
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

AISC: Approximate Instruction Set Computer
Alexandra Ferrerón1, Jesús Alastruey-Benedé1, Darío Suárez-Gracia1, Ulya R. Karpuzcu2

1Universidad de Zaragoza, Spain 2University of Minnesota, Twin Cities

Abstract
This paper makes the case for a single-ISA heterogeneous
computing platform, AISC, where each compute engine (be
it a core or an accelerator) supports a different subset of
the very same ISA. An ISA subset may not be functionally
complete, but the union of the (per compute engine) subsets
renders a functionally complete platform-wide single ISA.
Tailoring the microarchitecture of each compute engine to
the subset of the ISA that it supports can easily reduce hard-
ware complexity. At the same time, the energy efficiency
of execution can improve by exploiting algorithmic noise
tolerance: by mapping code sequences that can tolerate the
incomplete ISA-subsets to the corresponding compute en-
gines.

1 Motivation
The ISA specifies semantic and syntactic characteristics of a
practically functionally complete set of machine instructions.
Modern ISAs are not necessarilymathematically functionally
complete, but provide sufficient expressiveness for practical
algorithms. For software layers, the ISA defines the underly-
ing machine – as capable as the variety of algorithmic tasks
the composition of its building blocks, instructions, can ex-
press. For hardware layers, the ISA rather acts as a behavioral
design specification for the machine organization. Accord-
ingly, the ISA governs both the functional completeness and
complexity of a machine design.
This paper makes the case for an alternative, single-ISA

heterogeneous computing platform, AISC, which can reduce
the ISA complexity, and thereby improve energy efficiency,
on a per compute engine (be it a core or an accelerator) basis,
without compromising the functional completeness of the
overall platform. The distintinctive feature of AISC is that
each compute engine supports a different subset of the very
same instruction set. Such per compute engine ISA subsets
may be disjoint or overlapping. An ISA subset may not be
functionally complete, but the union of the (per compute
engine) subsets renders platform-wide a functionally com-
plete single ISA. Therefore, software layers perceive AISC
as a single-ISA machine. On the other hand, we can tailor
the microarchitecture of each compute engine to the subset
of the ISA that it supports. The result is less complex, more
energy efficient compute engines, without compromising the
overall functional completeness of the machine. To be able

WAX’18, March 25, 2018
.

to exploit this potential, we have to address many questions
including
• Which subset of the ISA should each compute engine sup-
port?
• How to guarantee that each sequence of instructions sched-
uled to execute on a given compute engine only spans the
respective subset of the ISA (with potential accuracy loss)?
More specifically, how to map instruction sequences to the
compute engines?
• How to keep the potentially incurred accuracy loss con-
fined?

We can approximate the ISA per compute engine along two
dimensions:
• Horizontal approximation simplifies instructions by reduc-
ing complexity (e.g., precision) on a per instruction basis. To
be more specific, the subset of the ISA a compute engine im-
plements in this case would selectively contain lower com-
plexity (e.g., lower precision) instructions, by construction.
Well-studied precision reduction approaches [2, 5, 6, 8, 10–
12, 14, 16, 17] are directly applicable in this context. Re-
ducing the operand width often enables simplification in
the corresponding arithmetic operation, in addition to a
more efficient utilization of the available communication
bandwidth for data (i.e., operand) transfer.
• Vertical approximation eliminates complex and less fre-
quently used instructions.

The combination of the two dimensions, Vertical+Horizontal,
is also possible: In this case, the compute engine concerned
would be able to approximately emulate complex and less
frequently used instructions (that its ISA subset does not
contain) by a sequence of simpler instructions. Along both
dimensions, AISC trades computation accuracy for the com-
plexity (and thereby, energy efficiency) on a per compute
engine basis. The compiler and the runtime scheduler have
to carefully choose compute engines in scheduling instruc-
tions to keep any potential accuracy loss below acceptable
thresholds. At the same time, as the entire platform still sup-
ports the full-fledged ISA, instruction sequences not prone
to approximation can still run at full accuracy.
AISC can also be regarded as an aggressive variant of ar-

chitectural core salvaging [9] or ultra-reduced instruction
set coprocessors [15], where actual hardware faults impair a
compute engine’s capability to implement a subset of its ISA
(and all compute engines support the same ISA by construc-
tion). Both of these studies detail how to achieve full-fledged
functional completeness under the hardware-fault-induced
loss of support for a subset of instructions. AISC, on the

1



111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

WAX’18, March 25, 2018
Alexandra Ferrerón1, Jesús Alastruey-Benedé1, Darío Suárez-Gracia1, Ulya R. Karpuzcu2

1Universidad de Zaragoza, Spain 2University of Minnesota, Twin Cities

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

other hand, features compute engines with approximate, i.e.,
incomplete, ISAs by construction.

2 Proof-of-concept Implementation
Let us start with a motivating example. Fig. 1 shows how the
(graphic) output of a typical noise-tolerant application, SRR 1,
changes for representative Vertical, Horizontal, and Horizon-
tal + Vertical approximation under AISC. The application is
compiled with GCC 4.8.4 with -O1 on an Intel® Core™ i5
3210M machine. As we perform manual transformations on
the code, high optimization levels hinder the task; we resort
to -O1 for our proof-of-concept and leave for future work
more exploration on compiler optimizations. We focus on
the main kernels where the actual computation takes place,
and conservatively assume that this entire code would be
mapped to a compute engine with approximated ISA. We
use ACCURAX metrics [1] to quantify the accuracy-loss. We
prototype basic Horizontal and Vertical ISA approximations
on Pin 2.14 [7]. Fig. 1(a) captures the output for the base-
line for comparison, Native execution, which excludes any
approximation. We observe that the accuracy loss remains
barely visible and varies under different approximations. Let
us next take a closer look at the sources of this diversity.

(a) Native (b) Vertical (c) Horizontal (d) Horizon-
tal+Vertical

Figure 1. Graphic output of SRR benchmark under repre-
sentative AISC approximations (b)-(d).

2.1 Vertical Approximation
The key question is how to pick the instructions to drop. A
more general version of this question, which instructions to
approximate under AISC, already applies across all dimen-
sions, but the question becomes more critical in this case. As
the most aggressive in our bag of tricks, Vertical can incur
significant loss in accuracy. The targeted recognition-mining-
synthesis applications can tolerate errors in data-centric
phases as opposed to control [3]. Therefore, confining in-
struction dropping to data-flow can help limit the incurred
accuracy loss. Fig. 1(b) captures an example execution out-
come, where we randomly deleted static (arithmetic) floating
point instructions. For each static instruction, we based the
dropping decision on a pre-defined threshold t. We gener-
ated a random number r in the range [0, 1], and dropped
the static instruction if r remains below t. We experimented
with threshold values between 1% and 10%.
1Super Resolution Reconstruction, a computer vision application from the
Cortex suite [13]. We use the (64×64) “EIA” input data set of 16 frames. The
output is the (256×256) reconstructed image.

2.2 Horizontal Approximation
Without loss of generality, we experimented with three ap-
proximations to reduce operand widths: DPtoSP, DP(SP)toHP,
and DP(SP)toINT. Under the IEEE 754 standard, 32 (64) bits
express a single (double) precision floating point number:
one bit specifies the sign; 8 (11) bits, the exponent; and 23 (52)
bits the mantissa, i.e., the fraction. For example, (−1)siдn ×
2exponent−127×1.mantissa represents a single-precision float-
ing number. DPtoSP is a bit discarding variant, which omits 32
least-significant bits of the mantissa of each double-precision
operand of an instruction, and keeps the exponent intact.
DP(SP)toHP comes in two flavors. DPtoHP omits 48 least-
significant bits of the mantissa of each double-precision
operand of an instruction, and keeps the exponent intact; SP-
toHP, 16 least-significant bits of the mantissa of each single-
precision operand of an instruction. Fig. 1(c) captures an
example execution outcome under DPtoHP. DP(SP)toINT
also comes in two flavors. DPtoINT (SPtoINT) replaces dou-
ble (single) precision instructions with their integer counter-
parts, by rounding the floating point operand values to the
closest integer.

2.3 Horizontal +Vertical Approximation
Without loss of generality, we experimented with two rep-
resentatives in this case: MULtoADD and DIVtoMUL. MUL-
toADD converts multiplication instructions to a sequence
of additions. We picked the smaller of the factors as the
multiplier (which determines the number of additions), and
rounded floating point multipliers to the closest integer num-
ber. DIVtoMUL converts division instructions to multipli-
cations. We first calculated the reciprocal of the divisor,
which next gets multiplied by the dividend to render the
end result. In our proof-of-concept implementation based on
the x86 ISA, the reciprocal instruction has 12-bit precision.
DIVtoMUL12 uses this instruction. DIVtoMUL.NR, on the
other hand, relies on one iteration of the Newton-Raphson
method [4] to increase the precision of the reciprocal to
23 bits. DIVtoMUL12 can be regarded as an approximate
version of DIVtoMUL.NR, eliminating the Newton-Raphson
iteration, and hence enforcing a less accurate estimate of
the reciprocal (of only 12 bit precision). Fig. 1(d) captures an
example execution outcome under DIVtoMUL.NR.

References
[1] I. Akturk, K. Khatamifard, and U. R. Karpuzcu. 2015. On Quantification

of Accuracy Loss in Approximate Computing. In 12th AnnualWorkshop
on Duplicating, Deconstructing and Debunking (WDDD).

[2] V. K. Chippa, D. Mohapatra, K. Roy, S. T. Chakradhar, and A. Raghu-
nathan. 2014. Scalable Effort Hardware Design. IEEE Trans. on Very
Large Scale Integration (VLSI) Systems 22, 9 (Sept. 2014).

[3] H. Cho, L. Leem, and S. Mitra. 2012. ERSA: Error Resilient System
Architecture for Probabilistic Applications. IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems 31, 4 (April 2012).

[4] M.D. Ercegovac and T. Lang. 2004. Digital Arithmetic. Morgan Kauf-
mann.

2



221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

WAX’18, March 25, 2018

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

[5] Chih-Chieh Hsiao, Slo-Li Chu, and Chen-Yu Chen. 2013. Energy-aware
Hybrid Precision Selection Framework for Mobile GPUs. Computures
and Graphics 37, 5 (Aug. 2013).

[6] A. Jain, P. Hill, M.A. Laurenzano, M.E. Haque, M. Khan, S. Mahlke, L.
Tang, and J. Mars. 2016. CPSA: Compute Precisely Store Approximately.
InWorkshop on Approximate Computing Across the Stack.

[7] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-
wood. 2005. Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation. In ACM SIGPLAN Conf. on Programming
Language Design and Implementation.

[8] T. Moreau, A. Sampson, L. Ceze, and M. Oskin. 2016. Approximating to
the Last Bit. In Workshop on Approximate Computing Across the Stack.

[9] Michael D. Powell, Arijit Biswas, Shantanu Gupta, and Shubhendu S.
Mukherjee. 2009. Architectural Core Salvaging in a Multi-core Proces-
sor for Hard-error Tolerance. In ISCA.

[10] Cindy Rubio-González, Cuong Nguyen, Hong Diep Nguyen, James
Demmel, William Kahan, Koushik Sen, David H. Bailey, Costin Iancu,
and David Hough. 2013. Precimonious: Tuning Assistant for Floating-
point Precision. In Int. Conf. on High Performance Computing, Network-
ing, Storage and Analysis.

[11] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapra-
gasam, Luis Ceze, and Dan Grossman. 2011. EnerJ: Approximate Data
Types for Safe and General Low-power Computation. In 32nd ACM
SIGPLAN Conf. on Programming Language Design and Implementation.

[12] Mark Stephenson, Jonathan Babb, and Saman Amarasinghe. 2000.
Bidwidth Analysis with Application to Silicon Compilation. In ACM
SIGPLAN Conf. on Programming Language Design and Implementation.

[13] S. Thomas, C. Gohkale, E. Tanuwidjaja, T. Chong, D. Lau, S. Garcia, and
M. Bedford Taylor. 2014. CortexSuite: A synthetic brain benchmark
suite. In IEEE Int. Symp. on Workload Characterization.

[14] Ying Fai Tong, Rob A. Rutenbar, and David F. Nagle. 1998. Minimizing
Floating-point Power Dissipation via Bit-width Reduction. In Power-
Driven Microarchitecture Workshop.

[15] D. Wang, A. Rajendiran, S. Ananthanarayanan, H. Patel, M. V. Tripuni-
tara, and S. Garg. 2014. Reliable Computing with Ultra-Reduced In-
struction Set Coprocessors. IEEE Micro 34, 6 (2014).

[16] Thomas Y. Yeh, Glenn Reinman, Sanjay J. Patel, and Petros Faloutsos.
2009. Fool Me Twice: Exploring and Exploiting Error Tolerance in
Physics-based Animation. ACM Trans. on Graphics 29, 1 (Dec. 2009).

[17] Q. Zhang, T. Wang, Y. Tian, F. Yuan, and Q. Xu. 2015. ApproxANN: An
Approximate Computing Framework for Artificial Neural Network. In
Design, Automation & Test in Europe Conf. Exhibition.

3


	Abstract
	1 Motivation
	2 Proof-of-concept Implementation
	2.1 Vertical Approximation
	2.2 Horizontal Approximation
	2.3 Horizontal +Vertical Approximation

	References

