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Exact Alignment with FM-Index on the Intel Xeon Phi
Knights Landing Processor

ABSTRACT
The FM-index is an efficient data structure useful for
searching strings in large reference texts. In fact, FM-
index is used in many sequence aligner tools. Due to
the data structure layout, the searching process based
on FM-index exhibits irregular memory access patterns,
causing a high cache miss rate. Besides, it is com-
mon for the search algorithm to be memory bound due
to the low arithmetic intensity. As a result, different
versions of FM-index and corresponding aligning algo-
rithms were designed to minimize memory traffic due
to those random accesses.

This paper describes various aligning algorithms based
on FM-index and propose a modification of the FM-
index data structure capable of reducing memory band-
width and increase operational intensity, in order to at-
tain a performance near the limit given by the peak
random access memory bandwidth. Experiments on a
Xeon Phi KNL processor obtain a throughput (Last-
to-First operations per second) much higher than GPU
and CPU implementations previously reported in the
literature.

1. INTRODUCTION
The high demand for fast and low-cost genomic se-

quencing has pushed onward the rapid development of
next-generation sequencing (NGS) technologies. As a
result, a number of high-throughput sequencing systems
has appeared in industry. To support the progress of
NGS technologies, new fast alignment tools and algo-
rithms have recently been developed.

FM-index is a data structure well suited for fast ex-
act matches of short reads to large reference genomes
while keeping a small memory footprint [1]. Many effi-
cient sequence aligners are based on FM-index, such as
Bowtie2 [2, 3], BWA [4], BWA-SW [5] for long reads,
SOAP2 [6] and BWT-SW [7].

As high-throughput sequencing systems produce a
massive amount of data, despite the efficiency of the
above aligner tools, the usage of high-performance tech-
niques and platforms is of crucial importance to deal
with the computational challenge. In fact, many opti-
mized aligning algorithms have appeared recently in the
literature for different architectures, like CPU clusters,
GPUs and FPGAs [8], [9], [10], [11].

Due to the data structure layout, the searching pro-

cess based on FM-index exhibits irregular memory ac-
cess patterns. These data access patterns causes a high
cache miss rate on typical cache hierarchies of multicore
processors. Besides, it is common for the search algo-
rithm to be memory bound due to the low arithmetic
intensity. Since several reads can be searched concur-
rently in order to hide the memory latency, the limit is
imposed by memory bandwidth rather than by latency.

This paper describes various aligning algorithms based
on FM-index designed to deal with the data locality
problem. We propose a modification of the FM-index
data structure capable of reducing the memory band-
width requirements in order to attain a performance
near the limit given by the peak random access memory
bandwidth. We have evaluated the proposed FM-index
data structure and a corresponding search algorithm
using an Intel Xeon Phi Knights Landing (KNL) pro-
cessor. KNL includes AVX-512 vector processing units
in each core and novel ultra high-bandwidth 3D MC-
DRAM memory modules integrated on package. These
features provides both a remarkable computing power
(up to 72 cores) and a 400 GB/s peak memory band-
width, making it a good hardware platform for acceler-
ating aligning algorithms.

The contributions of this paper can be summarized
as follows:

• k-SFMbv, a new FM-index data structure layout
and codification is proposed. k-SFMbv limits the
required data traffic between memory and proces-
sor cores for the exact search algorithm.

• The new proposal is implemented on a KNL pro-
cessor, exploiting the available ultra high-bandwidth
memory modules.

• The roofline model [12] is used to show the ex-
perimental results and how we achieve near peak
performance.

2. SEARCH ALGORITHMS WITH
FM-INDEX

FM-index data structure uses the Suffix Array and
Burrows-Wheeler transform (BWT) [13] to compress
the input text.

The Suffix Array of a character string T is an array
containing the starting positions of all suffixes of T in



Algorithm BS: Backward Search Based on FM-index

Input: FM-index of T text (C & Occ), Q query, n:|T|, p:|Q|

Ouput: (sp,ep): Interval pointers of Q in T

     begin

1:  sp = C[Q{p}]

2:  ep = C[Q{p}+1]

3:  for i from p-1 to 1 step -1

4:     sp = LF(Q{i},sp)

5:     ep = LF(Q{i},ep)

6:  end for

7:  return (sp+1,ep)

     end

Figure 1: Basic backward search algorithm
based on FM-index

lexicographical order. For instance, if T = [aacacbaa]
then SA = [8, 7, 1, 2, 4, 6, 3, 5]. The suffix array requires
n dlog2 ne bits (being n the length of the string T ) and
can be used as an index to locate every occurrence of a
pattern in the string. Searching in a suffix array can be
done using a binary search algorithm in log2 n steps.

The BWT is a permutation of a character string and
consists of three steps. First, the symbol $ is appended
to the end of the original text T , being $ lexicograph-
ically smaller than any symbol of Σ (alphabet from
where the text’s characters are drawn from). Second, a
conceptual n × n matrix M is formed, whose rows are
cyclic shifts of T sorted in lexicographical order. Third,
the result of applying BWT to T is L, the last column
of the matrix M .

The FM-index of a text T is composed by two data
structures derived from the BWT: the C array and the
Occ matrix. The C array stores in C[c] the number of
occurrences in T of the symbols lexicographical smaller
than c. Occ[c, i] contains the number of occurrences of
the symbol c in the prefix BWT [1...i] of T .

2.1 Basic Search Algorithm
The FM-index data structures C and Occ can be

used to locate the occurrences of a query Q[1...p] in
a text T [1...n]. The exact matching algorithm in [1],
also called backward search, performs the search with a
complexity of Θ (p), improving the suffix array binary
search algorithm. Algorithm BS in Fig. 1 illustrates a
version of the backward search algorithm.

The main operation in the FM-index search algorithm
is a Last-to-First operation (LFop), defined as follows:

LF (Q[i],m) = C[Q[i]] + Occ[Q[i],m], (1)

where i is the index of the loop iterator and m is either
sp or ep.

The Occ memory access pattern is not predictable
showing neither spatial nor temporal locality. Hence,
each access to Occ misses in all the cache levels and
results in a read request to main memory, severely re-
straining the algorithm performance.

The overall performance can be improved by overlap-
ping the memory accesses of several queries in order to
hide the main memory access latency. The high number
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Figure 2: Sampling the Occ structure (rOcc) and
blocking the BWT structure (bBWT ), with d = 4

of queries which are usually involved in genome map-
ping problems makes this approach feasible by increas-
ing the sequence parallelism in each core.

2.2 Sampled FM-index
Let us assume an alphabet Σ of X symbols. There-

fore, the Occ matrix (of size X × n) will require a
large amount of storage space when indexing a long
text (large n). For example, the Occ matrix for a human
genome (Σ={A,C,G,T}) with 3 Gbases needs 48 GBytes
of memory.

The storage requirements can be reduced by replac-
ing the Occ structure with another smaller one denoted
rOcc [1]. rOcc stores one column out of every d columns
of Occ, that is, rOcc[c, i] = Occ[c, 1+(i−1)×d]. In addi-
tion, in order to improve the memory locality the string
BWT is rearranged in sub-strings of d consecutive sym-
bols taken from BWT, called buckets [1]. These buckets
(bBWT) are stored along with rOcc giving a new data
structure, SFM. Fig. 2 shows an example of this new
data structure for d = 4.

In order to reconstruct the content of Occ, both data
structures, rOcc and bBWT, are needed. Although
the memory footprint is reduced with the sampled FM-
index, it introduces complexity in the computation of
the LFops in the search algorithm since Occ has to be
reconstructed from rOcc.

2.3 K-step Sampled FM-index
Data locality can be improved if several symbols are

queried in a single LFop (see (1)) [14]. This solution
basically replaces the original alphabet, Σ, by the set
of k-tuples whose entries come from Σ (permutations
with repetition). The new alphabet is denoted Σk and
its size is Xk. This change in the alphabet requires
modifying the sampled FM-index data structure. C is
transformed into k-C, containing Xk entries, while rOcc
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Figure 3: Original k-SFM data structure for
DNA and 2-step sampled FM-index (k=2)

is transformed into k-rOcc with size Xk × dn/de. The
bBWT size is also affected, but linearly instead of ex-
ponentially. bBWT is transformed into k-bBWT, com-
posed of k n-symbol strings, namely the last k columns
of the M matrix in the definition of the BWT.

The backward search steps, LFk(), are computed like
the one-step version, but with an extended Σk alphabet
and with larger data structures. A single LFk() function
execution resolves k basic LFops. Hence, each LFk()
function call reads a set of consecutive locations of main
memory (exploiting data locality). As a result, the main
memory bandwidth required is reduced. However, it
is worth mentioning that this approach is, in general,
unfeasible for values of k greater than 2 due to the great
amount of memory occupied by k-rOcc (Xk × n).

3. BIT-VECTOR K-STEP SAMPLED
FM-INDEX

The number of cache blocks that a LFop requires to
read from main memory negatively impacts the perfor-
mance of the aligning algorithm. As an example, let us
consider a DNA string with 4 different symbols in the
alphabet (X=4), a 2-step sampled FM-index and 4-byte
values stored in 2-C and 2-rOcc. The entries (counters)
of 2-rOcc required for the 2 LFops computed in LF2()
occupies a complete 64-byte cache block (Xk×counter-
size = 42 × 4 bytes). Hence, the 2-bBWT bucket must
be stored in a different cache block. As a result, each
LF2() needs to read two cache blocks from memory to
perform two LFops, as in the case of the 1-step sampled
version, although in two LF () calls. This fact leaves
performance essentially unchanged in both versions.

Burrows et al. [13] proposed the use of a new level of
counters (super-buckets) which makes possible to use
shorter counters in k-SFM. However, for big texts, the
super-buckets data would be too big to be stored on
cache and would increase the amount of main memory
traffic.

This lead us to focus on reducing the number of cache
blocks that each call LFk() has to load from main mem-
ory. In order to reduce memory traffic, we propose to
change the k-SFM layout and codification (see an ex-
ample of the original k-SFM data structure for a DNA
alphabet in Fig. 3). k-SFM is re-arranged in order to
fit all the data needed by a call to LFk() in a mini-
mum number of cache blocks. In the case of LF2(),
only in a single cache block. We denote the new struc-

Figure 4: Proposed k-SFMbv data structure for
DNA and 1-step sampled FM-index (k=1)

ture by k-SFMbv (bit-vector k-step sampled FM-index).
Our solution comes from observing that in the aligning
algorithms described in the previous section, the com-
putation of a LFop reads more data than it is required.
Specifically, the counters (k-rOcc entries) of all the al-
phabet symbols are read (e.g., 16 counters for 4 DNA
symbols and 2-step sampled FM-index), when just one
counter is really necessary.

We propose to separate the counters of a k-SFM entry
in several cache blocks and place the counter of each
symbol together with the required data to count the
number of occurrences of that symbol in the bucket.

With this aim, we have designed a new data struc-
ture which represents each k-BWT bucket together with
several bitmaps, each one related to a symbol of the al-
phabet. This is shown in Fig. 4 for the 1-step sampled
FM-index. The 2-step sampled FM-index requires 16
bitmaps for DNA. Each bit in a bitmap corresponds to
a symbol of the k-BWT, being 1 if the k-BWT symbol
equals the one associated to the bitmap, and 0 other-
wise.

The k-SFMbv entry is an array with the same num-
ber of elements as different symbols contains the alpha-
bet. Each element stores the bitmap and the counter
associated to a given symbol. This reduces to only one
element of the k-SFMbv entry the amount of memory re-
quired to be read for every LFop, at the cost of increas-
ing the memory footprint of the whole k-SFMbv struc-
ture. Since most high-performance hardware platforms
have enough memory to allocate an actual genome, this
up-sized data structure should not be a problem.

4. EXPERIMENTAL EVALUATION
We have evaluated the performance of the aligning

algorithm using the described sampled FM-index data
structures in two different processor architectures:

• Xeon Phi 7210 (KNL) [15]: 64 cores at 1.3 GHz
with four hardware threads and two AVX-512 vec-
tor units. The MCDRAM memory has a peak
bandwidth of about 400 GB/s and the six DDR4
memory channels can provide up to 90 GB/s 1.

• Xeon E5-2630V4 (Broadwell) [16]: 10 cores at 2.2
GHz with two hardware threads and three AVX2
vector units. The four DDR4 memory channels
have a peak bandwidth of 68 GB/s 1.
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Figure 5: Performance results

Two data sets of 20M 200-symbol queries were used,
generated by the Mason [18] simulation tool. These
queries have been searched in the human genome ref-
erence GRCh38, composed of 3G symbols. Through-
put (LFops per second) was used as the metric to mea-
sure performance and compare the different implemen-
tations. Fig. 5 compares the performance achieved by
the aligning algorithm using different versions of the
original k-SFM and k-SFMbv data structures. Specif-
ically, we have implemented the 1-step sampled FM-
index with d=32 and d=192 (K1-32SFM and K1-192SFM),
the 2-step sampled FM-index with d=16 and d=128
(K2-16SFM and K2-128SFM), using the original k-SFM
data structure. We have also developed a 2-step sam-
pled FM-index with d=64 and d=96 using our proposed
k-SFMbv data structure. Note that the version which
obtains higher performance in both processor architec-
tures is K2-64SFMbv. The values of d in the experi-
ments were chosen because they minimize memory traf-
fic and optimize computational performance.

4.1 Random Memory Access Benchmark
In order to obtain a more accurate view of the mem-

ory performance when issuing random memory accesses,
we have developed a benchmark, that we call RAN-
DOM, that performs memory operations following a
random access pattern similar to that when comput-
ing LFops using FM-index, but with no computing at
all.

RANDOM uses one or several randomly generated
linked lists with no data locality. The size of the data
structure is 12 GB, so it can be fitted in the KNL
high-bandwidth MCDRAM memory. The kernel of our
benchmark is a thread that traverses a configurable
number of linked lists.

All the memory bandwidth tests have been done using
the maximum number of threads per core but with dif-
ferent number of linked lists being simultaneously tra-
versed by each thread.

The bandwidth that the KNL MCDRAM is able to

1All peak memory bandwidth measurements have been
performed using the STREAM benchmark[17]

provide when each thread traverses 6 lists in parallel
is 176.4 GB/s (accessing randomly single cache blocks)
and 188.7 GB/s (accessing randomly pieces of two con-
tiguous cache blocks). This value is much lower than
the 400 GB/s reported for the STREAM benchmark
[17]. On the other hand, the bandwidth provided by the
Broadwell processor is 42.24 GB/s (single cache blocks)
and 48.07 GB/s (two contiguous cache blocks), far be-
low the KNL performance.

These RANDOM benchmark results are used to cal-
culate the practical bandwidth limits for the roofline
model.

4.2 Roofline Model
The roofline model [12, 19] is a method that provides

the upper bound of performance for an application run-
ning in a given architecture. It is very useful to show
which implementation adapts best to a specific archi-
tecture. The roofline model is based on the concept of
arithmetic or operational intensity, defined as the ratio
of the number of operations (work) to the amount of
data traffic (in bytes). In the case of the aligning al-
gorithms using FM-index, we use the number of LFops
performed per transferred byte. Consequently, we name
this metric search intensity (SI).

Figures 6 and 7 show the roofline model of the align-
ing algorithms using different versions of FM-index on
the KNL and the Broadwell processors. In the model,
we have considered the main memory peak bandwidth
and the experimental bandwidth results obtained when
performing random block accesses (described in the pre-
vious section). This random access bandwidth is, in
fact, the resource that really limits the algorithm per-
formance for the best FM-index implementation (K2-
64SFMbv) in both processor architectures. Performance
in KNL reaches about 93% of peak bandwidth while
Broadwell reaches about 83% of peak bandwidth. Note
that our proposed FM-index data structure increases SI
compared to the k-step sampled one. This fact results
in an important increase of throughput.

The horizontal dashed lines appearing in figures 6
and 7 are shown for reference and comparison purposes.
Previous GPU and CPU performance is reported in [9].
Tesla Pascal P100 performance corresponds to the exe-
cution of a NVBIO [20] match function on that GPU.
Peak LF performance is a theoretical calculation con-
sidering an unlimited memory bandwidth.

5. CONCLUSIONS
In this work a modification of the k-step sampled FM-

index data structure is proposed with the aim of reduc-
ing memory traffic when executing the main operation
(LFop) in the aligning algorithm.

We have evaluated our proposal in two different pro-
cessor architectures, one of them offering an ultra high-
bandwidth memory (KNL). The experimental results
show that our proposal obtains a much higher through-
put than the previous versions due to the fact that the
available effective memory bandwidth (for random ac-
cesses) is better exploited, as the roofline model shows.
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Figure 6: KNL roofline model
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Figure 7: Broadwell roofline model

Our implementation is able to obtain a throughput of
up to 9.21G LFops/s, being about 2.5x faster than pre-
vious GPU implementations and about 3.3x faster than
the GPU version implemented in the NVIDIA NVBIO
bioinformatics library executed on a NVIDIA Tesla P100.
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