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Abstract
This paper makes the case for a single-ISA heterogeneous
computing platform, AISC, where each compute engine (be
it a core or an accelerator) supports a different subset of
the very same ISA. An ISA subset may not be functionally
complete, but the union of the (per compute engine) subsets
renders a functionally complete platform-wide single ISA.
Tailoring the microarchitecture of each compute engine to
the subset of the ISA that it supports can easily reduce hard-
ware complexity. At the same time, the energy efficiency
of execution can improve by exploiting algorithmic noise
tolerance: by mapping code sequences that can tolerate the
incomplete ISA-subsets to the corresponding compute en-
gines.

1 Motivation
The ISA specifies semantic and syntactic characteristics of a
practically functionally complete set of machine instructions.
Modern ISAs are not necessarilymathematically functionally
complete, but provide sufficient expressiveness for practical
algorithms. For software layers, the ISA defines the underly-
ing machine – as capable as the variety of algorithmic tasks
the composition of its building blocks, instructions, can ex-
press. For hardware layers, the ISA rather acts as a behavioral
design specification for the machine organization. Accord-
ingly, the ISA governs both the functional completeness and
complexity of a machine design.
This paper makes the case for an alternative, single-ISA

heterogeneous computing platform, AISC, which can reduce
the ISA complexity, and thereby improve energy efficiency,
on a per compute engine (be it a core or an accelerator) basis,
without compromising the functional completeness of the
overall platform. The distintinctive feature of AISC is that
each compute engine supports a different subset of the very
same instruction set. Such per compute engine ISA subsets
may be disjoint or overlapping. An ISA subset may not be
functionally complete, but the union of the (per compute
engine) subsets renders platform-wide a functionally com-
plete single ISA. Therefore, software layers perceive AISC
as a single-ISA machine. On the other hand, we can tailor
the microarchitecture of each compute engine to the subset
of the ISA that it supports. The result is less complex, more
energy efficient compute engines, without compromising the
overall functional completeness of the machine. To be able
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to exploit this potential, we have to address many questions
including
• Which subset of the ISA should each compute engine sup-
port?
• How to guarantee that each sequence of instructions sched-
uled to execute on a given compute engine only spans the
respective subset of the ISA (with potential accuracy loss)?
More specifically, how to map instruction sequences to the
compute engines?
• How to keep the potentially incurred accuracy loss con-
fined?

We can approximate the ISA per compute engine along two
dimensions:
• Horizontal approximation simplifies instructions by reduc-
ing complexity (e.g., precision) on a per instruction basis. To
be more specific, the subset of the ISA a compute engine im-
plements in this case would selectively contain lower com-
plexity (e.g., lower precision) instructions, by construction.
Well-studied precision reduction approaches [2, 5, 6, 8, 10–
12, 14, 16, 17] are directly applicable in this context. Re-
ducing the operand width often enables simplification in
the corresponding arithmetic operation, in addition to a
more efficient utilization of the available communication
bandwidth for data (i.e., operand) transfer.
• Vertical approximation eliminates complex and less fre-
quently used instructions.

The combination of the two dimensions, Vertical+Horizontal,
is also possible: In this case, the compute engine concerned
would be able to approximately emulate complex and less
frequently used instructions (that its ISA subset does not
contain) by a sequence of simpler instructions. Along both
dimensions, AISC trades computation accuracy for the com-
plexity (and thereby, energy efficiency) on a per compute
engine basis. The compiler and the runtime scheduler have
to carefully choose compute engines in scheduling instruc-
tions to keep any potential accuracy loss below acceptable
thresholds. At the same time, as the entire platform still sup-
ports the full-fledged ISA, instruction sequences not prone
to approximation can still run at full accuracy.
AISC can also be regarded as an aggressive variant of ar-

chitectural core salvaging [9] or ultra-reduced instruction
set coprocessors [15], where actual hardware faults impair a
compute engine’s capability to implement a subset of its ISA
(and all compute engines support the same ISA by construc-
tion). Both of these studies detail how to achieve full-fledged
functional completeness under the hardware-fault-induced
loss of support for a subset of instructions. AISC, on the
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other hand, features compute engines with approximate, i.e.,
incomplete, ISAs by construction.

2 Proof-of-concept Implementation
Let us start with a motivating example. Fig. 1 shows how the
(graphic) output of a typical noise-tolerant application, SRR 1,
changes for representative Vertical, Horizontal, and Horizon-
tal + Vertical approximation under AISC. The application is
compiled with GCC 4.8.4 with -O1 on an Intel® Core™ i5
3210M machine. As we perform manual transformations on
the code, high optimization levels hinder the task; we resort
to -O1 for our proof-of-concept and leave for future work
more exploration on compiler optimizations. We focus on
the main kernels where the actual computation takes place,
and conservatively assume that this entire code would be
mapped to a compute engine with approximated ISA. We
use ACCURAX metrics [1] to quantify the accuracy-loss. We
prototype basic Horizontal and Vertical ISA approximations
on Pin 2.14 [7]. Fig. 1(a) captures the output for the base-
line for comparison, Native execution, which excludes any
approximation. We observe that the accuracy loss remains
barely visible and varies under different approximations. Let
us next take a closer look at the sources of this diversity.

(a) Native (b) Vertical (c) Horizontal (d) Horizon-
tal+Vertical

Figure 1. Graphic output of SRR benchmark under repre-
sentative AISC approximations (b)-(d).

2.1 Vertical Approximation
The key question is how to pick the instructions to drop. A
more general version of this question, which instructions to
approximate under AISC, already applies across all dimen-
sions, but the question becomes more critical in this case. As
the most aggressive in our bag of tricks, Vertical can incur
significant loss in accuracy. The targeted recognition-mining-
synthesis applications can tolerate errors in data-centric
phases as opposed to control [3]. Therefore, confining in-
struction dropping to data-flow can help limit the incurred
accuracy loss. Fig. 1(b) captures an example execution out-
come, where we randomly deleted static (arithmetic) floating
point instructions. For each static instruction, we based the
dropping decision on a pre-defined threshold t. We gener-
ated a random number r in the range [0, 1], and dropped
the static instruction if r remains below t. We experimented
with threshold values between 1% and 10%.
1Super Resolution Reconstruction, a computer vision application from the
Cortex suite [13]. We use the (64×64) “EIA” input data set of 16 frames. The
output is the (256×256) reconstructed image.

2.2 Horizontal Approximation
Without loss of generality, we experimented with three ap-
proximations to reduce operand widths: DPtoSP, DP(SP)toHP,
and DP(SP)toINT. Under the IEEE 754 standard, 32 (64) bits
express a single (double) precision floating point number:
one bit specifies the sign; 8 (11) bits, the exponent; and 23 (52)
bits the mantissa, i.e., the fraction. For example, (−1)siдn ×
2exponent−127×1.mantissa represents a single-precision float-
ing number. DPtoSP is a bit discarding variant, which omits 32
least-significant bits of the mantissa of each double-precision
operand of an instruction, and keeps the exponent intact.
DP(SP)toHP comes in two flavors. DPtoHP omits 48 least-
significant bits of the mantissa of each double-precision
operand of an instruction, and keeps the exponent intact; SP-
toHP, 16 least-significant bits of the mantissa of each single-
precision operand of an instruction. Fig. 1(c) captures an
example execution outcome under DPtoHP. DP(SP)toINT
also comes in two flavors. DPtoINT (SPtoINT) replaces dou-
ble (single) precision instructions with their integer counter-
parts, by rounding the floating point operand values to the
closest integer.

2.3 Horizontal +Vertical Approximation
Without loss of generality, we experimented with two rep-
resentatives in this case: MULtoADD and DIVtoMUL. MUL-
toADD converts multiplication instructions to a sequence
of additions. We picked the smaller of the factors as the
multiplier (which determines the number of additions), and
rounded floating point multipliers to the closest integer num-
ber. DIVtoMUL converts division instructions to multipli-
cations. We first calculated the reciprocal of the divisor,
which next gets multiplied by the dividend to render the
end result. In our proof-of-concept implementation based on
the x86 ISA, the reciprocal instruction has 12-bit precision.
DIVtoMUL12 uses this instruction. DIVtoMUL.NR, on the
other hand, relies on one iteration of the Newton-Raphson
method [4] to increase the precision of the reciprocal to
23 bits. DIVtoMUL12 can be regarded as an approximate
version of DIVtoMUL.NR, eliminating the Newton-Raphson
iteration, and hence enforcing a less accurate estimate of
the reciprocal (of only 12 bit precision). Fig. 1(d) captures an
example execution outcome under DIVtoMUL.NR.
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