler optimizations. We focus on the main kernels where the actual computation takes place, and conservatively assume that this entire code would be mapped to a compute engine with approximated ISA. We use ACCURAX metrics [1] to quantify the accuracy-loss. We prototype basic Horizontal and Vertical ISA approximations on Pin 2.14 [7]. Fig. 1(a) captures the output for the baseline for comparison, Native execution, which excludes any approximation. We observe that the accuracy loss remains barely visible and varies under different approximations. Let us next take a closer look at the sources of this diversity.

![Graphic output of SRR benchmark under representative AISC approximations (b)-(d).](image)

2.1 Vertical Approximation

The key question is how to pick the instructions to drop. A more general version of this question, which instructions to approximate under AISC, already applies across all dimensions, but the question becomes more critical in this case. As the most aggressive in our bag of tricks, Vertical can incur significant loss in accuracy. The targeted recognition-mining-synthesis applications can tolerate errors in data-centric phases as opposed to control [3]. Therefore, refining instruction dropping to data-flow can help limit the incurred accuracy loss. Fig. 1(b) captures an example execution outcome, where we randomly deleted static (arithmetic) floating point instructions. For each static instruction, we based the dropping decision on a pre-defined threshold \( t \). We generated a random number \( r \) in the range \([0, 1]\), and dropped the static instruction if \( r \) remains below \( t \). We experimented with threshold values between 1% and 10%.

2.2 Horizontal Approximation

Without loss of generality, we experimented with three approximations to reduce operand widths: \( DPtoSP \), \( DP(SP)toHP \), and \( DP(SP)toINT \). Under the IEEE 754 standard, 32 (64) bits express a single (double) precision floating point number: one bit specifies the symbol; 8 (11) bits, the exponent; and 23 (52) bits the mantissa, i.e., the fraction. For example, \((-1)^{2^{19}} \times 2^{127} \times 1.mantissa\) represents a single-precision floating number. \( DPtoSP \) is a bit discarding variant, which omits 32 least-significant bits of the mantissa of each double-precision operand of an instruction, and keeps the exponent intact. \( DP(SP)toHP \) comes in two flavors. \( DPtoHP \) omits 48 least-significant bits of the mantissa of each double-precision operand of an instruction, and keeps the exponent intact; \( SP\toHP \), 16 least-significant bits of the mantissa of each single-precision operand of an instruction. Fig. 1(c) captures an example execution outcome under \( DPtoHP \). \( DP(SP)toINT \) also comes in two flavors. \( DPtoINT \) (\( SPtoINT \)) replaces double (single) precision instructions with their integer counterparts, by rounding the floating point operand values to the closest integer.

2.3 Horizontal + Vertical Approximation

Without loss of generality, we experimented with two representatives in this case: \( MULtoADD \) and \( DIVtoMUL \). \( MULtoADD \) converts multiplication instructions to a sequence of additions. We picked the smaller of the factors as the multiplier (which determines the number of additions), and rounded floating point multipliers to the closest integer number. \( DIVtoMUL \) converts division instructions to multiplications. We first calculated the reciprocal of the divisor, which next gets multiplied by the dividend to render the end result. In our proof-of-concept implementation based on the x86 ISA, the reciprocal instruction has 12-bit precision. \( DIVtoMUL12 \) uses this instruction. \( DIVtoMULNR \), on the other hand, relies on one iteration of the Newton-Raphson method [4] to increase the precision of the reciprocal to 23 bits. \( DIVtoMUL12 \) can be regarded as an approximate version of \( DIVtoMULNR \), eliminating the Newton-Raphson iteration, and hence enforcing a less accurate estimate of the reciprocal (of only 12 bit precision). Fig. 1(d) captures an example execution outcome under \( DIVtoMULNR \).

References


