
Networks-on-Chip:
from the Optimization of Traditional Electronic NoCs

to the Design of Emerging Optical NoCs

Author
Marta ORTÍN OBÓN

Supervisors
Dr. Víctor VIÑALS YÚFERA

Dr. María VILLARROYA GAUDÓ

DISSERTATION
Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy
in the University of Zaragoza

Grupo de Arquitectura de Computadores
Departamento de Informática e Ingeniería de Sistemas

Escuela de Ingeniería y Arquitectura
Instituto de Investigación en Ingeniería de Aragón

Universidad de Zaragoza

February 2016

Acknowledgements

I want to start by thanking my advisors, Víctor and María, for their help and guidance
during all these years. Thank you very much for your knowledgeable advice at every step
of the way. Also Darío and Cruz, who have worked with me with the same dedication
even though they were very far away. I extend my acknowledgement to all the members of
the Computer Architecture Group, who have not hesitated to assist me with everything I
have needed. Very special thanks to Jorge for his invaluable help at the beginning of the
thesis, you always had a smile and a joke for me, no matter how many questions I asked every day.

During the thesis I was lucky to spend a few months at the University of Ferrara. Davide,
thank you very much for being so helpful from the first email and welcoming me as
one more of your students from the very first day. I am tremendously grateful for our
collaboration, I would not have been able to get to where I am now if it had not been for
you. Thanks also to Luca and Marco, who spent countless hours teaching me new stuff, it
has been a pleasure to work closely with you. And of course to the rest of the guys in the
lab (Hervé, Gabriele, Lorenzo, and Alberto) for making my experience there very enjoy-
able, showing me how cooperative a lab could be, and sharing several late nights of work with me.

I also had a wonderful internship at Munich, for which I have to thank my manager Wolfgang,
thank you for making me a part of the team and valuing my work as you did. Francisco, thank
you for making my internship possible and for all your help in every aspect while I was in
Germany. I remember also the rest of the members of the VP team, who always had kind words
towards me: Rauf, Renate, Richard, and Gerald, I really enjoyed working with you. And of
course thanks to everyone else in the group (David, Julio, Arthur, Matthias, and many more I am
forgetting), who created a great work atmosphere and were always great lunch and snack buddies.

I would also like to thank my fellow PhD students with whom I have shared joy and frustration:
Sergio, Xandra, Edu, Oli, María Astón, and Joaquín, the best moments of every day were
always those that I spent with you. And of course I include other friends I can always trust
to have the best and funniest times: Bea, Rubén, Laura, Gorka, Cere, Isma, Jose, and many
others, thanks guys for spending your free time with me. Thanks also to Quique, you always
find the bright side in everything and have motivated me to give my best in every aspect of my
life. Finally, thanks to my family for their unconditional support and always pointing me in
the right direction.

i

Project Framework

This thesis has been developed in the Computer Architecture Group of the
University of Zaragoza, within the Instituto de Investigación en Ingeniería de
Aragón, in the framework of the following projects: Interconnection and Memory
on Scalable Computers (TIN2010-21291-C02-01), and Memoria, Interconexión y
Aplicaciones para Computadores Eficientes, Jerarquía de Memoria y Aplicaciones
(TIN2013-46957-C2-1-P). It has also been funded by the Gobierno de Aragón and
the Spanish Ministry of Education, Culture, and Sports (FPU12/02553).

Part of this work is the result of an internship with professor Davide Bertozzi at the
University of Ferrara (Italy) funded by the European Network of Excellence HiPEAC
(October 2013 - January 2014), which led to a fruitful collaboration. During the
elaboration of the thesis, there was also an internship at Intel Mobile Communications
GmbH in Munich under the supervision of Wolfgang Pauli (November 2014 - March
2015), which did not lead to any publications due to confidentiality of the work, but
complemented the research training with a practical approach in a leading company.

iii

Networks-on-Chip:
from the Optimization of Traditional Electronic NoCs

to the Design of Emerging Optical NoCs

Executive Summary

As technology improves, memories and processors become faster, smaller, cheaper, and more energy-
efficient, enabling computer architects to include more of them in a single chip. Now that Moore’s Law
is reaching its limit, the replication of simple cores is being used to continue improving performance while
minimizing fabrication costs. As a consequence, performance now faces a bottleneck not only in computing
power and memory access, but also in the communication of the chip elements. In this context, intercon-
nection networks have emerged to replace buses as the prevailing solution to provide fast, cost-effective, and
scalable communications. They are the key for the success of future digital systems, both chip multiproces-
sors composed of tens of identical cores and heterogeneous systems-on-chip. In the last decade, there has
been an extensive research effort towards optimizing the networks-on-chip (NoCs) from low-level physical
aspects all the way up to system-level and application-related issues, and NoCs have now reached a mature
level of development with their integration as a fundamental component in many successful commercial products.

In this thesis, we start by analysing the state-of-the-art of electronic networks-on-chip and detect that, even
though the fundamental purpose of the interconnect is to exchange information among processors and memories,
it is often designed and optimized without taking those essential components into consideration. We revisit the
comparison of several well-known topologies from a comprehensive point of view: running realistic applications
on a detailed model of the processors, the caches, and the interconnect. This study identifies the dominant
impact of the network latency and designates the concentrated mesh as the most cost-effective topology.
Based on those observations, we propose a mechanism called Reactive Circuits that successfully leverages the
information provided by the coherence protocol to reduce power and area, and improve performance. It uses
the requests that travel across the network to dynamically build circuits for their replies, and is able to remove
unnecessary buffer space and coherence messages.

As multiprocessors continue to scale, it is more challenging for these electronic networks-on-chip to meet
their communication demands within the power budget. In consequence, a new technology is coming to the
forefront with the objective of providing higher bandwidth and shorter latencies with reduced energy consump-
tion. Although optical networks have already proved themselves useful for long distances and chip-to-chip
communications, their establishment as on-chip networks still requires an intensive research effort, both in
designing the new required mechanisms and devices, and in successfully proving their superiority against their
electronic counterparts to compensate for the cost of migrating to the new technology.

In this work, we present an algorithm to automatically generate the communication matrices for optical
rings with any number of nodes and minimum number of waveguides and wavelengths, and calculate their
power consumption. We also introduce the first complete network interface architecture for optical networks
and demonstrate it is responsible for most of the complexity of the optical NoC, both in latency and power.
We then analyse the feasibility of the optical interconnect technology when integrated into industry-relevant
objects: a chip multiprocessor and a general purpose multicore accelerator. By performing an accurate
crossbenchmarking against an optimized electronic NoC, we determine that the optical network is better in
latency and energy-per-bit, but still needs to be optimized in terms of power. With the objective of tackling that
issue as well as adapting the optical networks to the virtualization paradigm frequent in multicore accelerators,
we design the first algorithm to partition an optical network while minimizing the number of used wavelengths,
thus reducing power.

v

Networks-on-Chip:
from the Optimization of Traditional Electronic NoCs

to the Design of Emerging Optical NoCs

Resumen ejecutivo

A medida que la tecnología mejora, las memorias y procesadores se vuelven más rápidos, pequeños, baratos
y eficientes, permitiendo a los arquitectos de computadores incluir más en un mismo chip. Actualmente, la Ley
de Moore está alcanzando su límite, por lo que la replicación de cores simples está siendo utilizada para mejorar
el rendimiento al mismo tiempo que se minimizan los costes de fabricación. En consecuencia, la computación y
el acceso a memoria no son ya los únicos cuellos de botella que debemos optimizar, debemos añadir también
la comunicación de los elementos dentro del chip. En este contexto, las redes de interconexión han surgido
reemplazando a los buses como la solución predominante para proporcionar comunicaciones rápidas, eficientes
y escalables. Estas redes son la clave del éxito de los sistemas digitales futuros, tanto multiprocesadores en chip
compuestos por decenas de cores idénticos, como sistemas heterogéneos. En la última década, se ha producido
un importante esfuerzo investigador hacia la optimización de las redes en chip en todos los niveles: desde
aspectos físicos de bajo nivel hasta el nivel de sistema y aplicaciones. Estas redes han alcanzado un nivel de
desarrollo muy maduro y han sido integradas como un componente fundamental en productos comerciales
exitosos.

En esta tesis comenzamos analizando el estado del arte de las redes en chip electrónicas. Detectamos que,
a pesar de que el objetivo fundamental de la red es intercambiar información entre procesadores y memorias, es
muy frecuente que se diseñe y optimice sin considerar estos componentes esenciales. Revisitamos la comparación
de varias topologías muy conocidas desde un punto de vista amplio: ejecutamos aplicaciones realistas en
un modelo detallado de los procesadores, las caches y la red. En este estudio identificamos el gran impacto
de la latencia de la red, e indicamos que la malla concentrada es la topología más efectiva en cuanto a
rendimiento y coste. Basándonos en esas observaciones, proponemos un mecanismo llamado Circuitos Reactivos
que aprovecha la información que proporciona el protocolo de coherencia para reducir la energía y el área, y
mejorar el rendimiento. Utiliza las peticiones que viajan por la red para construir dinámicamente circuitos para
sus respuestas, y es capaz de eliminar almacenamiento y mensajes de coherencia innecesarios.

Conforme los procesadores continúan escalando, satisfacer las demandas de comunicación dentro del
presupuesto energético supone un reto cada vez mayor para las redes en chip electrónicas. En consecuencia, la
comunicación óptica está adquiriendo importancia con el objetivo de proporcionar mayor ancho de banda y
menores latencias con consumo energético reducido. La utilidad de las redes ópticas ya ha sido demostrada
en distancias largas y comunicaciones entre chips, pero su uso en redes en chip todavía necesita un esfuerzo
investigador intensivo. Es necesario diseñar nuevos mecanismos y dispositivos, y probar la superioridad de las
redes ópticas frente a su equivalente electrónico para compensar el coste de migrar a la nueva tecnología.

En este trabajo presentamos un algoritmo que genera automáticamente las matrices de comunicación para
anillos ópticos con cualquier número de nodos, minimizando el número de guías y longitudes de onda utilizadas,
y permite calcular su consumo energético. También mostramos la primera arquitectura completa de una interfaz
de red para redes ópticas y demostramos que es responsable de la mayor parte de la complejidad de la red
óptica, tanto en latencia como en energía. Después analizamos viabilidad de las redes ópticas en plataformas
relevantes para la industria: un multiprocesador en chip y un acelerador de varios cores de propósito general.
Llevamos a cabo una comparación precisa con una red electrónica optimizada, y determinamos que la red óptica
es mejor en latencia y energía-por-bit, pero todavía necesita optimización en cuanto a potencia consumida.
Con el objetivo de abordar este problema al mismo tiempo que adaptamos las redes ópticas al paradigma de
virtualización frecuente en los aceleradores de varios cores, diseñamos el primer algoritmo para crear particiones
en una red óptica minimizando el número de longitudes de onda utilizadas y, por lo tanto, la energía.

vii

viii

Contents

List of figures XIII

List of tables XV

I Preliminaries 1

1. Introduction 3
1.1. Context and Background . 4

1.1.1. Basics about Electronic NoCs . 4
1.1.2. Basics about Optical NoCs . 5

1.2. Contributions . 5
1.3. Thesis Organization . 6

II Electronic Network-on-Chip Optimization 7

2. CMP Architecture and Simulation Methodology 9
2.1. Introduction . 10
2.2. CMP Architecture Framework . 10

2.2.1. General System Architecture . 10
2.2.2. Network-on-Chip and Router Architecture . 10

2.3. Methodology . 12
2.3.1. Simulation Environment . 12
2.3.2. Workloads . 12

3. Analysis and Characterization of NoC Topologies 15
3.1. Introduction . 16
3.2. Related work . 16
3.3. Topologies for Homogeneous CMPs: Qualitative Analysis 17
3.4. Topologies for Homogeneous CMPs: Quantitative Analysis 18

3.4.1. Performance . 19
3.4.2. Average Hop Count . 20
3.4.3. Network Latency . 20
3.4.4. Traffic Distribution . 21
3.4.5. Area, Energy, and Delay . 24
3.4.6. Fairness . 25
3.4.7. Memory Controller Placement . 26

3.5. Concluding Remarks . 28

4. Reactive Circuits: Dynamic Construction of Circuits for Reactive Traffic in Homoge-
neous CMPs 29
4.1. Introduction . 30
4.2. State-of-the-Art . 30
4.3. Setup, Operation, and Release of Reactive Circuits . 31

ix

CONTENTS

4.3.1. Reserving Reactive Circuits . 32
4.3.2. Fragmented versus Complete Circuits . 32
4.3.3. Using the Circuits . 33
4.3.4. Undoing circuits before they are used . 33
4.3.5. Reusing Complete Circuits . 34
4.3.6. Eliminating Coherence Messages . 35
4.3.7. Timed Reservation of Complete Circuits . 35
4.3.8. Ideal Circuit Reservation . 37

4.4. Evaluation . 37
4.4.1. Construction and use of Reactive Circuits . 37
4.4.2. Network Latency . 39
4.4.3. Router Area and Network Energy . 40
4.4.4. System Performance . 41

4.5. Concluding Remarks . 43

III Optical Network-on-Chip Design 45

5. Introduction to Optical Networks-on-Chip 47
5.1. Motivation for Optical Networks-on-Chip . 48
5.2. Space-Routed vs. Wavelength-Routed ONoCs . 48

6. Designing Power-Efficient and Custom-Tailored Wavelength-Routed Optical Rings 51
6.1. Introduction and State-of-the-Art . 52
6.2. Motivation . 52
6.3. Generating the Optical Ring Communication Matrices . 53
6.4. Calculating the Power . 55
6.5. Evaluation . 57

6.5.1. Detailed Example . 57
6.5.2. Exploration of the Number of Wavelengths and Waveguides 57
6.5.3. Power Consumption Analysis . 58
6.5.4. Customizable Ring Designs . 60
6.5.5. Computation Time . 61

6.6. Concluding Remarks . 61

7. A Complete Electronic Network Interface Architecture for Wavelength-Routed Opti-
cal NoCs 63
7.1. Introduction . 64
7.2. Related Work . 64
7.3. Network Interface Architecture . 65
7.4. Baseline Electronic NoC . 67
7.5. Methodology . 67
7.6. Initial Evaluation . 67

7.6.1. Latency Breakdown . 67
7.6.2. Testing Simple Transactions . 68

8. Case Study: Optical Networks-on-Chip for Memory-Coherent CMPs 71
8.1. Introduction . 72
8.2. Architecture of the Chip Multiprocessor . 72
8.3. Customizing the optical NI . 72
8.4. Evaluation . 72

8.4.1. Transaction Latency . 73
8.4.2. Uniform and Hotspot Traffic . 74
8.4.3. Buffer Size Exploration . 75
8.4.4. Power and Energy-per-Bit . 76
8.4.5. Network Energy . 77

8.5. Concluding Remarks . 78

x

CONTENTS

9. Case Study: Augmenting Manycore Programmable Accelerators with Photonic Inter-
connect Technology 81
9.1. Introduction . 82
9.2. GPPA Motivation . 82
9.3. Target Architecture . 83

9.3.1. Cluster Architecture . 83
9.3.2. Memory Architecture . 84
9.3.3. The Baseline ENoC Architecture . 85
9.3.4. Usage Model . 85

9.4. Replacing the Electronic Global Network with an Optical Ring 86
9.4.1. Customizing the Optical NI . 86
9.4.2. Evaluation . 86

9.4.2.1. Code Offload . 87
9.4.2.2. Power Analysis . 87

9.4.3. Application Benchmarking . 87
9.5. Replacing the Electronic Local Network with a Partitionable Optical NoC 88

9.5.1. Related Work . 90
9.5.2. Customizing the ONoC and the GPPA . 90
9.5.3. Dynamic Partitioning . 91

9.5.3.1. Basic Idea . 91
9.5.3.2. Greedy Algorithm . 91
9.5.3.3. Exhaustive Search Algorithm . 92

9.5.4. Static Partitioning . 93
9.5.5. Methodology . 93
9.5.6. Results . 94

9.5.6.1. Characterization of the Algorithm . 94
9.5.6.2. Partitioning Comparison of Different Topologies 95
9.5.6.3. Logical-Level Wavelength-on Time . 95
9.5.6.4. Energy Analysis . 96

9.5.7. Scalability of the algorithm . 97
9.6. Concluding Remarks . 97

IV Conclusions 99

10.Conclusions and future work 101
10.1. Conclusions . 102
10.2. Future Work . 103
10.3. Publications . 103

xi

List of Figures

2.1. Block diagram of a CMP including a chip and the components of a tile. 11
2.2. Architecture of the baseline router. 12

3.1. Diagrams of mesh, torus, and ring topologies for a 16-core CMP. 17
3.2. Connection of the nodes to the routers within a four-node cluster and organization of all

local and global routers for a concentrated mesh. 19
3.3. Average execution time for the parallel applications and CPI for the parallel applications. 20
3.4. Average hop count for 16 single and multithreaded cores and 64 single-threaded cores. . . 21
3.5. Average network latency in number of cycles broken down into base, blocking, and queueing

latency for 16 single and multithreaded cores and 64 single-threaded cores. Note that scales
are different. 22

3.6. Injected flits per cycle and node for the canneal parallel application (top) and a multipro-
grammed mix (bottom) executed in 64 cores. 23

3.7. Link utilization in flits per cycle for the canneal parallel application and the multipro-
grammed mix executed in 64 cores. 23

3.8. Area versus Energy*Delay for the parallel applications and EPI*CPI for the multipro-
grammed workloads. 25

3.9. Fairness for the multiprogrammed workloads. 26
3.10. Candlesticks representing the fairness for the multiprogrammed workloads in chips with 16

single and multithreaded cores and 64 single-threaded cores. 26
3.11. Memory controller configurations for the mesh and CMESH topologies. 27

4.1. Architecture of the router that reserves complete Reactive Circuits. 34
4.2. Example of how circuits are built with fragmented and complete circuits. 34
4.3. Diagram for reactive circuit reservation in the four variants of complete timed circuits. . . 36
4.4. Percentage of replies that travel on a circuit, with a failed circuit, with an undone circuit,

that were scrounger messages, that were not eligible for a circuit, and that were eliminated. 38
4.5. Message latency for different types of messages and Reactive Circuit versions. 41
4.6. Network energy for the different versions of the Reactive Circuits mechanism. 42
4.7. Speedup for the different versions of the circuit-building mechanism. 42
4.8. Speedup for timed reactive circuits with slack and delay of 1 cycle per hop. 43

5.1. Wavelength-selective routing concept. 49
5.2. Optical ring communicating four nodes with two waveguides and two wavelengths. 49

6.1. Optical ring communicating four nodes with two waveguides: an inner clockwise waveguide
and an outer counterclockwise waveguide. Each waveguide is represented with two concentric
circumferences, for each one of the two used wavelengths (red and blue). In the good
wavelength assignment, all-to-all communications for the four nodes have been implemented
with the two wavelengths using all the sections of the two waveguides. In the bad wavelength
assignment, it has not been possible to implement all the required communications (from B
to C and from C to D are missing). 53

6.2. Example of the optical power needed at every ONI for each wavelength. 56

xiii

LIST OF FIGURES

6.3. Laser power distribution tree in a 16-node ring and detail of the distribution of the laser to
all the waveguides inside an ONI. 57

6.4. Wavelength assignment in two waveguides to connect 8 nodes distributed in two layers. . 58
6.5. Number of wavelengths to implement all-to-all communications with optical rings with

different number of waveguides and nodes . 59
6.6. Power to implement all-to-all communications on a 16-node chip with varying number of

wavelengths and waveguides. 60
6.7. Power for ring designs to connect 16 nodes with two waveguides using the realistic power

distribution network. 61

7.1. Optical network interface architecture for wavelength-routed optical NoCs. 65
7.2. Dependence between a request and response at the NI. 66
7.3. Latency breakdown of the optical NI with 3-bit parallelism and the optical ring. 69
7.4. Optical Network Interface Architecture with 2 virtual channels for 3-bit parallelism 69

8.1. Latency of the most common communication patterns. 74
8.2. Transaction latency of a request-reply pattern with increasing injection rate. 75
8.3. Transaction latency with varying buffer sizes with uniform and hotspot traffic. 76
8.4. Static power of the NIs and the electronic and optical NoCs. 77
8.5. Energy-per-bit of the NIs and the electronic and optical NoCs. 77
8.6. Network energy expended to execute a synthetic workload. 78

9.1. Heterogeneous (many-core accelerator-based) MPSoC architecture. 83
9.2. General-Purpose Programmable Accelerator Architecture. 84
9.3. Offload bandwidth as a function of DMA burst size, normalized to the ENoC with page-

length burst. 87
9.4. Static power for the ENoC vs. the hybrid ONoC variants. 88
9.5. Dynamic energy for the ENoC vs. the hybrid ONoC variants under test. 88
9.6. Execution time for the colour tracking kernel in each of the 12 clusters. 89
9.7. Execution time for the FAST kernel in each of the 12 clusters. 89
9.8. Truth table of the 8x8 gwor and basic example to set up partitions with and without

wavelength reuse. 92
9.9. Number of allocated wavelengths for our greedy algorithm over the exhaustive search

algorithm. 94
9.10. Comparison of the λ-router with the ring in 20 random initial scenarios and new partitions

of 2, 4, and 6 nodes. The bars represent the number of allocated wavelengths in the λ-router
over the ones allocated in the ring to set partitions of different sizes in the 20 scenarios,
with the greedy and the exhaustive algorithms. Note that a larger value for the exhaustive
algorithm does not mean that it allocates more wavelengths, it simply means there is a
larger difference between the topologies. The absolute number of allocated wavelengths is
always smaller for the exhaustive algorithm. 95

9.11. Aggregated wavelength-on time for different topologies and partitioning strategies. 96
9.12. Laser source energy for different topologies and partitioning strategies. 97
9.13. Execution time of the greedy algorithm to allocate a new partition of 2 and 8 nodes with

increasing number of nodes in a ring topology. 97

xiv

List of Tables

2.1. Main characteristics of the chip multiprocessor. 11
2.2. Messages generated by the coherence protocol. 11
2.3. Main characteristics of the baseline network on chip. 12
2.4. Simulated workloads and execution methodology. 13
2.5. Characterization of the workloads with respect to their behaviour in the memory subsystem 13

3.1. Qualitative comparison of the mesh, torus, and ring topologies for a CMP system with N
tiles. 18

3.2. Average hop count for the concentrated mesh, torus and ring topologies. 19

4.1. Percentage of messages that traverse the network. 31
4.2. Percentage of circuit reservations in all routers that correspond to the first, second, third,

fourth, and fifth reservation in that input. 39
4.3. Router area savings in the different versions of the circuit-building mechanism. 40

6.1. Physical level parameters. 56
6.2. Execution time of the algorithm . 61

7.1. Photonic components and parameters with their values with aggressive and conservative technologies. 68
7.2. Static Power and Dynamic Energy of Electronic and Optical Devices. 68

8.1. Messages generated by the coherence protocol. 73
8.2. Buffer sizes explored for the 3 VCs at each side of the NI. Note that the actual capacity of the DC

FIFOs is one flit smaller than the number of slots. 76

xv

xvi

Part I

Preliminaries

The first part of the dissertation motivates the use of interconnection

networks and introduces some useful concepts about electronic and optical

networks-on-chip. It also lists the contributions of the thesis and outlines

the rest of this document.

1

Chapter 1
Introduction

Summary

This chapter introduces the basics about electronic and optical interconnection networks and outlines
the contributions of this thesis.

3

CHAPTER 1. INTRODUCTION

1.1. Context and Background
The landscape of digital electronic systems has radically changed in the past 40 years: from the first

available chips containing a single core and no memory, they now include dozens of cores and specialized
hardware. The scaling in the number of transistors predicted by Moore’s Law is now reaching its limits,
forcing computer architects to come up with innovative techniques to continue improving performance and
reducing power consumption. A prevailing trend to achieve that objective consists of replicating many
simple nodes on a single chip, which also minimizes fabrication cost. In this context, data movement is
becoming a bottleneck that may severely restrain the computational power of these platforms. As the
number of communication actors escalates, dedicated wires or buses prove themselves insufficient and it
becomes clear that a cost-effective communication fabric has to be designed. Interconnection networks
come into place as the perfect alternative to provide high bandwidth and low latency with reduced power
consumption. In this work we explore the optimization opportunities in networks-on-chip (NoCs) when
designing them along with the coherence protocol, taking into consideration the communication patterns
and the reactive nature of the traffic they generate.

Electronic networks-on-chip have been widely used during the past decades, but it is now becoming
infeasible to accomodate the increasingly demanding requirements imposed on them. Therefore, new
technologies are being explored in order to take NoCs one step further, namely carbon nanotubes, graphene
nanoribbons, wireless, and optics. In this thesis, we focus on optical networks-on-chip as a strong potential
candidate for the implementation of future energy-efficient NoCs.

1.1.1. Basics about Electronic NoCs
Electronic networks-on-chip (ENoCs) use shared wires (or links) and routers to build a communication

infrastructure that connects all the nodes of the system, and are defined by three aspects: topology,
routing, and flow control [32]. The topology of the network is the static arrangement of nodes and channels.
The routing defines the path messages will follow on that topology given their source and destination with
the objective of minimizing the number of routers a message has to go through to reach its destination,
while balancing the use of the network resources. Finally, the flow control determines how resources
(such as buffers and links) can be accessed by the messages that are using the network. For this purpose,
messages are normally divided into smaller pieces called flow control units or flits.

Routers are composed of buffers, logical units, and a crossbar to implement routing and flow control in
the network, and are typically pipelined. Based on the coherence protocol that generates the messages that
will travel on the network, we may need several virtual networks in order to avoid deadlocks. A deadlock
occurs in an interconnection network when messages are blocked waiting for others to free resources
generating a circular dependency. Virtual networks split buffers into different classes or subsets so that
messages that may generate interdependencies are not forced to contend for the same resources. Inside
each virtual network, it is common to include several virtual channels, which are additional buffering that
help avoid head-of-line blocking. This type of blocking takes place when a message that could obtain all
the resources it needs to continue is blocked behind another one that must wait.

Depending on the flow control mechanism, networks can be classified into two categories: circuit-
switching and packet-switching. In circuit-switching networks the path between two nodes must be set up
first, and resources remain reserved for it until the communication finishes. In contrast, in packet-switching
a message must contend for resources at every hop in the network.

Electronic networks-on-chip are frequent to connect nodes in multicore commercial processors such as
Tilera’s TILEPro64 [144], Intel Xeon Phi [58], Intel 48-core processor [53], or IBM Power8 [138]. Many
research efforts in the field of networks-on-chip have focused too closely on the problem at hand and have
not considered the characteristics of the platform in which the NoC would be implemented and the real
traffic it would have to support. In this work we characterise several network-on-chip topologies from
a comprehensive point of view: modelling at the same time the processors and memory subsystem and
running realistic applications. From the observations of this preliminary analysis, we propose a sensible

4

1.2. CONTRIBUTIONS

mechanism to optimize the network by leveraging the reactive nature of the traffic.

1.1.2. Basics about Optical NoCs
Optical Networks-on-chip (ONoCs) are gaining momentum as a way to improve energy consumption

and bandwidth scalability in next generation multi and many-core systems. The recent remarkable
advances in silicon photonics pave the way for the implementation of optical networks-on-chip (ONoCs) as
an enabling technology for the integration of hundreds of cores onto the same silicon die [43]. Compared
with their electronic counterparts, they offer larger bandwidth, lower latencies, and reduced energy
consumption [67].

Even though some traditional NoC concepts such as topology and routing are still valid, the basic
building blocks and design challenges for ONoCs are radically different. There are several devices required
to implement an optical network: waveguides, microring resonators, modulators, and photodetectors [17].
Waveguides are the photonic equivalent of a wire. Several wavelengths can travel inside of a single
waveguide at the same time, thus transporting several streams of data. This is called wavelength-division
multiplexing (WDM). Microring resonators are waveguides in the shape of a ring that, located next to
another waveguide, have the capability of either letting the light continue on the waveguide (when they
are off-resonance) or coupling it into the ring (when they are on-resonance). Combining these elements we
can build different networks and implement the routing of messages. Modulators translate the electrical
signal into an optical signal so that it can be transmitted on the optical medium, while photodetectors
are used to perform the reverse conversion. The insertion loss is the attenuation the photonic signal
experiences as it goes through a device (for example, a ring resonator or a waveguide crossing). The
addition of such losses along a given path will determine the amount of power the laser source needs to
inject into the waveguides in order to transmit information successfully.

3-D stacking is a promising scenario for cost-effective integration of optical NoCs and electronic devices.
We consider a 3-D stacked design with the processors in an electronic layer located at the bottom and the
optical network in another layer vertically stacked on top of it. Through-Silicon Vias (TSVs) connect the
electronic network interface in the bottom layer with the corresponding optical one (referred to as hub).

Even though this technology is still in a very early stage of development, it has already been proven
useful for chip-to-chip communication [73], especially in the context of the network-in-package paradigm [8].
The current research frontier for on-chip interconnection networks consists of assessing the feasibility
of the optical interconnect technology. A number of benchmarking efforts in the open literature are
trying to investigate whether the photonic integration of future multi- and many-core systems is worth
doing from a performance and power viewpoint. This thesis contributes to this work by designing a
power-efficient optical ring and a network interface architecture for optical communications, which is
essential but typically overlooked. Then we introduce the optical networks in two realistic platforms: a
chip multiprocessor and a general purpose multicore accelerator, and compare the results with highly
optimized electronic networks.

1.2. Contributions
This thesis includes the following contributions:

Analysis and comparison of three common electronic networks-on-chip: mesh, torus, and ring, and
their concentrated versions. Considering a cache-coherent shared-memory chip multiprocessor, we
analyse network-specific metrics such as network latency, hop count, and link utilization, and their
effect on system-level performance, power, and area. We determine that latency is the most relevant
and that the concentrated mesh is the most cost-effective topology.

We present a new mechanism for CMPs to optimize electronic networks-on-chip called Reactive
Circuits. It consists of using cache coherence requests to reserve the path for their replies. A careful
implementation of the proposal allows us to remove unnecessary buffers and coherence messages,
greatly reducing network power consumption and area while improving performance.

5

CHAPTER 1. INTRODUCTION

We present an algorithm to generate optical ring configurations with minimal number of waveguides
and/or wavelengths to connect any number of nodes. We include physical-layout aware power
calculations considering the laser distribution network.

To the best of our knowledge, we design the first complete network interface architecture for optical
networks and analyse the effect of varying its parameters. We demonstrate that it is the most
significant component of an optical network in terms of both performance and power.

We integrate an optical network on a CMP and compare its performance and power with an optimized
electronic interconnect. While the optical network is superior in latency and energy-per-bit, it still
has higher power consumption than its electronic counterpart.

We integrate an optical network on a general purpose programmable accelerator following two
different approaches: on one hand, we present a hybrid interconnect that consists of a global optical
NoC and a local electronic NoC; on the other hand, we implement a local optical NoC by introducing
the first algorithm to dynamically partition an optical NoC with the objective of saving power by
switching off unused wavelengths.

1.3. Thesis Organization
This document is organized in four parts, the first one has introduced the thesis with Chapter 1. The

second part is dedicated to electronic networks-on-chip and contains the following chapters: Chapter 2
describes the CMP architecture and the simulation methodology used for our work on electronic NoCs;
Chapter 3 analyses several electronic NoC topologies and chooses the most cost-efficient option; Chapter 4
describes and evaluates the new Reactive Circuits mechanism to save electronic network power and
improve performance. The third part of the thesis contains the work on optical networks-on-chip organized
in several chapters: Chapter 5 motivates the use of optical interconnection networks and defines some
useful concepts; Chapter 6 introduces an algorithm to generate optical rings with minimum number of
waveguides and wavelengths and calculate their power; Chapter 7 describes the first complete network
interface architecture for optical networks; Chapter 8 evaluates the use of an optical interconnection
network on a chip multiprocessor; Chapter 9 shows two alternatives to include the optical network on a
general purpose programmable accelerator, including the first algorithm to partition an optical network
while saving power. Finally, the last part concludes the dissertation with Chapter 10.

6

Part II

Electronic Network-on-Chip
Optimization

This part of the thesis is entirely dedicated to electronic networks-on-chip.

It starts by analysing and characterising several well-known topologies from

a full-system point of view to find out which network features have a higher

impact on system performance and power. It then uses that information

to propose the Reactive Circuits mechanism, which uses requests to build

circuits on demand for replies in order to reduce network power and latency.

7

Chapter 2
CMP Architecture and Simulation
Methodology

Summary

This chapter presents the architecture framework and simulation methodology used for the analysis and
optimization of electronic networks-on-chip. We run full-system simulations of 16 and 64-core chips,
carefully modelling the cores, caches, and interconnect, and simulate realistic parallel applications and
multiprogrammed workloads.

9

CHAPTER 2. CMP ARCHITECTURE AND SIMULATION METHODOLOGY

2.1. Introduction
Nowadays, a single chip may contain multiple processors and a significant amount of memory. A

popular trend consists of interconnecting several nodes, each of them with a core and one or more levels
of private and/or shared cache memories. Nodes communicate through an interconnection network
that allows them to exchange coherence messages and cache blocks, and has a major impact on overall
performance, energy consumption, and area. We focus on general purpose chip multiprocessors (CMPs),
where both high-performance and low-power are required in equal shares.

Only a few works study the interconnect by modelling in detail the processors, memory hierarchy, and
interconnection network. Those analysis are often performed with synthetic traffic or application traces
that do not entirely capture the behaviour of a real execution [24, 72, 88, 12]. This work simulates both
parallel and multiprogrammed workloads with real applications, carefully modelling all the components
above-mentioned. This allows us to study the effect of the interconnection network configuration on the
whole system and the real interactions between the memory subsystem and the interconnect, which also
lead to interesting optimization opportunities.

2.2. CMP Architecture Framework
This section presents the modelled CMP architecture and a detailed description of the interconnection

network configuration, which will be used to perform a detailed topology analysis and as a baseline for
comparison with our Reactive Circuits proposal.

2.2.1. General System Architecture
This work focuses on a homogeneous CMP where each tile is composed of a core with private first

level cache (L1) split into data and instructions, and a bank of the shared second-level cache (L2), both
connected directly to the router. Four tiles in the edges of the chip also include a memory controller.
Figure 2.1 depicts the block diagram of the chip and a tile with memory controller. It also includes the
connections between the elements in the tile and the router. Table 2.1 presents the key parameters of
the architecture. To model it we based our design on other systems with similar characteristics, both
from academia [155, 135, 13] and industry (Tilera’s TILEPro64 [144], Intel Xeon Phi [58], and Intel
48-core processor [53]). To size our L2 cache (which is our last level cache) we have taken a configu-
ration very frequently used in academia [2, 4, 61] that is also a nice compromise among the sizes of
shared last level caches in high and low-end commercial platforms. For example, the AMD Opteron
processor has a shared L3 cache of 6 MB for 6 cores [31]; IBM Power8 has 8 to 12 cores with 8 threads
per core, and includes an L3 cache with 64 to 96 MB, as well as an L4 cache with 32 to 64 MB [49];
Intel Xeon D has 1.5 MB of L2 cache per core [65]; Sparc M7 has 32 cores and 64 MB of shared L3
cache [107]. An interesting design trend for CMPs is to integrate a large number of simple cores. That is
why we are modelling systems with 16 and 64 Ultrasparc III Plus single-thread in-order cores. However,
we also consider the effect of multithreading by simulating a configuration with 16 cores with 4 threads each.

We use a directory-based MESI coherence protocol. All the traffic that traverses the interconnection
network is a direct consequence of the memory activity, either to move cache lines (instructions or data)
among tiles or for coherence management. Table 2.2 details the messages exchanged by the coherence
protocol. Therefore, it is important to model the caches realistically, even though our main interest lies in
the interconnect [78, 133]. This MESI protocol allows direct data transfer between L1 caches, as opposed
to a simpler version that always forced to use the L2 as an intermediary.

2.2.2. Network-on-Chip and Router Architecture
The baseline NoC that connects all tiles is built with simple 4-stage routers, XY routing and wormhole

flow control, running at 2 GHz (same clock frequency as the processors). Table 2.3 shows the detailed
configuration of the baseline NoC and Figure 2.2 depicts the router architecture. We use two separate

10

2.2. CMP ARCHITECTURE FRAMEWORK

Memory
channels

 DRAM
Main memory

CORE

L1I L1D

L2
tag&data

Dir

R

MC

CMP Node

 Register files, branch
predictor, ALUs, control, ...

Figure 2.1: Block diagram including a chip and the components of a tile. MC stands for memory controller, R is the
router, and Dir is the directory, which is included in the L2 cache. This example router has two input and two output ports
connected to neighbouring tiles.

Table 2.1: Main characteristics of the chip multiprocessor.

Cores 16 single and multithreaded cores, and 64 single-threaded cores, Ultrasparc III Plus,
in order, 1 instruction/cycle and thread, 2GHz frequency

Coherence protocol Directory-based, MESI, directory distributed among L2 cache banks
Consistency model Sequential
Private L1 cache 32KB data and instruction caches, 4-way set associative, 2-cycle hit access time,

64B line size, pseudo-LRU replacement policy
Shared L2 cache Distributed, 1 bank/tile, 1MB per bank, 16-way set associative, 64B line size

Pseudo-LRU replacement policy, inclusive, interleaved by line address
7-cycle hit access time

Memory 4 memory controllers, distributed in the edges of the chip,
(both for 16 and 64-core architectures), 160-cycle latency

Table 2.2: Messages generated by the coherence protocol.

Event Sequence of messages

L1 miss
1o Request from L1 to the corresponding L2 bank
2o L2_Replies: Data reply from L2 to L1
3o L1_DATA_ACK: ACK from L1 to the L2 bank

L1 miss, another L1
owns the data
exclusively

1o Request from L1 to the corresponding L2 bank
2o L2 forwards the request to L1 owner
3o L1_To_L1: L1 owner sends data to L1 requestor
4o L1_DATA_ACK: ACK from L1 requestor to the L2 bank

Invalidation (write or
L2 replacement)

1o Invalidation from L2 to L1 sharers
2o L1_INV_ACK: ACK from L1s to the L2 bank

L1 replacement 1o Replacement data from L1 to the corresponding L2 bank
2o L2_WB_ACK: ACK from the L2 bank to L1

L2 miss 1o Request from L2 bank to the corresponding memory controller
2o MEMORY: Data from the memory controller to L2 bank

L2 replacement 1o Replacement data from L2 bank to the corresponding memory controller
2o MEMORY: ACK from the memory controller to L2 bank

11

CHAPTER 2. CMP ARCHITECTURE AND SIMULATION METHODOLOGY

Table 2.3: Main characteristics of the baseline network on chip.

General Two virtual networks (requests and replies), 2 virtual channels (VCs) per virtual network
Routers 4-stage pipeline: routing and input buffering, VC allocation, switch allocation, and switch traversal

Round-robin 2-phase VC/switch allocators
5-flit buffers per VC, enough to store an entire message

Links 16-byte flit size (link width), 1-cycle latency

G. R. O. C.

G. R. O. C.

G. R. O. C.

G. R. O. C.

Input Unit

G. R. O. C.

G. R. O. C.

G. R. O. C.

G. R. O. C.

Input Unit

Routing Unit VC Allocator

SW Allocator

Crossbar
VC0: G. I. C.
VC1: G. I. C.
VC2: G. I. C.
VC3: G. I. C.

Output Unit

VC0: G. I. C.
VC1: G. I. C.
VC2: G. I. C.
VC3: G. I. C.

Output Unit

credits

credits

credits

Figure 2.2: Architecture of the baseline router. VCs at the input units store global state (G), route (R), output VC (O)
and credit count (C). At the output units, they store global state (G), input VC (I) and credit count (C).

virtual networks to separate traffic classes in order to avoid protocol deadlock. In practice, this means that
we will need at least as many virtual channels as virtual networks. In our case, we include 2 virtual channels
per virtual network (a total of 4 virtual channels) to improve performance by reducing head-of-line blocking.

2.3. Methodology
This section describes the simulation environment and workloads used in this work. This methodology

is an important contribution of the thesis, placing great effort towards the accurate modelling of the whole
chip and the use of representative applications.

2.3.1. Simulation Environment
We carefully model all the components of the chip and perform full system simulation of 16 (single and

4-threaded) and 64 (single-threaded) cores with Simics [92]. We include GEMS to model the memory
subsystem [95], and an extended version of GARNET for the interconnection network [6]. To get the
timing, area, and energy expended by the network we use DSENT [141], a state-of-the-art circuit modelling
tool (with 32 nm technology and 2 GHz frequency).

2.3.2. Workloads
CMPs can execute parallel applications to reduce execution time, and multiprogrammed workloads

(execution of independent programs on each core) to increase throughput. PARSEC is a benchmark suite
composed of shared-memory parallel applications that focuses on emerging workloads and was designed

12

2.3. METHODOLOGY

Table 2.4: Simulated workloads and execution methodology.

Description

16
cores
1-

thread

16
cores
4-

threads

64
cores
1-

thread

Parallel
Workloads

From PARSEC: blackscholes, bodytrack, canneal,
dedup, ferret, fluidanimate, raytrace, swaptions,
vips, and x264. 16

threads
64

threads
64

threadsFrom SPLASH2: barnes, cholesky, fft, lu_cb, lu_ncb,
ocean_cp, ocean_ncp, radiosity, radix, raytrace,
volrend, water_nsquared, and water_spatial.
Threads are automatically mapped to the cores by the
operating system.
Simulate the whole parallel region.

Multiprog.
Workloads

From SPEC CPU2006: perlbench, bzip2, gcc, mcf,
sjeng, libquantum, bwaves, milc, zeusmp, leslie3d,
dealII, soplex, GemsFDTD, lbm, wrf, and sphinx3. 16

apps.

16
apps,
4

times
each
(64
total)

16
apps,
4

times
each
(64
total)

20 different mixes with the applications randomly dis-
tributed among the cores.
Applications are bound to the cores to avoid migration.
Caches are warmed up for 200 million cycles and then,
applications are executed for 500 million cycles.

to be representative of next-generation programs for chip-multiprocessors [19]. SPLASH2 is a mature
benchmark suite that contains a variety of shared-memory, parallel, high performance computing, and
graphics applications [152]. We use a selection of benchmarks from PARSEC and SPLASH2 with scaled
inputs from PARSEC 3.0. We have used SPEC CPU2006, a benchmark suite composed of single threaded
applications written in C, C++, and Fortran, to build multiprogrammed workloads in which each core
runs a different application, so the only network traffic will come from cache misses and replacements [137].
We choose 16 applications with large working sets (according to [47]) to find potential bottlenecks in the
interconnect.

Table 2.4 describes the workloads and their execution methodology for the different configurations
under test. Table 2.5 shows the characterization of the workloads with respect to their behaviour in the
memory subsystem. This helps us understand the amount of network traffic the applications generate.
The most noticeable aspect is that the multiprogrammed workloads have a much lower L2 hit rate and
need to access main memory more often.

Table 2.5: Characterization of the workloads with respect to their behaviour in the memory subsystem

Parallel Applications Multiprogrammed Workloads
16 cores
1-thread

16 cores
4-threads

64 cores
1-thread

16 cores
1-thread

16 cores
4-threads

64 cores
1-thread

LD/ST
instructions 29.7% 26.3% 26.6% 28.3% 26.9% 26.3%

L1D hit rate 93.1% 92.9% 89.3% 95.4% 94.5% 93.0%
misses served by

L2 91.8% 96.8% 95.5% 55.9% 62.1% 47.3%

misses served by
main memory 8.2% 3.9% 4.5% 44.1% 37.9% 52.7%

13

14

Chapter 3
Analysis and Characterization of
NoC Topologies

Summary

This chapter provides a comprehensive study of the interactions between the interconnection network
and the memory hierarchy to enable a better co-design of both components. We explore the implications of
the interconnect choice on overall performance by comparing the behaviour of three topologies (mesh, torus,
and ring) and their concentrated versions. Simply choosing the concentrated mesh over the ring improves
performance by over 40% in a 64-core chip. The key strength of this work is the holistic analysis of the
network-on-chip and the memory hierarchy. Experiments are carried out with a full-system simulator
that carefully models the processors (single and multithreaded), memory hierarchy, and interconnection
network, and executes realistic parallel and multiprogrammed workloads. We corroborate conclusions from
several previous works: network diameter is critical, the concentrated mesh offers the best area-energy-delay
trade-off, and traffic is very light and unbalanced. We also provide interesting insights about application-
specific features that are hidden when studying only average results. We include a fairness analysis for
multiprogrammed applications, and refute the idea of the memory controller placement greatly affecting
performance.

15

CHAPTER 3. ANALYSIS AND CHARACTERIZATION OF NOC TOPOLOGIES

3.1. Introduction

We present an analysis of three topologies with varying degrees of complexity, performance, power,
and area: mesh, torus, and ring. We model CMPs with 16 and 64 single-threaded cores, including a
configuration with 16 4-threaded cores, and explore the effect of modifying the location and number of
memory controllers. Our goal is to draw meaningful conclusions on the studied network configurations
and analyse the details, pointing out the best choice from an integrated performance, area, and energy
standpoint. We revisit the comparison of several topologies with our detailed simulation framework to
update the results, validate or refute previous conclusions, and complete them with further analysis. This
work has been published in [110].

3.2. Related work

Several publications have highlighted the impact of the network on performance, energy, and chip area.
However, only a few papers focus on the comparison of interconnection network configurations. Balfour
and Dally present an analysis of how different topologies affect performance, area, and energy efficiency
[12]. However, they do not model the memory subsystem, only use synthetic traffic patterns, and do not
consider simple topologies like the ring. Gilabert et al. focus on physical synthesis of several networks,
but do not simulate real applications or systems larger than 16 cores [46]. Villanueva et al. highlight
the importance of a comprehensive simulation framework and present results of the execution of real
parallel applications and its close relationship with cache behaviour [148]. Sanchez et al. explore the
implications of interconnection network design for CMPs [133]. We complement their results including a
simple topology (ring), multiprogrammed workloads, traffic distribution analysis, the effect of memory
controller placement, and the influence of the network topology on fairness.

Many papers propose alternatives to conventional router architectures, topologies, and flow control
methods on isolation. However, they do not consider the impact on the overall system and back up the
results with network-only simulations of synthetic traffic and traces. Carara et al. revisit circuit-switching
which, as opposed to packet-switching, allows to reduce buffer size, and guarantees throughput and latency
[24]; Walter et al. try to avoid hotspots on systems on chip by implementing a distributed access regulation
technique that fairly allocates resources for certain modules [149]; Mishra et al. propose an heterogeneous
on-chip interconnect that allocates more resources for routers suffering higher traffic but they only get
good results with a mesh topology [99]; Koibuchi et al. detect that adding random links to a ring topology
results in big performance gains, although they only experiment with a network simulator [72]. All these
studies either do not model the whole system, do not include a significant variety of real workloads, or do
not experiment with different topologies. Also, most of them only include network-related metrics and fail
to report on overall performance, or elaborate conclusions based on IPC (instructions per cycle), which
has been reported to be unsuitable for parallel applications [156].

Another approach consists on designing the network considering the behaviour of the memory subsys-
tem and the coherence protocol. Yoon et al. propose an architecture with parallel physical networks with
narrower links and smaller routers that eliminates virtual channels [154]. Seiculescu et al. propose to
use two dedicated networks: one for requests and one for replies [135]. Lodde et al. introduce a smaller
network for invalidation messages, but only test their design with memory access traces [88]. Agarwal et al.
propose embedding small in-network coherence filters inside on-chip routers to dynamically track sharing
patterns and eliminate broadcast messages [7]. These studies try to improve the performance of the most
commonly used networks, but do not venture with less conventional topologies. Also, they only experiment
with a maximum of 16 cores. Krishna et al. propose a system to improve the frequent 1-to-many and
many-to-1 communication patterns by forking and aggregating packets to avoid the increment in traffic as
the number of nodes increases [75]. Bezerra et al. try to reduce traffic by statically mapping memory
blocks to physical locations on the chip that are close to cores that access them [18]. The last two proposals
are only evaluated with a typical mesh topology.

16

3.3. TOPOLOGIES FOR HOMOGENEOUS CMPS: QUALITATIVE ANALYSIS

3.3. Topologies for Homogeneous CMPs: Qualitative Analysis
We compare today’s most mainstream topologies: mesh, torus, and ring. Figure 3.1 shows a diagram

of the three topologies for a 16-node chip. The 2D mesh is a widespread choice for large-scale CMPs
due to its regularity. Tiles are organized in a regular grid with links pointing to all 4 cardinal directions:
north, south, east, and west. A torus is a mesh with wraparound links to reduce the average number of
hops between tiles, at the cost of longer links (

√
2 times larger than a mesh[32]), larger area, and high

power consumption. Longer links often involve higher wiring latency [151], but we kept the link latency
constant for all topologies after verifying its feasibility with DSENT [141].

Driven by the observed low network occupancy and commercial NoCs [58], instead of moving towards
higher-performance topologies, we opt for more efficient options to fit the power budget, such as bidirec-
tional rings, which require a smaller area but have a larger diameter. Every node is connected to two
other nodes using two links, one in each direction of the ring.

2*W bytes

A

B
(a) Mesh

A

B

2*W bytes

(b) Torus

A

B

2*W bytes

(c) Ring

Figure 3.1: Diagrams of mesh, torus, and ring topologies for a 16-core CMP. Every line represents two links, one in each
direction. W is the link bandwidth. A message going from A to B would be travel on one of the longest paths for each
topology.

The torus and the ring have cycles in their topologies, which can lead to deadlocks. To avoid them, we
implement a deadlock avoidance method by setting a dateline in each cycle where messages will be forced
to use a specific virtual channel so that cycles are broken [32, 33].

Table 3.1 summarizes the main characteristics of the three topologies. Note that the comparison
encompasses topologies with different bisection bandwidth, so first, we tune each topology to obtain a
realistic design point, and then, we explore the trade-offs between complexity (which results in more
bandwidth, power, and area) and performance for all configurations.

The number of input and output ports of the router is a direct indicator of the complexity; the higher
the number of ports, the higher the area and expended energy. If we divided the network in two equal
parts, the bandwidth we would have between the two parts is what we call the bisection bandwidth. A
lower bisection bandwidth indicates that communications in the network will be slower. A hop in the
network is a link the message traverses when going from source to destination. When counting the total
number of hops we also include the local links going from the cache to the router, and from the router to
the cache, so the minimum hop count is two (which corresponds to the communication between an L1
and an L2 in the same node through the router of that node: first hop from source cache to router and
second hop from router to destination cache). The number of hops gives us an idea of the time it will
take a message to traverse the network. In the table, we distinguish the maximum distance (also called
diameter) and the average distance. Besides, the length of the link will have an impact on the power
consumed by the network, which is modelled in DSENT.

17

CHAPTER 3. ANALYSIS AND CHARACTERIZATION OF NOC TOPOLOGIES

Table 3.1: Qualitative comparison of the three topologies for a CMP system with N tiles (we assume that N will always be
a perfect square). We include the basic and the concentrated versions of the topologies, with a concentration factor of c.
The number of inputs/outputs does not consider tiles with a memory controller, where routers would have one more input
and output, or the tiles in the edges of the mesh, where some ports would be left unused. For the concentrated topologies,
indicated ports are for the global routers; local routers always have 6 ports. W is the link bandwidth and L is the link length.
For the concentrated topologies, we indicate the length of the links that connect the global routers. Note that the local links
have been considered in the hop count formulas. Therefore, to go from node 0 to node 1 we need 3 hops: one from cache
0 to router 0, one from router 0 to router 1, and one from router 1 to cache 1. In the average hop count, the +2 in the
formulas corresponds to those local links. For the concentrated topologies, the average hop count is detailed in Table 3.2 due
to its complexity.

Topology Inputs/
outputs

Bisection
BW

Max. hops
(diameter)

Avg. hops (Avg
distance) Link length

2D mesh 6/6 2W
√
N 2

√
N ∼ 2/3

√
N + 2 L

Torus 6/6 8W
√
N

√
N + 2 ∼ 1/2

√
N + 2 L

√
2

Ring 4/4 4W N/2 + 2 ∼ N/4 + 2 L

CMESH 6/6 2W
√
N/c 2

√
N/c+ 2 − 2L

CTORUS 6/6 8W
√
N/c

√
N/c+ 2 + 2 − 2L

√
2

CRING 4/4 4W (N/c)/2+2+2 − 2L

The simplicity of the ring topology allows us to test two improved designs. As opposed to the mesh
and torus, which have 4 input and 4 output ports to the outside of the tile, the ring has only two of each.
The number of ports has a direct effect on the amount of buffer space and the complexity of the switch
allocator and crossbar. To make use of this idle space, we test a configuration in which we increase the link
bandwidth keeping the router area slightly under that of the torus. This results in flits of 24 bytes, which
will reduce the number of flits needed per message and, therefore, serialization latency (RING_FLIT24B).
Following the same idea, we also include a ring configuration with reduced latency, where we merge the
switch allocation and switch traversal stages, resulting in a 3-cycle router (RING_3CYCLE_R).

Connecting several tiles to the same router to build concentrated topologies is a popular choice to
reduce the network diameter. This choice has been adopted by the new generation of the Intel Xeon
Phi [59]. These designs reduce the amount of resources of the network but might introduce contention. We
include concentrated versions of the topologies with a concentration factor of 4. To avoid increasing the
router radix, we use external concentration with local routers, which allows us to maintain routers with a
small area and high frequency with only a small performance degradation [77]. For the 16-core chips we
implement a concentrated mesh (CMESH), as depicted in Figure 3.2. Memory controllers are connected
directly to the global router. With only four global routers, the concentrated ring topology is equivalent
to the CMESH; the concentrated torus would have additional links, but we omit the results because the
higher bandwidth does not benefit performance and increases power and area. For 64 cores, we model
the CMESH, CTORUS, and CRING. Tables 3.1 and 3.2 include the characteristics of the concentrated
versions of the topologies.

3.4. Topologies for Homogeneous CMPs: Quantitative Analysis

This section presents the main contributions of our analysis for 16 and 64-core architectures. We
include both system-oriented metrics (performance, area, energy, and fairness) and network metrics (hop
count, network latency, and traffic distribution). We conclude with an analysis of the impact of memory
controller placement.

18

3.4. TOPOLOGIES FOR HOMOGENEOUS CMPS: QUANTITATIVE ANALYSIS

Core

L2

L1
LR

LR

GR

GR GR
LR

GR GR

Core

L2

L1

Core

L2

L1Core

L2

L1

LR

LR

LR

LR

LR

LR

LR

Figure 3.2: Connection of the nodes to the routers within a four-node cluster (left) and organization of all local and global
routers (right) for a concentrated mesh in a 16-core chip. LR and GR stand for local router and global router, respectively.
The lines that connect routers represent always two links, one in each direction.

Table 3.2: Average hop count for the concentrated mesh, torus and ring topologies. N is the number of tiles and c is the
concentration factor. The formula is divided into the inter and intracluster communications, indicating the probability of
each one and the hops in the global network and inside the clusters. Note that the hops to access and leave the network are
now 4 (compared with 2 for the non-concentrated topologies), because messages need to traverse the local routers.

Intercluster Communications Intracluster Communications

Topology Probability
Hops
global
network

Hops in
cluster Probability

Hops
global
network

Hops in
cluster

CMESH 1− (c/n) 2/3
√
N/c 4 c/n 0 2.5

CTORUS 1− (c/n) 1/2
√
N/c 4 c/n 0 2.5

CRING 1− (c/n) (N/c)/4 4 c/n 0 2.5

3.4.1. Performance
To compare the impact of the network configurations on performance, we analyse the number of pro-

cessor cycles it takes for the parallel workloads to complete the parallel section; for the multiprogrammed
workloads, we check how many instructions get executed in 500 million cycles. Figure 3.3 represents
the average execution time for the parallel applications and the average CPI (cycles per instruction)
for the multiprogrammed workloads, both normalized to the mesh topology. In 16-core single-threaded
architectures differences between topologies are small, with the ring with 3-cycle routers and the CMESH
being very similar to the mesh, and the torus performing only slightly better. Differences are more
pronounced in the multithreaded configurations because the network needs to support a higher load,
and topologies with fewer resources are more congested. In 64-core chips, the performance of the ring
topologies drops significantly while the concentrated topologies stay very close to the mesh and torus.
The conclusions are the same for both parallel and multiprogrammed workloads, and they are along the
same line as the most recent industry developments: for the second generation of the Xeon Phi multicore
processor, Intel has replaced the ring with a concentrated 2D mesh [58, 59].

Regarding the absolute CPI values for the multiprogrammed workloads, the CPI of each core in the
mesh topology is 4.4 for 16 cores with 1 thread, 4.7 for 16 cores with 4 threads, and 6.1 for 64 cores. Even
though the miss rate is small, the penalty of a cache miss greatly increases the CPI, with the highest
portion of the miss latency coming from the network latency. Therefore, we can conclude that the impact
of the NoC on performance is large.

In the following sections we analyse network-specific metrics and demonstrate how they influence
the system performance. We show that the network is lightly loaded and that performance is a direct
consequence of the number of hops it takes a message to go from source to destination.

19

CHAPTER 3. ANALYSIS AND CHARACTERIZATION OF NOC TOPOLOGIES

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

 1.4

 1.6

E
x
e
c
u
ti
o
n
 t
im

e
 (

n
o
rm

a
liz

e
d
)

16 cores
 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

 1.4

 1.6

16 cores, 4 threads
 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

 1.4

 1.6

64 cores

MESH
TORUS

RING
RING_FLIT24B

RING_3CYCLE_R
CMESH

CTORUS
CRING

(a) Parallel applications

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

 1.4

 1.6

C
P

I
(n

o
rm

a
liz

e
d
)

16 cores
 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

 1.4

 1.6

16 cores, 4 threads
 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

 1.4

 1.6

64 cores

(b) Multiprogrammed workloads

Figure 3.3: Average execution time for the parallel applications and CPI (cycles per instruction) for the multiprogrammed
workloads, normalized to the mesh, for 16 single and multithreaded cores and 64 single-threaded cores. In every case, the
lower the bars, the better.

3.4.2. Average Hop Count
The diameter of the network is critical and concentrated topologies offer faster communications even

though messages have to share a smaller amount of routers and links. In Figure 3.4 we present candlestick
charts for the hop count of all the configurations, which show the minimum and maximum values, and the
three quartiles. The differences among the workloads are very small. The first thing we notice is that the
hop count directly reflects the performance results, showing that this metric determines the performance.
Both the median and the variability of the hop count are much larger for the ring topologies, especially
with 64 cores, which is a clear indicator of where we experience more pronounced performance drops.
Hop count for the three ring topologies is the same in all cases because the variations do not affect the
topology. However, performance is different because for the ring with 24-byte flits, data messages are only
three flits long instead of five, which reduces the serialization latency; for the ring with 3-cycle routers,
every hop takes a smaller number of cycles.

The high impact of the hop count and, more generally, the network latency, is partly due to the
simple in-order cores of our system. More complex cores capable of running instructions out-of-order and
non-blocking caches would be able to hide some of the network latency by executing other instructions in
parallel with the L2 or memory access. However, the pressure on the caches would not increase enough to
give relevance to network throughput, because it has been demonstrated that supporting only 2 in-flight
misses is enough to eliminate most of the memory stall cycles [63].

3.4.3. Network Latency
Network congestion can delay messages and have a large impact on system performance. Figure 4.5

represents the network latency split in base latency (cycles it would take packets to traverse the network
without contention), blocking latency (extra time spent in the network due to contention), and queueing

20

3.4. TOPOLOGIES FOR HOMOGENEOUS CMPS: QUANTITATIVE ANALYSIS

 0

 2

 4

 6

 8

 10

M
ESH

TO
R
U
S

R
IN

G

FLIT24B

3C
YC

LE_R

C
M

ESH

N
u

m
b

e
r

o
f

H
o

p
s

(a) 16 cores

 0

 2

 4

 6

 8

 10

M
E
S
H

TO
R
U
S

R
IN

G

FLIT24B

3C
Y
C
LE

_R

C
M

E
S
H

(b) 16 cores, 4 threads

 0

 5

 10

 15

 20

 25

 30

 35

M
E
S
H

TO
R
U
S

R
IN

G

FLIT24B

3C
Y
C
LE

_R

C
M

E
S
H

C
TO

R
U
S

C
R
IN

G

(c) 64 cores

Figure 3.4: Average hop count for 16 single and multithreaded cores and 64 single-threaded cores. There are no differences
between parallel and multiprogrammed workloads, so results are averaged together in all configurations. We present
candlesticks, where we can see the minimum, maximum, median, lower quartile (Q1), and upper quartile (Q3) values. Note
that scales are different. Hops to traverse the local links from and to the nodes are included in the count.

latency (time a message is waiting in the network interface before it can get a free virtual channel to
enter the network). The latency for parallel and multiprogrammed workloads is very similar, with the
multiprogrammed workloads having slightly higher blocking latency in some cases. That is because these
workloads access main memory more often (as we will demonstrate in section 3.4.4), which creates a
bottleneck in the nodes of the network close to the memory controllers.

We can clearly see that the blocking latency is a small percentage of the total latency in the single-
threaded configurations: 14% for 16 cores and 16% for 64 cores. It significantly increases with multithreaded
cores, reaching an average of 31%, because the higher traffic load creates some congestion, especially in
networks with fewer resources (ring and concentrated mesh).

If we focus on the two optimized ring versions, we notice that one of them does not consistently have
shorter latency than the other. The 3-cycle router version is normally better, with a shorter base latency.
This is because all messages benefit from faster transmissions, while in the 24-byte flit version, only data
messages, which need more than one flit, improve their latency. However, in the configurations with
4-threaded cores, the blocking latency is shorter for the ring with 24-byte flits. In those cases when there
is more traffic in the network, a nice effect of having larger flits becomes relevant: messages with fewer
flits can traverse the network in a more compact way, reducing the number of cycles in which they occupy
several routers at a time, thus reducing the probability of conflicts with other messages. This improvement
in the blocking latency results in shorter network latency for the 24-byte flit ring in the multithreaded
configuration with multiprogrammed workloads.

As we already mentioned in the previous section, we can notice again that the network latency results
correspond directly with the average hop count and the system performance (the shorter the latency, the
better the performance), which demonstrates the huge impact the network has on the system. Nevertheless,
the network is mostly lightly loaded, so although it may take long to traverse it, resources are idle most of
the time. These results ratify the conclusions of Sanchez et al., which point out that the number of hops
is the most critical parameter of the network [133].

3.4.4. Traffic Distribution
To analyse traffic distribution, we measure the number of injected flits per node. We notice that traffic

is unevenly distributed in the interconnect, meaning that some resources will be used more often than
others. In this section, we present results for canneal as a representative example of parallel applications,
and a multiprogrammed mix. For a given application and number of cores, the distribution remains
constant when we change the network topology, so we illustrate the results only for the mesh, torus, ring,
and CMESH. Conclusions still hold for all applications and number of cores, so we focus on a 64-core chip.

Figure 3.6 depicts a heat map of injected flits per cycle for each node for canneal and a multipro-

21

CHAPTER 3. ANALYSIS AND CHARACTERIZATION OF NOC TOPOLOGIES

 0

 10

 20

 30

 40

 50

 60

M
ESH

TO
R
U
S

R
IN

G

R
IN

G
_FLIT24B

R
IN

G
_3C

YC
LER

C
M

ESH

N
u

m
b

e
r

o
f

c
y
c
le

s

16 cores

 0

 10

 20

 30

 40

 50

 60

M
ESH

TO
R
U
S

R
IN

G

R
IN

G
_FLIT24B

R
IN

G
_3C

YC
LER

C
M

ESH

16 cores, 4 threads

 0

 20

 40

 60

 80

 100

 120

M
ESH

TO
R
U
S

R
IN

G

R
IN

G
_FLIT24B

R
IN

G
_3C

YC
LER

C
M

ESH

C
TO

R
U
S

C
R
IN

G

64 cores

Base latency Blocking latency Queueing latency

(a) Parallel applications

 0

 10

 20

 30

 40

 50

 60

M
ESH

TO
R
U
S

R
IN

G

R
IN

G
_FLIT24B

R
IN

G
_3C

YC
LER

C
M

ESH

N
u

m
b

e
r

o
f

c
y
c
le

s

16 cores

 0

 10

 20

 30

 40

 50

 60

M
ESH

TO
R
U
S

R
IN

G

R
IN

G
_FLIT24B

R
IN

G
_3C

YC
LER

C
M

ESH

16 cores, 4 threads

 0

 20

 40

 60

 80

 100

 120

M
ESH

TO
R
U
S

R
IN

G

R
IN

G
_FLIT24B

R
IN

G
_3C

YC
LER

C
M

ESH

C
TO

R
U
S

C
R
IN

G

64 cores

(b) Multiprogrammed workloads

Figure 3.5: Average network latency in number of cycles broken down into base, blocking, and queueing latency for 16
single and multithreaded cores and 64 single-threaded cores. Note that scales are different.

grammed mix executed on 64 cores. All the traffic is generated by the memory subsystem, so every
action has a reaction (request-reply, invalidation-ack). Hence, the heat maps also indicate which nodes
are receiving messages more often. The number of flits per cycle is smaller for the ring because a very
similar amount of traffic gets injected in a much larger period of time. Nevertheless, the distribution of
traffic is the same regardless of the topology: certain nodes inject more flits than others. In the parallel
workloads such as canneal (Figures 3.6a to 3.6d), this is because a couple of L2 banks are being accessed
more frequently than others, which depends on the physical distribution of the data touched by each
application. The rest of the simulated parallel applications exhibit similar patterns, with 2 out of the 64
nodes injecting more than 40% of the traffic in many applications.

Figures 3.6e to 3.6h show results for one of the multiprogrammed mixes. In this case, we see four
clear hotspots in the edges of the chip, where the memory controllers are located. The multiprogrammed
workloads access main memory more often than parallel applications. Apart from that, the rest of ideas
we introduced for parallel workloads are still valid. There are several parallel applications which have a
larger working set and need to access main memory more often (fft, ocean_cp, ocean_ncp, and radix).
For those applications, we also see more flits injected from the nodes with memory controllers.

Figure 3.7 depicts the number of flits per cycle that traverse the network links for canneal and
multiprogrammed mix. We see that link utilization is higher around the nodes with higher injection
rates. Also, it is higher in the ring topologies, since there are fewer links to transport the same amount of
information. The torus wastes more resources because it shows the lowest link usage, even though it injects
the highest number of flits per cycle. In the execution of the multiprogrammed workload in the mesh
topology, we detect that links are used more often in the center of the chip, which is the characteristic
behaviour for this topology with uniform traffic. The location of the memory controllers in the edges of
the chip increases link usage in the center.

Evaluating all the results of this section, we notice that the network is lightly loaded, even around
the most active nodes; furthermore, some parts of the network are idle most of the time. Consider-

22

3.4. TOPOLOGIES FOR HOMOGENEOUS CMPS: QUANTITATIVE ANALYSIS

"injflitscycle/dat/proc064/canneal−large−MESH.dat" u 1:2:3

(a) Canneal, Mesh

"injflitscycle/dat/proc064/canneal−large−TORUS.dat" u 1:2:3

(b) Canneal, Torus

"injflitscycle/dat/proc064/canneal−large−RING.dat" u 1:2:3

(c) Canneal, Ring

"injflitscycle/dat/proc064/canneal−large−CMESH.dat" u 1:2:3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

In
je

c
te

d
 f

lit
s
/c

y
c
le

(d) Canneal, CMESH

"injflitscycle/dat/proc064/mix00−MESH.dat" u 1:2:3

(e) Multi, Mesh

"injflitscycle/dat/proc064/mix00−TORUS.dat" u 1:2:3

(f) Multi, Torus

"injflitscycle/dat/proc064/mix00−RING.dat" u 1:2:3

(g) Multi, Ring

"injflitscycle/dat/proc064/mix00−CMESH.dat" u 1:2:3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

In
je

c
te

d
 f
lit

s
/c

y
c
le

(h) Multi, CMESH

Figure 3.6: Injected flits per cycle and node for the canneal parallel application (top) and a multiprogrammed mix
(bottom) executed in 64 cores.

(a) Canneal, Mesh (b) Canneal, Torus (c) Canneal, Ring
0.00

0.10

0.20

0.30

0.40

0.50

0.60

fl
it
s
/c

y
c
le

(d) Canneal, CMESH

(e) Multi, Mesh (f) Multi, Torus (g) Multi, Ring
0.00

0.10

0.20

0.30

0.40

0.50

0.60

fl
it
s
/c

y
c
le

(h) Multi, CMESH

Figure 3.7: Link utilization in flits per cycle for the canneal parallel application (top) and the multiprogrammed mix
(bottom) executed in 64 cores. Each line is the combination of two links, one in each direction. Injection and ejection links
have been left out. In the torus, links that touch the edges of the chip represent the wraparound links. In the CMESH, lines
that make up triangles are connections between the local and global routers of each cluster of cores. Note that scales are
different.

23

CHAPTER 3. ANALYSIS AND CHARACTERIZATION OF NOC TOPOLOGIES

ing all applications executed on single-threaded architectures, nodes in parallel and multiprogrammed
workloads inject an average of 0.024 and 0.052 flits per cycle, respectively; for our 16 multi-threaded
core configuration, they inject 0.11 and 0.23 flits per cycle on average. For comparison, Dally shows
that the saturation throughput of an 8x8 mesh with four 1-flit virtual channels is around 0.5 and
0.6 [34], and that value would be even lighter with larger VCs. Since the network is lightly loaded,
congestion delays are not a major contributor to network latency. Even on the multithreaded configura-
tions where there is more traffic in the interconnect, we still see the same relative performance among
the topologies, pointing out the paramount importance of the network diameter. This explains why
the concentrated topologies reduce network distance without a significant increment on network contention.

Our results show that real workloads exhibit non-uniform traffic patterns across the network, even
though this cannot be perceived when considering only average statistics. Instead of the fairly uniform
traffic distributions seen with synthetic networking workloads, we observe hotspots in some locations.
This points out that synthetic traffic patterns should have hotspots in both flit injection and desti-
nation distribution in order to reflect the real traffic load imposed on the network by parallel and
multiprogrammed workloads. They also show the potential of fine-grained network reconfiguration for
real applications. For instance in the form of dynamic resource allocation or frequency/voltage scaling
(DVFS), where some parts of network save power while others increase execution speed. Recent studies
also confirm this potential: Lee et al. use DVFS for thermal management in 3D ICs, both in the cores
and routers, but they do not consider parallel applications [84]; Haghbayan et al. also propose DVFS
control to honour power and thermal constraints in a dark silicon context, but exclude the network
from such control and consider a synthetic task generation model instead of real workloads [126]. Re-
configuration is beyond the scope of this work but our data adds experimental evidence to its great interest.

3.4.5. Area, Energy, and Delay

When making design choices for future architectures we need to consider performance, power, and area.
For parallel applications, we calculate EnergyNetwork*DelayP arallelSection (ED); for multiprogrammed
workloads, where we simulate a constant number of cycles, we use EPI*CPI (EPI=EnergyNetwork per
Instruction, CPI=Cycles per Instruction). Figure 3.8 depicts network area (as reported by DSENT)
versus ED or EPI*CPI normalized to the mesh. To display the variance across the parallel applications
and the multiprogrammed mixes, we represent the results with candlesticks. Ideally, we would like our
configuration to be in the bottom left corner of the graphs.

For 16 single-threaded cores (plots 8a and 8d), the CMESH offers the lowest values for energy and
delay, with a small area (only 8% bigger than the ring and 18% and 35% smaller than the mesh and torus,
respectively). For 16 multi-threaded cores (plots 8b and 8e) and, especially for 64 cores (plots 8c and
8f), the ED and EPI*CPI increase substantially for the ring topologies with all workloads. The Delay
contributor increases much more significantly with more cores due to the higher hop count. Therefore,
networks with lower diameter perform better when integrating a larger number of cores. In this case, the
CMESH still offers the best trade-offs. We also see that the variance across the multiprogrammed mixes is
very small, pointing out that the way of distributing independent applications in the chip does not impact
either performance or network energy. Our results show that over-dimensioning the network is not the
best solution: a simple topology like the CRING is better than the torus from all standpoints. Even in
the multithreaded architecture (plots 8b and 8e), where the network has a higher load, the CMESH still
offers a better trade-off than the torus.

We also see that the deviation of the results varies among topologies and is bigger with 64 cores. It is
proportional to the variation in network latency, which increases with the average distance of the network
and hop latency. This is because the Delay component of the ED product suffers bigger increases in
certain applications where the thread distribution generates disadvantageous traffic patterns for the ring
topology.

24

3.4. TOPOLOGIES FOR HOMOGENEOUS CMPS: QUANTITATIVE ANALYSIS

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

 0.8 1 1.2 1.4 1.6

E
n
e
rg

y
*D

e
la

y
 (

N
o
rm

a
liz

e
d
)

Network area (mm
2
)

MESH

TORUS

RING

RING
FLIT24B

RING
3CYCLE−R

CMESH

(a) 16 cores, parallel

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

 0.8 1 1.2 1.4 1.6

Network area (mm
2
)

MESH

TORUS

RING

RING
FLIT24B

RING
3CYCLE−R

CMESH

(b) 16 cores, 4 threads, parallel

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

 3.5 4 4.5 5 5.5 6 6.5 7

Network area (mm
2
)

MESH

TORUS

RING

RING
FLIT24B

RING
3CYCLE−R

CMESH
CTORUSCRING

(c) 64 cores, parallel

0.9

1.0

1.1

1.2

 0.8 1 1.2 1.4 1.6

E
P

I*
C

P
I
(N

o
rm

a
liz

e
d
)

Network area (mm
2
)

MESH

TORUS

RING

RING
FLIT24B

RING
3CYCLE−R

CMESH

(d) 16 cores, multiprogrammed

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

 0.8 1 1.2 1.4 1.6

Network area (mm
2
)

MESH

TORUS

RING

RING
FLIT24B

RING
3CYCLE−R

CMESH

(e) 16 cores, 4 th, multiprogrammed

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

 3.5 4 4.5 5 5.5 6 6.5 7

Network area (mm
2
)

MESH TORUS

RING

RING
FLIT24BRING

3CYCLE−R

CMESH

CTORUS

CRING

(f) 64 cores, multiprogrammed

Figure 3.8: Area versus Energy*Delay for the parallel applications (top) and EPI*CPI for the multiprogrammed workloads
(bottom) for 16 single and multithreaded cores and 64 single-threaded cores, normalized to the mesh. The RING and
RING_3CYCLE_R have the same area, but candlesticks have been slightly shifted on the horizontal axis for better
visualization, both have an area of 1.0mm2 for 16 cores and 4.1mm2 for 64 cores.

3.4.6. Fairness
In a multiprogrammed environment, fairness determines if resources are evenly distributed among

independent applications. A system is fair if all the multiprogrammed applications experience an equal
slowdown compared to their performance when executed alone. Our interest lies in assessing whether the
topology influences fairness. To numerically quantify fairness, we rely on the following formula:

fairness =
min

i

(
CP IMT

i

CP IST
i

)
max

i

(
CP IMT

i

CP IST
i

)
where CPI, ST , and MT refer to cycles per instruction, single thread, and multi-threaded execution,

respectively [42]. The i index refers to the applications. The ideal value would be 1; the closer we are to
it, the better fairness we have. To calculate the fairness, we take one of the mixes and simulate both the
mix and each application running alone in chip, pinned to the same core in both cases.

Figure 3.9 shows the fairness for all the topologies on 16 single and multithreaded cores, and 64
single-threaded cores according to that formula. In order to evaluate if there are any outlier numbers that
are negatively affecting the final results, we present in Figure 3.10 candlesticks with the ratio between
the CPI of the applications executed along with the rest of applications (CPI-MT) and the CPI of the
same application running alone in the chip (CPI-ST). In this case, fairer configurations will present
short candlesticks, while unfair networks will have big and long candlesticks. The same conclusions
can be extracted from both graphs. With lightly loaded networks, fairness is very similar across all
topologies. It significantly decreases in two cases: for the multithreaded cores respect to the single-threaded
configurations, and for the ring topologies respect to the others with 16 multithreaded cores. These
reductions correspond to cases where the network supports a higher load. In those situations, there is

25

CHAPTER 3. ANALYSIS AND CHARACTERIZATION OF NOC TOPOLOGIES

more congestion on the network, and that has a higher impact on the applications that need to use it more
often, while others with more hits on their first level cache remain undisturbed. In the multithreaded
cores, we clearly notice a correlation between performance and fairness: the mesh, torus, and CMESH
show the highest fairness because more efficient networks can successfully support more simultaneous
communications without interferences.

 0.0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

F
a
ir
n
e
s
s

16 cores
 0.0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

16 cores, 4 threads
 0.0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

64 cores

MESH
TORUS

RING
RING_FLIT24B

RING_3CYCLER
CMESH

CTORUS
CRING

Figure 3.9: Fairness for the multiprogrammed workloads in chips with 16 single and multithreaded cores and 64 single-
threaded cores. The higher the bars, the better.

 1

 1.5

 2

 2.5

 3

 3.5

M
E
S
H

TO
R
U
S

R
IN

G

FLIT24B

3C
Y
C
LE

_R

C
M

E
S
H

C
P

I−
M

T
/C

P
I−

S
T

(a) 16 cores

 1

 1.5

 2

 2.5

 3

 3.5

M
E
S
H

TO
R
U
S

R
IN

G

FLIT24B

3C
Y
C
LE

_R

C
M

E
S
H

(b) 16 cores, 4 threads

 1

 1.5

 2

 2.5

 3

 3.5

M
E
S
H

TO
R
U
S

R
IN

G

FLIT24B

3C
Y
C
LE

_R

C
M

E
S
H

C
TO

R
U
S

C
R
IN

G

(c) 64 cores

Figure 3.10: Fairness for the multiprogrammed workloads in chips with 16 single and multithreaded cores and 64 single-
threaded cores, represented by the ratio of the CPI of the applications executed along with the rest of applications (CPI-MT)
divided by the CPI of the same application running alone in the chip (CPI-ST). We present candlesticks, where we can see
the minimum, maximum, median, lower quartile (Q1), and upper quartile (Q3).

3.4.7. Memory Controller Placement
In the previous sections, all configurations had four memory controllers located at the edges of the

chip. It has been demonstrated that the location of the memory controllers impacts memory latency in
a mesh topology [5]. We have compared several options varying the number and placement of memory
controllers to look for the best configuration in terms of performance. For the sake of brevity, this section
focuses on multiprogrammed workloads because they exhibit higher main memory access rate. Also, we
limit the design space to the mesh and CMESH topologies, because they are the ones that offer the best
performance, energy, and area trade-offs (as we showed in section 3.4.5), and to the 64-core chip, where
distances are longer and MC placement has a larger impact. Figure 3.11 shows the nodes of the chip where
the memory controllers are located for the mesh and the CMESH topologies. We test 9 configurations for
the mesh, with 4, 8, and 16 memory controllers; for the CMESH we test 5 configurations with 4, 8, and
16 controllers. In the CMESH, the MCs are connected directly to the global routers (see Section 3.4), so
we divide the chip in only 16 squares, which represent clusters of 4 cores each.

26

3.4. TOPOLOGIES FOR HOMOGENEOUS CMPS: QUANTITATIVE ANALYSIS

(a) MESH Baseline (b) MESH B (c) MESH C (d) MESH D (e) MESH E

(f) MESH F (g) MESH G (h) MESH H (i) MESH I

(j) CMESH Base (k) CMESH K (l) CMESH L (m) CMESH M (n) CMESH N

Figure 3.11: Memory controller configurations for the mesh -(a) to (i)- and CMESH -(j) to (n)- topologies with 64 cores.
The shaded tiles include a memory controller. For the CMESH, MCs are connected to the global routers so we only represent
the 4-core clusters of the chip.

We calculate the average performance of the multiprogrammed workloads with all the memory con-
troller configurations, and see that variations in performance are so small (always smaller than 0.03%)
that both the number and placement of memory controllers seem to be a secondary issue. This is because
benchmarks do not miss in the L2 very often, even for the multiprogrammed workloads, which is where
we detected the largest amount of traffic to memory. Increasing the number of memory controllers does
not have a significant impact on performance either.

Abts et al. state that memory controller placement is critical and that a good placement reduces
contention, lowers network latency, and provides predictable performance [5]. Although they simulate
different workloads than we do and with smaller caches, we have compared the amount of traffic to
memory they have to what we see in our simulations. We have determined that our multiprogrammed
workloads access main memory more often than their applications, increasing the effect of memory
controller placement on overall performance. It is true that some memory controller placements reduce
network latency, but we go a step further and guarantee that the impact on system performance is
negligible for such light traffic to memory.

Our main objective was to determine if the memory controller placement is relevant for this kind of
general purpose CMPs with these applications, which represent reasonable workloads. However, it is also
interesting to determine if the memory controllers could significantly affect performance on a scenario
with more traffic to memory. In order to analyse this, we repeat the experiments with different system
parameters: reduced L2 cache size to increase the traffic to memory (down to 128 KB per core from
the original 1 MB per core), and faster memory access to increase the impact of the network latency
reduction (50 cycles instead of the baseline 150). These new simulations increase the traffic to memory
by 50%, but the effect of the memory controller placement is still small. In average, the difference in
performance with respect to the baseline is 0.6%, which is much more than what we were seeing before,
but still very small. Therefore, we conclude that the memory controller placement does not have a relevant
impact on performance in our general purpose CMP, even with system parameters that enlarge the
impact of the network on memory access time. In any case, our results do not rule out the importance of
this issue in specific situations, such as streaming memory applications or systems with even smaller caches.

27

CHAPTER 3. ANALYSIS AND CHARACTERIZATION OF NOC TOPOLOGIES

3.5. Concluding Remarks
Considering the interconnection network and the cache hierarchy simultaneously helps identify im-

provement opportunities in the design of CMPs. Both elements have a significant influence on system
performance, area, and power consumption. We have modelled in detail the processors, memory hierarchy,
and network using full-system simulation and executing both parallel and multiprogrammed workloads.
We have performed a qualitative and quantitative analysis of three network topologies: mesh, torus, and
ring, including two additional ring configurations (one with more bandwidth and one with 3-cycle routers)
and concentrated networks for CMPs with 16 single and multithreaded cores and 64 single-threaded cores.

Our results show that performance is highly affected by the choice of the interconnect, especially
in 64-core systems, where the ring performance drops by 72% with respect to the CMESH for parallel
workloads. The ring topologies perform worse due to the increased hop count, which translates into higher
network latency. In average, compared with the CMESH, the ring suffers from a 34% network latency
increase in the single-threaded 16-core chip, 60% in the multi-threaded 16-core chip, and 136% in the
64-core chip. The CMESH topology offers the best performance with low energy consumption (17% less
than the torus for 64 cores) and area (30% smaller than the torus for 64 cores) for all workloads considered
and both 16 and 64-core chips, even with multithreaded cores, which generate a heavier traffic load.

We have reported that in real applications traffic is very light and not uniformly distributed, pointing
out the potential of heterogeneity, either in the form of dynamic resource allocation or frequency/voltage
scaling. For parallel applications, both the injection rate and the message destinations are more variable
than those we see with synthetic traffic patterns, with only 2 nodes injecting an average of 33% of the
traffic in the 64-core chips; for multiprogrammed workloads, traffic is random with hotspots at the memory
controllers, which inject 25% of the traffic.

For multiprogrammed workloads, we have concluded that that contention in the network causes fairness
to drop, especially for networks with lower performance. For example, the mesh has 26% lower fairnes
with 16 single-threaded cores than with 16 multithreaded cores; focusing only on the multithreaded cores,
the ring has 28% lower fairness than the mesh. We have also determined that the placement and the
number of memory controllers has a negligible effect on system performance with realistic applications,
because they have limited memory access.

28

Chapter 4
Reactive Circuits: Dynamic
Construction of Circuits for Reactive
Traffic in Homogeneous CMPs

Summary

Considering the characteristics of the memory subsystem while designing the NoC helps identify op-
portunities to build more efficient designs. The memory subsystem must ensure a coherent memory
state, which enforces the use of request-reply message patterns. Leveraging these frequent request-reply
patterns, we extend the functionality of requests and use them to dynamically build a circuit for their
replies with the objective of reducing their network latency. Starting from this simple idea, which we
denote Reactive Circuits, we evaluate several implementations of the mechanism: with and without sharing
circuits between messages, performing timed reservations, and removing the implicit coherence messages.
A careful implementation of this circuit reservation mechanism in a wormhole router achieves an average
20.8% reduction in network energy consumption, 5.8% smaller router area and a 4.8% system performance
increase in a 64-core chip, compared with a conventional network.

29

CHAPTER 4. REACTIVE CIRCUITS: DYNAMIC CONSTRUCTION OF CIRCUITS FOR REACTIVE TRAFFIC IN
HOMOGENEOUS CMPS

4.1. Introduction
We focus on optimizing the network on-chip by customizing it for the traffic it has to support, keeping

in mind that the most relevant metric we must take care of is latency as we demonstrated in Chapter 3.
The traffic is generated by the coherence protocol to transport information among caches located in
different nodes, and mostly consists of data requests and replies. This Chapter introduces Reactive
Circuits, a NoC design that takes advantage of this reactive nature of traffic. This novel design leverages
the predictable network traffic behaviour to dynamically build virtual circuits for replies. We evaluate it
in a single-thread homogeneous chip multiprocessor with 16 and 64 cores connected by a mesh.

Analysing the coherence protocol in a standard wormhole 4-stage pipeline router, we note that the
request-reply pattern dominates over the rest. Table 4.1 shows the relative amount of messages travelling
through the network, classified into requests and reply types (detailed information about the messages
generated by the coherence protocol can be found in Table 2.2). More than half of the messages are
a reply to another message and, therefore, we know their source and destination before the message is
injected into the network. With this information, routers can reserve in advance crossbar path and output
virtual channel, removing those stages from the critical path of the router pipeline. To hide the circuit
reservation latency, we use the requests to make the reservation at every router in the path. We also
observed that the network is lightly loaded (nodes inject, in average, less than four flits every 100 cycles),
suggesting it will be feasible to keep resources busy for long periods of time. Nevertheless, we also in-
clude a version that optimistically calculates when the circuit will be needed and reserves only that timeslot.

Reactive Circuits aims to improve state-of-the-art low-latency NoCs by making the following contribu-
tions:

Implementing a circuit reservation technique with several versions, removing routing and arbitration
latency from the router pipeline, and significantly reducing network latency.

Reserving the circuit on-demand, but hiding the reservation latency with the data request and
without any extra circuit setup message or setup network.

Removing unnecessary buffering from the virtual channel reserved for circuit construction reducing
router area and static power.

Eliminating some acknowledgement messages that are used to guarantee coherence but are no longer
needed when data travels through a reserved circuit.

We simulate the mechanism with 16 and 64-core chips using a full-system simulator with realistic
workloads. Reactive Circuits reduce network latency, static power and router area. These results emphasize
the importance of considering the system as a whole and studying how all the elements interact with each
other [78, 133].

4.2. State-of-the-Art
Several works have proposed hybrid packet-circuit switching techniques to speed up certain messages.

Some proposals suggest separate networks for packet and circuit switched messages: Palumbo et al.
determine if messages will use the packet or the circuit switched channels depending on their size [119];
Duato et al. decide at compilation time whether a circuit between two nodes should be established based
on expected communication patterns [37]; Abousamra et al. use the requests to reserve circuits for the
replies based on estimates of circuit utilization times [3]; Abousamra et al. send a circuit reservation
request as soon as a cache hit is detected, though this may not be enough to completely hide the
circuit reservation latency [4]. Other authors implement a single network that supports both packet
and circuit switching: Enright et al. build circuits on demand and undo them when they conflict with
another circuit [61]; Abousamra et al. configure circuits periodically based on online communication
statistics [2]; Kline et al. reserve circuits on demand so that flits can traverse multiple hops in a sin-
gle cycle [71]; Mazloumi et al. reserve a circuit with the request and activate it with a probe message

30

4.3. SETUP, OPERATION, AND RELEASE OF REACTIVE CIRCUITS

Table 4.1: Percentage of messages that traverse the network (average for all benchmarks executed in a 64-core chip).

Requests Replies

47.0% 53.0%

L2_Replies Data from L2 to L1 22.6%
L1_DATA_ACK. L2 acknowledges data reception 23.0%
L2_WB_ACK. L1 acknowledges write-back reception 4.7%
L1_INV_ACK. Invalidation acknowledgement 1.1%
MEMORY. Data from main memory 0.9%
L1_TO_L1. Data from L1 to L1 0.7%

when the reply is ready [96]; Liu et al. speed up circuit setup in TDM NoCs by sending parallel probes [87].

A different technique preallocates resources in advance to allow faster data transmission, either sending
control flits through specialized networks or with tokens that inform neighbouring nodes about their buffer
availability [123, 44, 83].

Most of those mechanisms establish circuits between nodes using dedicated networks or links [61, 71,
96, 87] or at least need to send specific setup messages [119, 37, 4], and many of them need to wait for the
circuit setup delay [44, 87]. One of them introduces complexity at the network interfaces by forcing them
to keep communication statistics [2]. The proposals most similar to our Reactive Circuits mechanism
are [3, 96], using the request to reserve circuits for the reply, but they do not go as far as removing buffers
to reduce router static power and area or eliminating unnecessary coherence messages. [3] also does an
estimation of the time when the circuit will be needed, but does not use it to avoid circuit conflicts.

Another common approach to reduce network latency involves routers that speculate by using paths
without prior reservation, which only work if there is no contention [102, 101, 122, 76]. These routers are
more complex and may require reduced network frequency or result in energy and performance penalties
when the implemented shortcuts cannot be used. There are also several proposals that radically modify
the routers to eliminate all buffers and reduce per-hop latency to one or two cycles, but suffer big penalties
with any level of congestion [69, 98].

Many of the publications we have mentioned do not perform full-system simulations with real
traffic, and therefore, are unable to capture the effect of realistic traffic patterns on their propos-
als [119, 37, 96, 87, 123, 44, 83, 102, 101, 122, 76, 69, 98].

The Reactive Circuits proposed in this paper uses some of the same concepts already introduced by
other publications, but combines them to implement an optimized mechanism that does not require extra
networks, additional management messages, gathering statistics, or modifying the coherence protocol. We
leverage the memory hierarchy behaviour to efficiently reserve network resources in advance with minimal
changes to the routers, and completely hiding circuit reservation delay.

4.3. Setup, Operation, and Release of Reactive Circuits

This section describes the details of the Reactive Circuits mechanism for each of the implemented
versions: reserving, using, and undoing fragmented and complete circuits, sharing circuits, eliminating
coherence messages, and building timed circuits.

31

CHAPTER 4. REACTIVE CIRCUITS: DYNAMIC CONSTRUCTION OF CIRCUITS FOR REACTIVE TRAFFIC IN
HOMOGENEOUS CMPS

4.3.1. Reserving Reactive Circuits
As discussed before, when a request reaches its destination, we already know that a reply is going to

be sent back to the source, based on the patterns introduced in Table 2.2. A previous approach consists
of sending the head of the message in advance to reserve the resources along the way, building a circuit
for the data in parallel with the L2 access [4]. However, in our case the L2 hit access is too fast (7 cycles)
compared with the average time needed to set up the circuit (19 cycles in a 16-core chip and 59 in a 64-core
system). We overcome this problem by reserving reactive circuit for the reply as its request travels towards
the destination. Using dimension order routing (DOR), request and reply follow disjoint paths because
both messages travel first in the horizontal direction, and then in the vertical one. In consequence, we
start by modifying the DOR algorithm so that requests and replies use XY and YX routing, respectively,
so the path to and from the destination match. This change does not generate deadlocks because different
message types use different virtual networks.

Requests go through the four original stages of the router (see Table 2.3). In parallel with VC allocation,
the reactive circuit is built for the reply. During that process, the necessary information to identify the
circuit is stored in the router (requestor identifier and cache line address). Since we have two VCs for
replies, we dedicate one to circuits and leave the other for replies that do not have a circuit. This way,
Reactive Circuit routers will support packet and circuit switching simultaneously. Information of the
circuit is also stored in the network interface where the circuit starts.

Out of the message types in Tables 4.1 and 2.2, reactive circuits are built for data sent from L2 to L1
(L2_Replies), replacement acknowledgements (L1_WB_ACK), and main memory replies (MEMORY),
which account for 53.2% of all reply messages. Invalidation acknowledgements (L1_INV_ACK) and
direct data transfers between L1 caches (L1_TO_L1) are a very small percentage of the reply messages
(only 1.8%). L1_DATA_ACK messages are replies sent from an L1 to an L2 after a request-reply
communication to confirm the reception of the DATA. These messages are essential to maintain coherence
as they guarantee the L2 that the data has been received and prevent race conditions, and are used both
in academia [125, 40] and industry, e.g. AMD Opteron [31]. L1_DATA_ACK messages do not follow the
same path as the request and reply between L1 and L2: the request follows the XY path from the L1
to the L2 and the reply follows the YX path from L2 to L1 (so it goes through the same routers as the
request), but the ACK is a reply that follows the YX path from L1 to L2. Therefore, it is not possible to
use a previous message to build a circuit for them.

The following sections describe specific details of the implementation and introduce the different
versions of the Reactive Circuits mechanism.

4.3.2. Fragmented versus Complete Circuits
When trying to build a circuit at a router, the necessary resources might not be available. In this

situation, there are two design alternatives:

Allow fragmented circuits, keeping the partial path reserved, and attempt to reserve the rest of the
path after the next hop.

Support only complete circuits, so that any lack of resources will force us to undo the previous
reservations.

With fragmented circuits, we need to assure messages can always be stored in the router in case their
circuit has not been completely built. As we already mentioned, we start by dedicating one VC for replies
without a circuit, and the other one for replies with circuit. In the baseline NoC, VCs are not heavily
used and are rarely blocked. However, keeping VCs reserved for a longer period of time has a negative
effect: there may not be enough resources to exploit the full potential of the proposal. Therefore, with
fragmented circuits we include an additional VC to increase the number of simultaneous circuits, ending
up with a total of three VCs in the reply virtual network. This extra VC will mean an increment in router
power and area.

32

4.3. SETUP, OPERATION, AND RELEASE OF REACTIVE CIRCUITS

Building only complete circuits allows us to implement many simplifications in the router. We guarantee
that a message with a circuit has all the resources it needs from source to destination. Hence, it will never
get blocked in the network. This has two beneficial effects: first, it allows us to remove the buffer storage
of the VC dedicated for circuits reducing the router area; second, we can build as many circuits as we
want for that VC in every input port because flits will just go through the router without stopping.

All the complete circuits in the same input port of a router must have the same source to avoid
conflicts: two circuits with different input ports and the same output port cannot be built at the same
time on a router. This is because if two flits arrived at the same time wanting to use those circuits, one
would have to be dropped because both of them would not be able to leave through the same output port
in the same cycle. We have experimentally explored the best number of simultaneous circuits built per
input and set it to five. This number reduces the probability of failing to build a circuit due to lack of
free storage for circuit information, but it is small enough to minimize area and power consumption, as
we will demonstrate in the evaluation section. Figure 4.1 presents the modified router that implements
the reservation of complete circuits.

To clarify the difference between the two alternatives, we show an example of how circuits are built
in Figure 4.2. To simplify the example, we assume there is one single VC dedicated to circuits. In both
cases, there is a blue circuit already built from L2A to L1A, and a new request tries to build a new circuit
(green) from L2B to L1B. The request builds the circuit as it is traversing the network, so the circuit is
built starting from its final router (L1B) and ending in its first router (L2B), in the opposite direction of
the replies that will use it. In Figure 4.2a, there is one hop in the network where a conflict is detected (in
the router marked as R2), but the fragmented circuit can be built in all the other routers. In Figure 4.2b
we see that the situation is very different with complete circuits. When the request tries to build the
circuit in router R1, it detects there is already another circuit using the needed input port (East port).
That circuit that is already completely reserved has a different source than the one we are trying to build
now, which means that at some point we will need two circuits with different inputs and the same output
in a router (in router R2). Therefore, this circuit cannot be reserved in all the routers and, since this
mechanism only supports complete circuits, the successful reservations in the downstream routers have to
be undone.

4.3.3. Using the Circuits
When a reply arrives at a router, it checks if there is a circuit built for it. In that case, it can go

straight through the crossbar leaving the router in just one cycle. When the tail flit of the message leaves
the router, it frees the circuit resources by clearing the B bit. With fragmented circuits, a message that
had a circuit might arrive at a router where there is no built circuit. When that happens, it will just be
stored in the VC and go through the usual four stages of the router.

Even when there is a circuit built at a router, the ports and links involved can still be used by other
messages. The crossbar prioritises messages with a circuit, but it grants access to the other virtual
channels when the circuit is not used.

4.3.4. Undoing circuits before they are used
We must undo a circuit before it gets used under the following situations:

The coherence protocol lets an L2 cache bank forward a request to an L1 that owns a cache line
exclusively, who will supply the data directly. Therefore, the circuit built between the requestor L1
and the L2 bank will never be used and should be explicitly torn down.

When we try to build a complete circuit and reach a router where resources are not available, we
have to undo the section of the circuit we had successfully built so far (see Figure 4.2b).

In both those situations, we undo the circuit with a simple and efficient technique: we send the data of
the circuit to be undone towards the circuit destination using credits. If a credit had to be sent at the

33

CHAPTER 4. REACTIVE CIRCUITS: DYNAMIC CONSTRUCTION OF CIRCUITS FOR REACTIVE TRAFFIC IN
HOMOGENEOUS CMPS

G. R. O. C.

G. R. O. C.

G. R. O. C.

Input Unit
Routing Unit

VC
Allocator

SW Allocator

VC0: G. I. C.
VC1: G. I. C.
VC2: G. I. C.
VC3: -----

Output Unit

VC0: G. I. C.
VC1: G. I. C.
VC2: G. I. C.
VC3: ----

Output Unit

credits &
undo circuit

Build
Circuit

Circuit Check Crossbar

undo circuit

credits &
undo circuit

credits & undo circuit

B destID line@ outport

G. R. O. C.

G. R. O. C.

G. R. O. C.

Input Unit

Circuit Check

crossbar priority

crossbar priority

B destID line@ outport

B destID line@ outport
B destID line@ outport

Figure 4.1: Architecture of the router that reserves complete Reactive Circuits. The modifications with respect to the
baseline router are highlighted. They include “Circuit Check” logic at the Input Units and a “Build Circuit” module in the
VC allocator. In this drawing, two simultaneous circuits can be built per input port. VCs at the Input Units store global
state (G), route (R), output VC (O) and credit count (C). Circuit information includes built-circuit bit (B), destination
identifier (destID), cache line address (block@) and output port (outport). Credits may carry undo-circuit information. The
Output Units store global state (G), input VC (I) and credit count (C).

L1B

L2A

L1A

L2B

R1 R2

(a) Fragmented circuits

L1B

L2A

L1A

L2B

undo circuit

R1 R2

(b) Complete circuits

Figure 4.2: Example of how circuits are built with fragmented and complete circuits, using always one single VC for
circuits. In both cases, the blue circuit has already been built by a request going from L1A to L2A. Then another request
has tried to build the green circuit from L2B to L1B.

same time to free a buffer, we piggyback the information; otherwise, we send a specific credit.

We also considered undoing circuits when an L2 miss occurs, because resources will be held for a long
time while the request goes to main memory. However, simulation results show better performance if we
keep them built.

4.3.5. Reusing Complete Circuits
In the previous sections, circuits were specifically built for a message and used only by that message.

We go a step further to improve our mechanism and try to find other messages that can reuse the circuits.
When a reply that does not have a built circuit is about to leave the network interface, it checks if there is
any circuit starting at that NI that it could use to get closer to its destination. In that case, the message
becomes a scrounger message that uses the circuit to reach an intermediate destination. At that point,

34

4.3. SETUP, OPERATION, AND RELEASE OF REACTIVE CIRCUITS

the network interface will forward the message by re-injecting into the network that it can arrive at its
final destination.

Note that we can only apply this method with complete circuits because there are no buffer guarantees
for two messages using the same fragmented circuit.

4.3.6. Eliminating Coherence Messages
Studying the coherence protocol while designing the NoC has allowed us to notice a rewarding ef-

fect of our reactive complete circuits. We already mentioned that we cannot build a circuit for the
L1_DATA_ACK reply messages that are sent from L1 to L2 after the L2_Reply (see Section 4.3.1). Since
the NoC does not guarantee message ordering, this L2_DATA_ACK avoids a situation where the L1
received an invalidation or a forwarded request for data it had not received yet. However, if the L2_Reply
uses a complete circuit to get to the L1 requestor, we are sure the data, travelling at a speed of 2 cycles
per hop and never blocking, will arrive before any other message sent from L2 to L1 afterwards. Therefore,
we can acknowledge the data reception to the L2 without the need to wait for the L1_DATA_ACK
message. With this simple observation, we can omit those messages to reduce contention in the network
and energy consumption. On top of that, other requests waiting to access the same cache line will reduce
their waiting time since the L2 cache line will not be blocked while the L2_Reply and L1_DATA_ACK
messages are exchanged.

4.3.7. Timed Reservation of Complete Circuits
Having complete circuits is the most beneficial option to reduce router power and area. However,

circuits cannot be built when there is a conflict, which means there cannot be two circuits with different
input ports and same output port built simultaneously in a router. If two flits arrived at the router at the
same time wanting to leave through the same port, one would be forced to wait and we would not be able
to store it because we have removed the buffers for that virtual channel. However, given the light load of
the network, it is very improbable for those two flits to arrive at the same time and create a real conflict.

Therefore, circuits cannot be built due to the possibility of a collision that may not actually happen.
To avoid that, we implement timed circuit reservation: we optimistically calculate when the reply will go
through the router, and reserve the circuit only for those cycles. This way, the channel is not busy from
the moment it is reserved until it is used, it will only be busy for a short time interval. The time will be
calculated using the number hops between the current router and the destination, the hop latency for the
request (five cycles/hop) and for the reply (two cycles/hop), and the cache hit latency [3]. It will then be
stored in two counters where we will annotate the cycles until the circuit reservation starts and finishes,
and that will be decreased every cycle. Abousamra et al. also calculate the expected reply arrival time
but use it only order the circuit reservations, stating that timed based reservations are impractical due to
unforeseen delays. We address this issue by enhancing the basic idea with three variations of complete
timed circuits, as explained below.

Now, circuits with different input port and same output port can be built at the same time, as long as
they use non-conflicting time slots. When a reply is going to be sent, it can only use its circuit if it is
within the optimistic timing estimation. Otherwise (for example in case of a cache miss), the circuit will
be undone and the reply will need to go through all the stages of the router. Figure 4.3 describes how
timed circuits are reserved and includes three variations designed to increase the flexibility:

1. Reserve the circuits with slack. Instead of reserving the exact number of cycles the reply will need,
we give the option to reserve more cycles to be able to accommodate delays due to failed arbitrations
of the request and extra cache delays.

2. Allow reserving the circuits with delay. If the time slot the circuit needs has already been occupied,
we try to reserve the circuit for some cycles later. The reply may need to wait for its time slot before
being sent, but it will reach its destination faster by using the circuit. Note that this version must

35

CHAPTER 4. REACTIVE CIRCUITS: DYNAMIC CONSTRUCTION OF CIRCUITS FOR REACTIVE TRAFFIC IN
HOMOGENEOUS CMPS

slack{
circuit reservation

timed circuits

timed circuits
with slack
and delay

request reaches the router

expected reply arrivalmessage duration

Router1

Router2

Router1

Router2

timed circuits
with slack

slack{

Router1

Router2

another circuit
reservation

delay{

slack{

slack{

Router1

Router2

timed postponed
circuits

{
{postponed

cycles

postponed
cycles

cycles

complete
circuits

Router1

Router2

Figure 4.3: Diagram for reactive circuit reservation in the four variants of complete timed circuits. Basic complete circuits
are also included for comparison. In each configuration, the construction of the circuit is shown for two consecutive routers.

36

4.4. EVALUATION

be combined with the previous one: we need to reserve the timeslot with a slack so that we can
introduce a delay and still be on time for the reservations already made in previous routers.

3. To have the flexibility of the slack without reserving the circuit for a longer period of time (which
increases the probability of conflicts), we reserve postponed circuits. In this case, we reserve the
circuit for the exact number of cycles it needs, but for a later time. This will increase the number of
circuits that can be built and used, but all the replies will need to wait for the circuit, even if the
request was not delayed and they were ready before.

In the three versions, the number of cycles of slack, delay or postponement is proportional to the path
length, introduced as number of cycles per hop.

4.3.8. Ideal Circuit Reservation
We consider an ideal version of the mechanism that will successfully reserve and use all the circuits.

This version is not a feasible design due to the increased area and power consumption, and the inclusion of
logic that would not fit in a single cycle, but we include it as an upper bound for performance comparison.
It consists of keeping the buffers and reserving all the circuits, without caring about conflicts or timing,
and without a limit in number of circuits per input port. Then, all the replies will use their circuit to reach
their destination. At every hop, the router needs to check if there are two conflicting flits using circuits, and
in that case, prioritise one of them and keep the other in the buffer. That is done in a single cycle, as well
as checking if the circuit has credits for the next hop before forwarding the flit. We would not be able to
implement this in a real system, but all the replies will use circuits and suffer only small delays if there are
collisions, which will give us the best performance Reactive Circuits can offer and will be useful for reference.

4.4. Evaluation
This section presents the main results for the Reactive Circuits techniques, including power, area, and

performance.

4.4.1. Construction and use of Reactive Circuits
We analyse how effective each version of our mechanism is in building and using circuits. Figure 4.4

presents the percentage of replies that travel on a circuit, with a failed circuit (could not be completely
built), with an undone circuit (it was completely built but had to be undone), that travel on a circuit
built for another message (scrounger messages), that were not eligible for a circuit, and that were elimi-
nated (removed L1_DATA_ACKs due to successful L2 to L1 circuits). It includes every circuit-building
configuration tested in 16 (Figure 4.4a) and 64-core chips (Figure 4.4b), and we present the average of all
the parallel applications and one multiprogrammed mix.

The first bar of the graph corresponds to fragmented circuits. In this case, the failed circuits are those
that could not be completely built, but replies using them will still have sections of their path with a
built circuit. As we already anticipated in Section 4.3.4, there are some cases when a built circuit will not
be used due to the behaviour of the coherence protocol (when the L2 bank forwards the request to the
L1 owner). However, this is a very small percentage of the total of replies. Apart from that, there are
more than 40% of replies that cannot benefit from the mechanism because they are not associated with a
request that can reserve the circuit.

The rest of the bars are different versions of complete reactive circuits. We detect that in this case we
can reserve more successful circuits (blue section of the bars). This is because fragmented circuits have
to guarantee a buffer for all the replies, which forces us to set a low maximum of circuits per port (two
in this case). On the other hand, replies with complete circuits will never block, so they do not need a
buffer. This allows us to reserve more simultaneous circuits per input port (five in our case), and almost

37

CHAPTER 4. REACTIVE CIRCUITS: DYNAMIC CONSTRUCTION OF CIRCUITS FOR REACTIVE TRAFFIC IN
HOMOGENEOUS CMPS

 0

20

40

60

80

100

Fragm
ented

C
om

plete

C
om

plete_N
oAC

Ks

R
euse

R
euse_N

oAC
Ks

Tim
ed

Tim
ed_Slack1

Tim
ed_Slack2

Tim
ed_Slack3

Tim
ed_Slack4

Tim
ed_SlackD

elay1

Tim
ed_SlackD

elay2

Tim
ed_SlackD

elay3

Tim
ed_SlackD

elay4

Tim
ed_Postponed1

Tim
ed_Postponed2

Tim
ed_Postponed3

Tim
ed_Postponed4

Ideal

%
 R

e
p

lie
s

With circuit
With failed circuit

With undone circuit
Scrounger

Without Circuit
Eliminated

(a) 16 cores

 0

20

40

60

80

100

Fragm
ented

C
om

plete

C
om

plete_N
oAC

Ks

R
euse

R
euse_N

oAC
Ks

Tim
ed

Tim
ed_Slack1

Tim
ed_Slack2

Tim
ed_Slack3

Tim
ed_Slack4

Tim
ed_SlackD

elay1

Tim
ed_SlackD

elay2

Tim
ed_SlackD

elay3

Tim
ed_SlackD

elay4

Tim
ed_Postponed1

Tim
ed_Postponed2

Tim
ed_Postponed3

Tim
ed_Postponed4

Ideal

%
 R

e
p

lie
s

With circuit
With failed circuit

With undone circuit
Scrounger

Without Circuit
Eliminated

(b) 64 cores

Figure 4.4: Percentage of replies that travel on a circuit, with a failed circuit (could not be completely built), with an
undone circuit (it was built but had to be undone), that were scrounger messages, that were not eligible for a circuit, and
that were eliminated, for every circuit-building configuration tested.

all circuit failures come exclusively from output port conflicts (when we would need two circuits from
different input ports to the same output port). Removing coherence messages (NoAck) has a significant
impact by eliminating 20-30% of the replies. On the other hand, reusing circuits has only some impact on
the 64-core configuration, because there are more circuits built on the network, and, therefore, a higher
probability for scrounger replies to find a suitable circuit.

We then present results for basic timed circuits and three additional versions, always removing the
non-necessary coherence messages. The three versions correspond to the ones introduced in Section 4.3.7
(Slack_, SlackDelay_, and Postponed_, where “_” is the number of cycles per hop). They are all
simulated with different values for the slack, which is introduced as number of cycles per hop in the
path. This way, the slack automatically adapts to the path length. In the basic timed version, we notice
that there are more failed circuits than in the simple complete circuits scheme, especially in the 16-core
system. This is because the strict timing restrictions cause the circuit to fail as soon as the request
suffers any delay (loses any VC or switch arbitration), the optimistic timing calculation performed for
the reply does not stand any more after that. We clearly see in the figure how the number of successful
circuits rapidly increases as we introduce slack, effectively solving the problem. However, especially with
64 cores, we realize that increasing the slack does not necessarily allow more circuits to be built. This is
because there is a trade-off in the number of cycles of slack we reserve: with a small slack, circuits fail
because the timing cannot be met after small delays; on the other hand, higher slacks give more room for

38

4.4. EVALUATION

Table 4.2: Percentage of circuit reservations in all routers that correspond to the first, second, third, fourth, and fifth
reservation in that input. The percentage of failed circuits is also included.

Avg. circuit
reservations in
routers

1st
circuit

2nd
circuit

3rd
circuit

4th
circuit

5th
circuit

failed

48% 24% 7% 6% 6% 9%

delays, but reserve circuits for longer periods of time, making it more likely to have conflicts in output ports.

Apart from that, we notice a negative effect in all the timed circuits: the amount of circuits that get
completely built but have to be undone without being used significantly increases. In the versions of the
mechanism without timing, this was only caused by a pattern in the coherence protocol that happened spo-
radically (the L2 bank forwarding the request to the L1 owner). However, with timed circuits a reply must
leave the network interface exactly within the reserved timeslot; otherwise, the circuit must be undone and
the reply has to follow traditional router pipeline. This unpleasant situation happens due to unpredictable
delays in the caches, mostly because requests are blocked in busy cache lines waiting for acknowledgements.

The last bar with the ideal circuit construction has been included for comparison. In the 16-core
chip, our mechanism achieves results very close to the ideal, while the 64-core chip cannot exploit the
mechanism to its fullest potential. Comparing Figures 4.4a and 4.4b, we notice that it is more complicated
to build circuits with a larger chip, making the scalability of the mechanism a concern. This is due to the
longer paths messages need to follow and the increased amount of traffic, which generate more conflicts
and cause circuits to fail. This means that less replies will be able to reduce their latency and that
more replies will need to use the same non-circuit VC, thus increasing latency. With the basic version of
complete circuits for 64 cores, only about 25% of replies use a circuit, the remaining 75% must use the
other VC, thus increasing congestion. This situation is however improved by two optimizations: removing
acknowledgements reduces the amount of replies using the non-circuit VC down to about 50%; timed
circuits increase the amount of replies that can use a circuit to about 40%, and in turn, also increases
the number of acknowledgements that can be removed. With all these optimizations, there are less than
40% of replies contending for the non-circuit VC. Assuming that in the baseline configuration both VCs
would be used equally (50% of replies in each VC), with the most optimized reactive circuits version we
are actually reducing the load of that VC and maintaining the benefits of Reactive Circuits. We expect
the effect of those optimizations to be even more relevant with bigger chips.

In the complete circuits versions, we can reserve several circuits per input port. As we explained in
Section 4.3.2, we experimentally choose the number of simultaneous circuits to be big enough to reduce
failed circuits due to lack of storage but small enough to minimize area and power. As an example, Ta-
ble 4.2 presents the number of simultaneous circuits built for the complete circuits version with eliminated
coherence messages in a 64-core chip. The table includes the percentage of circuit reservations at routers
that correspond to the first, second, third, fourth, and fifth reservation in the same input. We notice that
it is much more common to reserve the first circuit at an input port that it is to reserve the second or
third. Nevertheless, the storage for all the five circuits is used and it leaves a small percentage of failed
circuits due to lack of storage. Note that the remaining percentage corresponding to the number of failed
circuit reservations at routers is a very small percentage, much smaller than the number of failed circuits
with respect to the total number of circuits that we saw in Figure 4.4. This is because a successful circuit
contributes with many reservations (one per hop), while a failed circuit may also have successful circuit
reservations in several routers before have one single failure.

4.4.2. Network Latency
Figure 4.5 shows how the circuit construction affects message latency depending on the type of message:

requests, replies eligible for circuit construction (Circuit_Rep), and replies for which we cannot build a
circuit (NoCircuit_Rep). We include the baseline and ideal configurations, and the most relevant versions
of the Reactive Circuits mechanism. Since the latency of requests does not change in any of those versions,
we show it only in the baseline experiment. In each bar we distinguish between network latency (cycles
each message spends in the network) and queueing latency (cycles before the message can enter the

39

CHAPTER 4. REACTIVE CIRCUITS: DYNAMIC CONSTRUCTION OF CIRCUITS FOR REACTIVE TRAFFIC IN
HOMOGENEOUS CMPS

Table 4.3: Router area savings in the different versions of the circuit-building mechanism. Negative values correspond to
configurations with larger area.

Version Area Savings
16 cores 64 cores

Fragmented -19.28% -18.96%
Complete 6.21% 5.77%
Complete Timed 3.38% 1.09%

network). In the baseline configuration we see that the replies eligible for construction have higher latency
than the requests, which is because most of them have five flits instead of one; replies not eligible for
circuits are normally acknowledgements composed of a single flit.

When we build circuits for the replies, either fragmented or complete circuits, the network latency is
significantly reduced. The highest savings are obtained with the basic complete circuits, reusing complete
circuits, and timed circuits with slack and delay, always removing unnecessary acknowledgements. To
make a fair comparison, we have considered the latency of the eliminated coherence messages to be zero.
In the configurations where we remove those messages, we notice a dramatic drop in the latency of replies
that are not eligible for circuits.

The timed circuits without any slack do not reduce network latency as much as the other options
because, as we already showed in Section 4.4.1, not many circuits can be successfully built. We include
two of the optimized versions of timed circuits: one with slack and delay, which significantly reduces
the latency, and one with postponed circuits. The latter was implemented to increase the number of
built circuits, but this was done by forcing a delay for every reply. Even though we can reserve many
circuits, the forced delay has a negative impact on network latency. In fact, this option will not result in
performance or energy improvements, so we will not include it in the following sections.

We notice that Reactive Circuits have a negative effect, especially in the 64-core chip: the queueing
latency increases significantly, as well as the network latency for non-circuit messages. This is because
virtual channels are now dedicated to each traffic type (circuit or non-circuit), so we eliminate their use
as virtual lanes to reduce congestion, thus increasing the latency for non-circuit messages. Luckily, we
can partially solve it by eliminating the unnecessary coherence messages, which lightens the load of the
non-circuit VC.

4.4.3. Router Area and Network Energy
Table 4.3 presents the savings in router area for each version of the mechanism compared with the

baseline router with four VCs. With fragmented circuits, the area increases by almost 20% because we
had to include an extra VC for circuits in order to increase the number of simultaneous circuits, as well as
storage for the circuit information. In contrast, with complete circuits we also need to include storage for
circuit information but we can eliminate the buffers in the VC dedicated for circuits, which makes the
router area decrease by 6%. When enhancing complete circuits with timed reservations, we must also
store the circuit timestamps, which cancels the benefit or removing the buffers almost completely. We
always remove the buffering from one VC at every port in every router, therefore, these area savings will
be maintained when scaling the chip to larger sizes.

These benefits in area, along with the speedup achieved as a result of the network latency reduction,
translate into outstanding energy savings. Figure 4.6 depicts the normalized network energy for the
most relevant configurations, including dynamic and static energy for both routers and links. The ideal
version is not included because it involves unlimited storage for circuit information. With fragmented
circuits, the energy increases the same way the area did. However, for the rest of versions, we substantially
reduce the energy. The versions without unnecessary coherence messages involve further improvements

40

4.4. EVALUATION

 0

 5

10

15

20

25

R
equests

C
ircuit_R

ep

N
oC

ircuit_R
ep

C
ircuit_R

ep

N
oC

ircuit_R
ep

C
ircuit_R

ep

N
oC

ircuit_R
ep

C
ircuit_R

ep

N
oC

ircuit_R
ep

C
ircuit_R

ep

N
oC

ircuit_R
ep

C
ircuit_R

ep

N
oC

ircuit_R
ep

C
ircuit_R

ep

N
oC

ircuit_R
ep

C
ircuit_R

ep

N
oC

ircuit_R
ep

C
ircuit_R

ep

N
oC

ircuit_R
ep

C
ircuit_R

ep

N
oC

ircuit_R
ep

M
e

s
s
a

g
e

L
a

te
n

c
y
 (

c
y
c
le

s
)

Network Latency Queueing Latency

Ideal
 Timed

Postponed1
 Timed

SlackDelay1 Timed
Reuse
NoACKReuse

Complete
NoACKCompleteFragmentedBaseline

(a) 16 cores

 0

 5

10

15

20

25

30

35

40

45

R
equests

C
ircuit_R

ep

N
oC

ircuit_R
ep

C
ircuit_R

ep

N
oC

ircuit_R
ep

C
ircuit_R

ep

N
oC

ircuit_R
ep

C
ircuit_R

ep

N
oC

ircuit_R
ep

C
ircuit_R

ep

N
oC

ircuit_R
ep

C
ircuit_R

ep

N
oC

ircuit_R
ep

C
ircuit_R

ep

N
oC

ircuit_R
ep

C
ircuit_R

ep

N
oC

ircuit_R
ep

C
ircuit_R

ep

N
oC

ircuit_R
ep

C
ircuit_R

ep

N
oC

ircuit_R
ep

M
e

s
s
a

g
e

L
a

te
n

c
y
 (

c
y
c
le

s
)

Network Latency Queueing Latency

Ideal
 Timed

Postponed1
 Timed

SlackDelay1 Timed
Reuse
NoACKReuse

Complete
NoACKCompleteFragmentedBaseline

(b) 64 cores

Figure 4.5: Message latency for different types of messages (requests, replies eligible for circuit construction (Circuit_Rep),
and replies for which we cannot build a circuit (NoCircuit_Rep)) and Reactive Circuit versions, averaging the result from
the parallel programs and one multiprogrammed mix.

due to the reduction in execution time and network utilization. The complete circuits removing the
acknowledgements achieve the highest savings, with energy reductions of 15.2% and 20.8% in 16 and
64-core chips, respectively. The effect of the mechanism on the 64-core chip is more relevant because the
network has a higher impact on larger systems.

4.4.4. System Performance
Figure 4.7 presents the average speedup of all parallel applications and one multiprogrammed mix for

the most relevant versions of the mechanism. We notice that the speedups are not very large, mainly
because the network is lightly loaded, which limits the effect of network latency on overall performance.
Other similar proposals do not mention performance in their results, probably because the nice im-
provement in network latency translates into small performance improvements, like in our case. The
speedup achieved by our mechanism is very close to the ideal one. Differences among versions are slightly
more pronounced in the 64-core chip, where the network has a larger impact. The versions where we
eliminate unnecessary coherence messages consistently achieve better results than their counterparts with
all coherence messages. The version with the best performance results is the timed circuits with slack and
delay, with performance improvements of 4.4% and 6.0% for 16 and 64 cores, respectively. Non-timed

41

CHAPTER 4. REACTIVE CIRCUITS: DYNAMIC CONSTRUCTION OF CIRCUITS FOR REACTIVE TRAFFIC IN
HOMOGENEOUS CMPS

 0.5

 0.6

 0.7

 0.8

 0.9

 1.0

 1.1

 1.2

N
o
rm

a
liz

e
d
 E

n
e
rg

y

16 cores 64 cores

Fragmented
Complete

Complete noACK

Reuse
Reuse noACK

Timed

Timed_SlackDelay1

Figure 4.6: Network energy for the different versions of the Reactive Circuits mechanism normalized to the baseline without
circuits. We present the average of all parallel applications and one multiprogrammed workload and include the standard
error for every configuration.

complete circuits had larger energy savings than timed circuits even though their speedup is slightly lower
(3.8% and 4.8% for 16 and 64 cores) because they do not need to store circuit timestamps.

Figure 4.7 also includes the standard error for every configuration, which is very small. The margin of
error of our results with a confidence level of 95% is always less than 2% for 64 cores and less than 5% for
16 cores [60]. These results point out that, even though performance gains are small, they are consistent
across all the simulated applications and statistically significant.

For complete timed circuits with slack and delay in a 64-core chip we present the speedup for each
application in Figure 4.8. We can see that 50% of the simulated applications experience performance gains
over 4.5%. There are several applications where the Reactive Circuits mechanism is especially beneficial
and experience performance improvements above 10%, while only two applications out of the twenty two
experience a very small slowdown (less than 2%).

 0.5

 0.6

 0.7

 0.8

 0.9

 1.0

 1.1

S
p
e
e
d
u
p

16 cores 64 cores

Fragmented
Complete

Complete noACK

Reuse
Reuse noACK

Timed

Timed_SlackDelay1
Ideal

Figure 4.7: Speedup for the different versions of the circuit-building mechanism with respect to the baseline without
circuits. We present the average of all parallel applications and one multiprogrammed workload and include the standard
error for every configuration.

Under very adverse conditions, with heavy traffic loads, conflicts would be frequent and prevent
complete circuits from being built, lowering system performance. However, timed circuits reduce the time
circuits keep virtual channels occupied, thus rising the threshold over which the network would be too
congested to build circuits and reduce latency.

42

4.5. CONCLUDING REMARKS

 0.5

 0.6

 0.7

 0.8

 0.9

 1.0

 1.1

 1.2

cholesky

fft barnes

ocean_cp

ocean_ncp

canneal

ferret

raytrace

volrend

w
ater_nsquared

blackscholes

sw
aptions

vips
m

ix00

radiosity

x264
lu_cb

bodytrack

fluidanim
ate

w
ater_spatial

dedup

lu_ncb

S
p

e
e

d
u

p

Figure 4.8: Speedup with respect to the baseline for every parallel application and one multiprogrammed mix for timed
reactive circuits with slack and delay of 1 cycle per hop.

With the studied chip sizes (16 and 64 cores), all the versions of the mechanism achieve similar
speedups. As the chip size increases, paths will be longer and there will be more messages using the
network simultaneously. This will generate more conflicts and it will be more complicated to build
complete circuits. For these reasons, timed circuits will be very useful to guarantee the scalability of the
mechanism. They will only keep resources busy for short periods of time, thus reducing conflicts compared
with non-timed circuits. Apart from that, it is considered that future systems with hundreds of cores will
not be used monolithically to run one single application. Workloads do not offer enough parallelism to run
efficiently on such a large number of cores. Therefore, the usage model of near-future networks-on-chip
will likely involve partitioning and partition isolation, as it has already been implemented by Tilera with
their Multicore Hardwall mechanism [150]. In a partitioned system, Reactive Circuits could be used
independently inside each partition, thus eliminating concerns about the need to scale to a larger number
of cores.

4.5. Concluding Remarks
CMPs are composed of multiple nodes connected via an interconnection network, which contributes

with a substantial share to chip area, energy consumption, and system performance. The use of the
interconnect is determined by the memory subsystem. By studying the communication patterns of the
coherence protocol, we have come up with a smart network design that reduces both energy and area in
the interconnect, and improves system performance.

Our work was inspired by the observation that most of the traffic follows a request-reply pattern, which
helps anticipate the path most replies will follow. We have used that information to propose a mechanism
called Reactive Circuits based on reserving network resources and dynamically building the circuit for the
reply while the request travels through the network. Consequently, reply messages with a set-up circuit
can go through the router in a single cycle, compared with the four cycles needed in the baseline router.
Guaranteeing complete circuits for data messages has also enabled us to predict when they will reach
their destination, and elegantly eliminate the need for their acknowledgement. To evaluate the proposal,
we have performed full-system simulation with realistic parallel and multiprogrammed workloads. For a
64-core chip, where the NoC has more impact, our proposal with complete reactive circuits achieves an
average energy reduction of 20.8% at the NoC, routers have 5.8% smaller area, and system performance
improves by 4.8%.

43

44

Part III

Optical Network-on-Chip Design

This part of the thesis includes our work on optical networks-on-chip. It

motivates the use of this emerging technology for on-chip communications

and presents two design proposals that will contribute to a faster adoption

of optical networks-on-chip: an algorithm to generate power-efficient optical

rings with any number of nodes and automatic calculation of its power, and

a complete network interface architecture for optical NoCs. We then incor-

porate the optical network into two realistic platforms (a chip multiprocessor

and a multicore accelerator) and accurately compare performance and power

with their electronic counterparts.

45

Chapter 5
Introduction to Optical
Networks-on-Chip

Summary

This chapter presents the benefits of the emerging silicon photonics technology and how it can be used to
implement optical on-chip networks (ONoCs). It introduces the two main optical network paradigms: space-
routed ONoCs and wavelength-routed ONoCs, and justifies our decision to focus on the wavelength-routed
optical ring topology for our research.

47

CHAPTER 5. INTRODUCTION TO OPTICAL NETWORKS-ON-CHIP

5.1. Motivation for Optical Networks-on-Chip
As the core count in homogeneous chip multiprocessors scales up, communication between distant cores

requires multiple routing hops and overlapping messages experience significant contention and latency.
Optical links can potentially operate at a much higher switching speed than electrical wires, and eliminate
communication contention through the use of wavelength-division multiplexing (using several wavelengths
in parallel on the same optical waveguide).

There is today consensus on the fact that optical interconnects can relieve bandwidth limitations
at integrated circuit boundaries, and they are mainstream in data centres to overcome the bandwidth
and communication power concerns. There are lots of ongoing development activities to exploit pho-
tonics for chip-to-chip communication [73], especially in the context of the network-in-package paradigm [8].

There is also a rich design space for on-chip optical communications [70, 14, 121, 146, 30, 80], including
re-architecting of the DRAM memory sub-system [15], the revision of the processor-memory interface [142],
or the development of new coherence protocols custom-tailored for the optical transport medium [80]. This
significant amount of work has contributed to the foundation of cross-layer design methodologies for new
optical networks [15], and projects superior bandwidth, latency and energy with respect to electrical wires
beyond a critical length [67]. These benefits could be extended to on-chip communication architectures,
either as standalone optical networks [74], or as hybrid interconnect fabrics [25]. However, it is still
not clear whether it will be cost-effective to utilize this emerging interconnect technology for on-chip
communication.

5.2. Space-Routed vs. Wavelength-Routed ONoCs

The inherent characteristics of optics (whose basic concepts are introduced in Section 1.1.2) have
forced researchers to come up with new network designs radically different from the electronic ones, which
can be classified in two groups: space-routed and wavelength-routed. Space-routed optical networks
(SPONoCs) must set up a path in the optical network before they can start transmitting data, which
introduces an unpredictable delay subject to conflicting requests on resources to be allocated, making
them more suitable for scenarios featuring long-lasting connections [136]. They require two networks: an
electronic NoC to perform the path-setup between cores and an optical network to transmit data packets
once paths are reserved. SPONoCs use the wavelength-division multiplexing degree of freedom to increase
the bit parallelism of each communication flow.

In contrast, wavelength-routed optical NoCs (WRONoCs) rely on the principle of wavelength-selective
routing. As it is conceptually shown in Figure 5.1, every initiator can communicate with every target at
the same time by using different wavelengths. For instance, initiator I1 uses wavelengths 1, 2, 3, and 4
to reach targets 1, 2, 3, and 4, respectively. Wavelengths are assigned to each communication to ensure
that they will never interfere with each other on the network optical paths. This way, all initiators can
simultaneously communicate with the same target by using different wavelengths. WRONoCs do not
use wavelength-division multiplexing to increase bit parallelism, but to support contention-free all-to-all
communication with a modulation speed of 10 Gbps/wavelength [103, 143]. This is a popular approach
adopted in many optical network designs [147, 62, 104, 100, 15, 20] and attractive for specific application
domains, where performance predictability and ultra-low latency communications are a must (e.g. data
centre applications [66]).

We are aware that a number of intermediate solutions are feasible [15], however we decided to start
the exploration of the huge design space of optical networks from WRONoCs since other solutions require
some form of arbitration. Among the possible WRONoC topologies, we selected an optical ring inspired
by [82]. Simplicity and low implementation cost make the optical ring topology one of the most appealing
interconnection networks proposed in the open literature. In addition, and especially in a 3D-stacked
scenario, the ring topology efficiently meets the place&route constraints unlike other solutions such as
multi-stage and filter-based networks [23, 143]. As an example, Figure 5.2 depicts an optical ring with

48

5.2. SPACE-ROUTED VS. WAVELENGTH-ROUTED ONOCS

I1 T1

T2

T3

T4

λ1

λ2

λ3

λ4

I2 λ2

λ1

λ3

λ4

Figure 5.1: Wavelength-selective routing concept.

two waveguides and two wavelengths communicating four nodes. Note that the same wavelength can be
used to implement several communications on the same waveguide if there are not any conflicts on the
ring sections. Alternating clockwise and counterclockwise waveguides minimizes the number of required
wavelengths by favouring the use of minimal paths.

A B

CD

A B C D
- -
- -
- -
- - -D

C
B
A λ1

λ1
λ1

λ2

λ2
λ1

-

(a) Clockwise waveguide

A B

CD

A B C D

- -
- -

- -
- - -

D
C
B
A
λ1
λ1
λ1

λ2

λ2

λ1

-

(b) Counterclockwise waveguide

Figure 5.2: Optical ring communicating four nodes with two waveguides and two wavelengths.

The light that travels inside the waveguides is generated by a laser source that can be located off-
chip [29] or on-chip [28]. Since the technology for on-chip laser sources is still very immature, in this work
we assume off-chip laser sources that generate light for all the required wavelengths. This light stream is
then taken from the source to all the nodes in the chip using a laser distribution network.

49

50

Chapter 6
Designing Power-Efficient and
Custom-Tailored Wavelength-Routed
Optical Rings

Summary

Out of all the optical network-on-chip topologies, the ring has been proved to be far superior to its
competitors: the contention-free all-to-all communications offer the lowest latency possible, while its
clean physical design with few crossings and ring resonators provides unmatchable power results. The
ring implements simultaneous communications by using a communication matrix that sets a distinctive
waveguide-wavelength pair for each of them. That communication matrix has a high impact on energy
consumption, but so far there have been very few efforts towards optimizing and automating its design.
As far as we know, we propose the best optical ring design algorithm that produces rings with the lowest
number of wavelengths and waveguides in the literature. The algorithm is completed with a layout-aware
and fully automated power calculation framework to help the user choose the most power-efficient design
point.

51

CHAPTER 6. DESIGNING POWER-EFFICIENT AND CUSTOM-TAILORED WAVELENGTH-ROUTED OPTICAL
RINGS

6.1. Introduction and State-of-the-Art
Among all the wavelength-routed topologies, the optical ring stands out as the preferred alternative,

offering low latency communications along with reduced energy consumption [127]. Grani et al. present
a comprehensive design-space exploration for optical rings and demonstrate their outstanding power
consumption and performance results over electronic topologies [48]. A distinctive feature of optical rings
is their flexible implementation, which opens up opportunities for their optimization and customization
for specific interconnect requirements.

In practice, by varying the number of wavelengths and waveguides with the same connectivity require-
ments, the ring design can be tuned to produce infinite variations with very different power consumption
values. To the best of our knowledge, the literature on the design space exploration of optical rings
and on its automation is extremely poor. Grani and Bartolini briefly explore the trade-off between the
number of waveguides and wavelengths and conclude that it is a topic worth studying [48]. LeBeux
et al. propose the first algorithm to generate ring communication matrices [82]. Their main goal is to
come up with a design methodology capable of materializing ring designs that meet the connectivity
requirements of the system at hand. However, concerns arise from [82] about the efficiency of such
design points, especially when considering that a power modeling framework is not reported, hence
missing a fundamental quality metric to asses designs. This paper shares the same goal of automatically
instantiating optical rings with the minimum allocation of resources, however, power optimization is
the primary concern during the synthesis process. In practice, our tool searches for the right balance
between number of waveguides and number of wavelengths to come up with a power-efficient interconnect
solution.It automates optical ring generation driven by power efficiency, and builds upon a power modelling
framework with layout accuracy. As an additional benefit, the tools is also capable of customizing op-
tical rings for the communication requirements of the system at hand, thus avoiding unnecessary overdesign.

Automatically calculating the power consumption of the optical network becomes essential in order
to prune the design space towards the most promising solutions. Bergman et al. analyse the insertion
loss in an optical folded-torus taking into account the physical layout. Chan et al. explore insertion
loss, crosstalk, and power consumption for the TorusNX and Square Root topologies [25]. PhoenixSim
is a computer system simulator than includes optical network power calculations [27]. These proposals
study power consumption for several existing topologies, but do not use that information to improve
the topology design or choose the best among several topology variations. In contrast to previous work,
we implement an automatic power consumption calculator for the ring that takes into account physical
design constraints, such as core placement and optical power losses in the power distribution network. In
particular, we use the layout-aware power models not only for power analysis of generated ring designs,
but also to drive the synthesis process toward the most power-efficient ring configurations.

6.2. Motivation
The optical ring is a wavelength-routed optical NoC, and relies on the principle of wavelength-selective

routing, as it was introduced in Section 5.2. This means that every initiator can communicate with
every target at the same time by using different wavelengths. The communication matrices (waveguide-
wavelength pair to implement each communication) have to be designed to ensure that wavelengths will
never interfere with each other on the network optical paths. As long as we stay within the restrictions
imposed by the technology and the place-and-route constraints, the number of waveguides and wavelengths
of the design can be tuned in order to implement all the required communications with minimal power.
Including more waveguides on the ring increases the number of crossings (as we will show in Section 6.4),
which leads to an interesting trade-off: multiplexing a lot of wavelengths on a few waveguides means the
insertion loss of the wavelengths will be lower, but we will need to add up the power for a lot of them;
on the other hand, increasing the number of waveguides will allow us to reduce the amount of needed
wavelengths, but each one of them will have higher insertion loss.

Figure 6.1 depicts two rings that try to implement all-to-all communications for four nodes. Each

52

6.3. GENERATING THE OPTICAL RING COMMUNICATION MATRICES

ring has a clockwise waveguide and counterclockwise waveguide, and the only restriction is that the same
wavelength cannot be used in the same section of a waveguide twice. With a good wavelength assignment,
Figure 6.1a is able to realize all the communications with two waveguides and two wavelengths. On the
other hand, a bad wavelength assignment has been performed in the design of Figure 6.1b and, although
there are still free sections in the outer waveguide, it would be necessary to include an extra waveguide
or wavelength in order to have the same all-to-all communications, thus increasing power consumption.
This example illustrates the importance of a good assignment of waveguides and wavelengths, which
is what our algorithm will generate, minimizing the number of wavelengths and waveguides needed to
communicate all the nodes and reducing power consumption.

-

D
C
B
A λ1

λ1
λ1

λ2

λ2
λ1

A B

CD

λ1

λ1
λ1

λ2

λ2

λ1 -
-
-

DCBA

(a) Good wavelength assignment

-

D
C
B
A λ1

λ1
λ2

λ2
λ1

A B

CD

λ1

λ1
λ1λ2

λ1 -
-
-

DCBA

X
X

(b) Bad wavelength assignment

Figure 6.1: Optical ring communicating four nodes with two waveguides: an inner clockwise waveguide and an outer
counterclockwise waveguide. Each waveguide is represented with two concentric circumferences, for each one of the two used
wavelengths (red and blue). In the good wavelength assignment, all-to-all communications for the four nodes have been
implemented with the two wavelengths using all the sections of the two waveguides. In the bad wavelength assignment, it
has not been possible to implement all the required communications (from B to C and from C to D are missing).

6.3. Generating the Optical Ring Communication Matrices
We propose an optimized algorithm to communicate any number of elements through an optical ring.

We follow the basic design ideas introduced by LeBeux et al. in [82]: a wavelength can be used to imple-
ment several communications on the same waveguide, and we alternate clockwise and counterclockwise
waveguides. Our objective is to minimize the number of waveguides and wavelengths needed to implement
all the communications without contention.

Our algorithm to generate the optical ring matrices and calculate the network power can be applied to
communicate any number of elements in any tiled system architecture. Therefore, we do not impose any
restrictions on the architecture, and the elements we communicate can be simple cores, large clusters, or
other components. Besides, we can introduce as an input the communications that have to be implemented
(connectivity matrix), enabling the use of the algorithm for more complex architectures such as the 3D
design proposed in [82].

The mechanism we propose to build the ring communication matrices is detailed in Algorithm 1. As
an input, the algorithm needs the number of waveguides of the ring, a maximum number of wavelengths,
and the connectivity matrix. The latter allows us to indicate which specific nodes we want the ring to
connect and, therefore, to use algorithm to build rings for any platform. The output consists of two
communication matrices: one for the waveguides and one for the wavelengths for each communication.
For a given number of waveguides, which may be determined by the place-and-route constraints, the
algorithm generates the ring design with the minimal number of wavelengths.

For each communication that needs to be implemented in the ring (loop in line 5 of Algorithm 1),
the algorithm first tries to set the connection on the minimal path between the two nodes reusing a
wavelength already present in the design (lines 6 to 16). If that is not possible because some of the
required ring sections are not free in any waveguide with any of the existing wavelengths, a new wave-
length will be added to set the communication (lines 18 to 25). If the maximum number of wavelengths

53

CHAPTER 6. DESIGNING POWER-EFFICIENT AND CUSTOM-TAILORED WAVELENGTH-ROUTED OPTICAL
RINGS

Algorithm 1 Generation of optical ring communication matrices.
1: Input Data: num_waveguides, max_num_wavelengths, connectivity_matrix
2: Output Data: waveguide_matrix, wavelength_matrix
3: ring ← generate_ring(num_waveguides, 0 wavelengths)
4: used_wavelengths← 0
5: for communications from connectivity_matrix COM do
6: . First try to reuse a wavelength to set the communication on the short path.
7: success← false
8: for used_wavelengths wl do
9: wg ← ring.get_free_waveguide_short_path(COM,wl)
10: if wg exists then
11: store_communication_short_path(COM, waveguide_matrix, wavelength_matrix, wl, wg)
12: ring.store_use_short_path(COM, wl, wg)
13: success← true
14: break
15: end if
16: end for
17:
18: . If it did not work, try adding a new wavelength
19: if NOT success && used_wavelengths < max_num_wavelengths then
20: ring.add_wavelength()
21: used_wavelengths+ +
22: store_communication_short_path(COM, waveguide_matrix, wavelength_matrix,

new wl, first wg)
23: ring.store_use_short_path(COM, new wl, first wg)
24: success← true
25: end if
26:
27: . If we could not add more wavelengths, try setting the communication on the long path
28: for used_wavelengths wl do
29: wg ← ring.get_free_waveguide_long_path(COM, wl)
30: if wg exists then
31: store_communication_long_path(COM, waveguide_matrix, wavelength_matrix, wl, wg)
32: ring.store_use_long_path(COM, wl, wg)
33: success← true
34: break
35: end if
36: end for
37:
38: if NOT success then
39: ERROR : Unable to generate ring
40: break
41: end if
42: end for

54

6.4. CALCULATING THE POWER

had already been reached, then the algorithm will try to set the communication on the non-minimal
path, going around the ring in the other direction (lines 27 to 36). If it is not possible to do that either,
the algorithm will finish its execution unable to generate the ring design with the given input (lines 38 to 41).

The first difference of the algorithm in [82] with respect to ours is that they fix the number of
wavelengths to use and utilize all of them in the same waveguide until it is not possible to set any of the
remaining communications, at which point they add a new waveguide. The benefit of this idea is that the
number of wavelengths that can be multiplexed in the same waveguide is given by the technology, so it
is a very reasonable input. The drawback is that using up all the sections of the first waveguide before
adding a new one forces the algorithm to use non-minimal paths for several communications that could
have found a shorter path on a second waveguide. Having longer paths has a negative impact on power
because it increases the number of crossings and the propagation loss, as we will explain in Section 6.4.
To avoid this problem, we fix the number of waveguides of our ring and reuse the same wavelength on all
of them as much as we can before adding a new one, always trying to set communications on the shortest
path first.

The inputs of the algorithm allow us to run it several times for a given number of waveguides to get
different communication matrices by gradually reducing the maximum number of wavelengths. We can
generate a first design without a restriction on the number of wavelengths, which will have only minimal
paths. After that, we can try reducing the maximum number of wavelengths to generate rings with fewer
wavelengths but more non-minimal paths, which yields a very interesting power trade-off.

A final and very important detail not mentioned in [82] is the order in which communications are set.
We explore two different options:

Setting long-path communications first. The objective of this choice is to have the shorter communi-
cations fill the gaps left on the ring by the longer communications.

Setting short-path communications first.

The interesting results obtained from these options will be discussed in the evaluation section.

6.4. Calculating the Power
The second step of the ring design consists of calculating the power taking into account layout con-

straints and physical-level parameters. As a novelty, we include the power of the laser distribution network,
which brings the power from the laser source to all of the nodes.

The laser source generates the optical power for the wavelengths, which then has to reach all the nodes
and the waveguides in each node. To send the same wavelength to several paths at the same time we
need to use splitters. To illustrate the complexity of the laser distribution scheme, we present an example
in Figure 6.2 for a system with three nodes and three wavelengths, assuming the ring has one single
waveguide. For each node, the power needed for each wavelength has been calculated from the insertion
loss of the path that uses that wavelength and starts at that node. When designing how to distribute the
laser to all the nodes, we need to set the appropriate splitting ratio so that the the required optical power
reaches every node while minimizing the waste. Ideally, we would need selective splitters to apply the
required splitting ratio to each individual wavelength in order to bring the exact power needed to every
node. However, more pragmatic solutions do exist, which pose less stringent requirements on splitter
technology:

Using a separate distribution waveguide for each wavelength would allow the splitters to have the
ideal splitting ratio at every node for every wavelength, but it would involve a very large number of
crossings at every node to inject the laser into all waveguides, as we will show in Figure 6.3.

Using the same power for all the wavelengths at each optical network interface (ONI), corresponding
to the worst-case power across all wavelengths in the ONI, would allow us to use the same ratio

55

CHAPTER 6. DESIGNING POWER-EFFICIENT AND CUSTOM-TAILORED WAVELENGTH-ROUTED OPTICAL
RINGS

Table 6.1: Physical level parameters.

Chip size 16x16 mm Modulator loss 1 dB
Crossing loss 0.15 dB Coupler loss 1 dB
Propagation loss 0.15 dB/mm Filter drop loss 1 dB
Bending loss 0.005 dB Photodetector loss 1 dB
Splitter loss 0.2 dB Coupler efficiency 90%
Receiver sensitivity -20 dBm Laser efficiency 8%

for all the splitters. In the example from Figure 6.2, we would need to bring 15 mW to all the
wavelengths in ONI0, 20 mW for all the wavelengths in ONI1, and 30 mW for ONI2. The drawback
of this method is the power waste. For example, wavelength 1 in ONI 0 would be getting 15 mW
when it actually needs only 5 mW.

Using a fixed splitting ratio for all the splitters in the laser distribution network. With a 50%
splitting ratio, the same power will have to be sent to both branches for each wavelength. For
example, the splitter directly above ONI1 needs to send 7 mW of power to ONI1 and 2 mW to ONI2
for wavelength 1. Since the ratio is 50-50, it will send 7 mW to both branches. For wavelength 2 it
will send 12 mW, and for wavelength 3, 30 mW. Similarly to the previous option, we would also be
wasting power.

Without lack of generality, we decide to choose the third option. From each node we will likely need to
set paths of different lengths with very different power needs. Therefore, the second option that proposes
to use the same power for all the communications starting at each node would be more wasteful. Besides,
I we will show in Figure 6.3, the laser distribution network is implemented as a perfect binary tree, which
will reduce the different of power that needs to be sent to each branch at every splitter.

ONI 0 ONI 1 ONI 2

λ1 5 mW
λ2 10 mW
λ3 15 mW

λ1 7 mW
λ2 12 mW
λ3 20 mW

λ1 2 mW
λ2 5 mW
λ3 30 mW

laser
source

laser distribution network

Figure 6.2: Example of the optical power needed at every ONI for each wavelength.

Our algorithm takes into account details that have a direct impact on power, not only by favouring the
use of minimal paths, but also by reducing the waste of power in the chosen laser distribution network. It
sets up communications in path-length order, and uses the same wavelength as much as possible before
including a new one. As a result the same wavelength will be used to implement paths of similar lengths,
thus minimizing the differences across nodes for every wavelength and reducing wasted power in the
laser distribution network. These details of the algorithm that have a direct impact on power were not
considered in [82].

The laser distribution network to reach all the nodes is implemented as a perfect binary tree (or as
close as possible with the given number of nodes) to reduce the number of splitters, as shown in the
left hand side of Figure 6.3, but it is an input that can be easily modified. Inside every ONI, the laser
needs to reach all the waveguides, which generates crossings typically overlooked when designing optical
ring topologies (right hand side of Figure 6.3). When calculating the power we consider physical level
parameters that can also be introduced as an input. For this paper, we use the values shown in Table 6.1.

In order to focus purely on the power required by the generated communication matrices without the
effect of the chosen laser distribution network, in some cases we will also calculate the power needed with
an ideal power distribution network. We will simply add up the required power for all the paths in the
ring assuming the splitters do not impose any restrictions and the insertion loss of the laser distribution
network is zero.

56

6.5. EVALUATION

0 1 2 3

15 6 5 4

14 7 8 9

13 12 11 10

laser
source

PDModulators (λ,λ) Photodetector
Couplers and filters (λ,λ) Crossing

Splitters

HUB

PD PD

laser

PD PD

PD PD

PD PD

wg0

wg1

wg2

wg3

Figure 6.3: Laser power distribution tree in a 16-node ring and detail of the distribution of the laser to all the waveguides
inside an ONI.

6.5. Evaluation
This section compares our algorithm with the only other existing algorithm for ring design [82], shows

the number of wavelengths and waveguides needed to communicate chips of different sizes, and analyses
the power consumption.

6.5.1. Detailed Example
We start by applying our algorithm to a detailed example. To facilitate comparison, we have reproduced

the 3D architecture with two layers and four ONIs per layer presented in [82], and built an optical ring
using two waveguides like they do. Figure 6.4 represents the communications implemented by each
wavelength on the two available waveguides (note that the proposed two-layer system does not need
all-to-all communications). Our algorithm manages to build all the communications with five wavelengths
instead of the six needed in [82]. Also, the need of the algorithm from [82] to completely fill the first
waveguide before adding the second forces them to use non-minimal paths on the first waveguide for
communications that could have been implemented with minimal paths on the second waveguide.

We have also compared the power needed for the rings obtained with both algorithms, applying the
power calculation described in Section 6.4 to both of them. Our optical ring requires 91.2 mW, while the
ring from [82], with more wavelengths and longer paths, needs 117.3 mW, a 27% more. With the ideal laser
distribution network, our design needs 15.2 mW, while the one in [82] needs 15.4 mW. The difference in
this case is smaller because the penalization of the longer paths is not as relevant. Besides, as a side-effect
of their algorithm, they use the outer waveguide (with crossings at the hubs) less frequently, thus reducing
insertion loss. This unexpected benefit would not have a big impact in larger systems with more waveguides.

6.5.2. Exploration of the Number of Wavelengths and Waveguides
We run our algorithm for rings of different sizes and get the minimum number of wavelengths needed

to implement all-to-all communications with different number of waveguides. Figure 6.5 shows our
results, along with the available data from the algorithm designed by LeBeux et al. [82]. As expected,
when increasing the number of nodes to communicate we need more waveguides and/or wavelengths to
implement all the communications. Also, increasing the number of waveguides allows us to reduce the

57

CHAPTER 6. DESIGNING POWER-EFFICIENT AND CUSTOM-TAILORED WAVELENGTH-ROUTED OPTICAL
RINGS

G H
 - - - - - - - -

DCB A E F

 - - - - - - - -
 - - - - - - - -
 - - - - - - - -
 - - - - - - - -
 - - - - - - - -
 - - - - - - - -
 - - - - - - - -

0

1 0
2 1

3 2
3 0

3 1
2 3

3
0 4

A
B

C

D
E

F

G

H A
B
C
D
E
F
G
H

(a) Waveguide 0, clockwise

 - - - - - - - -
 - - - - - - - -
 - - - - - - - -
 - - - - - - - -
 - - - - - - - -
 - - - - - - - -
 - - - - - - - -
 - - - - - - - -

0 3
3 1

3 2
0 3

1 0
2 0

3 1
4 2

 A
B
C
D
E
F
G
H

A
B

C

D
E

F

G

H
G HDCB A E F

(b) Waveguide 1, counterclockwise

Figure 6.4: Wavelength assignment in two waveguides to connect 8 nodes distributed in two layers, reproducing the detailed
example presented in [82].

number of wavelengths because each one of them can be used for more communications.

We note that, given the same number of waveguides, our algorithm is able to build the ring with fewer
wavelengths than [82] in every case, and the differences become more prominent with larger systems.

6.5.3. Power Consumption Analysis
We analyse the number of waveguides and wavelengths of each ring configuration along with the power

it will consume and detect some interesting trade-offs. Figure 6.6 shows the power for the different rings
our algorithm generates to implement all-to-all communications for 16 nodes, both with the realistic and
the ideal power distribution networks described in Section 6.5.1. It includes the results obtained with the
two options regarding the order in which communications are set: setting longer-path communications first
(blue) and setting shorter-path communications first (red). We leave out of the graph the configurations

58

6.5. EVALUATION

 0

10

20

30

40

50

60

70

2w
g
4w

g
6w

g
4w

g
6w

g
8w

g
10w

g

13w
g

10w
g

16w
g

20w
g

26w
g

33w
g

22w
g

30w
g

40w
g

52w
g

65w
g

26w
g

36w
g

48w
g

60w
g

250w
g

300w
g

350w
g

#
 w

a
v
e

le
n

g
th

s

256nodes64nodes36nodes25nodes16nodes9nodes

Figure 6.5: Number of wavelengths needed to implement all-to-all communications with optical rings with different
number of waveguides (wg) in systems with increasing number of nodes. The red dots represent the number of wavelengths
required to implement the same communications with the same number of waveguides by the only other existing ring design
algorithm [82]. Please note that these numbers have been extracted from a graph and there may be small imprecisions.

with one single waveguide because they have extremely high power consumption and require a lot of
wavelengths, since they all need to share the same waveguide and all communications have to follow the
same clockwise direction.

For a given number of waveguides, comparing the long and short-path first versions we notice that the
first configuration the algorithm can build, where there are only minimal paths, is always better with long
paths first: it has fewer wavelengths and consumes less power. This is because, as we already anticipated
in Section 6.3, if we leave the short paths for the end they will be able to fill the gaps in the ring left by
the longer paths.

Focusing on the configurations built with the same number of waveguides with long paths first, we no-
tice that, as the algorithm manages to reduce the number of wavelengths, the power surprisingly increases.
This is because the reduction in the number of wavelengths is achieved by introducing non-minimal paths,
which increases insertion loss (due to propagation distance and number of crossings). However, when
building short-paths first with the realistic power distribution network, the power actually decreases
as we build configurations with fewer wavelengths. The non-minimal paths to maximize wavelength
reuse are set when a lot of the ring sections are already occupied, corresponding to the last communi-
cations implemented on the ring. With short paths first, those last communications are the ones with
longest paths. Therefore, the difference in length between the minimal and the non-minimal path is
small and will not penalize insertion loss as much. For example, in a 16-node ring a minimal path of 7
hops corresponds to a non-minimal path of 9 hops, which is a small difference. In contrast, a minimal
path of 1 hop corresponds to a non-minimal path of 15 hops. This power reduction is true with the
realistic power distribution network, where the 50% splitting ratio forces the power distribution network
to send the worst-case power to both branches at every splitter. For the ideal network, splitters are
not included, so power increases with the number of non-minimal paths also in the short-paths first version.

We also notice that when the number of waveguides is even results are much better than when it is
odd. That is because there are the same number of clockwise and counterclockwise waveguides, which
helps build a more balanced ring with minimal paths only. We also notice that with an even number
of waveguides a design that minimizes the number of wavelengths by implementing non-minimal paths
can never be found. In contrast, this is common for configurations with an odd number of waveguides
because the extra waveguide than unbalances the design provides additional room on that direction for
communications to be built on the non-minimal path. With higher number of waveguides it is rarer to
find additional configurations with reduced number of wavelengths because the number of wavelengths is
already small, and they are used across a higher number of waveguides.

It is also worth mentioning that these trends do not continue when generating rings for larger platforms.
With more nodes, it is normally not possible to generate ring configurations with non-minimal paths

59

CHAPTER 6. DESIGNING POWER-EFFICIENT AND CUSTOM-TAILORED WAVELENGTH-ROUTED OPTICAL
RINGS

 2

 3

 4

 5

 6

 7

 8

 9

 10

 10 15 20 25 30 35 40

P
o
w

e
r

(W
)

wavelengths

2wg

3wg

4wg

5wg

6wg

7wg

8wg

9wg

10wg

2wg

3wg

4wg

5wg

6wg

7wg

8wg

9wg

10wg

long first short first

(a) Realistic power distribution network

 170

 175

 180

 185

 190

 10 15 20 25 30 35 40

P
o
w

e
r

(m
W

)

wavelengths

2wg

3wg

4wg

5wg

6wg

7wg

8wg

9wg 10wg

2wg

3wg

4wg

5wg

6wg

7wg
8wg

9wg
10wg

long first short first

(b) Ideal power distribution network

Figure 6.6: Power to implement all-to-all communications on a 16-node chip with varying number of wavelengths and
waveguides. It also includes the two versions of the algorithm: setting long-path communications first and setting short-path
communications first.

and fewer wavelengths than the first configuration obtained by the algorithm. This means that the best
configuration is always obtained by setting the communications of the longest paths first.

Finally, the best ring configuration power-wise is the one with only two waveguides, both with the
realistic and ideal power distribution networks. As we explained in Section 6.4, the laser power injected in
the hub generates crossings in all the waveguides except the innermost one. Including more waveguides
means that there will be more communications in the waveguides with crossings, therefore increasing the
insertion loss of those paths. Also, in the realistic power distribution network, it involves including more
splitters to bring the laser to all the waveguides.

6.5.4. Customizable Ring Designs
When communicating complex systems, we may need to build a ring for more complicated connectivity

matrices instead of the basic all-to-all communications. In this experiment, we start with a fully connected
16x16 system and randomly remove some of the required connections to test if our algorithm is still able
to come up with efficient designs. Figure 6.7 shows the power of the ring designs for 16 nodes with two
waveguides using the realistic power distribution network, starting from full-connectivity and gradually

60

6.6. CONCLUDING REMARKS

Table 6.2: Execution time of the algorithm

Configuration Generate Ring
(ms)

Calculate
Power (ms)

9nodes, 2wg 0.14 0.06
16nodes, 4wg 1.3 0.3
25nodes, 10wg 8.7 0.5
36nodes, 22wg 25.9 0.79
64nodes, 26wg 387.2 4.0
256nodes, 250wg 660.5 135.5

decreasing the number of required paths. We can clearly see that the algorithm is very successful in
optimizing power when reducing the number of needed connections, which makes it a suitable option for
systems with specific connectivity requirements that need a customized design.

 0.5

 1.0

 1.5

 2.0

 50 100 150 200 250

P
o
w

e
r

(W
)

communications

Figure 6.7: Power for ring designs to connect 16 nodes with two waveguides using the realistic power distribution network,
starting from full-connectivity and gradually decreasing the number of required paths. Paths are randomly removed and
the average power of 20 runs has been calculated for each point of the graph. Note that removing one path removes the
communication between the two nodes in both directions.

6.5.5. Computation Time
To analyse the execution time of the algorithm we run it on an Intel Xeon E5606 that runs at 2.13

GHz and has 8 GB of RAM. Table 6.2 presents execution time for our algorithm to generate rings and
calculate power for systems of different sizes. We observed that for a given number of nodes, execution
time does not significantly change for different number of waveguides, thus we present results only for one
case per chip size. We can see that the execution time increases with chip-size, but it is small even with
the largest sizes.

6.6. Concluding Remarks
We present a tool to generate ring communication matrices with minimum number of waveguides

and wavelengths, while optimizing for power efficiency. We automatically calculate power with physical
constraint awareness including the contribution of the laser distribution network. Our algorithm is able
to generate ring designs with fewer waveguides and/or wavelengths than any other existing proposal for
any number of nodes. We demonstrate the importance of the order in which communications are set and
show that an even number of waveguides allows for more balanced designs with reduced power. With a
given number of waveguides, reducing the number of wavelengths does not necessarily mean saving power,
because it enforces the use of non-minimal paths, which increases insertion loss.

Both with ideal and realistic laser distribution networks, we find out that the best design point is
the ring with only two waveguides, pointing out that adding extra wavelengths is more cost-effective

61

CHAPTER 6. DESIGNING POWER-EFFICIENT AND CUSTOM-TAILORED WAVELENGTH-ROUTED OPTICAL
RINGS

than adding extra waveguides. There is a large margin between results with the ideal and realistic power
distribution networks, indicating that power not only depends on an efficient communication matrix, but
also on a good laser distribution network design, which should be the focus of further optimizations.

62

Chapter 7
A Complete Electronic Network
Interface Architecture for
Wavelength-Routed Optical NoCs

Summary

Although many valuable research works have investigated the properties of optical NoCs, the vast majority
of them lack an accurate exploration of the network interface architecture (NI) required to support optical
communications on the silicon chip. The complexity of this architecture is especially critical for a specific
kind of ONoCs: the wavelength-routed ones. These are capable of delivering contention-free all-to-all
connectivity without the need for path reservation, unlike space-routed ONoCs. From a logical viewpoint,
they can be considered as full nonblocking crossbars, thus the control complexity is implemented at the
NIs. To our knowledge, we propose the first complete network interface architecture for wavelength-routed
optical NoCs, by coping with the intricacy of networking issues such as flow control, buffering strategy,
deadlock avoidance, serialization, and above all, their codesign in a complete architecture. The evaluation
methodology spans from area and energy analysis via actual synthesis runs in 40nm technology to RTL-
equivalent SystemC modelling of the network architecture, and aims at verifying whether the projected
benefits of ONoCs versus their electrical counterparts are still preserved when the complexity of their
network interface is considered in the analysis.

63

CHAPTER 7. A COMPLETE ELECTRONIC NETWORK INTERFACE ARCHITECTURE FOR
WAVELENGTH-ROUTED OPTICAL NOCS

7.1. Introduction
Projected quality metrics for optical networks-on-chip are overly optimistic for a number of reasons

extensively discussed in [15], including optimistic technology assumptions, use of logical topology designs
instead of physical ones, and overlooking static power. A big approximation of many projected results is the
lack of a complete and accurate network interface architecture for driving on-chip optical communication,
which may account for a large fraction of the overall network complexity.

This is especially true for a particular category of ONoCs: the Wavelength-Routed ones (WRONoCs).
These networks deliver contention-free global connectivity without need for arbitration or packet routing
by replicating the amount of wavelengths used, and by associating each wavelength with a different and
non-conflicting optical routing path. WRONoCs can be conceptualized as non-blocking full crossbars.
Therefore, all the complexity of the control architecture is located at the boundary of the interconnect
fabric. To our knowledge, no complete NI architecture has been reported so far in the open literature, with
the exception of NIs for space-routed ONoCs. However, these are conceptually simpler due to the intuitive
conversion of electrical bit parallelism into optical wavelength parallelism [51]. In contrast, WRONoCs
rely on serialization or on a limited bit parallelism, which questions the achievement of performance
goals. Even neglecting this difference, the NI design for an optical medium is a non-trivial task due
to the interdependent issues that come to the forefront: end-to-end flow control, buffer sizing, clock
re-synchronization, and serialization ratio.

This Chapter takes on the challenge of designing and characterizing the complete NI architecture
for emerging WRONoCs, in an attempt to validate whether (and to what extent) the projected benefits
of optical NoCs over their electrical counterpart are still preserved with the NI in the picture. The
distinctive feature of this work is the completeness of the architecture, including both initiator and
target side. Especially, the digital architecture to enable optical NoC operation has been designed out
of state-of-the-art basic building blocks (e.g., mesochronous synchronizers and dual-clock FIFOs), thus
reflecting realistic quality metrics. Finally, for the optical and opto-electronic components, we used a
consistent set of static and dynamic power values from the same literature source [16, 15].

Our evaluation methodology consists of 2 steps: first, we synthesize and characterize latency, and
power for all of the architecture components on a low power industrial 40 nm technology; second, we set
up a complete SystemC-based simulation infrastructure (for both the optical and electronic parts) with
RTL-equivalent accuracy, thus enabling to capture fine grained performance effects associated with the
microarchitecture.

7.2. Related Work

Early ONoC evaluation studies rely on coarse, higher-level models and/or unrealistic traffic patterns
[121, 146, 62, 120], while more recent ones come up with complete end-to-end evaluations using real
application workloads [79] and/or more accurate optical network models [26]. Looking in retrospect,
early results have been only partially confirmed, nonetheless showing the potential of ONoCs for on-chip
communication. For instance, with an aggressive electrical baseline technology, it became more difficult to
make a strong case for purely on-chip nanophotonic networks [79]. However, even in this case, it was still
possible to show significant potential in using seamless intra-chip/inter-chip nanophotonic links. Moreover,
other works (such as [15]) related network energy to total system energy, thus making the point for fast
interconnect fabrics capable of cutting down the static energy of non-network components, although they
are themselves not energy-efficient.

The refinement of comparative analysis frameworks is far from stabilizing. In fact, other missing
aspects are progressively coming to the forefront as the ONoC research concept strives to become an
industry-relevant technology. For example, the NI architecture has so far been overlooked in most evalua-
tion frameworks, or in the best case, only considered in the early stage of design [103, 15, 20, 51].

64

7.3. NETWORK INTERFACE ARCHITECTURE

VC
DECOD

D
E
M

U
X

 1
x
2

M
U

X
 3

x
1

DC_FIFO 5slots

DC_FIFO 5slots

ELECTRONIC
CLOCK SOURCE

11 BITSER

11 BITSER

11 BITSER

Driver

Driver

Driver

TSV

TSV

TSV

TSV
VC

λ11

λ12

λ13

λ1clk

DC_FIFO 15slots

DC_FIFO 15slots

M
U

X
 [

1
5

x
2

]x
1

D
E
M

U
X

 1
x
3

11 BITDESER

11 BITDESER

11 BITDESER

λ11

λ12

λ13

COMP TIA PDTSV

COMP TIA PDTSV

COMP TIA PDTSV

λ1clkCOMP TIA PDTSV

H1

H1

H15
H15

CREDIT
COUNTER

BRUTE
FORCE
SYNC

credit flit

MESOCHRONOUS
SYNCHRONIZER

CLOCK
DIVIDER

OPTICAL
NOC

credits

RING
MODULATOR

ELECTRONIC TRANSMISSION SIDE

ELECTRONIC RECEPTION SIDE

OPTICAL
SIDE

dest
DECOD

D
E
M

U
X

1
x
1

5

dest
DECOD

D
E
M

U
X

1
x
1

5

ARBITER

ARBITER

1.2 GHz (0.83 ns/cycle) 10 GHz (0.1 ns/cycle)0.9 GHz (1.1 ns/cycle)

Figure 7.1: Optical network interface architecture for wavelength-routed optical NoCs, with 2 virtual channels and 3-bit
parallelism

The distinctive features of our approach for the two systems included in our study are: architecture
completeness, comparison with electrical interface counterparts, physical synthesis of digital components,
RTL-equivalent SystemC modelling for microarchitectural performance characterization, and analysis of
the impact of the NI and NoC parameters.

7.3. Network Interface Architecture
This section presents, to the best of our knowledge, the first complete network interface architecture for

wavelength-routed optical networks, as depicted in Figure 7.1 [115, 111, 116, 112, 128]. As a consequence,
the objective is not to present the best possible design point, but rather to start considering the basic
components, and deriving guidelines about which ones deserve the most intensive optimization effort.
Clearly, ONoCs move most of their control logic to the NIs, which should therefore not be oversimplified
with abstract models. Even though we are using an optical ring topology, this NI architecture can work
with any wavelength-routed optical network.

During the design of the NI, we consider a high-impact system requirement: message-dependent
deadlock avoidance. Message-dependent deadlock arises from the interactions and dependencies created
at network endpoints between different message types (as depicted in Figure 7.2) [32, 50]. In a complete
system, the combination of these effects may lead to cyclic dependencies and block resources at both
network endpoints and inside the network indefinitely. When we apply these considerations to WRONoCs,
the problem gets simplified by the fact that there is no buffering inside the network, which means messages
don’t stop along the path, and, therefore, can’t get blocked. However, we must break the dependency

65

CHAPTER 7. A COMPLETE ELECTRONIC NETWORK INTERFACE ARCHITECTURE FOR
WAVELENGTH-ROUTED OPTICAL NOCS

REQUEST

RESPONSE

NI MEMORY CONTROLLER

WAIT-FOR

Figure 7.2: Dependence between a request and response at the NI.

cycles at the boundaries of the NoC by allocating a different buffer for each kind of message in the NI.
This has direct implications on the buffering architecture of our target NI (that is, on the number of
virtual channels), depending on the communication protocols the WRONoC needs to support. The design
presented in Figure 7.1 includes 2 virtual channels as an example.

This should be combined with the requirements of wavelength routing: each initiator needs an output
for each possible target, and each target needs an input for each possible initiator. As a result, in an
initial version of the NI, each initiator came with 2 FIFOs for each potential target, and each target, with
2 FIFOs for each potential initiator. In a more energy-efficient version of the NI (see Figure 7.1), the
transmission side reuses the same 2 FIFOs for all destinations, and flits are dispatched to different paths
afterwards (all the logic components after the 1x15 demultiplexers are replicated for each destination).
This energy optimization will not cause relevant latency degradations, since the nodes produce packets
sequentially (not in parallel for every destination) and the network is lightly loaded. All the FIFOs
at both the transmission and the reception side must be dual-clock FIFOs (DC FIFOs) to move data
between the processor frequency domain (we assume 1.2GHz) and the one used inside the NI. As hereafter
explained, the latter depends on the bit parallelism. We used the DC FIFO architecture presented in [140].

To size the DC FIFOs, we considered the size of the packets that would use each of the VCs: control
packets need 2 flits, while data packets need 21 flits assuming flits are always 32 bits long. The FIFO
depth will be assessed in the experimental results. All the VCs in the transmission side have 5 slots, which
is the minimum size the DC FIFO needs to achieve perfect throughput. For the reception side, we sized
the VCs based on the round-trip latency in order to allow uninterrupted communications, ending up with
15-slot DC FIFOs.

After flits are sent to the appropriate path depending on their destination, they must be translated
into a 10 GHz bit stream in order to be transmitted through the optical NoC. This serialization process
is parallelized to some extent to increase bandwidth and reduce latency. 3-bit parallelism means that 3
serializers of 11 bits each work in parallel to serialize the 32 bits of a flit, resulting on a bandwidth of 30
Gbps. The bit-parallelism determines the frequency inside the optical NI: 1.1 ns (0.1*number of bits) are
needed to serialize a flit with 3-bit parallelism, but only 0.8 ns are needed with 4-bit parallelism. In turn,
this also impacts the size of the reception DC FIFO based on round-trip latency, which increases from 15
to 17 slots when moving from 3 to 4-bit parallelism.

Another key issue to be considered in NIs is the resynchronization of received optical pulses with the
clock signal of the electronic receiver. In this paper we assume source-synchronous communication, which
implies that each point-to-point communication requires a strobe signal to be transmitted along with the
data on a separate wavelength. With current technology, this seems to be the most realistic solution, even
considering the promising research effort that is currently being devoted to transmitting clock signals
across an optical medium [85]. The received source-synchronous clock at the reception side of the NI is
then used to drive the de-serializers and, after a clock divider, the front-end of the DC FIFOs. We assume
that a form of clock gating is implemented, so when no data is transmitted, the optical clock signal is gated.

Another typically overlooked issue is the backpressure mechanism. We opt for credit-based flow control
because credit tokens can reuse the existing communication paths. Besides, the low dynamic power of
ONoCs can easily tolerate the signalling overhead of this flow control strategy. Credits are generated at
the reception side of the NI when a flit leaves the DC FIFO (at the processor frequency) and forwarded to
the transmission side so that they can be sent back to the source (at the NI frequency). To synchronize
between different frequency domains, we used brute force and mesochronous synchronizers.

66

7.4. BASELINE ELECTRONIC NOC

7.4. Baseline Electronic NoC
We include in our tests an aggressive electronic NoC with a typical configuration that can be used for

reference. It is the consolidated ×pipesLite architecture [139], which represents an ultra-low complexity
design point. Each 32-bit switch includes several VCs with 5 slots each to avoid message-dependent
deadlock, implemented by replicating the VC-less switch [45]. It takes one cycle to traverse the switch
and one cycle to traverse each link.

The network interface consists of two parts [79]. The first one is a packetizer, which acts as protocol
converter between the IP core and the network. This block is also required for the ONoC, so it is not
considered in this comparison framework. The second one is the buffering stage. In order to preserve the
generality of the design and support cores with different operating frequencies that access an ENoC with
fixed common frequency, dual-clock FIFOs have been included at the electronic network interfaces, similar
to the ONoC NI design. However, in this case all DC FIFOs have 5 slots at both initiator and target side,
because round-trip latency does not require larger buffers for maximum throughput operation.

7.5. Methodology
Our NI can work with any WRONoC topology. Without lack of generality, for this evaluation we

model a wavelength-routed ring inspired by [82] implemented on an optical layer vertically stacked on
top of the baseline electronic layer (note that this is not the optimized version introduced in Chapter 6).
To obtain accurate latency results, we implemented detailed RTL models of the optical and electronic
network interfaces and NoCs using SystemC. We instantiate a 4x4 2D mesh for the electronic NoC, and
a similar system connected by the optical ring. The network-wide focus, well beyond the NI, aims at
relating NI quality metrics to network ones. Delay values for the optical ring have been backannotated
from physical-layer analysis, and have been differentiated on a per-path basis.

For power modelling, every electronic component has been synthesized, placed and routed using a
low power 40 nm industrial technology library. Power metrics have been calculated by backannotating
the switching activity of block internal nets, and then importing waveforms in the PrimeTime tool. We
have applied clock gating to achieve realistic static power values. Energy-per-bit has been computed by
assuming 50% switching activity. The photonic components and values are listed in Table 7.1. Table 7.2
sums up the static power and energy-per-bit for all the electronic and optical devices, with 3 and 4-bit
parallelism. For the fast developing optical technology, we consider a coherent set of both conservative
and aggressive parameters [16, 15].

7.6. Initial Evaluation
Before integrating the ONoC into a real system, we test the latency of simple read and write transac-

tions in order to get an initial understanding of the potential of this technology. The traffic the ONoC
will need to support in a real system will be simply a combination of these simple transactions.

7.6.1. Latency Breakdown
Figure 7.3 presents the latency breakdown for the NI components and the ONoC, obtained from our

accurate RTL-equivalent simulations. We clearly see that the latency of the network is negligible, but it
requires support from a time consuming NI. Inside the NI, the DC FIFOs are the components with the
largest latency.

67

CHAPTER 7. A COMPLETE ELECTRONIC NETWORK INTERFACE ARCHITECTURE FOR
WAVELENGTH-ROUTED OPTICAL NOCS

Table 7.1: Photonic components and parameters with their values with aggressive and conservative technologies.

Parameter Cons. tech. Aggr. tech.
Coupler loss 0.46 dB 0.46 dB
Modulator insertion loss 4.0 dB 4.0 dB
Photodetector loss 1.0 dB 1.0 dB
Filter drop loss 1.0 dB 1.0 dB
Through ring loss 0.0001 dB/ring 0.0001 dB/ring
Propagation loss 1.5 dB/cm 1.5 dB/cm
Bending loss 0.0005 dB 0.0005 dB
Crossing loss 0.52 dB 0.18 dB
Wall-plug laser efficiency 8% 20%
Thermal tuning 20 uW/ring 20 uW/ring
Transmitter (dyn. energy) 50 fJ/bit 20 fJ/bit
Transmitter (fixed energy) 0.100 mW 0.025 mW
Receiver (dyn. energy) 25 fJ/bit 10 fJ/bit
Receiver (fixed energy) 0.150 mW 0.050 mW

Table 7.2: Static Power and Dynamic Energy of Electronic and Optical Devices.

HARDWARE 3-bit parallelism 4-bit parallelism

COMPONENTS

count
per
NI

STATIC
POWER
(mWatts)

DYNAMIC
ENERGY
(fJ/bit)

count
per
NI

STATIC
POWER
(mWatts)

DYNAMIC
ENERGY
(fJ/bit)

DC_FIFO 5slots (TX) 3 0.12 10.65 3 0.12 12.72
DC_FIFO 5slots (RX) 30 0.12 8.54 30 0.12 10.2
DC_FIFO 15-17 slots 15 0.12 26.50 15 0.12 31.65
DEMUX1x3 1 0.000725 0.92 1 0.000725 0.92
DEMUX1x15 3 0.0021 25.21 3 0.0021 25.21
DEMUX1x4 15 0.00056 6.72 15 0.00056 6.72
MUX4x1 + ARB 15 0.08 0.36 15 0.11 0.49
MUX45x1 + ARB 1 0.9 5.09 1 0.9 5.09
SERIALIZER 45 0.0475 9.41 60 0.0417 2.63
DESERIALIZER 45 0.0289 7.74 60 0.0281 6.12
MESO-SYNCHRONIZER 45 0.041 8.00 45 0.0565 11.1
COUNTER 2bits 45 0.01482 1.014 45 0.01482 1.014
BRUTE FORCE SYNC 15 0.004234 1.4 15 0.00503 1.66
CLOCK DIVIDER 15 0.01172 0.6 15 0.0139 0.714
TSV 120 / 2.50 150 / 2.50
TRANSMITTER aggressive 60 0.025 20 75 0.025 20
TRANSMITTER conservative 60 0.100 50 75 0.100 50
RECEIVER aggressive 60 0.050 10 75 0.050 10
RECEIVER conservative 60 0.150 25 75 0.150 25
THERMAL TUNING/RING
20◦K

180 0.020 / 225 0.020 /

LASER POWER aggressive / 0.0421 / / 0.0525 /
LASER POWER conservative / 0.308 / / 0.385 /
E-SWITCH (3VCs) / 17.9 193 / 17.9 193

7.6.2. Testing Simple Transactions

Figure 7.4 shows the zero-load latency of simple read and write transactions. A read involves sending
a request message followed by a reply with the data, and a write simply sends the data to the desired
destination. Single reads and writes have 64-byte data messages, while burst transactions carry 512 bytes.
The figure includes results for the ONoC with all the combinations of flit width (32 and 64 bits) and bit

68

7.6. INITIAL EVALUATION

Comb. logic
1.1ns

Serializer
0.1ns

E/O conv.
0.1ns

DC FIFO
2.91ns

De-serializer
1.1ns

O/E conv.
0.1ns

ONoC
min: 0.023ns
max: 0.320ns

Total latency: 9.04ns

DC FIFO
3.31ns

Figure 7.3: Latency breakdown of the optical NI with 3-bit parallelism and the optical ring.

0

100

200

300

400

500

600

read_single read_burst write_single write_burst

T
ra

n
s
a

c
ti
o

n
 L

a
te

n
c
y
 (

n
s
)

ONoC, 32bits, //1
ONoC, 32bits, //2
ONoC, 32bits, //3
ONoC, 32bits, //4
ONoC, 32bits, //6
ONoC, 64bits, //1
ONoC, 64bits, //2
ONoC, 64bits, //3
ONoC, 64bits, //4
ONoC, 64bits, //6

ENoC−6hops
ENoC−3hops
ENoC−1hop

Figure 7.4: Optical Network Interface Architecture with 2 virtual channels for 3-bit parallelism

parallelism (1, 2, 3, 4, and 6), and for the ENoC with minimum, maximum, and average path lengths.

The ONoC latency decreases as we increase bit parallelism because flits are sent faster thanks to the
parallelization of the serialization process. However, this improvement saturates when increasing from
4 to 6 bit parallelism with 32-bit flit width, because we are already transmitting flits faster than we
produce them, at the core frequency. When we move from 32 to 64 bits/flit, each message is divided into
a smaller number of flits, but it takes twice as long to serialize and send each of the flits. If we compare
the results at each bit parallelism, we notice that the latency is slightly better with 32 bit parallelism for
single transactions, but slightly worse for burst transactions. The frequency inside the NI is twice as high
with 32 bits/flit than it is with 64 (we need to serialize half of the bits). Due to the way the DC FIFO
synchronizes the front and back-ends, this means that flits go through the DC FIFOs at the transmission
side faster with 32-bit flits, giving those configurations a clear advantage. However, there is another
effect we must consider when analysing the burst transactions. In every flit, there is a fixed number of
management bits (flit type and VC identification) that can’t be used to send useful data. Therefore, 64-bit
flits are more efficient in carrying data, because they have a better ratio of useful bits over management
bits. This becomes relevant when we have to send larger amounts of data and overrides the positive effect
of the higher NI frequency of 32-bit flits, resulting in shorter latencies for the 64-bit configurations.

If we compare the ONoC vs. the ENoC for single transactions, we notice that the latency of the ONoC
with 32 bits/flit and 3-bit parallelism is comparable to the latency of one-hop communications in the
ENoC and shorter than the average latency. However, with burst transactions, the bandwidth of the
network becomes more relevant, and we need to move up to 4-bit parallelism for the 32-bit ONoC to be
as fast as one-hop communications on the ENoC. As we will see in the following chapter, increasing the
bit parallelism involves higher power consumption, so we will need to consider it to find the best design point.

69

70

Chapter 8
Case Study: Optical
Networks-on-Chip for
Memory-Coherent CMPs

Summary

This chapter presents the integration of a complete optical on-chip network including a realistic net-
work interface into a real platform: a chip multiprocessor. We compare performance, static power and
energy of the optical NoC with its electronic counterpart. Our focus is not just on the performance of NoC
read and write transactions, but rather on their aggregation into higher-order operations relevant for the
system at hand. As a result, we consider the communication patterns generated by a coherence protocol
for the CMP.

71

CHAPTER 8. CASE STUDY: OPTICAL NETWORKS-ON-CHIP FOR MEMORY-COHERENT CMPS

8.1. Introduction
Unfortunately, the extended experimental evidence of the benefits of optical networks-on-chip has still

not translated into a stabilization of roadmaps for the industrial uptake of this on-chip communication
technology. This consideration is further exacerbated by the high cost of introducing it, and by the
far-from-consolidating maturity of basic optical components. Besides, the projected results are overly
optimistic due to optimistic technology assumptions, use of logical topology designs instead of physical ones,
and overlooking static power [15]. Fundamentally, the main challenge consists of showing a compelling
advantage (if any) for on-chip nanophotonic interconnection networks (ONoCs) with accurate modelling as-
sumptions, while meeting the requirements and operating conditions of real-life user devices and workloads.

We replace the traditional electronic mesh of a realistic cache-coherent chip multiprocessor with a
wavelength-routed optical ring, and compare performance and power for the two versions. We include
in our simulation framework the modelling of the NI architecture (as presented in Chapter 7), in an
attempt to validate whether (and to what extent) the projected benefits of optical NoCs over their
electrical counterpart are still preserved with the NI in the picture. Our NI design takes into account
important interdependent issues such as end-to-end flow control, need for virtual channels, buffer sizing,
clock re-synchronization, and serialization ratio. The baseline electronic NoC is the optimized version
introduced in Section 7.4.

8.2. Architecture of the Chip Multiprocessor
The limited amount of instruction level parallelism makes chip multiprocessors (CMPs) a better resource

utilization strategy than traditional superscalar processors [105]. CMPs include multiple simple processors
to efficiently exploit thread level parallelism, and can work at high frequencies. Besides, from a fab-
rication point of view, it is easier to replicate several simple processors, than to build one complex processor.

We focus on a homogeneous chip multiprocessor with 16 cores, similar to the Tilera architecture
[145]. Each core has a private L1 cache and a bank of the shared distributed L2 cache, both con-
nected to a common NI through a crossbar. The system has directory-based coherence managed with
a MESI protocol. It is essential to set several virtual channels for the different messages classes of
the protocol, as we explained in Section 7.3 By analysing the dependency chains of the protocol and
deadlock-free buffer sharing opportunities, we came up with a requirement of 3 VCs for deadlock avoidance.

8.3. Customizing the optical NI
The first modification compared to the generic design presented in Chapter 7 is the number of virtual

channels. As we explained in the previous section, our coherence protocol requires 3 virtual channels.
Therefore, the NI needs 3 DC FIFOs in the transmission side and 3 per source in the reception side.

To size the DC FIFOs, we considered also the size of the packets that would use each of the VCs.
With 32-bit flits, control packets need 2 flits, while data packets need 21 flits. In Section 7.3 we explained
how we sized the reception side buffers based on round trip latency. However, for the control VCs we
decided to keep small 5-slot DC FIFOs because they can already fit two complete packets and we do not
expect to send many back-to-back control packets with the target cache-coherence protocol. The FIFO
depth will be assessed in the experimental results.

8.4. Evaluation
This section presents the latency and energy of the optical NoC in the CMP, following the methodology

explained in Section 7.5. In this case, the optical ring is not an optimized design obtained by the algorithm

72

8.4. EVALUATION

Table 8.1: Messages generated by the coherence protocol.

id Event Sequence of messages

P1a L1 miss
1. Request from L1 to L2
2. Data reply from L2 to L1
3. ACK from L1 to L2

P1b/c L1 write miss, 1/2
sharers

1. Request from L1 to L2
2. L2 sends data reply and invalidates 1/2 sharers
3. Sharers sends ACK to L1 req.
4. ACK from L1 to L2

P2a L1 needs upgrade to
write

1. Request from L1 to L2
2. ACK reply from L2 to L1
3. ACK from L1 to L2

P2b/c L1 needs upgrade to
write, 1/2 sharers

1. Request from L1 to L2
2. ACK reply from L2 to L1 and invalidates 1/2 sharers
3. Sharers send ACK to L1 req.
4. ACK from L1 to L2

P3 L1 write miss, another
owner

1. Request from L1 to L2
2. L2 forwards request to owner
3. Owner sends data to L1
4. ACK from L1 to L2

P4 L1 read miss, another
owner

1. Request from L1 to L2
2. L2 forwards request to owner
3. Owner sends data to L1 and L2
4. ACK from L1 to L2

P5 L1 replacement 1. Writeback from L1 to L2
2. ACK from L2 to L1

presented in Chapter 6, and power calculations do not include the laser distribution network. Results for
an ENoC working at 1.2 GHz and configured with typical parameters from [139] are also included. These
results have been published in [115, 111, 116, 112, 114].

8.4.1. Transaction Latency

We simulate the most common traffic patterns generated by a MESI coherence protocol in our RTL
models without any contention. The increased accuracy of our analysis stems from the fact that our
packet injectors and ejectors model actual transactions of the protocol, as well as their interdependencies.
Table 8.1 describes the analysed compound transactions and Figure 8.1 presents the zero-load latency
results. The messages included in these patterns amount to an average 98.8% of the total network
traffic, as we observed from full-system simulations of realistic parallel benchmarks from PARSEC and
SPLASH2 and multiprogrammed workloads built with SPEC applications in Chapter 4 (we only exclude
communication with the memory controllers). Therefore, they are a very good indicator of the network
latency improvements we can expect from the optical network, including its (non-negligible) network
interface overhead.

We observe that in all the patterns except the last one, the ONoCs beat or obtain similar results to the
ENoC with minimal path lengths: for the 32-bit ONoC, this is achieved with 3-bit parallelism or higher; for
the 64-bit ONoC, we need to use 4-bit parallelism. With higher bit parallelism, the ONoC configurations
achieve a substantial advantage over the ENoC. The differences between the 32 and 64-bit configurations
come from the frequency of each configuration inside the NI, as it was explained in Section 7.6.2. The
tendency changes in pattern 5 because the replacement packet is using a VC designed for control to
transmit data, and the smaller FIFO cannot store enough flits to support the round-trip latency. However,
these messages are only 4.7% of the total network traffic.

73

CHAPTER 8. CASE STUDY: OPTICAL NETWORKS-ON-CHIP FOR MEMORY-COHERENT CMPS

30

40

50

60

70

80

90

100

P1a P1b P1c P2a P2b P2c P3 P4 P5

L
a

te
n

c
y
 (

n
s
)

ONoC, 32bits, //3
ONoC, 32bits, //4
ONoC, 64bits, //3

ONoC, 64bits, //4
ONoC, 64bits, //6

ENoC max

ENoC min

Figure 8.1: Latency of the most common communication patterns. For the ENoC, we include minimum and maximum
paths.

8.4.2. Uniform and Hotspot Traffic
Figure 8.2 shows the transaction latency for a request-reply pattern (the most common transaction

in our chip multiprocessor) with uniform and hotspot traffic while increasing the injection rate. It also
includes the ENoC latency as a reference point. Focusing first on uniform traffic, we clearly see that
latency is shorter and it takes higher injection rates to saturate the network with larger bit parallelism.
Comparing the 32 and 64-bit flit configurations at each bit parallelism, we see an interesting effect: latency
is shorter with 32 bits/flit with low injection rates, but this trend changes when we increase the injection
rate. As we explained in Section 7.6.2, when there is no contention in the network, the higher frequency
inside the network interface gives the 32-bit configurations a clear advantage when going through the
DC FIFOs. However, when the network gets congested, messages are queued up to enter the network
interface towards the ONoC and also to leave the network interface after they’ve reached their destination.
In this scenario, the reduced number of flits of each message with 64-bit flits shortens the waiting time
and, therefore, the latency.

The flow control mechanism has a very relevant impact when the network is congested. Since we
have one credit associated to each flit, we must send twice as many credits with 32-bit flits than with
64-bit flits. In our design, we group several credits on the same credit flit to optimize resources and help
synchronization between the frequency domains. Based on the frequency inside the NI, more credits are
grouped together with 64-flit configurations (at the same bit parallelism), reducing even more their negative
impact. As we explained in Section 7.3, sending a credit involves stalling the data flits and delaying
message transmission. Therefore, for all these reasons, the credit-based flow control penalizes the 32-bit
configurations much more than the 64-bit ones, greatly reducing their performance with high injection rates.

The ENoC, included as a reference point, starts with lower latency than 3-bit parallelism ONoCs, but
quickly saturates as we increase the injection rate and loses against almost all the ONoC configurations.
This is because all the ENoC fabric gets filled with flits and they have to contend for resources at each
hop, while the ONoC benefits from simultaneous contention-free all-to-all communication.

With hotspot traffic, all nodes are sending requests to the same L2 cache bank. In this case, the queue
of data flits that need to leave from that congested node is the bottleneck of the system. Therefore, the
most relevant metric is the bandwidth of the network, which determines the speed at which messages are
sent. At 3 bit parallelism, the ONoC has a speed of 30 Gbps, which is less than the ENoC (38.2 Gbps,
32 bits per flit times 1.2 GHz). As a result, the 32-bit ONoC has worse performance than the ENoC.
But when we increase to 4 bit parallelism (40 Gbps), the 32-bit ONoC achieves very similar results. As

74

8.4. EVALUATION

50

100

150

200

250

300

350

400

450

500

 0 0.01 0.02 0.03 0.04 0.05 0.06

T
ra

n
s
a
c
ti
o
n
 L

a
te

n
c
y
 (

n
s
)

transactions/cycle/node

ONoC, 32bits, //1
ONoC, 32bits, //2
ONoC, 32bits, //3
ONoC, 32bits, //4

ONoC, 32bits, //6
ONoC, 64bits, //1
ONoC, 64bits, //2
ONoC, 64bits, //3

ONoC, 64bits, //4
ONoC, 64bits, //6

ENoC

(a) Uniform Traffic

50

100

150

200

250

300

350

400

450

500

 0.001 0.0015 0.002 0.0025 0.003

T
ra

n
s
a
c
ti
o
n
 L

a
te

n
c
y
 (

n
s
)

transactions/cycle/node

(b) Hotspot Traffic

Figure 8.2: Transaction latency of a request-reply pattern with increasing injection rate.

we increase injection rate, the 64-bit flit configurations are again better than their 32-bit counterparts
because of the reduced number of flits per message.

8.4.3. Buffer Size Exploration

In this section we analyse the effect of modifying the buffering of the optical network interface. We fix
the flit width at 32 bits and bit parallelism at 3, and explore all the buffer size combinations detailed in ta-
ble 8.2. Figure 8.3 shows how buffer size in the NI affects transaction latency, using a request-reply pattern.

We can extract the same conclusions from the uniform and hotspot traffic simulations. In case A, the
minimum buffering has a very negative impact on performance, because data packets are stalled waiting
for credits from the reception side FIFOs, which can only store 2 flits. This effect is slightly mitigated
when we increase the buffer size for this VC to 5 slots in case B. Even though the DC FIFOs can achieve
perfect throughput, backpressure is still preventing faster communications. We don’t see any difference
by increasing the size of control VCs in case C because the bottleneck is in the data VC. However, in
case D, the reception side has been sized based on the round-trip latency and we achieve the maximum
possible throughput. The larger buffers in cases E and F do not show any further improvements because
the network is already using up all the bandwidth.

75

CHAPTER 8. CASE STUDY: OPTICAL NETWORKS-ON-CHIP FOR MEMORY-COHERENT CMPS

Table 8.2: Buffer sizes explored for the 3 VCs at each side of the NI. Note that the actual capacity of the DC
FIFOs is one flit smaller than the number of slots.

id Transmission side Reception side
A 3, 3, 3 3, 3, 3
B 3, 3, 5 3, 3, 5
C 5, 5, 5 5, 5, 5
D 5, 5, 5 5, 5, 15
E 5, 5, 22 5, 5, 15
F 10, 10, 44 10, 10, 44

0

200

400

600

800

1000

0.005 0.010 0.015 0.020

T
ra

n
s
a
c
ti
o
n
 L

a
te

n
c
y
 (

n
s
)

transactions/cycle/node

a) Uniform Traffic

0

500

1000

1500

2000

0.0010 0.0015 0.0020 0.0025
transactions/cycle/node

a) Hotspot Traffic

A
B
C
D
E
F

ENoC

Figure 8.3: Transaction latency of a request-reply pattern with varying buffer sizes with uniform and hotspot traffic. The
ONoC has 32 bits/flit and 3 bit parallelism. With uniform traffic, the line corresponding to case B (red) is hidden behind
case C (light blue). With hotspot traffic, case A is not shown because the latency is much larger than for the rest of the
configurations.

8.4.4. Power and Energy-per-Bit

Figure 8.4 depicts the static power and (dynamic) energy-per-bit for the ENoC vs. all the optical
NoC configurations. We present a breakdown of the contributions of the NIs (electronic and optical
components) and NoCs (the optical NoC is solely composed of laser power). We show the values for the
two sets of optical parameters: conservative and aggressive.

Clearly, the ONoC consumes more static power than the ENoC, up to 360% more with conservative
optical technology. This difference is reduced more than half with the aggressive optical technology.
Focusing only on the ONoCs, we see that power increases with bit parallelism. This happens both in
the NI, due to the higher frequency inside the NI and the larger amount of devices we need for parallel
electro-optical and opto-electronic conversion, and in the NoC, due to the increased number of wavelengths.
With a fixed bit parallelism, the difference between the ONoC with 32 bits/flit and the one with 64
bits/flit is very small because for larger flits, the power increase due to the bigger size of the devices is
compensated by the slower frequency inside the NI.

We observe that the electronic switches dominate the static power in the ENoC, accounting for 95.8%
of the total. However, this trend is reversed in the ONoC, with a contribution of less than 13% in all the
configurations with aggressive technology. It is worth highlighting that a very large share of the static
power of the electronic components in the NI comes from the DC FIFOs.

Figure 8.5 shows the energy-per-bit of the ENoC and ONoC configurations. For the ENoC, we include
values for several path lengths. In this case, the ONoC has significantly lower energy-per-bit than the
ENoC, which confirms the trend from previous literature. Apart from that, we still see how the main
contributor for the ENoC energy is the NoC, while the NI carries all the complexity for the ONoC.

76

8.4. EVALUATION

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

//1 //2 //3 //4 //6 //1 //2 //3 //4 //6 //1 //2 //3 //4 //6 //1 //2 //3 //4 //6

S
ta

ti
c
 P

o
w

e
r

(W
)

NI electronic components
NI optical components

electronic NoC
optical NoC

ONoC, 64bits
aggr.

ONoC, 64bits
cons.

ONoC, 32bits
aggr.

ONoC, 32bits
cons.

 ENoC

Figure 8.4: Static power of the NIs and the electronic and optical NoCs.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

//1 //2 //3 //4 //6 //1 //2 //3 //4 //6 //1 //2 //3 //4 //6 //1 //2 //3 //4 //6

E
n

e
rg

y
 p

e
r

b
it
 (

p
J
/b

it
)

1h
op
4h

op
s

6h
op

s

NI electronic components
NI optical components

electronic NoC

ONoC, 64bits
aggr.

ONoC, 64bits
cons.

ONoC, 32bits
aggr.

ONoC, 32bits
cons.ENoC

Figure 8.5: Energy-per-bit of the NIs and the electronic and optical NoCs. We present the energy to transmit a bit from a
control flit, bits belonging to data flits need slightly more energy due to the different size of the reception side buffers.

8.4.5. Network Energy

As we demonstrated in the previous section, the ONoC consumes more static power than the ENoC.
However, the improved performance reduces the execution time and may result in overall energy reductions.
In order to quantify this trade-off, we compute the network energy expended to execute a synthetic
workload that consists on fixed number of random transactions (requests and replies) and a computation
time between each one and the next. We explore two scenarios: one with light traffic (large computation
time) and one with a more congested network (short computation time).

Figure 8.6 shows the results for all our configurations. We notice that, with light traffic, the ONoC
does not save energy with respect to the ENoC. This is because the improvements in network performance
don’t have a big effect on execution time, due to the scarce use of the network. However, when we generate
heavier traffic, we see that all the configurations with more than 1 bit parallelism and aggressive optical
technology achieve significant energy savings. Network energy savings go from 13% to 37%, and these
percentages will be even more pronounced when we consider the power of the whole system [79]. Therefore,

77

CHAPTER 8. CASE STUDY: OPTICAL NETWORKS-ON-CHIP FOR MEMORY-COHERENT CMPS

 0

 1

 2

 3

 4

 5

 6

 7

 8

ONoC,32bits
cons.

ONoC,32bits
aggr.

ONoC,64bits
cons.

ONoC,64bits
aggr.

N
e

tw
o

rk
 E

n
e

rg
y
 (

u
J
)

//1 //2 //3 //4 //6 //1 //2 //3 //4 //6 //1 //2 //3 //4 //6 //1 //2 //3 //4 //6

ENoC

(a) Light traffic

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

ONoC,32bits
cons.

ONoC,32bits
aggr.

ONoC,64bits
cons.

ONoC,64bits
aggr.

N
e

tw
o

rk
 E

n
e

rg
y
 (

u
J
)

//1 //2 //3 //4 //6 //1 //2 //3 //4 //6 //1 //2 //3 //4 //6 //1 //2 //3 //4 //6

ENoC

(b) Heavy traffic

Figure 8.6: Network energy expended to execute a synthetic workload.

even though the ONoCs are not power efficient, their good performance makes them a very promising
option to reduce system energy.

Finally, we notice that increasing the bit parallelism is worth it in terms of total energy only with
heavy traffic, especially in the 32-bit configurations. The trend stops at 6 bit parallelism, because static
power increases but the speedup stays the same due to the upper bound of the frequency set by the cores
(as explained in Section 7.6.2).

8.5. Concluding Remarks

We apply our accurate design of NIs for WRONoCs to a realistic chip multiprocessor with nodes
connected via an optical ring. This allows us to capture the effect of the NI on the most important
network-quality metrics, and sets the scene for further comparative ONoC analysis. Regarding latency,
the ONoC is always faster than its electronic counterpart even considering the NI, thus preserving the
primary goal of a WRONoC. The behaviour under contention depends mainly on the available bandwidth
of the interconnect technologies under test. For the WRONoC, such bandwidth can be modulated by
tuning the bit parallelism, and adjusting buffer size to flow control requirements for maximum throughput
operation. Similar tuning knobs do exist for ENoCs, namely flit width and buffer sizes. Therefore, the
ultimate question is whether such tuning knobs are energy efficient in comparative terms, which depends on
the sensitivity of system performance to such knobs for the application at hand. This is left for future work.

78

8.5. CONCLUDING REMARKS

When we consider power figures, we notice that, while switches are the main contributors in ENoCs,
the NI has the largest share in ONoCs. For static power, this contribution is in the same order of
magnitude than that from laser sources with conservative optical technology parameters. However, by
further improving the optical technology, the role of the NI becomes dominant, thus making it the main
target for future optimizations. Finally, the ONoC preserves its superior dynamic energy properties over
its ENoC counterpart, even in the presence of its NI.

This work shows that the NI architecture should not be overlooked for realistic ONoC assessments, and
comes up with new insights not provided by earlier photonic network evaluations. The most important
one is that NI optimizations perhaps have higher priority over the relentless search for ultra-low-loss
optical devices.

79

80

Chapter 9
Case Study: Augmenting Manycore
Programmable Accelerators with
Photonic Interconnect Technology

Summary

There is today a fundamental lack of compelling cases proving the superior performance and/or en-
ergy properties yielded by devices of practical interest when re-architected around a photonically-integrated
communication fabric. This work takes its steps from the consideration that manycore computing platforms
are gaining momentum in the high-end embedded computing domain in the form of general-purpose
programmable accelerators (GPPAs). We analyse the performance and energy implications of augmenting
these devices with an optical interconnect technology by using an accurate benchmarking framework against
an aggressively optimized electronic NoC. We present two different approaches to incorporate the optical
network into the GPPA: replacing the global network that connects all the GPPA nodes with an optical
ring, and replacing the local network for intra-partition communication. In the second case, we present the
first partitioning algorithm for wavelength-routed ONoCs, which minimizes the use of wavelengths thus
reducing laser power consumption.

81

CHAPTER 9. CASE STUDY: AUGMENTING MANYCORE PROGRAMMABLE ACCELERATORS WITH
PHOTONIC INTERCONNECT TECHNOLOGY

9.1. Introduction
This work aims at extending the feasibility analysis of optical interconnect technology when integrated

into industry-relevant objects. In particular, the focus is on the high-end embedded computing domain,
where photonic networks have already been proven to be promising for DRAM memory access [52].
We investigate a key component to sustain the performance-per-watt metric of embedded computing
platforms as a candidate for photonic integration, namely a general-purpose manycore programmable
accelerator (GPPA). In fact, driven by flexibility, performance and cost constraints of demanding modern
applications, heterogeneous Systems-on-Chip (SoCs) are the dominant design paradigm in the embedded
computing domain. SoC architectures and heterogeneity clearly provide a wider power/performance
scaling, combining host CPUs along with massively parallel general purpose programmable accelerator
fabrics. The latter hold the potential of bridging the gap between the energy efficiency (GOPS/W) of
hardwired hardware accelerators and the computational power delivered by throughput computing. In
contrast to graphics processing units, applicability of optical interconnect technology to GPPAs is faced
with a more balanced trade-off between latency and throughput requirements, and by a different usage
model of the manycore device. To our knowledge, this is the first time insights and guidelines are given
to exploit optical technology in emerging GPPAs. The author of this thesis contributed to this work by
integrating the optical network into the already existing GPPA platform.

9.2. GPPA Motivation

In the latest heterogeneous Systems-on-Chip (SoC), and even more in future ones, the quest for
processing specialization to deliver ultra-high performance acceleration at reduced energy cost does not
necessarily imply hundreds of dedicated hardware accelerators [90]. There are at least a couple of reasons
against that approach. On one hand, the performance of a specialized processing engine may in many
cases be equally achieved by the parallel computation of programmable processing units [38]. Execution
efficiency can thus be achieved without sacrificing programmability. On the other hand, the trend towards
simplifying the microarchitecture design of system building blocks is becoming increasingly strong. Only
a replication-driven approach ultimately pays off in terms of design productivity.

There are two main architecture families that might in principle suit the need for manycore pro-
grammable accelerators: GP-GPUs [118] are optimized for the single instruction multiple data/thread
execution model (SIMD/SIMT), while GPPAs rely on the multiple instruction multiple data (MIMD)
model (although they are not limited to it). MIMD programmable accelerators do not implement GPU-like
data-parallel cores, with common fetch/decode phases which imply performance loss when parallel cores
execute out of lock-step mode. They are rather independent RISC cores, well suited to execute both
SIMD and MIMD types of parallelism. When coupled with a hierarchical organization into clusters
like [89, 97, 55], such accelerators lend themselves to powerful programming abstractions such as nested
parallelism [93].

One reason for the growing interest in manycore accelerators in the embedded computing domain
is that there is a rapidly growing demand for a new type of interactions between the user and the
device, based on understanding of the environment sensed in multiple manner (image, motion, sound,
etc.) striving to create more friendly user interfaces (augmented reality, virtual reality, haptics, etc.).
Despite the good degree of data parallelism, parallel threads in this class of applications usually expose a
behaviour which is heavily dependent on the local data content, resulting into many truly independent paral-
lel computations [97]. In such a situation, GP-GPUs lose efficiency due to large divergence between threads.

The ultimate evidence of the practical and strategic relevance of the MIMD many-core acceleration tem-
plate comes from industry, where similar architectures are being developed, for instance by Plurality (e.g.,
Hypercore Architecture Line, HAP) [89], or by STMicroelectronics (Platform 2012) [97]. Future evolutions
of Kalray’s manycore processors [64], Intel Single-Chip Cloud Computer [36], or Tilera’s processors [145]
could potentially follow the same trend, depending on market opportunities and device-level design choices.

The above motivations are at the core of this work’s decision to investigate the potentials of optical

82

9.3. TARGET ARCHITECTURE

TOP-LEVEL INTERCONNECT

HOST
SYSTEM

SYSTEM
DMA

memory
controller

DDR2

CPU CPU
CPU CPU
NI Memory

R

CPU CPU
CPU CPU
NI Memory

R

CPU CPU
CPU CPU
NI Memory

R

Memory

R

CPU CPU
CPU CPU
NI Memory

R

CPU CPU
CPU CPU
NI Memory

R

CPU CPU
CPU CPU
NI Memory

R

CPU CPU
CPU CPU
NI Memory

R

CPU CPU
CPU CPU
NI Memory

R

NI

General Purpose
Programmable Accelerator

Core
L1I

Core Core

B
a
n
k0

B
a
n
k1

B
a
n
kN

...

...

Low Latency Interconect

Shared L1 TCDM

L1I L1I

L2
bank

Shared Memory
Cluster

Figure 9.1: Heterogeneous (many-core accelerator-based) MPSoC architecture.

interconnect technology in the context of flexible MIMD/SIMD General-Purpose Programmable Accelera-
tors for the high-end embedded computing domain.

9.3. Target Architecture
A common embodiment of architectural heterogeneity is a template where a powerful general-purpose

processor (usually called the host), is coupled to a general-purpose programmable manycore accelerator
(GPPA) composed of several tens of simple processors, where critical computation kernels of an application
can be offloaded to improve overall performance/watt [97, 56, 54, 57]. Figure 9.1 shows a block diagram
of such a system. The focus of this chapter is on GPPA manycore design, which we describe in details in
the following subsections.

9.3.1. Cluster Architecture
The GPPA is a cluster-based many-core computing system. Clusters are the central building block

of several recent many-cores [64, 89, 97]. These processors consider a hierarchical design, where simple
processing units are grouped into small-medium sized subsystems (the clusters) sharing high-performance
local interconnect and L1 data memory. Scaling to larger system sizes is enabled by replicating clusters
and interconnecting them with a scalable medium like a network-on-chip. The simplified block diagram
of the target cluster is shown in the rightmost part of Figure 9.1. It contains several simple RISC32
processor cores (typically up to 16), each featuring a private instruction cache. Processors communicate
through a multi-banked, multi-ported Tightly-Coupled Data Memory (TCDM). This shared L1 TCDM
is implemented as explicitly managed SRAM banks (i.e., scratchpad memory), to which processors are
interconnected through a low-latency, high-bandwidth data interconnect. This is a very common design

83

CHAPTER 9. CASE STUDY: AUGMENTING MANYCORE PROGRAMMABLE ACCELERATORS WITH
PHOTONIC INTERCONNECT TECHNOLOGY

CORES
TCDM

CLUSTER

L2 bank

CORES
TCDM

CLUSTER

L2 bank

CORES
TCDM

CLUSTER

L2 bank

CORES
TCDM

CLUSTER

L2 bank

CORES
TCDM

CLUSTER

L2 bank

CORES
TCDM

CLUSTER

L2 bank

CORES
TCDM

CLUSTER

L2 bank

CORES
TCDM

CLUSTER

L2 bank

CORES
TCDM

CLUSTER

L2 bank

CORES
TCDM

CLUSTER

L2 bank

CORES
TCDM

CLUSTER

L2 bank

CORES
TCDM

CLUSTER

L2 bank

Fabric
Controller

I/O INTERFACE

Figure 9.2: General-Purpose Programmable Accelerator Architecture.

choice for constrained embedded manycores, as the area and power overheads of hardware-managed caches
(as compared to scratchpads) is very significant, and coherency protocols encounter severe scalability
issues when interconnecting a large number of nodes.

Figure 9.2 depicts the global GPPA architecture. It consists of a configurable number of computing
clusters (up to 12 in our setup), interconnected by a 2-D mesh network-on-chip. The topology of the NoC
is a simple n× n mesh. Each of the first 12 nodes includes a computing cluster and an L2 bank. Another
node hosts the “Fabric Controller”, a special cluster instance with a single processor acting as a main
controller for the whole many-core platform. This node interacts directly with the host system, and is in
charge of the boot sequence of other clusters and their operation control. It has the fundamental role
of managing NoC routing reconfiguration, setting up partitions and starting applications. Among the
remaining three nodes, one switch is reserved to communications with an I\O interface (GPPA reading
and writing ports), while the other two are temporarily left unused, and are available for future extension
of the computation power.

Every full-cluster block is linked to a switch of the on-chip network with two network interfaces (NIs),
a master and a slave, supporting OCP (Open Core Protocol). The master NI is dedicated to the core
transactions, while the slave NI is used for accessing the internal cluster memory. Accesses to the L2
banks is possible through dedicated slave NIs.

9.3.2. Memory Architecture
Each cluster has an internal memory organized as private, per-core L1 instruction caches plus local L1

scratchpad data memory shared among all cores. The L2 memory is architected as a distributed shared
memory, where each NoC router hosts an L2 bank. To minimize the probability of conflicts on a single L2
bank, contents are interleaved by line address. Overall, the memory system is organized as a partitioned
global address space. Each processor in the system can explicitly address every memory segment: local

84

9.3. TARGET ARCHITECTURE

TCDM, remote TCDMs, L2, and main memory. Clearly, transactions that traverse the boundaries of a
cluster are subject to NUMA effects: higher latency and lower bandwidth.

When the GPPA has to perform a new computation, the binary code is copied via global direct
memory access (DMA) into the L2. Data is stored in main memory, where it is originally allocated by
host programs. Permanently hosting entire data structures in the L1 TCDMs is not feasible, due to a
limited size of 256 KB. The software must thus explicitly orchestrate data transfers from main memory to
L1 or L2, to ensure that the most frequently referenced data are kept close to the processors. To enable
performance and energy-efficient transfers, each cluster is equipped with a local DMA engine.

9.3.3. The Baseline ENoC Architecture
The GPPA network is built with compound switches that can be broken into two separate physical

networks:

A Local Network serves local traffic within GPPA partitions and guarantees traffic isolation across
partitions [131]. Without lack of generality, we adapt from [41] proper synchronization mechanisms
between communicating peers, so that it becomes possible to perform inter-cluster communication
only through write transactions. Should this not be the case, then 2 VCs would be needed in the local
network. This network implements overlapped static reconfigurations as a runtime reconfiguration
mechanism for the routing function, thus enabling the dynamic management of partitions (setup,
teardown, shape redefinition) [11].

A Global Network supports global network-wide and I/O communication traffic while avoiding
interference with intra-partition local traffic. Communication flows on this network are made up
of both write transactions (code offload to the GPPA, data transfer from main memory into the
GPPA local memory) and request/reply transactions (on an L1 instruction cache miss). Therefore,
the global NoC includes 2 virtual channels (VCs) in order to avoid message-dependent deadlock.
Following the design philosophy in [45], they are implemented by replicating the single VC-less
switch twice. The replicated switches do not need any reconfiguration support because their routing
functions are hardwired.

The ENoCs are overclocked (1 GHz) with respect to the speed of the processor cores (700 MHz). They
thus require the use of decoupling dual-clock FIFOs between clusters and switching fabric, which are
placed after the network interfaces. Such FIFOs also serve as a key enabler for the implementation of
dynamic voltage and frequency scaling.

9.3.4. Usage Model
We present here the process that must be followed to execute code on the GPPA, which involves three

steps:

1. Offloading Scenario. When a host application wants to offload a computational kernel on the GPPA,
it needs to collect the code (the kernel executable) and data (e.g., pointers to data in main memory)
into metadata structures that are forwarded to the fabric controller. The host processors initiate
the copy of the kernel executable through the system DMA into the GPPA L2 memory. The cost of
offloading computation to the GPPA should be kept as small as possible, otherwise it may completely
hide all the benefits introduced by code acceleration.

2. Partitioning Scenario. To maximize the usage of the manycore accelerator we consider a scenario
where multiple virtual machines are allowed to concurrently offload computation to the GPPA by
creating isolated cluster partitions. The NoC disables communication between clusters belonging to
different partitions.

3. Run Time Scenario. Once the offload and reconfiguration (partitioning) sequences are complete, the
kernel executable is launched on the selected clusters. Upon program start all the involved cores
experience cold instruction cache effects, which implies massive cache refill traffic. This is both a

85

CHAPTER 9. CASE STUDY: AUGMENTING MANYCORE PROGRAMMABLE ACCELERATORS WITH
PHOTONIC INTERCONNECT TECHNOLOGY

latency-sensitive and bandwidth-sensitive operation (the first word of a burst read is sensitive to
latency, while the rest of the burst is sensitive to bandwidth). All the cluster partitions have access
to the whole L2 memory, with no affinity between clusters and their local L2 banks. While this is
prone to NUMA effects, it allows better usage of L2 memory space, as no a-priori logic partitioning
is done, which would lead to memory waste.

9.4. Replacing the Electronic Global Network with an Optical
Ring

In this Section we explore the benefits of replacing the global electronic network of the GPPA with
an optical ring. We carry out a performance characterization of system operations with the hybrid
interconnect fabric, and benchmark it against a competitive electrical baseline. Our focus is not just on
the performance of NoC read and write transactions, but rather on their aggregation into higher-order
operations relevant for the system at hand (e.g., computation offload). As a side effect, performance
of such operations is not just determined by the system interconnect, but rather by the cooperation of
several components (e.g., the DRAM subsystem, DMA architecture, and memory hierarchy). This work
captures such interdependency. This work has been published in [10, 114].

The ONoC architecture is designed by following a cross-layer design methodology, where the quality
metrics of the selected design point include awareness of the degradation effect of place&route constraints
over insertion loss, and the overhead of the upper layers of the optical network interface beyond the
domain conversion circuits (e.g., buffering, flow control, virtual channels, synchronization) as presented in
Chapter 7. The optical ring implemented in this architecture is not the optimized version obtained from
the algorithm presented in Chapter 6, and we do not include the power of the laser distribution network.

Energy efficiency figures are provided by accounting for the execution time of real-life workloads, for
a parametric set of quality metrics for the fast-evolving optical devices, and for the energy of electrical
components on a 40nm low-power industrial technology library (which makes the electrical counterpart
extremely competitive).

9.4.1. Customizing the Optical NI

Aware of the difficulty to make the case for a purely optical interconnect fabric, we conservatively and
realistically come up with a hybrid architecture: the optical network replaces the global network of the
manycore accelerator, while the local network remains electronic.

We have customized the optical NI to work with the master and slave NIs of the GPPA. As we
explained in Section 9.3.3, the global network needs 2 virtual channels. The behaviour of the system NIs
allows us to remove the initial demultiplexer in the transmission side of the optical NI, connecting directly
the master to VC 0 and the slave to VC 1. Following the same idea, the arbitration and multiplexing
at the end of the reception side have been specialized to send flits to the appropriate NI and to avoid
conflicts with flits arriving from the local ENoC.

9.4.2. Evaluation

This section presents the experimental results for the code offload and the power analysis. The rest of
the communication scenarios are included in the last section, which tests real applications. We explore
up to 4-bit parallelism for the global ONoC and always use 32 bits/flit. The whole GPPA system with
the NoC variants has been modelled and simulated with cycle accuracy in RTL-equivalent SystemC by
augmenting the baseline VirtualSoC simulation environment [22].

86

9.4. REPLACING THE ELECTRONIC GLOBAL NETWORK WITH AN OPTICAL RING

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Page_length
burst

256KB
burst

16B
burst

4B
burst

ONoC //1
ONoC //2

ONoC //3
ONoC //4

ENoC

Figure 9.3: Offload bandwidth as a function of DMA burst size, normalized to the ENoC with page-length burst.

9.4.2.1. Code Offload

The system DMA reads from main memory the code to offload by means of burst transactions of
parametric length (from 4 bytes to the DRAM page size), and then writes it into the GPPA L2 banks.
This system operation stresses the bandwidth properties of the interconnects under test.

Figure 9.3 shows normalized code offload bandwidth. For small 4-byte bursts, there is fundamentally
no difference in performance among the NoCs under test. This is because transfers are slowed down by
the latency to reach and access the off-chip L3 cache [1], which makes all other contributions negligible.
As the burst size increases, this overhead is amortized over multiple code words. For the largest possible
burst size, the 3-bit ONoC outperforms the baseline ENoC by roughly 13% in terms of offload bandwidth.
However, with only 1-bit parallelism, it suffers a degradation of 18%. Finally, ONoC performance saturates
with 3 and 4 bit parallelism, because performance is limited by the frequency of the cores are caches.

9.4.2.2. Power Analysis

In this section, the power of the NI master and slave is not consider, since it is common for all the
networks under test.

Figure 9.4 compares the static power of the ENoC vs. the hybrid NoC with aggressive and conservative
optical technologies. With a conservative optical technology, the ENoC is clearly more power efficient
than the ONoC, regardless of the bit parallelism. This is mainly due to the power overhead of the optical
devices, especially laser sources. In contrast, with an aggressive technology, the ONoC differs from the
ENoC by only 4.7% with 2-bit parallelism.

Figure 9.5 shows the energy-per-bit comparison between the ENoC and the hybrid NoC. The results
for the hybrid NoC are independent from the path length and are more energy efficient than ENoC (up to
an order of magnitude) regardless of the specific optical technology. This confirms that, at least in terms
of energy-per-bit, the ONoC definitely outperforms the ENoC.

9.4.3. Application Benchmarking
In this section, we compare the execution time between ENoC and hybrid NoC-based GPPA platforms

for real workloads. Our benchmarks are two common computer vision applications: colour tracking,
implemented from the open source computer vision library (OpenCV) for single colour tracking, and
FAST [132], which is a corner detector for image feature extraction.

Without lack of generality, both applications are mapped on the whole GPPA, thus emulating a
12-cluster partition that cooperatively processes the computational task. The same code is executed on

87

CHAPTER 9. CASE STUDY: AUGMENTING MANYCORE PROGRAMMABLE ACCELERATORS WITH
PHOTONIC INTERCONNECT TECHNOLOGY

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ENoC Hyb.
//1

cons.

Hyb.
//2

cons.

Hyb.
//3

cons.

Hyb.
//4

cons.

Hyb.
//1

aggr.

Hyb.
//2

aggr.

Hyb.
//3

aggr.

Hyb.
//4

aggr.

S
ta

ti
c
 P

o
w

e
r

(W
)

Global NoC (NI)
Global NoC (Network)

Local ENoC

Figure 9.4: Static power for the ENoC vs. the hybrid ONoC variants.

 0
200
400
600
800

1000
1200
1400
1600

Local
ENoC

Global
ENoC

Global
ONoC

//1

Global
ONoC

//2

Global
ONoC

//3

Global
ONoC

//4

D
y
n
a
m

ic
 E

n
e
rg

y
 (

fJ
/b

it
)

1hop
2hops
3hops

4hops
5hops
6hops

Conservative
Aggressive

Figure 9.5: Dynamic energy for the ENoC vs. the hybrid ONoC variants under test. Results are broken down into the
local and global networks, and the NIs.

each cluster, but fed by different image portions.

The plots in Figure 9.6 compare the execution time spent on each cluster to perform the colour tracking
on a single QVGA 24-bit input frame for the two platforms under test. The execution of this application is
independent from the processing data, making NUMA effects more visible. Colour tracking consists of four
kernels: colour space conversion (CSC), threshold (THR), moments computation (MOM), and pixel-wise
addition (ADD). The first three kernels are merged in the results to achieve a better computation to
communication ratio. The hybrid NoC improves the execution time by 18.1% with respect to the baseline
ENoC. It also has better alignment of all the cores due the neutralization of the NUMA effects. This is
more evident on the ADD kernel, which is memory dominated. Please note that the OMP contribution
consists of the overhead for the OpenMP runtime environment [94], and that the offload time is considered
as well.

Figure 9.7 depicts the same analysis on the FAST application. It consists of a single kernel that works
using a stencil pattern of accesses. In this case, the execution flow depends on the actual pixel content,
potentially leading to divergence between clusters. In this case, the hybrid NoC improves the execution
time by 16.5%.

9.5. Replacing the Electronic Local Network with a Partition-
able Optical NoC

Unfortunately, the advantages of wavelength-routed optical networks do not come for free, since the
increase of communication actors causes the proliferation of the required laser sources. This involves

88

9.5. REPLACING THE ELECTRONIC LOCAL NETWORK WITH A PARTITIONABLE OPTICAL NOC

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 3 4 5 6 7 8 9 10 11 12

E
x
e
c
u
ti
o
n
 T

im
e
 (

M
c
y
c
le

s
)

cluster ID

Boot
Offload

OMP Runtime

CSC+THR+MOM Kernels
Synch

ADD Kernel

(a) ENoC

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 3 4 5 6 7 8 9 10 11 12

E
x
e
c
u
ti
o
n
 T

im
e
 (

M
c
y
c
le

s
)

cluster ID

(b) Hybrid NoC

Figure 9.6: Execution time for the colour tracking kernel in each of the 12 clusters.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 8 9 10 11 12

E
x
e
c
u
ti
o
n
 T

im
e
 (

M
c
y
c
le

s
)

cluster ID

Boot
Offload

OMP Runtime
FAST Kernel

(a) ENoC

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 8 9 10 11 12

E
x
e
c
u
ti
o
n
 T

im
e
 (

M
c
y
c
le

s
)

cluster ID

(b) Hybrid NoC

Figure 9.7: Execution time for the FAST kernel in each of the 12 clusters.

a significant static power overhead that may render the photonically-integrated system unaffordable.
However, traditional benchmarking efforts fail to capture the most recent trends in the use of multicore
hardware platforms. In fact, they do not consider that extracting massive task-level parallelism out of
legacy software is not as trivial as integrating hundreds of identical processing elements on a modular
hardware platform. Therefore, considering photonic-integration of multicore systems viewed as monolithic
resources is not realistic in many domains.

In contrast, the most common usage model in those domains consists of their partitioning and concur-
rent exploitation by a number of applications running in parallel. The recent uptake of the virtualization
paradigm by embedded devices is causing the need for such programmable accelerators to support multiple
concurrent acceleration requests at the same time, the alternative being their inefficient time multiplexing.
Partitioning of the computation/communication fabric to accommodate such offload requests is the most
obvious way of meeting the concurrency requirement.

The key intuition behind this work is that partitioning of a photonically-integrated multicore computing
platform is an opportunity for the optical fabric to make a more conscious use of its laser sources, hence
relieving the static power concern of ONoCs. Especially, the wavelength-routing paradigm can take
the most advantage of the partitioning usage model given its relevant use of laser sources to deliver
contention-free all-to-all connectivity. In fact, wavelengths can be potentially reused across partitions,
therefore permitting to power-off unused laser sources.

However, materializing power savings out of this idea is non-trivial. First, an online wavelength alloca-
tion algorithm should be designed in order to allocate the minimum number of additional wavelengths
that meet the connectivity requirements of a new partition setup request. To the best of our knowledge,
we present the first algorithm that smartly chooses the partition nodes to maximize wavelength reuse
across partitions and reduce laser power. Second, the degree of wavelength reuse is topology-specific,
since it stems from the matching between the partition setup request pattern and the truth table of

89

CHAPTER 9. CASE STUDY: AUGMENTING MANYCORE PROGRAMMABLE ACCELERATORS WITH
PHOTONIC INTERCONNECT TECHNOLOGY

the wavelength-routed topology at hand. In this work, we assess the suitability of the most relevant
wavelength-routed optical NoC topologies for use in partition-ready multicore processors. Our interest is
in understanding whether the degree of wavelength reuse can offset power efficiency gaps between existing
topologies. Third, when partitioning is a key requirement, one may think of fulfilling it with radical design
choices, that is, by statically partitioning the network into predefined partitions. This implies a much
more efficient physical design of partitioned topologies, which is offset by the lack of flexibility in the
allocation of the partition size. This may cause either underutilization of resources or execution time
penalties for those applications whose parallelism cannot be exploited by the available static partitions.
This work has been published in [108].

9.5.1. Related Work

Partitioning isolation and reconfiguration technologies are sufficiently consolidated for ENoCs. Balboni
et. al optimize the runtime reconfiguration of the routing function exploring the trade-offs between
performance and implementation cost [11]. There are many publications in the recent literature that tackle
this problem, both based on static reconfiguration [134] and dynamic reconfiguration techniques [91, 9].
An intensive research effort is currently under way in an attempt to find a suitable design point for chip
implementations [124, 39].

There is no such reconfiguration technology for ONoCs. However, a few inspiring works do exist about
wavelength reuse. This is done through network partitioning by assigning different message classes to
disjoint network partitions, where the same wavelengths can be reused and the physical design is much
simpler [129, 81]. There are also previous proposals that manage the laser power in order to reduce
available bandwidth when the network is lightly loaded [29, 35, 86], but this idea has never been applied
in the context of a dynamically partitioned system.

9.5.2. Customizing the ONoC and the GPPA

In the target architecture, we use wavelength-routing for the partition-capable network, although this
requires some customization to work around the global connectivity it delivers. The optical network
will provide intra-partition communications, and clusters will only be able to access the L2s inside their
partition. In this case, we consider that the 16 nodes of the GPPA contain computational clusters and L2
banks. Communication with the off-chip memory ports is possible from every node by using four separate
and cost-effective photonic buses with a different communication protocol: two buses for the requests from
nodes to the two memory controllers using the multiple-writer-single-reader protocol [147], and two buses
for the replies using the single-reader-multiple-writer protocol [70]. In this case, it is not cost-effective to
use a laser-greedy WRONoC, as the alternative choice allows implementing all the required communication
paths with only two wavelengths. The arbitration of the wavelengths for off-chip DRAM access is justified
by the fact that accesses are bursty and sporadic, since they are aimed at uploading or downloading
processing data onto/from the GPPA. If more wavelengths are required in order to increase memory access
bandwidth, this can be easily delivered by spatial-division-multiplexing (i.e., by increasing the number
or waveguides) rather than by increasing the number of wavelengths. In any case, should we need more
wavelengths for memory access, the work in [28] suggests not to overload optical power waveguides with
too many splitters. Therefore, it is reasonable to conceive dedicated laser sources for the off-chip memory
network and dedicated sources for the partition-capable network. The latter is the explicit target of our
optimization.

In this work, we test several well-known WRONoC topologies for inter-node communications in the
partition-capable photonic NoC: the λ-router [103], the GWOR [143], and several ring variants inspired
by [82]. However, we take a radically different perspective to their comparative analysis: their suitability
for laser source reuse in the context of a partition-enabled multicore architecture.

90

9.5. REPLACING THE ELECTRONIC LOCAL NETWORK WITH A PARTITIONABLE OPTICAL NOC

9.5.3. Dynamic Partitioning
WRONoC topologies are designed with enough wavelengths to guarantee all-to-all communication.

However, the GPPA must allocate isolated partitions to service several requests concurrently. This means
that, at any given moment, many of the communication paths that are implemented in the chip will not
be used. If we choose the nodes that compose each partition so that intra-partition communications reuse
wavelengths as much as possible, we will have several unused wavelengths and will be able to power them off.

Our wavelength-reuse methodology is based on a distinctive property of optical NoCs, experimentally
verified with real workloads in [10]: an optical transport medium is capable of smoothing out non-uniform
memory access (NUMA) effects. That is, access latencies to distributed L2 memory banks are almost
position-independent on a 2D mesh of processing elements. The practical implication is that, while with
an electronic NoC partitions should group cores that are physically located close to each other, with
ONoCs the notion of locality does not make sense. Hence, efficient partitions may be set up by grouping
cores that are physically placed far apart from each other. This is a relevant degree of freedom that our
methodology exploits to come with partition configurations that optimize the degree of wavelength-reuse.

9.5.3.1. Basic Idea

Let us consider Figure 9.8, where the truth table of an 8x8 gwor topology is illustrated. This topology
does not deliver self-communication, which is then assumed to be implemented via an electronic shortcut.
The topology delivers connectivity to a 3x3 array fabric of computation clusters, where one core serves
as the fabric controller, hence cannot take part to any partition. Let us assume that a background
partition is instantiated, including clusters 0 and 7, which use λ7 as their communication wavelength
(from 0 to 7 and vice versa). At this point in time, λ7 is the only powered-on laser source. Let us
then assume that a new partition has to be activated, consisting of two computation clusters. Figure
9.8 illustrates two options. In the first one, clusters 2 and 5 are activated based on a smart selection
policy where they keep making use of the same λ7 for their inter-cluster communication. Instead, should
the runtime manager select clusters 1 and 2, then laser sources λ1 and λ6 would need to be activated
to deliver intra-partition communication. In this sub-optimal case, 3 laser sources would be on at
the same time after the second partition is set up. Clearly, it is possible to come up with a partition
allocation algorithm that can meet connectivity requirements while making a conscious use of laser sources.

9.5.3.2. Greedy Algorithm

We propose a greedy algorithm to allocate partitions of any number of nodes in real time. Before
executing the algorithm to service a new request, we have a set of already allocated nodes and wavelengths
for the existing partitions. The set of already allocated wavelengths always includes the two that are used
for communication with the memory controllers. The greedy algorithm follows several steps to generate
the new partition:

1. Randomly choose a free node to start the partition.

2. Until we have the desired number of nodes in the new partition, we keep adding nodes following
these steps:

a) Try to reuse the allocated wavelengths to add a new node to the partition.
First, we find the free nodes we can reach from the nodes in our partition using already
allocated wavelengths.
Out of those free nodes, we select only the ones that require minimum number of extra
wavelengths for full connectivity inside the partition.
If there are several free nodes that are equally good, we choose randomly among them.

b) If there are no nodes reachable from the partition with the allocated wavelengths and we still
have just one node in the new partition, we try to find one that satisfies the symmetric property:
the same wavelength is used to communicate the two nodes in the two directions.

91

CHAPTER 9. CASE STUDY: AUGMENTING MANYCORE PROGRAMMABLE ACCELERATORS WITH
PHOTONIC INTERCONNECT TECHNOLOGY

0 1 2

ctrl76

543

 0 1 2 3 4 5 6 7
 - λ1 λ2 λ3 λ4 λ5 λ6 λ7
λ5 - λ1 λ2 λ3 λ4 λ7 λ6
λ3 λ6 - λ1 λ2 λ7 λ4 λ5
λ1 λ5 λ6 - λ7 λ2 λ3 λ4
λ6 λ4 λ5 λ7 - λ1 λ2 λ3
λ4 λ3 λ7 λ5 λ3 - λ1 λ2

λ2 λ7 λ3 λ4 λ5 λ6 - λ1

λ7 λ2 λ4 λ6 λ1 λ3 λ5 -

0
1

7
6
5
4
3
2

Existing partition = Nodes 0 and 7
 uses wavelength 7
 number of active laser sources = 1

New partition candidate = 2 and 5
 reuses wavelength 7
 number of active laser sources = 1

New partition candidate = 1 and 3
 uses wavelengths 1 and 2
 number of active laser sources = 3

Figure 9.8: Truth table of the 8x8 gwor and basic example to set up partitions with and without wavelength reuse.

c) If the previous points failed, we simply choose a free node randomly.

After choosing the next node, we add to the allocated wavelength list all the wavelengths needed for
full connectivity in the new partition.

The algorithm takes a locally optimal decision at each step, and never backtracks. The complex-
ity of the algorithm is O(n2), which makes it perfectly within reach of online execution. The actual
execution time depends on the chosen processor and its internal parallelism. We will only choose to
apply the algorithm if its overhead is compensated by the execution time of the request. In our experi-
mental setup, we consider the time to run the algorithm negligible, and demonstrate in Section 9.5.6.4
that its application would be cost-effective up to a 45% overhead with respect to the request execution time.

9.5.3.3. Exhaustive Search Algorithm

As a high performance alternative, we also introduce an exhaustive search algorithm that finds the best
possible partition for every new request. This algorithm always finds a partition that minimizes the number
of allocated wavelengths. Its use on a real system is infeasible due to the high complexity and execution
time, but we include it as a comparison point. The algorithm checks all the possible combinations of free
nodes to build the requested partition, and then chooses the one that results on a system with minimal
number of wavelengths. If there are several options that are equally good, it randomly chooses one of them.

So far, the two algorithms do their best to service the current request. However, the decision for the
current partition may affect future partitions. In the exhaustive search, we include two optimizations
to choose the best option among all the ones with equal number of wavelengths and improve long-term
results:

Maximize wavelength reuse. We prioritize wavelengths that are already being used in several
partitions. This way, we will still have large wavelength-reuse values after we remove a partition.

Minimize wasted wavelengths. We characterize a "wasted wavelength" as an allocated wavelength
that is used to communicate nodes inside a partition with nodes outside the partition. These
communication paths will never be used, reducing the opportunities to reuse this wavelength in new
isolated partitions.

92

9.5. REPLACING THE ELECTRONIC LOCAL NETWORK WITH A PARTITIONABLE OPTICAL NOC

Note that these optimizations cannot be applied to our greedy algorithm, where nodes are added one
by one. If we applied it when adding a node, we would reduce the reusing opportunities to add the next ones.

9.5.4. Static Partitioning
In the previous section, we started from a fully connected optical network and dynamically set partitions

on top of it. We now explore a different option: partitions statically built on the chip at fabrication
time. This option lacks the flexibility of the dynamic partitioning to accommodate requests of any size,
but gives us the opportunity to design very power efficient partitions that reuse a minimum number of
wavelengths. In practice, it means having several smaller and independent ONoCs instead of a single big one.

We must carefully decide the number of partitions to build and their size, because it will not be
possible to modify them later on. We analyse the request trace and extract the most common partition
size and the most useful partition mix. We decide to test two different static configurations: one with
homogeneous static partitioning (4 partitions of 4 nodes each, 4 being the weighted average partition
size), and one with a mix of static partitions (4 partitions of 2, 4, 4, and 6 nodes, respectively, be-
cause this is the mix that would best fit all the partition mixes we observe over time). All the small
networks are built with optical rings, and the same wavelengths are reused as much as possible across them.

This radical design choice is fully compatible with modern programming models. In fact, the notion
of cluster-based manycore accelerators is now central in two very representative examples: OpenCL [68]
and OpenMP [106]. Both of them ensure portability among different accelerator targets by allowing the
runtime system to map the user request to a smaller number of physical resources. With the latest version,
OpenMP 4.0 [153] is going further in the direction of integrating the notion of computation clusters in the
programming interface, and guarantees that a smaller number of available clusters than those possibly
requested at the application level does not constitute a problem.

9.5.5. Methodology
We set up a simulation platform that processes request traces and generates execution time and

wavelength-usage results for all the configurations. The first step, common for the dynamic and static
partitioning schemes, is to randomly generate several request traces (each one from a different host
computer) that will all simultaneously target the GPPA. This traces store the number of nodes (randomly
chosen between 2 and the total number of nodes divided 2) and the execution time required to process
each request, as well as the computation time in the host until the next request.

In the dynamic partitioning configurations, each request in the traces will be processed following
several steps:

1. If there are enough free nodes to accommodate the new partition, we run the algorithm to choose
the nodes that minimize the number of allocated wavelengths.

2. If there are not enough free nodes (but there are at least 2), we assign them all to service the request
and extend the execution time. We distribute the aggregate execution time for all the nodes and
apply a 10% penalty for each missing node.

3. If there are no free nodes (or there is just one free node), we deny the request. The computation
will be run at the host computer, again extending the execution time and penalizing for the lack of
parallelism. Extending the execution time (both in this and in the previous case) will delay the
whole trace from that host computer.

In the static partitioning configurations, the trace processing will be slightly different:

1. If there is a free static partition that fits the request, it is assigned.

2. If there is not, we look for a bigger partition, in which some of the nodes will be left unused.

93

CHAPTER 9. CASE STUDY: AUGMENTING MANYCORE PROGRAMMABLE ACCELERATORS WITH
PHOTONIC INTERCONNECT TECHNOLOGY

(a) New partition of 4 nodes (b) New partition of 8 nodes

Figure 9.9: Number of allocated wavelengths for our greedy algorithm over the exhaustive search algorithm for all the
considered topologies in 20 random initial scenarios. The scenarios are ordered from the highest number of free nodes
(scenario 0, 16 free nodes) to the lowest (scenario 19, 4 free nodes)

3. If both options failed, we look for a smaller partition and extend the execution time applying the
penalization.

4. If there are no free partitions, we deny the request.

As we can see, the static partitioning configurations are less flexible and will result in longer execution times.

9.5.6. Results
This section presents the results for wavelength usage and laser power savings, pointing out the

trade-offs between the dynamic and the static partitioning strategies.

9.5.6.1. Characterization of the Algorithm

We first focus on the dynamic partitioning strategies, and determine how good our greedy algorithm
is at reusing wavelengths in comparison with the exhaustive search algorithm, which is much more
complex. We analyse the number of extra allocated wavelengths to create a single new partition in the
λ-router, gwor, several ring designs with varying number of wavelengths and waveguides, and several
random communication matrixes that do not correspond to real topologies (but are anyway useful to
test the algorithm). To obtain meaningful results, we analyse the allocation of a new partition from 20
different initial scenarios. To create each of the initial scenarios, we set a small random trace and run it on
every topology with the greedy algorithm. That way, we get an equivalent starting point for every topology.

Figure 9.9 shows the number of allocated wavelengths for our greedy algorithm over the exhaustive
search algorithm, for new partitions of 4 and 8 nodes. We notice that when there are already many
allocated nodes, and, therefore, many allocated wavelengths (towards the right-hand side of the graphs), it
is easier for the greedy algorithm to find a partition that needs as few extra wavelengths as the exhaustive
search. This is especially true when we create a bigger partition, because there are fewer degrees of
freedom, so our algorithm is more likely to find an optimum set of nodes. To create the 4-node partitions,
the greedy algorithm needs to add an average of 2.7 wavelengths across all scenarios, compared to 2.2 for
the exhaustive search. For the 8-node partitions, the average number of added wavelengths is 7.9 and
7.6, for the greedy and exhaustive algorithms, respectively. Our greedy algorithm never needs to add
more than 3 extra wavelengths over the exhaustive search algorithm, and rarely more than 2, which is an
outstanding result for such a low complexity algorithm.

94

9.5. REPLACING THE ELECTRONIC LOCAL NETWORK WITH A PARTITIONABLE OPTICAL NOC

−3

−2

−1

 0

 1

 2

 3

s
c
0

0
_

2
n

s
c
0

0
_

4
n

s
c
0

0
_

8
n

s
c
0

1
_

2
n

s
c
0

1
_

4
n

s
c
0

1
_

8
n

s
c
0

2
_

2
n

s
c
0

2
_

4
n

s
c
0

2
_

8
n

s
c
0

3
_

2
n

s
c
0

3
_

4
n

s
c
0

3
_

8
n

s
c
0

4
_

2
n

s
c
0

4
_

4
n

s
c
0

4
_

8
n

s
c
0

5
_

2
n

s
c
0

5
_

4
n

s
c
0

5
_

8
n

s
c
0

6
_

2
n

s
c
0

6
_

4
n

s
c
0

6
_

8
n

s
c
0

7
_

2
n

s
c
0

7
_

4
n

s
c
0

7
_

8
n

s
c
0

8
_

2
n

s
c
0

8
_

4
n

s
c
0

8
_

8
n

s
c
0

9
_

2
n

s
c
0

9
_

4
n

s
c
0

9
_

8
n

s
c
1

0
_

2
n

s
c
1

0
_

4
n

s
c
1

0
_

8
n

s
c
1

1
_

2
n

s
c
1

1
_

4
n

s
c
1

1
_

8
n

s
c
1

2
_

2
n

s
c
1

2
_

4
n

s
c
1

2
_

8
n

s
c
1

3
_

2
n

s
c
1

3
_

4
n

s
c
1

4
_

2
n

s
c
1

4
_

4
n

s
c
1

5
_

2
n

s
c
1

5
_

4
n

s
c
1

6
_

2
n

s
c
1

6
_

4
n

s
c
1

7
_

2
n

s
c
1

7
_

4
n

s
c
1

8
_

2
n

s
c
1

8
_

4
n

s
c
1

9
_

2
n

s
c
1

9
_

4
n

A
d

d
e

d
 w

a
v
e

le
n

g
th

s
la

m
b

d
a

−
ro

u
te

r
−

 r
in

g
exhaustive algorithm greedy algorithm

Figure 9.10: Comparison of the λ-router with the ring in 20 random initial scenarios and new partitions of 2, 4, and 6
nodes. The bars represent the number of allocated wavelengths in the λ-router over the ones allocated in the ring to set
partitions of different sizes in the 20 scenarios, with the greedy and the exhaustive algorithms. Note that a larger value for
the exhaustive algorithm does not mean that it allocates more wavelengths, it simply means there is a larger difference
between the topologies. The absolute number of allocated wavelengths is always smaller for the exhaustive algorithm.

9.5.6.2. Partitioning Comparison of Different Topologies

Following the same initial-scenario methodology as in the previous section, we now perform pairwise
comparisons to demonstrate that the greedy algorithm does not favour a topology over another, but rather
it is the inherent characteristics of each topology that make it behave better or worse in each scenario.
We compare two topologies with the greedy and the exhaustive search algorithms, and prove that, at each
testing point, the same topology performs better than the other regardless of the algorithm.

Figure 9.10 shows the results of the comparison of the λ-router with the 15-wavelength ring. The
positive values correspond to the cases where the λ-router needs more extra wavelengths, and a larger
absolute value means a larger difference between the two topologies. We notice that in every case, the
greedy and exhaustive bars have the same polarity. We also compared the λ-router with the gwor and the
randomly generated truth tables for all-to-all communication with 16 wavelengths, seeing that this was
true in 99.7% of the scenarios. This points out that in each scenario one topology is more difficult to
handle than the other due to its features, not to the algorithm.

9.5.6.3. Logical-Level Wavelength-on Time

We now run the complete traces as explained in Section 9.5.5 and calculate the aggregated wavelength-on
time, that is, the sum of the number of cycles each wavelength is used, considering that when a wavelength
is not used in any partition, the corresponding laser source can be switched off. We must remember
that two wavelengths are always kept on in order to guarantee communication with the memory controllers.

For the dynamic partitioning configurations we have tried to match the number of wavelengths across
all topologies: 16 for the λ-router, and 15 for the gwor and ring. This way, we can fairly compare how each
topology reacts to partitioning requests at a logical level. In this case, we introduce also the two statically
partitioned configurations, as explained in Section 9.5.4. The inflexibility of the static configurations leads
to a longer execution time compared with the dynamic partitioning ones, in particular, 19% extra cycles
for the homogeneous partitioning and 14% extra for the mix.

Figure 9.11 depicts the aggregated wavelength-on time for the different topologies and partitioning
strategies. For the dynamic partitioning we notice that our algorithm is able to cut the wavelength-on
time almost in half from the always-on baseline, and is only slightly worse than the exhaustive search.

95

CHAPTER 9. CASE STUDY: AUGMENTING MANYCORE PROGRAMMABLE ACCELERATORS WITH
PHOTONIC INTERCONNECT TECHNOLOGY

 0

50

100

150

200

250

300

350

lambda_router gwor ring static_homog static_mix

A
g
g
re

g
a
te

d
 w

a
v
e
le

n
g
th

−
o
n
 t
im

e
(m

ill
io

n
 c

y
c
le

s
)

always on
greedy algorithm

exhaustive

static

Figure 9.11: Aggregated wavelength-on time for different topologies and partitioning strategies.

Out of the three topologies, the λ-router is the one that achieves the best results, even though it starts
with one wavelength more than the others. The static partitioning configurations result on a much better
wavelength-reuse, and the extended execution time does not reflect on longer usage time for the laser
sources. In this case, switching off the unused lasers does not result in a large improvement, but the
implementation of several small static partitions that reuse the same wavelengths is already an optimized
starting point. Out of the two static configurations, the one with homogeneous partitions obtains the best
results, as it only needs two wavelengths.

9.5.6.4. Energy Analysis

To realistically calculate the laser power for the topologies, we take into account the place&route
constraints of the 3D architecture. We assume an 8mmx8mm die size and consider the optical parameters
from [130].

We compute the maximum insertion loss of the optical network and calculate the minimum power
required to reliably detect the optical message at the destination side. We set the GPPA frequency at
1GHz. The physical design of the optical ring is manually generated, while the λ-router is automatically
generated [21]. The gwor is left out of the comparison due to the complexity of its physical design and
the clear supremacy of the ring over filtered-based topologies [130]. We assume that the laser stabi-
lization time is included in the partition set-up time, along with the execution time of the greedy algorithm.

Figure 9.12 shows the energy spent by the laser sources to run the traces on the λ-router, the ring,
and the static configurations. We clearly see that the λ-router cannot compete with the ring, even
though it was the topology that achieved the best wavelength-reuse in the previous section. Again, the
exhaustive search gives only slightly better results than the greedy algorithm. The static partitioning
consumes significantly less laser power, and the best choice among all the configurations is the statically
partitioned ONoC with homogeneous partitions. In that case, the 2 implemented wavelengths must
be always on in order to support the communication with the memory controllers. We must remem-
ber, however, that this benefit comes at the cost of a rigid chip architecture that involves worse performance.

In our experiments, we consider that the time to set up the partitions is negligible. This allows us
to compare the greedy and exhaustive search algorithms under the same trace, which would otherwise
be impossible. The outstanding energy savings we achieve give us a large margin for the execution time
of the algorithm before its use stops being cost-effective. For example, with the ring we can afford an
overhead of 45% over the execution time of each request before we lose the energy savings. This can
certainly accommodate the greedy algorithm, but not the inefficient exhaustive search.

96

9.6. CONCLUDING REMARKS

0.0

0.2

0.4

0.6

0.8

1.0

lambda_router ring static_homog static_mix

E
n
e
rg

y
 (

m
J
)

188 100 87

always on
greedy algorithm

exhaustive

static

Figure 9.12: Laser source energy for different topologies and partitioning strategies.

 0

 2

 4

 6

 8

10

12

14

16 36 64 100 144

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Setting a partition of 2 nodes

0.5x
2

 0

50

100

150

200

250

300

350

400

16 36 64 100 144

Setting a partition of 8 nodes

13x
2

Figure 9.13: Execution time of the greedy algorithm to allocate a new partition of 2 and 8 nodes with increasing number
of nodes in a ring topology. As a reference, we also plot a quadratic curve in each graph.

9.5.7. Scalability of the algorithm
In this section we demonstrate that the execution time of the greedy algorithm scales quadratically

with the number of nodes in the system, confirming the complexity of O(n2). Figure 9.13 shows the
execution time to build a partition of 2 and 8 nodes with an increasing number of nodes in a ring topology,
on top of an ARMv7 processor simulated on gem5. The observed trend corroborates the polynomial
complexity and confirms the suitability of the algorithm for its integration on larger systems. The ex-
haustive search algorithm was also tested under the same scenarios, resulting in exorbitant execution times.

9.6. Concluding Remarks
The work proposes the first assessment of optical interconnect technology in the context of GPPA

devices for the high-end embedded computing domain following two different approaches. First, the system
is re-architected around an optical interconnect fabric, under a realistic hybrid integration strategy. When
put at work with realistic workloads, the photonically-integrated GPPA turns out to be extremely effective
in speeding up application execution by at least 15%. This translates into a static power overhead of 2.5x
for the ONoC, which is however expected to go down to 1.3x with future silicon photonic technology. In
contrast, the ONoC is more energy efficient than the ENoC (up to an order of magnitude) regardless of
the specific optical technology, thus confirming that in terms of energy-per-bit, the ONoC is definitely

97

CHAPTER 9. CASE STUDY: AUGMENTING MANYCORE PROGRAMMABLE ACCELERATORS WITH
PHOTONIC INTERCONNECT TECHNOLOGY

hard to beat. Overall, the above quality metrics paint a promising picture for augmenting GPPAs with
optical devices, while clearly pointing to the most important candidate for optimization: static energy
reduction through technology evolution as well as gating techniques.

Second, we present the first work that integrates an optical network into a virtualized environment.
Partitioning actually yields laser power savings, thus addressing the concerns detected in our first ap-
proach, and we present two versions with different trade-off points to extract these benefits. On one
hand, wavelengths are reused across partitions by running an online greedy algorithm for wavelength
allocation and partition configuration. On the other hand, we present statically partitioned ONoCs and
demonstrate their superior physical properties, which ultimately lead to hard-to-beat total energy figures.
This approach is compatible with the flexibility of modern programming models, which can adapt to the
parallelism the hardware platform exposes even if it is not the optimal one for the application at hand.
However, if we are not ready to accept the drawback of building such a rigid chip architecture, we can opt
for the first option and still achieve significant power savings.

98

Part IV

Conclusions

This final part concludes the dissertation. In includes the conclusions

obtained from the contributions of this thesis, ideas for future work and the

list of the thesis publications.

99

Chapter 10
Conclusions and future work

Summary

This last chapter sums up the conclusions of this work, introduces some ideas for future research, and lists
the publications where the contributions of this thesis have been published.

101

CHAPTER 10. CONCLUSIONS AND FUTURE WORK

10.1. Conclusions

Chip multiprocessors (CMPs) are composed of multiple nodes connected via an interconnection network,
which contributes with a substantial share to chip area, energy consumption, and system performance.
This network-on-chip (NoC) has traditionally been implemented with metal wires and has been the
focus of many research publications. In this work we start by analysing these electronic NoCs from a
comprehensive perspective: we consider the interconnection network and the cache hierarchy simultane-
ously, which helps identify improvement opportunities in the design of CMPs. We model in detail the
processors, memory hierarchy, and electronic network using full-system simulation and executing both
parallel and multiprogrammed realistic workloads. We perform a qualitative and quantitative analysis of
three well-known network topologies: mesh, torus, and ring, and their concentrated versions for CMPs
with 16 single and multi-threaded cores and 64 single-threaded cores.

With this detailed analysis, we demonstrate that performance is highly affected by the choice of the
interconnect, especially in 64-core systems, where the ring performance drops by 72% with respect to
the concentrated mesh for parallel workloads. The ring topologies perform worse due to the increased
hop count, which translates into higher network latency and turns out to be the most relevant aspect
of the NoC. As a result, the concentrated mesh topology offers the best performance with low energy
consumption and area for all workloads, even with multithreaded cores, which generate a heavier traffic
load. We also determine that the placement and the number of memory controllers has a negligible effect on
system performance with the realistic applications we have tested, because they have limited memory access.

From this detailed network evaluation where we identified the most relevant metrics to be optimized,
we come up with a smart network design that greatly cuts down the energy expended at the interconnect,
reduces the area, and improves performance. Our work was inspired by the observation that most of the
traffic follows a request-reply pattern, which helps anticipate the path most replies will follow. We propose
a mechanism called Reactive Circuits based on reserving network resources and dynamically building the
circuit for the reply while the request travels through the network. Guaranteeing complete circuits for
data messages enables us to predict when they will reach their destination, and elegantly eliminate the
need for their acknowledgement, as well as removing unnecessary buffers, thus reducing network power by
20%.

In the second section of the thesis, we consider the emerging silicon photonics technology to build
optical networks-on-chip (ONoCs) with increased bandwidth and reduced latency and energy-per-bit. We
focus on wavelength-routed optical NoCs, which can implement simultaneous all-to-all communications,
and dedicate our efforts both to designing the optical network and to comparing it with its electronic
counterpart when integrated into industry-relevant devices.

First, we present a tool to generate ring communication matrices while optimizing for power efficiency.
We automatically calculate power with physical constraint awareness including the contribution of the
laser distribution network. Our algorithm is able to generate ring designs with fewer waveguides and/or
wavelengths than any other existing proposal for any number of nodes. We demonstrate that an even
number of waveguides allows for more balanced designs with reduced power. We also find out that the
best design point is the ring with only two waveguides, pointing out that adding extra wavelengths is
more cost-effective than adding extra waveguides. With a given number of waveguides, reducing the
number of wavelengths does not necessarily mean saving power, because it enforces the use of non-minimal
paths, which increases insertion loss. There is a large margin between results with the ideal and realistic
laser distribution networks, indicating that power not only depends on an efficient communication ma-
trix, but also on a good laser distribution network design, which should be the focus of further optimizations.

Then, we design the first complete network interface architecture for optical NoCs, and use the complete
ONoC design to communicate the nodes of a CMP. This work sets the scene for further comparative
analysis of optical versus electronic NoCs. Regarding latency, the ONoC is always faster than its electronic
counterpart even considering the NI, thus preserving the primary goal of a wavelength-routed ONoC.
Considering power, switches are the main contributors in ENoCs, while the NI has the largest share in
ONoCs. Finally, the ONoC preserves its superior dynamic energy properties over its ENoC counterpart,

102

10.2. FUTURE WORK

even in the presence of its NI. This work shows that the NI architecture should not be overlooked for
realistic ONoC assessments, and comes up with new insights not provided by earlier photonic network
evaluations. The most important one is that NI optimizations perhaps have higher priority over the
relentless search for ultra-low-loss optical devices.

With the objective of testing the optical network with other well-known devices, we also undertake
the first assessment of optical interconnect technology in the context of general-purpose programmable
accelerators (GPPA) devices for the high-end embedded computing domain, following two different ap-
proaches. First, the system is re-architected around an optical interconnect fabric under a realistic hybrid
integration strategy: we integrate a global optical network and keep the local electronic network. When
put at work with realistic workloads, the photonically-integrated GPPA turns out to be extremely effective
in speeding up application execution. Overall, our results paint a promising picture for augmenting
GPPAs with optical devices, while clearly pointing to the most important candidate for optimization:
static energy reduction through technology evolution as well as gating techniques. Second, we present
the first work that integrates an optical network into a virtualized environment. This usage model is
gaining momentum in manycore processors as a way to enable the concurrent execution of many programs
in the same platform. This environment is of significant benefit for optical networks and partitioning
actually yields laser power savings, thus addressing the concerns detected in our first approach. We
present two versions with different trade-off points to extract these benefits: on one hand, wavelengths are
reused across partitions by running an online greedy algorithm for wavelength allocation and partition
configuration; on the other hand, we present statically partitioned ONoCs and demonstrate their superior
physical properties, which ultimately lead to outstanding total energy figures.

In conclusion, optical networks-on-chip offer very promising results, but still need a considerable
research effort. We have to come up with optimized designs custom-tailored for real platforms, and define
all the details beyond simple optical waveguides required to materialize the use of this new technology in
silicon chips.

10.2. Future Work
We propose several topics to continue the research effort of this work:

The network interface architecture designed for optical networks targets wavelength-routed ONoCs.
As an interesting extension, detailed network interfaces should be designed for arbitrated optical
networks (single-reader multiple-writer, multiple-reader single-writer, or multiple-reader multiple-
writer), and for space-routed networks.

When integrating the optical network into a GPPA, we have followed two different approaches:
replacing the global network while keeping an electronic local network, and replacing the local
network with an ONoC capable of setting partitions. The next logical step is engineering an
all-optical communication system for the GPPA.

There are several technologies that could also be used to successfully implement efficient networks
on chip such as carbon nanotubes, graphene nanoribbons, and wireless. A detailed and unbiased
comparison of all the technologies would be very beneficial and point future research in the correct
direction.

10.3. Publications
This Section presents the comprehensive list of all the publications of the thesis, which were also

referenced in the appropriate sections.

About the analysis of electronic network-on-chip topologies:

Marta Ortín, Alexandra Ferrerón, Jorge Albericio, Darío Suárez, María Villarroya, Cruz Izu, and
Víctor Viñals. Characterization and cost-efficient selection of NoC topologies for general purpose

103

CHAPTER 10. CONCLUSIONS AND FUTURE WORK

CMPs. In proceedings of the 2013 workshop on Interconnection Network Architecture: On-Chip,
Multi-Chip (INA-OCMC), January 2013. In collaboration with the University of Adelaide. [110]

Marta Ortín, Darío Suárez, María Villarroya, Cruz Izu, and Víctor Viñals. Analysis of Network-on-
Chip Topologies for Cost-Efficient Chip Multiprocessors. Journal of Microprocessors and Microsys-
tems, February 2016. In collaboration with the University of Adelaide. [117]

About the construction of reactive circuits in electronic NoCs:
Marta Ortín, Darío Suárez, María Villarroya, Cruz Izu and Víctor Viñals. Reserva de circuitos
para tráfico reactivo en CMPs homogéneos. In proceedings of the XXIV Jornadas de Paralelismo,
September 2013. In collaboration with the University of Adelaide. [113]

Marta Ortín, Darío Suárez, María Villarroya, Cruz Izu and Víctor Viñals. Dynamic construction of
circuits for reactive traffic in homogeneous CMPs. In proceedings of the Design, Automation and
Test in Europe Conference, March 2014. In collaboration with the University of Adelaide. [109]

About the network interface design for optical networks and its application to chip multiprocessors:
Marta Ortín, Luca Ramini, Víctor Viñals, and Davide Bertozzi. Capturing the Sensitivity of Optical
Network Quality Metrics to its Network Interface Parameters. Invited paper to the I Workshop on
Exploiting Silicon Photonics for Energy-Efficient Heterogeneous Parallel Architectures (SiPhotonics),
January 2014. In collaboration with the University of Ferrara. [115]

Marta Ortín, Luca Ramini, Hervé Tatenguem Fankem, Víctor Viñals, and Davide Bertozzi. A
Complete Electronic Network Interface Architecture for Global Contention-free Communication
over Emerging Optical Networks-on-chip. In proceedings of the 24th Edition of the Great Lakes
Symposium on VLSI, May 2014. In collaboration with the University of Ferrara. [111]

Marta Ortín, Luca Ramini, Víctor Viñals, and Davide Bertozzi. Capturing the sensitivity of
optical network quality metrics to its network interface parameters. Journal of Concurrency and
Computation: Practice and Experience, 2014. In collaboration with the University of Ferrara. [116]

Marta Ortín, Marco Balboni, Luca Ramini, Víctor Viñals, and Davide Bertozzi. Optical Networks-
on-Chip: Time for Accurate Crossbenchmarking. Invited talk at the CMOS Emerging Technologies
Research conference, July 2014. In collaboration with the University of Ferrara. This talk also
included the use of optical networks in general purpose programmable accelerators. [114]

Marta Ortín, Luca Ramini, Hervé Tatenguem Fankem, Víctor Viñals, and Davide Bertozzi. Ar-
quitectura completa de una interfaz de red electrónica para redes ópticas en chip. In proceedings
of the XXV Jornadas de Paralelismo, September 2014. In collaboration with the University of
Ferrara. [112]

Luca Ramini, Hervé Tatenguem Fankem, Alberto Ghiribaldi, Paolo Grani, Marta Ortín, Anja
Boos, and Sandro Bartolini. Towards compelling cases for the viability of silicon-nanophotonic
technology in future manycore systems. In proceedings of the Eighth International Symposium on
Networks-on-Chip (NoCS), September 2014. In collaboration with the University of Ferrara, the
University of Siena, and the University of Munich. [128]

About optical networks applied to general purpose programmable accelerators:
Marco Balboni, Marta Ortín, Alessandro Capotondi, Hervé Fankem Tatenguem, Alberto Ghiribaldi,
Luca Ramini, Víctor Viñals, Andrea Marongiu, and Davide Bertozzi. Augmenting Manycore
Programmable Accelerators with Photonic Interconnect Technology for the High-End Embedded
Computing Domain. In proceedings of the Eighth International Symposium on Networks-on-Chip
(NoCS), September 2014. In collaboration with the University of Ferrara, the University of Bologna,
and ETH Zurich. [10]

Marta Ortín, Luca Ramini, Marco Balboni, Lorenzo Zuolo, Nonato Maddalena, Víctor Viñals,
and Davide Bertozzi. Partitioning Strategies of Wavelength-Routed Optical Networks-on-Chip for
Laser Power Minimization. In proceedings of the II Workshop on Exploiting Silicon Photonics for
Energy-Efficient Heterogeneous Parallel Architectures (SiPhotonics), January 2015. In collaboration
with the University of Ferrara. [108]

104

Conclusiones

Los multiprocesadores en chip (CMPs, del inglés chip multiprocessors) están compuestos por varios
nodos conectados a través de una red de interconexión, que contribuye en gran medida al área, consumo
energético y rendimiento del chip. Esta red en chip se ha implementado tradicionalmente con conexiones
metálicas y ha sido objeto de muchas publicaciones científicas. En este trabajo, comenzamos analizando
estas redes electrónicas desde una perspectiva muy amplia: consideramos la red de interconexión y la
jerarquía de memoria simultáneamente, lo que ayuda a identificar nuevas oportunidades de mejora en el
diseño de CMPs. Modelamos detalladamente los procesadores, jerarquía de memoria y la red de interco-
nexión usando simulación de sistema completo y ejecutando cargas de trabajo realistas, tanto paralelas
como multiprogramadas. Llevamos a cabo un análisis cualitativo y cuantitativo de tres topologías muy
conocidas: malla, toro y anillo, y sus versiones concentradas, para CMPs con 16 cores (de 1 y 4 hilos) y 64
cores (de 1 hilo).

Con este detallado análisis, demostramos que la red tiene un alto impacto en el rendimiento, especial-
mente en sistemas de 64 cores, en los que el anillo aumenta el tiempo de ejecución en un 72% respecto a
la malla concentrada para cargas paralelas. Los anillos tienen peor rendimiento debido al alto número de
saltos necesarios para ir de origen a destino, lo que se traduce en una latencia de red más alta y resulta
ser el aspecto más relevante de la red. Como resultado, la malla concentrada ofrece el mejor rendimiento
con bajo consumo energético y área para todas las cargas de trabajo, incluso con cores de varios hilos, que
generan mayor cantidad de tráfico. También determinamos que la posición y el número de controladores
de memoria tienen un efecto despreciable con las aplicaciones realistas que hemos simulado, debido a que
su acceso a memoria es muy limitado.

A partir de esta evaluación detallada de la red en la que identificamos los aspectos más relevantes que
deben ser optimizados, proponemos un diseño de red que disminuye en gran medida la energía consumida
por la red, reduce el área y mejora el rendimiento. Observamos que la mayor parte del tráfico sigue un
patrón de petición-respuesta, lo que ayuda a anticipar el camino que la mayor parte de las respuestas
seguirán. Basándonos en eso, proponemos un mecanismo llamado Circuitos Reactivos que reserva los
recursos de la red y construye dinámicamente un circuito para la respuesta mientras la petición viaja por
la red. Garantizar un circuito para los mensajes nos permite predecir cuándo llegarán a su destino, y por
lo tanto suprimir los acknowledgements, además de eliminar buffers innecesarios reduciendo la potencia de
la red en un 20%.

En la segunda sección de la tesis, consideramos una tecnología emergente, la fotónica en silicio, para
construir redes ópticas en chip con mayor ancho de banda y latencia y energía-por-bit reducidos. Nos
centramos en las redes ópticas enrutadas mediante la selección de longitud de onda (wavelength-routed),
que implementan comunicaciones simultáneas entre todos los nodos. Nos dedicamos tanto a diseñar la red
óptica como a compararla con su equivalente electrónico en sistemas relevantes para la industria.

Primero, presentamos una herramienta para generar las matrices de comunicación de un anillo óptico,
al mismo tiempo que optimiza su energía. Calculamos la potencia de la red automáticamente teniendo en
cuenta las restricciones físicas y la contribución de la red de distribución del láser. Nuestro algoritmo es
capaz de generar diseños para el anillo con menos guías y/o longitudes de onda que ninguna otra propuesta
existente para cualquier número de nodos. Demostramos que un número par de guias de onda lleva a
diseños más balanceados con consumo energético reducido. También descubrimos que los mejores diseños
son los anillos con únicamente dos guías de onda, destacando que aumentar el número de longitudes de
onda es más efectivo que añadir cables ópticos. Dado un número fijo de cables ópticos, reducir el número
de longitudes de onda no implica necesariamente un ahorro energético, porque fuerza a utilizar caminos
no mínimos, lo que incrementa las pérdidas por inserción. Hay un amplio margen entre los resultados con
las redes de distribución del láser ideal y realista, lo que indica que la potencia consumida depende no
sólo de una matriz de comunicación eficiente, sino también de una buena red de distribución del láser, que
debería ser objeto de futuras optimizaciones.

Después, diseñamos la primera interfaz de red completa para redes en chip ópticas, y usamos la red

105

CHAPTER 10. CONCLUSIONS AND FUTURE WORK

óptica completa para comunicar los nodos en un CMP. Este trabajo sienta las bases para futuros análisis
comparativos de redes ópticas y electrónicas. Respecto a la latencia, la red óptica es siempre más rápida
que su equivalente electrónico, incluso considerando la interfaz, preservando así el principal objetivo de las
redes ópticas wavelength-routed. En cuanto a potencia, detectamos que los routers suponen la principal
contribución en las redes electrónicas, mientras que la interfaz constituye el mayor porcentaje en las
ópticas. Finalmente, la red óptica sigue manteniendo un menor consumo en energía dinámica, incluso
incluyendo la interfaz. Este trabajo demuestra que la interfaz de red no debería ser obviada si se desea
llevar a cabo un análisis realista de la red óptica, y proporciona nuevas conclusiones para la investigación
en redes de este tipo. La más importante es que la optimización de la interfaz de red debería ser prioritaria
frente a la búsqueda de componentes ópticos de muy bajo consumo.

Con el objetivo de probar la red óptica en otras plataformas conocidas, también realizamos el primer
análisis de una red de interconexión óptica integrada en un acelerador programable de propósito general
para procesadores empotrados de alto nivel, siguiendo dos enfoques diferentes. Primero, seguimos una
estrategia de integración híbrida muy realista: integramos una red global óptica y mantenemos la red local
electrónica. Usando aplicaciones realistas, demostramos que el acelerador con red híbrida resulta muy
efectivo para mejorar el rendimiento. En general, nuestros resultados son optimistas, aunque claramente
señalan la energía estática como principal candidato para futuras optimizaciones. A continuación, presen-
tamos el primer trabajo que integra una red óptica en un entorno virtualizado. Este modelo de uso está
adquiriendo popularidad en procesadores de varios cores para permitir la ejecución concurrente de varias
aplicaciones en la misma plataforma. Este entorno es especialmente beneficioso para las redes electrónicas,
ya que su particionado puede resultar en una reducción energética, atendiendo así los problemas detectados
en el primer enfoque. Presentamos dos versiones con diferentes trade-offs para extraer estos beneficios:
por un lado, ejecutamos un algoritmo para configurar particiones que procura reutilizar las longitudes de
onda; por otro lado, usamos redes ópticas con particiones estáticas y demostramos su superioridad en
cuando a consumo energético.

Como conclusión, las redes ópticas en chip ofrecen resultados muy prometedores, pero todavía necesitan
un esfuerzo de investigación considerable. Debemos proponer diseños optimizados y personalizados para
plataformas reales, así como definir todos los detalles necesarios para materializar esta nueva tecnología
en chips de silicio.

106

Bibliography

[1] ELPIDA 512M bits Mobile RAM, EDS51321DBH-TS.

[2] A. Abousamra, A.K. Jones, and R. Melhem. Codesign of NoC and cache organization for reducing
access latency in chip multiprocessors. IEEE Transactions on Parallel and Distributed Systems,
23(6):1038–1046, 2012.

[3] Ahmed Abousamra, Alex K. Jones, and Rami Melhem. Proactive circuit allocation in multiplane
NoCs. In Proceedings of the 50th Annual Design Automation Conference, DAC ’13, pages 35:1–35:10,
New York, NY, USA, 2013. ACM.

[4] A.K. Abousamra, R.G. Melhem, and A.K. Jones. Deja-vu switching for multiplane NoCs. In Sixth
IEEE/ACM International Symposium on Networks on Chip (NoCS), pages 11 –18, may 2012.

[5] Dennis Abts, Natalie D. Enright Jerger, John Kim, Dan Gibson, and Mikko H. Lipasti. Achieving
predictable performance through better memory controller placement in many-core CMPs. In
Proceedings of the 36th annual international symposium on Computer architecture, ISCA ’09, pages
451–461, New York, NY, USA, 2009. ACM.

[6] N. Agarwal, T. Krishna, Li-Shiuan Peh, and N.K. Jha. GARNET: A detailed on-chip network
model inside a full-system simulator. In IEEE International Symposium on Performance Analysis
of Systems and Software, ISPASS, pages 33 –42, april 2009.

[7] Niket Agarwal, Li-Shiuan Peh, and Niraj K. Jha. In-network coherence filtering: snoopy coherence
without broadcasts. In Proceedings of the 42nd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 42, pages 232–243, New York, NY, USA, 2009. ACM.

[8] Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita. Silicon photonics for next generation system
integration platform. Communications Magazine, IEEE, 51(3):72–77, March 2013.

[9] D. Avresky and N. Natchev. Dynamic reconfiguration in computer clusters with irregular topologies
in the presence of multiple node and link failures. Computers, IEEE Transactions on, 54(5):603–615,
May 2005.

[10] M. Balboni, M. Ortin, A. Capotondi, H. Fankem Tatenguem, A. Ghiribaldi, L. Ramini, V. Viñals,
A. Marongiu, and Bertozzi. Augmenting manycore programmable accelerators with photonic
interconnect technology for the high-end embedded computing domain. In International Symposium
on Networks-on-Chip (NOCS), 2014.

[11] Marco Balboni, Francisco Triviño, José Flich, and Davide. Bertozzi. Optimizing the overhead for
network-on-chip routing reconfiguration in massively parallel multi-core platforms. In International
System-on-Chip Symposium, 2013.

[12] James Balfour and William J. Dally. Design tradeoffs for tiled CMP on-chip networks. In Proceedings
of the 20th annual international conference on Supercomputing, ICS ’06, pages 187–198, New York,
NY, USA, 2006. ACM.

[13] Luiz André Barroso, Kourosh Gharachorloo, Robert McNamara, Andreas Nowatzyk, Shaz Qadeer,
Barton Sano, Scott Smith, Robert Stets, and Ben Verghese. Piranha: a scalable architecture based
on single-chip multiprocessing. In Proceedings of the 27th annual international symposium on
Computer architecture, ISCA ’00, pages 282–293, New York, NY, USA, 2000. ACM.

107

BIBLIOGRAPHY

[14] C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. Holzwarth, M. Popovic, Hanqing Li, Henry I.
Smith, J. Hoyt, F. Kartner, R. Ram, V. Stojanovic, and K. Asanovic. Building manycore processor-to-
DRAM networks with monolithic silicon photonics. In 16th IEEE Symposium on High Performance
Interconnects, HOTI, pages 21–30, Aug 2008.

[15] C. Batten, A. Joshi, V. Stojanovic, and K. Asanovic. Designing chip-level nanophotonic intercon-
nection networks. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, pages
137–153, 2012.

[16] Scott Beamer, Chen Sun, Yong-Jin Kwon, Ajay Joshi, Christopher Batten, Vladimir Stojanovic,
and Krste Asanovic. Re-architecting DRAM memory systems with monolithically integrated silicon
photonics. In international symposium on Computer architecture, ISCA, pages 129–140. ACM, 2010.

[17] Keren Bergman, Luca P. Carloni, Aleksandr Biberman, Johnnie Chan, and Gilbert Hendry. Photonic
Network-on-Chip Design. Springer, 2014.

[18] George B. P. Bezerra, Stephanie Forrest, and Payman Zarkesh-Ha. Reducing energy and increasing
performance with traffic optimization in many-core systems. In Proceedings of the System Level
Interconnect Prediction Workshop, SLIP ’11, pages 3:1–3:7, Piscataway, NJ, USA, 2011. IEEE Press.

[19] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The PARSEC benchmark suite:
characterization and architectural implications. In Proceedings of the 17th international conference
on Parallel architectures and compilation techniques, PACT ’08, pages 72–81, New York, NY, USA,
2008. ACM.

[20] M. Biere, L. Gheorghe, G. Nicolescu, I. O’Connor, and G. Wainer. Towards the high-level design of
optical networks-on-chip. Formalization of opto-electrical interfaces. In International Conference on
Electronics, Circuits and Systems., pages 427–430, 2007.

[21] Anja Boos, Luca Ramini, Ulf Schlichtmann, and Davide Bertozzi. Proton: An automatic place-
and-route tool for optical networks-on-chip. In Proceedings of the International Conference on
Computer-Aided Design, ICCAD ’13, pages 138–145, Piscataway, NJ, USA, 2013. IEEE Press.

[22] D. Bortolotti, C. Pinto, A. Marongiu, M. Ruggiero, and L. Benini. VirtualSoc: A full-system
simulation environment for massively parallel heterogeneous system-on-chip. In International
Parallel and Distributed Processing Symposium Workshops PhD Forum (IPDPSW), pages 2182–2187,
May 2013.

[23] M. Briere, B. Girodias, Y. Bouchebaba, G. Nicolescu, F. Mieyeville, F. Gaffiot, and I. O’Connor.
System level assessment of an optical NoC in an MPSoC platform. In Design, Automation Test in
Europe Conference Exhibition, pages 1–6, 2007.

[24] Everton Carara, Fernando Moraes, and Ney Calazans. Router architecture for high-performance
NoCs. In Proceedings of the 20th annual conference on Integrated circuits and systems design, SBCCI
’07, pages 111–116, New York, NY, USA, 2007. ACM.

[25] J. Chan, G. Hendry, A. Biberman, and K. Bergman. Architectural design exploration of chip-scale
photonic interconnection networks using physical-layer analysis. In Optical Fiber Communication
(OFC), collocated National Fiber Optic Engineers Conference, 2010 Conference on (OFC/NFOEC),
pages 1–3, 2010.

[26] J. Chan, G. Hendry, A. Biberman, and K. Bergman. Architectural exploration of chip-scale photonic
interconnection network designs using physical-layer analysis. Journal of Lightwave Technology,
pages 1305–1315, 2010.

[27] Johnnie Chan, Gilbert Hendry, Aleksandr Biberman, Keren Bergman, and Luca P. Carloni.
PhoenixSim: A simulator for physical-layer analysis of chip-scale photonic interconnection networks.
In Proceedings of the Conference on Design, Automation and Test in Europe, DATE ’10, pages
691–696, 3001 Leuven, Belgium, Belgium, 2010. European Design and Automation Association.

108

BIBLIOGRAPHY

[28] C. Chen, T. Zhang, P. Contu, J. Klamkin, A. Coscun, and A. Joshi. Sharing and placement of
on-chip laser sources in silicon photonic NoCs. In International Symposium on Networks-on-Chip
(NOCS), 2014.

[29] Chao Chen and A Joshi. Runtime management of laser power in silicon-photonic multibus NoC
architecture. IEEE Journal of Selected Topics in Quantum Electronics, 19(2):3700713–3700713,
March 2013.

[30] Mark J. Cianchetti, Joseph C. Kerekes, and David H. Albonesi. Phastlane: A rapid transit
optical routing network. In Proceedings of the 36th Annual International Symposium on Computer
Architecture, ISCA ’09, pages 441–450, New York, NY, USA, 2009. ACM.

[31] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and B. Hughes. Cache hierarchy and
memory subsystem of the AMD opteron processor. Micro, IEEE, 30(2):16–29, 2010.

[32] William Dally and Brian Towles. Principles and Practices of Interconnection Networks. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

[33] William J. Dally and Charles L. Seitz. The torus routing chip. Distributed Computing, 1:187–196,
1986. 10.1007/BF01660031.

[34] W.J. Dally. Virtual-channel flow control. In 17th Annual International Symposium on Computer
Architecture, pages 60–68, May 1990.

[35] Yigit Demir and Nikos Hardavellas. Ecolaser: An adaptive laser control for energy-efficient on-
chip photonic interconnects. In Proceedings of the 2014 International Symposium on Low Power
Electronics and Design, ISLPED ’14, pages 3–8, New York, NY, USA, 2014. ACM.

[36] S. Dighe, S. Gupta, V. De, S. Vangal, N. Borkar, S. Borkar, and K. Roy. A 45nm 48-core IA
processor with variation-aware scheduling and optimal core mapping. In Symposium on VLSI
Circuits (VLSIC), pages 250–251, June 2011.

[37] J. Duato, P. Lopez, F. Silla, and S. Yalamanchili. A high performance router architecture for
interconnection networks. In Proceedings of the International Conference on Parallel Processing,
volume 1, pages 61–68 vol.1, 1996.

[38] K. Fan, M. Kudlur, G. Dasika, and S. Mahlke. Bridging the computation gap between programmable
processors and hardwired accelerators. In IEEE 15th International Symposium on High Performance
Computer Architecture, pages 313–322, Feb 2009.

[39] Chaochao Feng, Zhonghai Lu, Axel Jantsch, Jinwen Li, and Minxuan Zhang. A reconfigurable
fault-tolerant deflection routing algorithm based on reinforcement learning for network-on-chip. In
Proceedings of the Third International Workshop on Network on Chip Architectures, NoCArc ’10,
pages 11–16, New York, NY, USA, 2010. ACM.

[40] R. Fernandez-Pascual, J.M. Garcia, M.E. Acacio, and J. Duato. A fault-tolerant directory-based
cache coherence protocol for CMP architectures. In IEEE International Conference on Dependable
Systems and Networks With FTCS and DCC, pages 267–276, 2008.

[41] P. Francesco, P. Antonio, and P. Marchal. Flexible hardware/software support for message passing
on a distributed shared memory architecture. In Design, Automation and Test in Europe, 2005.
Proceedings, pages 736–741 Vol. 2, March 2005.

[42] R. Gabor, Shlomo Weiss, and A. Mendelson. Fairness and throughput in switch on event multi-
threading. In 39th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-39,
pages 149–160, 2006.

[43] C. Galland et al. A CMOS-compatible silicon photonic platform for high-speed integrated opto-
electronics. Proc. Integrated Photonics: Materials, Devices, and Applications, 2013.

[44] P.T. Gaughan and S. Yalamanchili. A family of fault-tolerant routing protocols for direct multipro-
cessor networks. IEEE Transactions on Parallel and Distributed Systems, 6:482–497, 1995.

109

BIBLIOGRAPHY

[45] F. Gilabert, M.E. Gomez, S. Medardoni, and D. Bertozzi. Improved utilization of NoC channel
bandwidth by switch replication for cost-effective multi-processor systems-on-chip. In International
Symposium on Networks-on-Chip (NOCS), pages 165–172, 2010.

[46] F. Gilabert, S. Medardoni, D. Bertozzi, L. Benini, M.E. Gomez, P. Lopez, and J. Duato. Exploring
high-dimensional topologies for NoC design through an integrated analysis and synthesis framework.
In Second ACM/IEEE International Symposium on Networks-on-Chip, NoCs, pages 107–116, April
2008.

[47] Darryl Gove. CPU2006 working set size. SIGARCH Comput. Archit. News, 35(1):90–96, March
2007.

[48] Paolo Grani and Sandro Bartolini. Design options for optical ring interconnect in future client
devices. Journal on Emerging Technologies in Computing Systems, 10(4):30:1–30:25, June 2014.

[49] Tom R. Halfhill. Power8 hits the merchant market. Memory bandwidth helps IBM server processor
ace big benchmarks. Microprocessor report, March 2014.

[50] Andreas Hansson, Kees Goossens, and Andrei Rădulescu. Avoiding message-dependent deadlock in
network-based systems on chip. VLSI Design, 2007.

[51] G. Hendry, J. Chan, S. Kamil, L. Oliker, J. Shalf, L.P. Carloni, and K. Bergman. Silicon nanophotonic
network-on-chip using TDM arbitration. In Annual Symposium on High Performance Interconnects
(HOTI), pages 88–95, 2010.

[52] G. Hendry, E. Robinson, V. Gleyzer, J. Chan, L.P. Carloni, N. Bliss, and K. Bergman. Circuit-
switched memory access in photonic interconnection networks for high-performance embedded
computing. In International Conference for High Performance Computing, Networking, Storage and
Analysis (SC), pages 1–12, 2010.

[53] J. Howard, S. Dighe, S.R. Vangal, G. Ruhl, N. Borkar, S. Jain, V. Erraguntla, M. Konow, M. Riepen,
M. Gries, G. Droege, T. Lund-Larsen, S. Steibl, S. Borkar, V.K. De, and R. Van Der Wijngaart. A
48-core IA-32 processor in 45 nm CMOS using on-die message-passing and DVFS for performance
and power scaling. IEEE Journal of Solid-State Circuits, 46(1):173 –183, jan. 2011.

[54] Adapteva Inc. Adapteva reference manual. http://www.parallella.org/wp-content/uploads/
2013/01/parallella_gen1_reference.pdf (Last access November 2015).

[55] NVIDIA Inc. Cuda compute architecture: Fermi. (Last access November 2015).

[56] Texas Instruments Inc. Multicore DSP+ARM keystone II system-on-chip (SoC). http://www.ti.
com/lit/ds/symlink/66ak2h12.pdf (Last access November 2015).

[57] Xilinx Inc. Zynq-7000 all programmable SoC overview. http://www.xilinx.com/support/
documentation/data_sheets/ds190-Zynq-7000-Overview.pdf (Last access November 2015).

[58] Intel. Intel Xeon Phi. 2014. http://www.intel.es/content/dam/www/public/us/en/documents/
datasheets/xeon-phi-coprocessor-datasheet.pdf (Last access November 2015).

[59] Intel. Intel Xeon Phi, Knights Landing. 2014. https://software.intel.com/sites/default/
files/managed/e9/b5/Knights-Corner-is-your-path-to-Knights-Landing.pdf (Last access
November 2015).

[60] R. Jain. The Art of Computer Systems Performance Analysis: Techniques for Experimental Design,
Measurement, Simulation, and Modeling. Wiley, 1991.

[61] Natalie D. Enright Jerger, Li-Shiuan Peh, and Mikko H. Lipasti. Circuit-switched coherence. In
Proceedings of the Second ACM/IEEE International Symposium on Networks-on-Chip, NOCS ’08,
pages 193–202, Washington, DC, USA, 2008. IEEE Computer Society.

[62] A. Joshi, C. Batten, Yong-Jin Kwon, S. Beamer, I. Shamim, K. Asanovic, and V. Stojanovic.
Silicon-photonic clos networks for global on-chip communication. In International Symposium on
Networks-on-Chip, pages 124–133, 2009.

110

http://www.parallella.org/wp-content/uploads/2013/01/parallella_gen1_reference.pdf
http://www.parallella.org/wp-content/uploads/2013/01/parallella_gen1_reference.pdf
http://www.ti.com/lit/ds/symlink/66ak2h12.pdf
http://www.ti.com/lit/ds/symlink/66ak2h12.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://www.intel.es/content/dam/www/public/us/en/documents/datasheets/xeon-phi-coprocessor-datasheet.pdf
http://www.intel.es/content/dam/www/public/us/en/documents/datasheets/xeon-phi-coprocessor-datasheet.pdf
https://software.intel.com/sites/default/files/managed/e9/b5/Knights-Corner-is-your-path-to-Knights-Landing.pdf
https://software.intel.com/sites/default/files/managed/e9/b5/Knights-Corner-is-your-path-to-Knights-Landing.pdf

BIBLIOGRAPHY

[63] Sheng Li; Ke Chen; Jay B. Brockman; Norman P. Jouppi. Performance impacts of non-blocking
caches in out-of-order processors. Technical report, HP Laboratories, 2011.

[64] Kalray. Mppa 256 - programmable manycore processor. www.kalray.eu/products/mppa-manycore/
mppa-256/ (Last access November 2015).

[65] David Kanter. 14nm Xeon D secures the data center. Microprocessor report, March 2015.

[66] Rishi Kapoor, George Porter, Malveeka Tewari, Geoffrey M. Voelker, and Amin Vahdat. Chronos:
Predictable low latency for data center applications. In Procs of the Third ACM Symp. on Cloud
Comp., pages 9:1–9:14, New York, NY, USA, 2012. ACM.

[67] Pawan Kapur and Krishna C. Saraswat. Optical interconnects for future high performance integrated
circuits. Physica E: Low-dimensional Systems and Nanostructures, pages 620 – 627, 2003.

[68] Khronos OpenCL. http://www.khronos.org/opencl/. (Last access November 2015).

[69] J. Kim. Low-cost router microarchitecture for on-chip networks. In 42nd Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO-42, pages 255–266, 2009.

[70] Nevin Kirman, Meyrem Kirman, Rajeev K. Dokania, Jose F. Martinez, Alyssa B. Apsel, Matthew A.
Watkins, and David H. Albonesi. Leveraging optical technology in future bus-based chip multiproces-
sors. In Proceedings of the 39th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO 39, pages 492–503, Washington, DC, USA, 2006. IEEE Computer Society.

[71] Donald Kline, Jr., Kai Wang, Rami Melhem, and Alex K. Jones. Mscs: Multi-hop segmented circuit
switching. In Proceedings of the 25th Edition on Great Lakes Symposium on VLSI, GLSVLSI ’15,
pages 179–184, New York, NY, USA, 2015. ACM.

[72] Michihiro Koibuchi, Hiroki Matsutani, Hideharu Amano, D. Frank Hsu, and Henri Casanova. A
case for random shortcut topologies for HPC interconnects. In Proceedings of the 39th International
Symposium on Computer Architecture, ISCA ’12, pages 177–188, Piscataway, NJ, USA, 2012. IEEE
Press.

[73] Pranay Koka, Michael O. McCracken, Herb Schwetman, Xuezhe Zheng, Ron Ho, and Ashok V.
Krishnamoorthy. Silicon-photonic network architectures for scalable, power-efficient multi-chip
systems. In Proceedings of the 37th Annual International Symposium on Computer Architecture,
ISCA ’10, pages 117–128, New York, NY, USA, 2010. ACM.

[74] S. Koohi, M. Abdollahi, and S. Hessabi. All-optical wavelength-routed NoC based on a novel
hierarchical topology. In International Symposium on Networks on Chip (NoCS), pages 97–104,
2011.

[75] Tushar Krishna, Li-Shiuan Peh, Bradford M. Beckmann, and Steven K. Reinhardt. Towards the
ideal on-chip fabric for 1-to-many and many-to-1 communication. In Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO-44 ’11, pages 71–82, New York,
NY, USA, 2011. ACM.

[76] A Kumar, P. Kundu, A.P. Singhx, Li-Shiuan Peh, and N.K. Jha. A 4.6Tbits/s 3.6GHz single-cycle
NoC router with a novel switch allocator in 65nm CMOS. In 25th International Conference on
Computer Design, ICCD, pages 63–70, 2007.

[77] Prabhat Kumar, Yan Pan, John Kim, Gokhan Memik, and Alok Choudhary. Exploring concen-
tration and channel slicing in on-chip network router. In Proceedings of the 2009 3rd ACM/IEEE
International Symposium on Networks-on-Chip, NOCS ’09, pages 276–285, Washington, DC, USA,
2009. IEEE Computer Society.

[78] Rakesh Kumar, Victor Zyuban, and Dean M. Tullsen. Interconnections in multi-core architectures:
Understanding mechanisms, overheads and scaling. In Proceedings of the 32nd annual international
symposium on Computer Architecture, ISCA ’05, pages 408–419, Washington, DC, USA, 2005. IEEE
Computer Society.

111

www.kalray.eu/products/mppa-manycore/mppa-256/
www.kalray.eu/products/mppa-manycore/mppa-256/
http://www.khronos.org/opencl/

BIBLIOGRAPHY

[79] G. Kurian, Chen Sun, C.-H.O. Chen, J.E. Miller, J. Michel, Lan Wei, D.A. Antoniadis, Li-Shiuan
Peh, L. Kimerling, V. Stojanovic, and A. Agarwal. Cross-layer energy and performance evaluation
of a nanophotonic manycore processor system using real application workloads. In Int. Parallel
Distributed Processing Symposium (IPDPS), pages 1117–1130, 2012.

[80] George Kurian, Jason E. Miller, James Psota, Jonathan Eastep, Jifeng Liu, Jurgen Michel, Li-
onel C. Kimerling, and Anant Agarwal. Atac: A 1000-core cache-coherent processor with on-chip
optical network. In Proceedings of the 19th International Conference on Parallel Architectures and
Compilation Techniques, PACT ’10, pages 477–488, New York, NY, USA, 2010. ACM.

[81] S. Le Beux, J. Trajkovic, I O’Connor, G. Nicolescu, G. Bois, and P. Paulin. Multi-optical network-
on-chip for large scale mpsoc. Embedded Systems Letters, IEEE, 2(3):77–80, Sept 2010.

[82] S. Le Beux, J. Trajkovic, I. O’Connor, G. Nicolescu, G. Bois, and P. Paulin. Optical ring network-
on-chip (ORNoC): Architecture and design methodology. In Design, Automation Test in Europe
Conference Exhibition (DATE), pages 1–6, 2011.

[83] Chun-Yi Lee and N.K. Jha. Variable-pipeline-stage router. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 21(9):1669–1682, Sept 2013.

[84] Jinho Lee, Junwhan Ahn, Kiyoung Choi, and Kyungsu Kang. THOR: Orchestrated thermal
management of cores and networks in 3D many-core architectures. In 20th Asia and South Pacific
Design Automation Conference (ASP-DAC), pages 773–778, Jan 2015.

[85] J. Leu and V. Stojanovic. Injection-locked clock receiver for monolithic optical link in 45nm SOI. In
IEEE Asian Solid State Circuits Conference (A-SSCC), pages 149–152, 2011.

[86] Zhongqi Li and Tao Li. Espn: A case for energy-star photonic on-chip network. In Proceedings
of the 2013 International Symposium on Low Power Electronics and Design, ISLPED ’13, pages
377–382, Piscataway, NJ, USA, 2013. IEEE Press.

[87] Shaoteng Liu, A. Jantsch, and Zhonghai Lu. Parallel probe based dynamic connection setup in
TDM NoCs. In Design, Automation and Test in Europe Conference and Exhibition (DATE), pages
1–6, March 2014.

[88] Mario Lodde, Toni Roca, and José Flich. Heterogeneous network design for effective support
of invalidation-based coherency protocols. In Proceedings of the 2012 Interconnection Network
Architecture: On-Chip, Multi-Chip Workshop, INA-OCMC ’12, pages 1–4, New York, NY, USA,
2012. ACM.

[89] Plurality Ltd. The hypercore processor (tech. report), 2010. www.plurality.com/ (Last access
November 2015.

[90] Michael J. Lyons, Mark Hempstead, Gu-Yeon Wei, and David Brooks. The accelerator store: A
shared memory framework for accelerator-based systems. ACM Transactions on Architecture and
Code Optimization (TACO), 8(4):48:1–48:22, January 2012.

[91] O. Lysne, J.M. Montanana, J. Flich, J. Duato, T.M. Pinkston, and T. Skeie. An efficient and
deadlock-free network reconfiguration protocol. Computers, IEEE Transactions on, 57(6):762–779,
June 2008.

[92] P.S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg, F. Larsson,
A. Moestedt, and B. Werner. Simics: A full system simulation platform. Computer, 35(2):50 –58,
feb 2002.

[93] A. Marongiu, P. Burgio, and L. Benini. Fast and lightweight support for nested parallelism on
cluster-based embedded many-cores. In Design, Automation Test in Europe Conference Exhibition
(DATE), 2012, pages 105–110, March 2012.

[94] Andrea Marongiu, Alessandro Capotondi, Giuseppe Tagliavini, and Luca Benini. Improving the
programmability of sthorm-based heterogeneous systems with offload-enabled openmp. In Proceedings
of the First International Workshop on Many-core Embedded Systems, MES ’13, pages 1–8, New
York, NY, USA, 2013. ACM.

112

www.plurality.com/

BIBLIOGRAPHY

[95] Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R. Marty, Min Xu, Alaa R.
Alameldeen, Kevin E. Moore, Mark D. Hill, and David A. Wood. Multifacet’s general execution-
driven multiprocessor simulator (GEMS) toolset. SIGARCH Computer Architecture News, 33:92–99,
November 2005.

[96] Abbas Mazloumi and Mehdi Modarressi. A hybrid packet/circuit-switched router to accelerate
memory access in NoC-based chip multiprocessors. In Proceedings of the 2015 Design, Automation
& Test in Europe Conference & Exhibition, DATE, Grenoble, France, March 9-13, pages 908–911,
2015.

[97] Diego Melpignano, Luca Benini, Eric Flamand, Bruno Jego, Thierry Lepley, Germain Haugou,
Fabien Clermidy, and Denis Dutoit. Platform 2012, a many-core computing accelerator for embedded
SoCs: Performance evaluation of visual analytics applications. In Proceedings of the 49th Annual
Design Automation Conference, DAC ’12, pages 1137–1142, New York, NY, USA, 2012. ACM.

[98] Jörg Mische and Theo Ungerer. Low power flitwise routing in an unidirectional torus with minimal
buffering. In Proceedings of the Fifth International Workshop on Network on Chip Architectures,
NoCArc ’12, pages 63–68, New York, NY, USA, 2012. ACM.

[99] Asit K. Mishra, N. Vijaykrishnan, and Chita R. Das. A case for heterogeneous on-chip interconnects
for CMPs. In Proceedings of the 38th annual international symposium on Computer architecture,
ISCA ’11, pages 389–400, New York, NY, USA, 2011. ACM.

[100] Randy Morris, Avinash Karanth Kodi, and Ahmed Louri. Dynamic reconfiguration of 3D photonic
networks-on-chip for maximizing performance and improving fault tolerance. In Proceedings of the
2012 45th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-45, pages
282–293, Washington, DC, USA, 2012. IEEE Computer Society.

[101] Robert Mullins, Andrew West, and Simon Moore. Low-latency virtual-channel routers for on-chip
networks. In Proceedings of the 31st annual international symposium on Computer architecture,
ISCA ’04, pages 188–, Washington, DC, USA, 2004. IEEE Computer Society.

[102] Robert Mullins, Andrew West, and Simon Moore. The design and implementation of a low-latency
on-chip network. In Proceedings of the 2006 Asia and South Pacific Design Automation Conference,
ASP-DAC ’06, pages 164–169, Piscataway, NJ, USA, 2006. IEEE Press.

[103] I. O’Connor, M. Brière, E. Drouard, A. Kazmierczak, F. Tissafi-Drissi, D. Navarro, F. Mieyeville,
J. Dambre, D. Stroobandt, J.-M. Fedeli, Z. Lisik, and F. Gaffiot. Towards reconfigurable optical
networks-on-chip. RECO SoC, pages 121–128, 2005.

[104] Ian O’Connor, Dries Van Thourhout, and Alberto Scandurra. Wavelength division multiplexed
photonic layer on CMOS. In Proceedings of the 2012 Interconnection Network Architecture: On-Chip,
Multi-Chip Workshop, INA-OCMC ’12, pages 33–36, New York, NY, USA, 2012. ACM.

[105] Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and Kunyung Chang. The
case for a single-chip multiprocessor. In Proceedings of the Seventh International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS VII, pages 2–11,
New York, NY, USA, 1996. ACM.

[106] Open Multi Processing. http://www.openmp.org. (Last access November 2015).

[107] Oracle. Sparc M7-16 Server. 2015. http://www.oracle.com/us/products/servers-storage/
sparc-m7-16-ds-2687045.pdf (Last access November 2015).

[108] M. Ortin, L. Ramini, M. Balboni, L. Zuolo, N. Maddalena, V. Viñals, and D. Bertozzi. Partitioning
strategies of wavelength-routed optical networks-on-chip for laser power minimization. In Workshop
on Exploiting Silicon Photonics for Energy-Efficient High Performance Computing (SiPhotonics),
pages 17–24, Jan 2015.

[109] M. Ortin, D. Suarez, M. Villarroya, C. Izu, and V. Vinals. Dynamic construction of circuits for
reactive traffic in homogeneous CMPs. In Design, Automation and Test in Europe Conference and
Exhibition (DATE), 2014, pages 1–4, March 2014.

113

http://www.openmp.org
http://www.oracle.com/us/products/servers-storage/sparc-m7-16-ds-2687045.pdf
http://www.oracle.com/us/products/servers-storage/sparc-m7-16-ds-2687045.pdf

BIBLIOGRAPHY

[110] Marta Ortín, Alexandra Ferrerón, Jorge Albericio, Darío Suárez, María Villarroya-Gaudó, Cruz Izu,
and Víctor Viñals. Characterization and cost-efficient selection of NoC topologies for general purpose
CMPs. In Proceedings of the 2013 Interconnection Network Architecture: On-Chip, Multi-Chip,
IMA-OCMC ’13, pages 21–24, New York, NY, USA, 2013. ACM.

[111] Marta Ortín-Obón, Luca Ramini, Herve Tatenguem Fankem, Víctor Viñals, and Davide Bertozzi. A
complete electronic network interface architecture for global contention-free communication over
emerging optical networks-on-chip. In Proceedings of the 24th Edition of the Great Lakes Symposium
on VLSI, GLSVLSI ’14, pages 267–272, New York, NY, USA, 2014. ACM.

[112] M. Ortín, L. Ramini, H. Fanken-Tatenguem, V. Viñals, and D. Bertozzi. Arquitectura completa
de una interfaz de red electrónica para redes ópticas en chip. In XXV Jornadas de Paralelismo,
September 2014.

[113] M. Ortín, D. Suárez, M. Villarroya-Gaudó, C. Izu, and V. Viñals. Reserva de circuitos para tráfico
reactivo en cmps homogéneos. In XXIV Jornadas de Paralelismo, September 2013.

[114] Marta Ortín, Marco Balboni, Luca Ramini, Víctor Viñals, and Davide Bertozzi. Optical networks-
on-chip: Time for accurate crossbenchmarking. In CMOS Emerging Technologies Research, July
2014. Invited presentation.

[115] Marta Ortín, Luca Ramini, Víctor Viñals, and Davide Bertozzi. Capturing the sensitivity of optical
network quality metrics to its network interface parameters. In Invited paper to the I Workshop on
Exploiting Silicon Photonics for Energy-Efficient Heterogeneous Parallel Architectures (SiPhotonics),
January 2014.

[116] Marta Ortín-Obón, Luca Ramini, Víctor Viñals, and Davide Bertozzi. Capturing the sensitivity of
optical network quality metrics to its network interface parameters. Concurrency and Computation:
Practice and Experience, 26(15):2504–2517, 2014.

[117] Marta Ortín-Obón, Darío Suárez-Gracia, María Villarroya-Gaudó, Cruz Izu, and Víctor Viñals-
Yúfera. Analysis of network-on-chip topologies for cost-efficient chip multiprocessors. Microprocessors
and Microsystems, pages –, 2016.

[118] John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krüger, Aaron E. Lefohn,
and Tim Purcell. A survey of general-purpose computation on graphics hardware. COMPUTER
GRAPHICS FORUM 26(1):80, 2007.

[119] Francesca Palumbo, Danilo Pani, Andrea Congiu, and Luigi Raffo. Concurrent hybrid switching for
massively parallel systems-on-chip: the cyber architecture. In Proceedings of the 9th conference on
Computing Frontiers, CF ’12, pages 173–182, New York, NY, USA, 2012. ACM.

[120] Yan Pan, J. Kim, and G. Memik. Flexishare: Channel sharing for an energy-efficient nanophotonic
crossbar. In International Symposium on High Performance Computer Architecture, pages 1–12,
2010.

[121] Yan Pan, Prabhat Kumar, John Kim, Gokhan Memik, Yu Zhang, and Alok Choudhary. Firefly:
Illuminating future network-on-chip with nanophotonics. In Proceedings of the International
Symposium on Computer Architecture, ISCA ’09, pages 429–440, New York, NY, USA, 2009. ACM.

[122] Li-Shiuan Peh and William J. Dally. A delay model and speculative architecture for pipelined routers.
In Proceedings of the 7th International Symposium on High-Performance Computer Architecture,
HPCA ’01, pages 255–, Washington, DC, USA, 2001. IEEE Computer Society.

[123] Li-Shiuan Peh and W.J. Dally. Flit-reservation flow control. In High-Performance Computer
Architecture, 2000. HPCA-6. Proceedings. Sixth International Symposium on, pages 73–84, 2000.

[124] V. Puente, J.-A Gregorio, F. Vallejo, and R. Beivide. Immunet: a cheap and robust fault-tolerant
packet routing mechanism. In Proceedings of the 31st Annual International Symposium on Computer
Architecture, pages 198–209, June 2004.

114

BIBLIOGRAPHY

[125] Arun Raghavan, Colin Blundell, and Milo M. K. Martin. Token tenure and PATCH: A predic-
tive/adaptive token-counting hybrid. ACM Transactions on Architecture and Code Optimization,
7(2):6:1–6:31, October 2010.

[126] Amir-Mohammad Rahmani, Mohammad-Hashem Haghbayan, Anil Kanduri, Awet Yemane
Weldezion, Pasi Liljeberg, Juha Plosila, Axel Jantsch, and Hannu Tenhunen. Dynamic power
management for many-core platforms in the dark silicon era: A multi-objective control approach.
In IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), pages
219–224, July 2015.

[127] Luca Ramini and Davide Bertozzi. Power efficiency of wavelength-routed optical NoC topologies for
global connectivity of 3D multi-core processors. In Proceedings of the Fifth International Workshop
on Network on Chip Architectures, NoCArc ’12, pages 25–30, New York, NY, USA, 2012. ACM.

[128] Luca Ramini, Hervé Tatenguem Fankem, Alberto Ghiribaldi, Paolo Grani, Marta Ortín-Obón, Anja
Boos, and Sandro Bartolini. Towards compelling cases for the viability of silicon-nanophotonic
technology in future manycore systems. In Eighth IEEE/ACM International Symposium on Networks-
on-Chip, NoCS 2014, Ferrara, Italy, September 17-19, 2014, pages 170–171, 2014.

[129] Luca Ramini, Paolo Grani, Sandro Bartolini, and Davide Bertozzi. Contrasting wavelength-routed
optical noc topologies for power-efficient 3d-stacked multicore processors using physical-layer analysis.
In Proceedings of the Conference on Design, Automation and Test in Europe, DATE ’13, pages
1589–1594, San Jose, CA, USA, 2013. EDA Consortium.

[130] Luca Ramini, Paolo Grani, Hervé Tatenguem Fankem, Alberto Ghiribaldi, Sandro Bartolini, and
Davide Bertozzi. Assessing the energy break-even point between an optical NoC architecture and
an aggressive electronic baseline. In Proceedings of the Conference on Design, Automation & Test
in Europe, DATE ’14, pages 308:1–308:6, 3001 Leuven, Belgium, Belgium, 2014. European Design
and Automation Association.

[131] S. Rodrigo, J. Flich, A. Roca, S. Medardoni, D. Bertozzi, J. Camacho, F. Silla, and J. Duato.
Addressing manufacturing challenges with cost-efficient fault tolerant routing. In International
Symposium on Networks-on-Chip (NOCS), pages 25–32, May 2010.

[132] Edward Rosten, R. Porter, and Tom Drummond. Faster and better: A machine learning approach to
corner detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(1):105–119,
Jan 2010.

[133] Daniel Sanchez, George Michelogiannakis, and Christos Kozyrakis. An analysis of on-chip intercon-
nection networks for large-scale chip multiprocessors. ACM Transactions on Architecture and Code
Optimization, 7(1):4:1–4:28, May 2010.

[134] M.D. Schroeder, AD. Birrell, M. Burrows, H. Murray, R.M. Needham, T.L. Rodeheffer, E.H.
Satterthwaite, and C.P. Thacker. Autonet: a high-speed, self-configuring local area network using
point-to-point links. IEEE Journal on Selected Areas in Communications, 9(8):1318–1335, Oct 1991.

[135] Ciprian Seiculescu, Stavros Volos, Naser Khosro Pour, Babak Falsafi, and Giovanni De Micheli.
CCNoC: On-Chip Interconnects for Cache-Coherent Manycore Server Chips. In Proceedings of the
Workshop on Energy-Efficient Design (WEED 2011), 2011.

[136] A. Shacham, K. Bergman, and L.P. Carloni. On the design of a photonic network-on-chip. In
Networks-on-Chip, 2007. NOCS 2007. First International Symposium on, pages 53–64, May 2007.

[137] Standard Performance Evaluation Corporation (SPEC). SPEC CPU2006. http://www.spec.org/
cpu2006/ (Last access November 2015).

[138] W.J. Starke, J. Stuecheli, D.M. Daly, J.S. Dodson, F. Auernhammer, P.M. Sagmeister, G.L. Guthrie,
C.F. Marino, M. Siegel, and B. Blaner. The cache and memory subsystems of the IBM POWER8
processor. IBM Journal of Research and Development, 59(1):3:1–3:13, Jan 2015.

115

http://www.spec.org/cpu2006/
http://www.spec.org/cpu2006/

BIBLIOGRAPHY

[139] S. Stergiou, F. Angiolini, Salvatore Carta, L. Raffo, D. Bertozzi, and G. De Micheli. xpipes lite: a
synthesis oriented design library for networks on chips. In Design, Automation and Test in Europe.,
pages 1188–1193 Vol. 2, 2005.

[140] A. Strano, D. Ludovici, and D. Bertozzi. A library of dual-clock FIFOs for cost-effective and flexible
MPSoC design. In International Conferenece on Embedded Computer Systems (SAMOS), pages
20–27, 2010.

[141] Chen Sun, Chia-Hsin Owen Chen, George Kurian, Lan Wei, Jason Miller, Anant Agarwal, Li-
Shiuan Peh, and Vladimir Stojanovic. DSENT - a tool connecting emerging photonics with
electronics for opto-electronic networks-on-chip modeling. In Proceedings of the 2012 IEEE/ACM
Sixth International Symposium on Networks-on-Chip, NOCS ’12, pages 201–210, Washington, DC,
USA, 2012. IEEE Computer Society.

[142] Chen Sun, Yu-Hsin Chen, and V. Stojanovic. Designing processor-memory interfaces with mono-
lithically integrated silicon-photonics. In Conference on Lasers and Electro-Optics Pacific Rim
(CLEO-PR), pages 1–2, June 2013.

[143] Xianfang Tan, Mei Yang, Lei Zhang, Yingtao Jiang, and Jianyi Yang. On a scalable, non-blocking
optical router for photonic networks-on-chip designs. In Symposium on Photonics and Optoelectronics
(SOPO), pages 1–4, 2011.

[144] Tilera. TILEPro64. 2008. http://www.tilera.com/products/processors/TILEPro_Family (Last
access November 2015).

[145] TileraCorporation. Tile-Gx8016 specification. http://www.tilera.com/sites/default/files/
productbriefs/Tile-Gx-8016-SB011-03.pdf (Last access November 2015).

[146] D. Vantrease, N. Binkert, R. Schreiber, and M.H. Lipasti. Light speed arbitration and flow
control for nanophotonic interconnects. In 42nd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-42, pages 304–315, 2009.

[147] Dana Vantrease, Robert Schreiber, Matteo Monchiero, Moray McLaren, Norman P. Jouppi, Marco
Fiorentino, Al Davis, Nathan Binkert, Raymond G. Beausoleil, and Jung Ho Ahn. Corona: System
implications of emerging nanophotonic technology. In Proceedings of the 35th Annual International
Symposium on Computer Architecture, ISCA ’08, pages 153–164, Washington, DC, USA, 2008. IEEE
Computer Society.

[148] J.C. Villanueva, J. Flich, J. Duato, H. Eberle, N. Gura, and W. Olesinski. A performance evaluation
of 2D-mesh, ring, and crossbar interconnects for chip multi-processors. In Network on Chip
Architectures, 2009. NoCArc 2009. 2nd International Workshop on, pages 51–56, Dec 2009.

[149] Isask’har Walter, Israel Cidon, Ran Ginosar, and Avinoam Kolodny. Access regulation to hot-modules
in wormhole NoCs. In Proceedings of the First International Symposium on Networks-on-Chip,
NOCS ’07, pages 137–148, Washington, DC, USA, 2007. IEEE Computer Society.

[150] David Wentzlaff, Patrick Griffin, Henry Hoffmann, Liewei Bao, Bruce Edwards, Carl Ramey, Matthew
Mattina, Chyi-Chang Miao, John F. Brown III, and Anant Agarwal. On-chip interconnection
architecture of the tile processor. IEEE Micro, 27(5):15–31, September 2007.

[151] Neil Weste and David Harris. CMOS VLSI Design: A Circuits and Systems Perspective. Addison-
Wesley Publishing Company, USA, 4th edition, 2010.

[152] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop Gupta. The
SPLASH-2 programs: characterization and methodological considerations. In Proceedings of the
22nd annual international symposium on Computer architecture, ISCA ’95, pages 24–36, New York,
NY, USA, 1995. ACM.

[153] www.OpenMP.org. OpenMP Application Program Interface v.4.0. shttp://www.openmp.org/
mp-documents/OpenMP_4.0_RC2.pdf. (Last access November 2015).

116

http://www.tilera.com/products/processors/TILEPro_Family
http://www.tilera.com/sites/default/files/productbriefs/Tile-Gx-8016-SB011-03.pdf
http://www.tilera.com/sites/default/files/productbriefs/Tile-Gx-8016-SB011-03.pdf
http://www.openmp.org/mp-documents/OpenMP_4.0_RC2.pdf
http://www.openmp.org/mp-documents/OpenMP_4.0_RC2.pdf

BIBLIOGRAPHY

[154] Young Jin Yoon, Nicola Concer, Michele Petracca, and Luca Carloni. Virtual channels vs. multiple
physical networks: a comparative analysis. In Proceedings of the 47th Design Automation Conference,
DAC ’10, pages 162–165, New York, NY, USA, 2010. ACM.

[155] Michael Zhang and Krste Asanovic. Victim replication: Maximizing capacity while hiding wire
delay in tiled chip multiprocessors. In Proceedings of the 32nd annual international symposium on
Computer Architecture, ISCA ’05, pages 336–345, Washington, DC, USA, 2005. IEEE Computer
Society.

[156] Pingqiang Zhou, Jieming Yin, Antonia Zhai, and Sachin S. Sapatnekar. NoC frequency scaling
with flexible-pipeline routers. In Proceedings of the 17th IEEE/ACM international symposium on
Low-power electronics and design, ISLPED ’11, pages 403–408, Piscataway, NJ, USA, 2011. IEEE
Press.

117

	List of figures
	List of tables
	I Preliminaries
	Introduction
	Context and Background
	Basics about Electronic NoCs
	Basics about Optical NoCs

	Contributions
	Thesis Organization

	II Electronic Network-on-Chip Optimization
	CMP Architecture and Simulation Methodology
	Introduction
	CMP Architecture Framework
	General System Architecture
	Network-on-Chip and Router Architecture

	Methodology
	Simulation Environment
	Workloads

	Analysis and Characterization of NoC Topologies
	Introduction
	Related work
	Topologies for Homogeneous CMPs: Qualitative Analysis
	Topologies for Homogeneous CMPs: Quantitative Analysis
	Performance
	Average Hop Count
	Network Latency
	Traffic Distribution
	Area, Energy, and Delay
	Fairness
	Memory Controller Placement

	Concluding Remarks

	Reactive Circuits: Dynamic Construction of Circuits for Reactive Traffic in Homogeneous CMPs
	Introduction
	State-of-the-Art
	Setup, Operation, and Release of Reactive Circuits
	Reserving Reactive Circuits
	Fragmented versus Complete Circuits
	Using the Circuits
	Undoing circuits before they are used
	Reusing Complete Circuits
	Eliminating Coherence Messages
	Timed Reservation of Complete Circuits
	Ideal Circuit Reservation

	Evaluation
	Construction and use of Reactive Circuits
	Network Latency
	Router Area and Network Energy
	System Performance

	Concluding Remarks

	III Optical Network-on-Chip Design
	Introduction to Optical Networks-on-Chip
	Motivation for Optical Networks-on-Chip
	Space-Routed vs. Wavelength-Routed ONoCs

	Designing Power-Efficient and Custom-Tailored Wavelength-Routed Optical Rings
	Introduction and State-of-the-Art
	Motivation
	Generating the Optical Ring Communication Matrices
	Calculating the Power
	Evaluation
	Detailed Example
	Exploration of the Number of Wavelengths and Waveguides
	Power Consumption Analysis
	Customizable Ring Designs
	Computation Time

	Concluding Remarks

	A Complete Electronic Network Interface Architecture for Wavelength-Routed Optical NoCs
	Introduction
	Related Work
	Network Interface Architecture
	Baseline Electronic NoC
	Methodology
	Initial Evaluation
	Latency Breakdown
	Testing Simple Transactions

	Case Study: Optical Networks-on-Chip for Memory-Coherent CMPs
	Introduction
	Architecture of the Chip Multiprocessor
	Customizing the optical NI
	Evaluation
	Transaction Latency
	Uniform and Hotspot Traffic
	Buffer Size Exploration
	Power and Energy-per-Bit
	Network Energy

	Concluding Remarks

	Case Study: Augmenting Manycore Programmable Accelerators with Photonic Interconnect Technology
	Introduction
	GPPA Motivation
	Target Architecture
	Cluster Architecture
	Memory Architecture
	The Baseline ENoC Architecture
	Usage Model

	Replacing the Electronic Global Network with an Optical Ring
	Customizing the Optical NI
	Evaluation
	Code Offload
	Power Analysis

	Application Benchmarking

	Replacing the Electronic Local Network with a Partitionable Optical NoC
	Related Work
	Customizing the ONoC and the GPPA
	Dynamic Partitioning
	Basic Idea
	Greedy Algorithm
	Exhaustive Search Algorithm

	Static Partitioning
	Methodology
	Results
	Characterization of the Algorithm
	Partitioning Comparison of Different Topologies
	Logical-Level Wavelength-on Time
	Energy Analysis

	Scalability of the algorithm

	Concluding Remarks

	IV Conclusions
	Conclusions and future work
	Conclusions
	Future Work
	Publications

