
1

Concertina: Squeezing in Cache Content to
Operate at Near-Threshold Voltage

Alexandra Ferrerón, Student Member, IEEE, Darı́o Suárez-Gracia, Member, IEEE,
Jesús Alastruey-Benedé, Teresa Monreal-Arnal, and Pablo Ibáñez, Member, IEEE

Abstract—Scaling supply voltage to values near the threshold voltage allows a dramatic decrease in the power consumption of processors;
however, the lower the voltage, the higher the sensitivity to process variation, and, hence, the lower the reliability. Large SRAM structures,
like the last-level cache (LLC), are extremely vulnerable to process variation because they are aggressively sized to satisfy high density
requirements. In this paper, we propose Concertina, an LLC designed to enable reliable operation at low voltages with conventional
SRAM cells. Based on the observation that for many applications the LLC contains large amounts of null data, Concertina compresses
cache blocks in order that they can be allocated to cache entries with faulty cells, enabling use of 100% of the LLC capacity. To distribute
blocks among cache entries, Concertina implements a compression- and fault-aware insertion/replacement policy that reduces the LLC
miss rate. Concertina reaches the performance of an ideal system implementing an LLC that does not suffer from parameter variation
with a modest storage overhead. Specifically, performance degrades by less than 2%, even when using small SRAM cells, which implies
over 90% of cache entries having defective cells, and this represents a notable improvement on previously proposed techniques.

Index Terms—Near-threshold voltage, SRAM variability, fault-tolerance, on-chip caches

F

1 INTRODUCTION

F ROM tiny wearable devices to massive data centers,
power density has become the de facto limiter for

improving performance. Unfortunately, neither increasing
transistor count nor reducing integration scale can fuel
advances in performance anymore [37]; the number of active
transistors has topped off, and voltage does not scale with
technology.

The most straightforward way to reduce power density
is to scale supply voltage (Vdd), but scaling is limited by
the tight functionality margins of SRAM cells in last-level
cache (LLC) transistors. Below a minimum operating voltage
(Vddmin), typically of the order of 0.7–1.0V for regular six-
transistor (6T) SRAM cells, process parameter variation in
nanoscale technology has become so severe that SRAM cells
no longer operate reliably.

Existing approaches to improving SRAM reliability can
be classified into two groups: circuit- and architecture-based.
Circuit-level techniques improve the reliability of the SRAM
cell in low-voltage operation by increasing its size or by
adding assist circuitry [24], [42]. These come at the cost of
an increase in power consumption and array area, which is
not practical for large structures such as the on-chip LLC.
At the architectural level, cache-tolerant designs rely on:
(a) correcting defective bits through error correction codes
(ECCs), increasing their complexity to enable them to detect

A. Ferrerón, J. Alastruey-Benedé, and P. Ibáñez are with the Departmento
de Informática e Ingenierı́a de Sistemas and the Instituto de Investigación en
Ingenierı́a de Aragón (I3A), Universidad de Zaragoza, Spain, and HiPEAC.
E-mail: {ferreron, jalastru, imarin}@unizar.es
D. Suárez-Gracia is with Qualcomm Research Silicon Valley, Santa Clara, CA,
USA. E-mail: dgracia@qti.qualcomm.com
T. Monreal-Arnal is with the Departamento de Arquitectura de Computa-
dores, Universitat Politècnica de Catalunya, Spain, and HiPEAC. E-mail:
teresa@ac.upc.edu
Manuscript received January XX, 2015; revised XXX XX, 2015.

and repair more defective bits per block [14]; (b) disabling
faulty resources (words, lines, ways), marking a resource
as defective whenever one faulty cell is found [27]; or (c)
combining faulty resources to create functional ones, relying
on the fact that several defective entries can be combined to
store a block in a distributed manner [5], [39]. In all cases, a
significant fraction of the memory structure is either disabled
or sacrificed to store redundant information, degrading the
overall effective cache capacity.

In this paper, we present Concertina, an efficient and
fault-tolerant LLC that operates with unreliable SRAM cells
at ultra-low voltages. Unlike previous architectural schemes,
Concertina enables all the cache entries, even the faulty ones.
Our key idea is to compress cache blocks, in order that they
fit within the functional elements of faulty entries. Since not
all cache blocks can be evenly compressed and not all faulty
entries can store the same amount of information, it is not
possible to use existing cache management policies based on
the premise that a block can be stored in any entry of a set. To
address this issue, we study different insertion/replacement
policies that are aware of the nature of both the incoming
block (degree of compression) and the corresponding cache
set entries (number of defective cells).

Compression has been proposed in related literature
as a promising technique to increase the effective on-chip
cache capacity [2], [13], [34], [40], or to reduce the energy
consumption of the cache [12], [22], but to the best of our
knowledge, it has not been explored as a way to enhance
tolerance to cache faults in the context of ultra-low voltage
operation. This application sets different requirements for
the compression scheme. On the one hand, the probability of
failure is high for conventional SRAM cells, and hence a large
fraction of cache blocks have to be compressed. On the other
hand, low compression ratios are good enough to recover

2

a faulty cache entry, as the probability of having a high
number of faulty cells is very low. This latter observation,
which is in line with the analysis of other authors [4], is also
crucial to our proposal. Concertina implements null subblock
compression, a fast, simple, and efficient scheme that takes
advantage of the large amount of zero chains present in the
LLC blocks. Null subblock compression in combination with
a smart compression- and fault-aware replacement policy
results in performance within 2% of that of a system that
implements the LLC with ideal defect-free cells.

This work makes the following contributions. First, we
provide the first analysis of requirements for compression
techniques at ultra-low voltages. Second, we propose the
use of compression to improve cache utilization at ultra-
low voltages, with a low-complexity combination- and
remapping-free mechanism, and maintaining the regular
nature of SRAM cells. Finally, we present and evaluate cache
management policies that match compressed blocks with
faulty cache entries.

The rest of this paper is organized as follows. Section 2
introduces the problem of process variation in SRAM cells,
and Section 3 presents related work. Section 4 explores com-
pression requirements at ultra-low voltages and introduces
our proposed compression scheme. Section 5 presents the
Concertina architecture. Section 6 describes our experimental
methodology, and Section 7 presents the evaluation of our
proposal. Section 8 discusses the system impact of Concertina,
and Section 9 outlines our conclusions.

2 PROCESS VARIATION IN SRAM CELLS

Scaling supply voltage to the near-threshold region allows
a dramatic decrease in power consumption, as dynamic
power decreases quadratically with supply voltage. However,
at lower voltages, devices are more sensitive to process
variation, which impacts circuit functionality, and eventually
limits supply voltage reduction.

Intra-die random dopant fluctuation (RDF) is a main
cause of threshold voltage (Vth) variation. Specifically, Vth is
determined by the number and location of dopant atoms
implanted in the transistor channel region. The stochastic
nature of ion implantation leads to different Vth values across
the chip. The resultant threshold mismatch is a particular
problem in nanometer processes because of the vast number
of cells on a chip. SRAM structures are especially vulnerable,
since they are aggressively sized to meet high density
requirements, reducing read, write, and hold margins [8].
As the static noise margins depend on Vdd, SRAMs have a
minimum voltage below which they cannot operate reliably.
This voltage (Vddmin

) is typically of the order of 0.7–1.0V
when regular 6T cells are employed.

Many authors have extensively analyzed the robustness
of SRAM cells under the Vddmin range. For instance, Zhou et
al. describe six different sizes of 6T SRAM cells in 32 nm
technology, and how their probabilities of failure change
with the voltage supply and the size of the constituent
transistors [42]. We will take this study as a reference for
the rest of the paper. According to Zhou et al., at 0.5 V
(our target near-threshold voltage) the probability of failure
(Pfail) of a standard SRAM cell ranges between 10-3 and
10-2. Larger cells have a lower probability of failure because

non-uniformities in channel doping average out with larger
transistors, resulting in more robust devices, but at the price
of larger area, and higher energy consumption. Table 1
describes the six SRAM cells of Zhou’s study (C1, C2, C3,
C4, C5, and C6) with their areas relative to the smallest cell
(C1), as well as the percentages of non-faulty entries of a
cache implemented with the cells at 0.5 V, assuming 64-byte
cache entries1. An entry is considered faulty if it contains
at least one defective bit. As Table 1 shows, only 10% of
the cache entries are non-faulty for the small C2 cell at our
target voltage of 0.5 V. If the cache is implemented with
the more robust C6 cells, the percentage of non-faulty cache
entries rises to 60%, but at the cost of a 41.1% increase in
area (relative to C2), which is not a viable option for a large
structure such as the on-chip LLC.

TABLE 1
Percentage of fault-free entries in a cache at 0.5 V (64-byte cache entry),

for the different cell sizes, and their areas relative to the C1 size.

Cell type C1 C2 C3 C4 C5 C6
Relative area 1.00 1.12 1.23 1.35 1.46 1.58
% non-faulty 0.0 9.9 27.8 35.8 50.6 59.9

3 RELATED WORK

As noted above, solutions proposed to date to address
the variability in SRAM cells at ultra-low voltages can be
arranged into two groups: circuit and microarchitectural
techniques.

Circuit solutions include proactive methods that im-
prove the bit cell characteristics by increasing the SRAM
cell size or adding assist/spare circuitry.

Larger transistors reduce Vth variability, since nonuni-
formities in channel doping average out, and result in
more robust devices with a lower probability of failure [42].
Another approach to reducing variability is to add assist
read/write circuitry by increasing the number of transistors
per SRAM cell. Some examples are 8T [10], 10T [7], or Schmitt
trigger-based (ST) SRAM cells [24]. Increasing the SRAM cell
size or the number of transistors per cell comes at the cost of
significant increases in the SRAM area (lower density) and
in energy consumption. For example, the use of ST SRAM
cells doubles the area of the SRAM structure, which is not
practical for large structures such as on-chip LLCs.

A different approach is to provide separate voltages
for logic and memory [41], but separate voltage domains
complicate chip design [31]. Besides, scaling will likely
increase the differences between voltage domains for logic
and memory and eventually increase the number of voltage
domains itself.

From the microarchitecture perspective, excessive para-
metric variability can cause circuit behavior consistent with
a hard fault. Several runtime methods have been proposed
to mitigate its impact, including redundancy through ECCs,
disabling techniques, and the combination of faulty resources
to recreate functional ones.

1. In this paper, we assume 64-byte cache entries without any loss of
generality; all techniques described here could be easily applied to other
cache entry sizes.

3

ECCs are extensively employed to protect designs against
soft errors, and they have also been studied in ultra-low
voltage contexts to protect against hard errors [3], [14]. To
store an ECC, the capacity of the cache must be extended or
part of its effective capacity has to be sacrificed. To reduce
storage overhead, Chen et al. propose to store ECCs in the
unused fragments that appear as a result of compression [12].
ECCs are usually optimized to minimize their storage
requirements, at the cost of more complex logic to detect and
correct errors. Thus, correcting more than two errors requires
a high latency overhead or encodings with more check bits
as described in [14], where half of the cache capacity is
dedicated to storing the ECC. Finally, it is worth noting that
the use of ECCs to protect against hard errors will jeopardize
resilience to soft errors.

A simple approach to mitigating hard faults is to disable
faulty entries (cache entries with faulty bits, which cannot
store a complete cache block). This technique, called block
disabling, is already implemented in modern processors to
protect against hard faults [9], [15]. Block disabling has been
studied at ultra-low voltages because of its easy implementa-
tion and low overhead (1 bit per entry sufficing). However,
the large number of faults at low operating voltages implies a
large percentage reduction in cache capacity and associativity.
For instance, for C2, although defective bits represent around
0.5% of the total, only 9.9% of the capacity is available
(Table 1). Lee et al. examine performance degradation by
disabling cache lines, sets, ways, ports, or the complete cache
in a single processor environment [27]. To compensate for
the associative loss, Ladas et al. propose the implementation
of a victim cache in combination with block disabling [26].

Ghasemi et al. propose the use of heterogeneous cell
sizes, in order that when operating at low voltages, ways
or sets of small SRAM cells are deactivated if they start to
fail [17]. Khan et al. propose a mixed-cell memory design,
where some of the cells are more robust and failure-resistant
and, therefore, more reliable candidates to store dirty cache
blocks, while the rest are designed using traditional cells [21].
Zhou et al. combine spare cells, heterogeneous cell sizes, and
ECCs into a hybrid design to improve on the effectiveness
obtained by any of the techniques applied alone [42].

The granularity of the disabled storage might be finer,
but at the cost of a larger overhead. Cache entries can be
divided into subentries of a given size. A defective cell
implies disabling just the subentry which it belongs to, rather
than the whole entry. Figure 1 shows for the six SRAM cells
from Zhou’s study, the potential cache capacity that can
be used by tracking faults at finer granularities (different
subentry sizes). For example, cells C3-C6 can potentially use
more than 80% of the cache capacity by disabling 8-byte
subentries.

Previous proposals took advantage of this observation.
Word disabling tracks defects at word-level granularity, and
then combines two consecutive cache entries into a single
fault-free entry, halving both associativity and capacity [39].
Abella et al. bypass faulty subentries rather than disabling
full cache lines, but this technique is suitable only for the
first-level cache, where accesses are word wide [1].

More complex schemes couple faulty cache entries using
a remapping mechanism [5], [23], [30]. They rely on the
execution of a complex algorithm to group collision-free

Fig. 1. Potential cache capacity that can be used by tracking faults at
finer granularities for different SRAM cell sizes.

cache entries from the same or different cache banks, and
on additional structures to store the mapping strategy. For
example, Archipelago divides the cache into autonomous
islands, where one entry is sacrificed to allocate data portions
of other entries; they use a configuration algorithm (based
on minimum clique covering) to create the islands [5]. The
remapping mechanism adds a level of indirection to the
cache access (increasing its latency), and the combination of
cache entries to recreate a cache block adds complexity.

All of these combination or remapping strategies have
a major inconvenience: to reconstruct cache blocks several
cache accesses are needed, increasing the energy consump-
tion and/or the latency per block access. Unlike the aforemen-
tioned proposals, an ideal fault-tolerant mechanism would
not compromise cache capacity, associativity, or latency.
Instead of combining faulty cache entries to recreate fully
functional ones, we propose to compress cache blocks to
fit into the still available capacity, avoiding any cache line
remapping.

Several compression mechanisms have been proposed
in the literature to increase the effective storage capacity of
all the on-chip cache levels, potentially reducing misses and
improving performance [2], [13], [16], [22], [34], [36], [40]. In
general, these proposals seek to maximize the compression
ratio either to store more than one block in each cache
entry, or to reduce the energy consumption of each LLC
access. However, ultra-low voltage operation sets different
requirements for the compression scheme: most of the blocks
need to be compressed to fit in faulty entries, but the
compression ratio is relatively small. In an ideal case, where
all blocks could be compressed to fit in the available space,
neither capacity nor associativity would decrease.

We combine the compression mechanism with a smart
allocation/replacement policy, which assigns cache blocks to
faulty entries based upon their compressibility. Two recent
studies have indicated the importance of taking compression
information into account for a replacement policy tailored
to on-chip caches implementing compression [6], [33]. Both
studies are based on the fact that several blocks are allocated
to the same cache entry and, therefore, prioritizing the
replacement of large blocks might allow the allocation of
several smaller blocks to the same space. In ultra-low voltage

4

operation, the compression ratio must also be taken into
account in the replacement decision but in order to even out
the pressure on the entries of a cache set.

4 COMPRESSION FOR CACHES OPERATING AT
ULTRA-LOW VOLTAGES

Data compression is a powerful technique for storing data
in less space than originally required. In general terms,
a compression mechanism seeks to be fast, especially at
the decompression stage (decompression latency is on the
critical path, while compression is done during replacement);
and simple (the hardware and energy overhead should not
overcome the benefit of the compression); as well as effective
in saving storage capacity.

Compression is also an attractive idea for caches operat-
ing at ultra-low voltages because entries with defective bits
could store compressed blocks, reducing the negative impact
on capacity and associativity. To the best of our knowledge,
this is the first time compression has been proposed for
improving cache reliability at ultra-low voltages.

In this section, we first analyze the requirements imposed
by near-threshold voltage operation for a compression
scheme. Then, we present a simple yet effective compression
scheme able to allocate most blocks to faulty cache entries.

4.1 Compression Scheme Requirements for Caches
Operating at Ultra-Low Voltages

State-of-the-art compression techniques aiming to increase
the effective cache capacity focus on maximizing the compres-
sion ratio (uncompressed block size divided by compressed
block size) rather than coverage (fraction of compressed
blocks) [11], [34], [40]. In contrast, at ultra-low voltages, the
main goal is to enable all the cache capacity. Hence, there are
special requirements for a compression scheme related to its
coverage and compression ratio, according to our parameters
of interest, the cell and cache subentry sizes:
Coverage. The fraction of cache blocks that have to be
compressed depends on the probability of cell failure. As
faulty cells are spread across the cache structure, when the
probability of cell failure increases (as cell size decreases),
more blocks need to be compressed. Table 1 shows that, for
the cell sizes considered, high coverage is required, ranging
from 40.1% (C6) to 100% (C1).
Compression ratio. For a block to be stored in a faulty cache
entry, its size has to be less than or equal to the available
space at the cache entry (the size of its fault-free subentries).
Otherwise, the matching is not possible. Due to the random
component of the SRAM cell failures, some entries have
more faulty subentries than others. Hence, the required
compression ratio varies across entries. Assuming that we
can track faults at different granularities (distinct subentry
sizes), Figure 2 shows the distribution of defective subentries
(from zero to four or more) for cells C2 to C6. C1 is not
considered as at 0.5 V there are virtually zero entries without
faults.

Irrespective of cell size, when the subentry size is reduced,
the average number of faulty subentries per entry increases,
as a subentry with multiple defective cells may spread across
several smaller faulty subentries. However, as Figure 2 shows,

even for the smallest subentry size (1-byte, 64 subentries)
and the smallest cell considered (C2), only 7.6% of the cache
entries have more than four faulty subentries. This fraction
drops to 1% for the C3 . Moreover, even with more faulty
subentries, the disabled cache capacity drastically decreases
when the subentry size is reduced (Figure 1).

Table 2 shows the compression ratio required to store a
block in a cache entry for a range of defective subentries and
subentry sizes. The compression ratio drops with decreasing
subentry sizes. For instance, a 1.06 compression ratio suffices
to allocate a block into a faulty cache entry with four faulty
1-byte subentries.

Summarizing, the main requirement of the compression
scheme for caches operating at ultra-low voltages is a high
coverage, while the required compression ratio is very small.
In the rest of this paper, we focus on cells C2, C3, and C4, as
they are the most discouraging scenario (highest Pfail).

TABLE 2
Compression ratio required to store a 64-byte block in a cache entry with

several faulty subentries of different sizes

Subentry Compression ratio
size Faulty subentries

(bytes) 1 2 3 4
32 2.00 ∞a NA NA
16 1.33 2.00 4.00 ∞a

8 1.14 1.33 1.60 2.00
4 1.06 1.14 1.23 1.33
2 1.03 1.06 1.10 1.14
1 1.02 1.03 1.05 1.06

a A cache entry with two faulty 32-byte subentries or four faulty
16-byte subentries has no available space.

4.2 Exploiting Zero Redundancy to Compress Cache
Blocks

Content redundancy is prevalent among real-world applica-
tions. For example, zero is by far the most frequent value in
data memory pages: it is used to initialize memory values,
and to represent null pointers or false Boolean values, among
others. Many compression schemes are based on compressing
zeros or treating them as a special case [16], [34], [38], [40].

Exploiting zero redundancy can lead to a simple com-
pression technique. We can compress aligned null subblocks2

(subblocks whose content is all zeros) to effectively reduce
the size of the original block. Compressing and decompress-
ing null subblocks can be performed with low-complexity
hardware: we just need to keep track of the locations of the
null subblocks within a given block, and properly shift the
non-null contents. This mechanism will be effective only if
applications maintain a significant degree of compressibility
during their execution. Hence, in this section we analyze the
compressibility potential (number of null subblocks) of our
target applications, and how it varies over the course of their
execution.

To characterize null subblock occurrences in our appli-
cations, we conducted the following experiment. We ran
the 29 SPEC CPU 2006 programs for one billion cycles

2. The same way we divide a cache entry into subentries, we divide
a cache block into subblocks. Aligned subblocks simplify the design of
the compression and decompression logic.

5

Fig. 2. Distribution of faulty subentries for different subentry and cell sizes.

Fig. 3. Average percentage of LLC blocks that have at least one null subblock for different granularities (SPEC CPU 2006).

(Section 6 presents our methodology in more detail) and
inspected the contents of the LLC every one million cycles.
Each application ran alone in the system, making use of the
whole shared LLC (8 MB). Then we counted up the number
of blocks that had at least one null subblock for different
subblock sizes (from 64 to 1 byte).

Figure 3 shows the average percentage of blocks stored
in the LLC that contain at least one null subblock of a
given size. Notice that large null subblocks include several
occurrences of smaller null subblocks (e.g., one null 64-
byte subblock is equivalent to two null 32-byte subblocks).
Different workloads show distinct behaviours regarding
subblock sizes and the amount of null subblocks. While
some workloads such as GemsFDTD and cactusADM show a
significant percentage of blocks that have large null subblocks
(64 bytes), most of them show a noticeable increase in
the amount of null subblocks when reducing the subblock
size. On average, downsizing subblock sizes from 8 bytes
to 1 increases the average fraction of compressible blocks
from 54.4 to 82.2%. A large set of benchmarks (including
gcc, povray, sjeng, and gobmk, among others) reach
almost 100% coverage when considering 1-byte subblocks.
Regarding the temporal evolution of blocks, we checked
that the percentage of compressible blocks is also maintained
over the course of the execution of the applications, especially

when considering small subblock sizes. The detailed figures
have been omitted, due to space constraints.

The conclusions extracted from our study are encour-
aging: not only can a significant percentage of blocks be
compressed (high coverage), but also this percentage remains
steady during program execution. This reinforces our belief
that a null subblock compression mechanism, designed to be
fast and simple, will also result in an effective technique to
enable reliable LLC operation at ultra-low voltages.

5 CONCERTINA ARCHITECTURE

This section presents Concertina, our proposal to enable effec-
tive ultra-low voltage LLC operation by tolerating SRAM fail-
ures caused by parameter variation. Concertina implements
null subblock compression and subblock rearrangement to
enable otherwise non-usable cache entries when operating
at voltages near the Vth. Concertina also incorporates a
replacement policy to manage cache entries of different
sizes, which may only contain compressed blocks. We first
present the detailed implementation of Concertina. Then, we
consider in detail the design of its replacement policy.

5.1 Operation and Component Description
Concertina consists of a conventional LLC plus the required
logic to manage full blocks in faulty LLC entries (see Figure 4).

6

CM

Null
subblock
detector

Subblock
compression

and
rearrange

FM

LLC Tags

LLC Data

Subblock
decomp.

and
rearrange

BIST

Incoming
block

Requested
blockCompressed

block
Compressed

block

CM

FM

CM

Fig. 4. Concertina design overview. Shaded boxes indicate added components.

X
FM: 1 1 0 1

0 A CB

Incoming block

Allocating entry

ü ü ü

CM: 0 1 1 1

(a) Example of compressible block to
be stored at a faulty cache entry.

0

A

C

B

A B CX

0_0

1_0

1_1

1_2

1_0 1_20_21_1

FM[j]_FI[j]
Incoming block +
CM[i]_CI[i]

1 1 0 1

0 1 2 2

CM CI

0

1

1

1

0

0

1

2

+

128

FM[j]
CM[i]

=?

FI[j]
CI[i]

128

2

2

+

+

CM Processing
+ + +

FM

FI

FM Processing

(b) Subblock compression and rearrangement logic.

Fig. 5. Implementation of the compression and rearrangement stage for a 64-byte block (512 bits) and a 16-byte subblock (128 bits).

To insert a block, either a refill from the main memory or
a writeback from a lower cache level, Concertina performs
two steps. First, it detects the location of its null subblocks
if any. Then, it jointly uses this compressibility information
and the location of defects in the corresponding cache entry
to rearrange the non-null subblocks and store them in the
functional subentries. To supply a block to a lower cache
level or to evict a block, Concertina reconstructs the original
block, rearranging the compressed block according to its
metadata, which describes the location of null subblocks and
defective subentries, and reintroduces the corresponding null
subblocks.

To track the number and location of the defective suben-
tries for each cache entry, and the number and location of
null subblocks for each allocated block, Concertina uses two
bit maps. Each map has as many elements as the number
of subentries/subblocks considered; e.g., for a 64-byte block
and a 16-byte subblock, the size of each map would be four
bits. Each bit indicates whether the corresponding subentry
is faulty (0) or not (1) for the fault map, FM, or if the subblock
is compressed (0) or not (1) for the compression map, CM.
For the sake of simplicity, we assume that the subentry and
subblock sizes are the same. Later, in the evaluation section
we present a more efficient implementation based on pointers
for the two tracking structures.

The fault information, FM, comes from a characterization
test (such as a built-in self-test, BIST) that can be executed at
boot up time or during the first transition to the low-voltage
mode [4], [5], [9], [39]. We consider that the number and loca-

tion of faulty cells do not change during workload execution.
The information about null subblocks, CM, is generated with
a null subblock detector, and changes continuously during
program execution. Section 7.3 discusses the implementation
of these two components.

5.1.1 Fault and Compression Metadata Sizing
In terms of cell failures, finer granularities require lower
compression ratios to allocate a block to a faulty cache entry
(see Section 4.1). In terms of compression, smaller subblock
sizes offer more compression coverage (see Section 4.2).
However, finer granularities imply larger FM and CM sizes,
which impacts area and power overheads.

We analyze this trade-off between performance and
overhead varying the subblock size in our experiments.
Using 16-byte or larger subblocks would cover less than
one third of the cache blocks (see Figure 3), and, therefore,
we will not consider these sizes.

5.1.2 Subblock Compression and Rearrangement Logic
In this section, we will use an example (Figure 5a) to explain
the subblock compression and rearrangement logic for a
cache entry divided into four subentries (Figure 5b). The
goal of this circuit is to match non-null subblocks with
non-faulty subentries. Let us suppose that an incoming
block with one null subblock has to be inserted at a cache
entry with one faulty subentry. The null subblock detector,
implemented with logic that performs an OR operation on
each of the subblocks, generates the CM for the incoming

7

block, indicating the location of null subblocks. The FM
indicates the location of the faulty subentries of the given
cache entry.

First, the CM and the FM are processed to assign
increasing identifiers to each of the non-null subblocks and
for each of the non-faulty subentries, respectively. Thereby,
compression and fault vectors of identifiers (CI and FI) are
generated. As shown in the dotted boxes in Figure 5b, this
processing consists of adding the corresponding bits of the
CM and FM, always using a zero for the first bit. In the
general case, the bit width of each CI and FI entry is log2(N),
N being the number of subentries (subblocks) in a cache
entry (block).

Next, each non-null subblock will be assigned to the
non-faulty subentry whose generated indexes match. A
crossbar-like logic controlled by CM, CI, FM, and FI vectors
implements this matching (see Figure 5b). The incoming
block and the CM and CI vectors are input, on the left, and
the FM and FI vectors, on the top. A crosspoint is activated
only if both of its corresponding CM and FM bits are set; i.e.,
non-null subblock and non-faulty subentry, and if both CI
and FI indexes are equal. This activation logic requires N2

comparators of log2(N) bits, and N2 tri-state buffers. For
example, a 4-subentry cache requires 16 comparators of 2
bits. When the subentry size decreases (finer granularity),
both the number of the comparators and the size of their
inputs increase (cache entries with 8 subentries require 64
comparators of 3 bits, etc.), but overall, the overhead is still
low.

A similar logic is used to reconstruct a compressed cache
block. Decompression is on the critical path, but Concertina’s
decompression stage is fully parallel and, due to its simple
logic, we estimate that it can be performed in one extra cycle.

5.1.3 Writeback Handling
A common problem for cache compression mechanisms is
handling writebacks. Compression techniques aiming to
increase the effective cache capacity have internal fragmenta-
tion issues, because several blocks are stored in a single cache
entry. Thus, blocks might need to be shifted properly before
insertion [2], [34]. This issue can be overcome by using sparse
super-block tags and a skewed associative mapping [36].
Nevertheless, Concertina does not have this problem, as only
one block is stored per cache entry. On a writeback event,
the block is compressed again. If it fits in its cache entry, the
entry is updated; if it does not fit, the block is written back
to memory. On average, we found that less than 2% of the
writeback blocks are evicted because they do not fit in the
same cache entry after writeback.

5.2 Replacement Policy for Concertina

Existing cache management policies rely on the assumption
that a block can be stored in any entry of a cache set.
However, caches with faulty cells have entries with a variable
number of defective subentries, which can store only blocks
that are compressed at least to a certain size. To overcome
these stricter size requirements, Concertina implements a
compression- and fault-aware replacement policy that takes
advantage of the various degrees of compression that a block
might have, and is able to evenly distribute all the blocks

(both compressed and uncompressed) across the available
cache capacity (both defective and non-defective entries). In
the rest of this section, we will assume a baseline least-
recently used (LRU) replacement policy to simplify our
explanations. Nevertheless, the algorithms described herein
could work with other replacement scheme.

We present two replacement policies: Best-Fit LRU and
Fit LRU. The first tries to find a precise match between
cache entries and blocks in terms of the number of faulty
subentries and the number of compressible subblocks. That
is, once the block is compressed, the replacement algorithm
searches for a victim among the entries whose effective size
(number of non-faulty subentries) matches the size of the
compressed block. The latter builds upon the first, but relaxes
the matching condition, searching among all the cache entries
where the block fits.

Let Xi be the group of blocks with i null subblocks of a
given size, and Ej the group of entries with j faulty suben-
tries of the same size, 0 ≤ i, j ≤ n, where n = entry size

subentry size
(e.g., n = 4 for 64-byte cache entries and 16-byte subentries,
as we might find entries with 0, 1, . . . , 4 faults). Therefore, a
block x ∈ Xi can be allocated to an entry e ∈ Ej if and only if
j ≤ i, but it cannot be allocated if j > i. This premise is key for
our replacement strategies.

A straightforward fault- and compression-aware alloca-
tion policy would try first to pair blocks and entries of the
same index group, i.e., allocate blocks of type Xi to entries
of type Ei. In the event that there is no entry of type Ei, it
searches for entries of type Ej , j < i, until it finds a non-
empty group. If the selected group has several entries, i.e.,
several entries have the same number of faulty subentries,
the LRU information is used to select a victim among them.
We call this the Best-Fit LRU policy, because it allocates blocks
to the entries that best fit the size of the compressed block.

The Best-Fit LRU policy assumes that the distribution of
blocks and entries of a given index group is well-balanced,
but as we saw in Table 1 and in Figures 2 and 3, different cells
and different workloads have different characteristics. For
example, roughly 80% of the blocks in wrf contain 64 null
bytes (Xn), while the majority of cache entries have between
0 and 4 faults, irrespective of the cell type. To compensate
for the uneven distribution between entries and blocks, we
can follow a different strategy and allocate a block Xi to
any entry Ej where it fits, i.e., j ≤ i. In this case, the victim
block is selected using the LRU information about all the
entries that belong to the Ej groups. We call this second
policy Fit LRU, because it allocates blocks to entries where
they fit, even if the allocating entry is not the best fit for a
given block.

Note that both replacement policies make use of all
the cache entries and allocate every block to the LLC.
For instance, in the case where the percentage of non-
compressible blocks (X0) is higher than the percentage of
non-faulty entries, blocks that cannot be compressed fight
for non-faulty entries and, therefore, the pressure on the non-
faulty entries is greater than the pressure on the faulty ones.
In other words, although all the cache entries are utilized, in
this example, the probability of a block of being replaced in
a certain temporal interval is higher for blocks allocated to
non-faulty entries than for blocks allocated to faulty ones.

It might be the case that a given block cannot be stored in

8

its cache set, because the block size is larger than any of the
available entries (e.g., a block cannot be compressed and all
the entries have at least one faulty subentry). To overcome
this potential problem, we do as follows. When the block
arrives to the LLC from main memory, it is sent to the L1
cache as usual, but the coherence state of the block in the
LLC specifies that the content of the block in the LLC is
not valid. Future requests to that block cannot be satisfied
by the LLC, and they will be forwarded to the L1 cache.
This functionality already exists in the coherence protocol to
forward exclusively owned blocks. After the L1 replacement,
if the block still does not fit in the LLC entry, it is written
back to memory.

Certainly, more complex policies are feasible. It could
be expected that starting from the distribution of blocks
and entries observed and adjusting the allocation of blocks
according to the frequency of each block type would lead to
more promising trade-offs. Unfortunately, after thoroughly
evaluating such a strategy, we obtained similar results to
those obtained with the Fit LRU policy, the latter being much
simpler and with lower storage requirements.

5.2.1 Replacement Policy Implementation
Both Best-Fit and Fit LRU replacement algorithms must be
able to select the LRU element among a subset of the blocks in
a cache set. Two hardware modules implement these actions:
Definition of the subset of candidate blocks: the null
subblock detector generates the CM of the incoming block.
A hardware bit-counter computes the number of zeros in the
CM. This value (CMcount) is the number of null subblocks
in the incoming block, and is used to classify the block into
a given index-group Xi. Likewise, a group of hardware bit-
counters compute the number of zeros in the FM for all
the cache entries in the cache set, and the result is a vector,
FMcount, whose elements indicate the number of faulty
subentries in each cache entry. These values (FMcountk) are
used to classify the entries into Ej groups. The comparison
between each FMcountk and CMcount generates a bit vector
that represents the subset of candidate blocks to replace
according to the fit criteria (Best-Fit or Fit).
LRU selection in the subset: our mechanism maintains
the LRU order among all the elements in a cache set. The
replacement algorithm applies the LRU selection logic to the
subset of candidate blocks [19].

6 METHODOLOGY

6.1 Overview of the System
Our baseline system consists of a tiled chip multiprocessor
(CMP), with an inclusive two-level cache hierarchy, where
the second level (L2) is shared and distributed among eight
processor cores. Tiles are interconnected by means of a mesh.
Each node has a processor core with a private first level
cache (L1) split into instructions and data, and a bank of the
shared L2, both connected to the router (Figure 6). The CMP
includes two memory controllers located on the edges of the
chip. Table 3 shows the parameters of the baseline processor,
memory hierarchy, and interconnection network.

We assume a frequency of 1 GHz at 0.5 V (our target
near-threshold Vdd). Note that the DRAM module voltage
is not scaled like the rest of the system. Thus, the relative

DRAM
Main memory

CORE

L1I L1D

L2
tag&data

Dir

R

MC

CMP

 Register !les, branch

predictor, ALUs, control, ...

Fig. 6. Modeled 8-core CMP.

speed of main memory with respect to the chip gets faster
as the voltage decreases. This model is consistent with prior
work [5], [39].

The coherence protocol relies on a full-map directory
with Modified, Exclusive, Shared, Invalid (MESI) states.
We use explicit eviction notification of both shared and
exclusively owned blocks. L1 caches are built with robust
SRAM cells and, therefore, they can run at lower voltages
without suffering the effects of parameter variation, while L2
data banks are built with conventional 6T SRAM cells and,
therefore, they are sensitive to failures [25]. As in previous
studies [5], [39], we assume that the LLC tag arrays are
hardened through upsized cells such as 8T [10]. The same
applies for the fault and compression metadata in Concertina.

6.2 Experimental Set-up
Regarding our experimental set-up, we use Simics [29] with
GEMS to model the on-chip memory hierarchy and intercon-
nection network [32], and DRAMSim2 for a detailed DDR3
DRAM model [35]. For timing, area, and energy consumption
estimations, we rely on the McPAT framework [28].

We use a set of 20 multiprogrammed workloads built
as random combinations of the 29 SPEC CPU 2006 pro-
grams [18], with no special distinction between integer
and floating point. Each application appears on average
5.5 times with a standard deviation of 2.5. Programs were
run on a real machine until completion with the reference
inputs. Hardware counters were used to locate the end of
the initialization phase. To ensure that no application was in
its initialization phase, every multiprogrammed mix was run
for as many instructions as the longest initialization phase,
and a checkpoint was created at this point. We then run
cycle-accurate simulations including 300 million cycles to
warm up the memory hierarchy and 700 million cycles for
data collection.

We create random fault maps and run Monte Carlo
simulations to ensure results are within an error of 5%, and a
confidence level of (1−α) = 0.953. To ensure all simulations
had similar numbers of faults but at different locations, we
compute the faultiness of each memory cell randomly and
independently of other cells.

7 EVALUATION

In this section, we present the evaluation results for Con-
certina. We first analyze the different design options for Con-
certina in terms of LLC misses per kilo instruction (MPKI).

3. The number of samples was increased as necessary to reach the
target error within the given confidence level.

9

TABLE 3
Main characteristics of the CMP system.

Cores 8, Ultrasparc III Plus, in-order, 1 instr/cycle, single-threaded, 1 GHz at Vdd 0.5 V
Coherence protocol MESI, directory-based (full-map) distributed among L2 cache banks
Consistency model Sequential
L1 cache Private, 64 KB data and inst. caches, 4-way, 64 B line size, LRU, 2-cycle hit access time
L2 cache Shared, inclusive, interleaved by line address, 1 bank/tile, 1 MB/bank, 16-way, 64 B line size, LRU

8-cycle hit access time (4-cycle tag access), 1 cycle extra latency decompression stage (compressed cache lines)
Memory 2 memory controllers, distributed on the edges of the chip; Double Data Rate (DDR3 1333 MHz)

2 channels, 8 Gb/channel, 8 banks, 8 KB page size, open page policy; raw access time 50 cycles
NoC Mesh, 2 Virt. Networks (VN): requests and replies; 16-byte flit size, 1-cycle latency hop, 2-stage routing

Then we explore a new implementation that reduces the
storage requirements and evaluate the Concertina overhead.
Finally, we compare our proposal with prior work.

7.1 Replacement Policy
Here we explore the impact on the LLC MPKI of the
replacement policies proposed in Section 5.2: Best-Fit LRU
and Fit LRU, with respect to an unrealistically robust cell, i.e.,
a cell operating at an ultra-low voltage but with no failures
and no power or area penalization.

Figure 7 shows the increase in LLC MPKI with respect
to the unrealistically robust cell for both strategies and
different subentry/subblock sizes (8, 4, 2, and 1 byte), for
cells C4, C3, and C2. The Best-Fit LRU strategy needs an even
balance between the distribution of blocks Xi and entries
Ei. However, as the distribution is usually not balanced,
this replacement strategy fails to exploit the full potential
of Concertina. In general, the smaller the subentry size, the
poorer the performance. This happens because there are more
non-empty block groups (Xi) than non-empty entry groups
(Ej): for example, considering 1-byte subblocks, there are 65
Xi groups, most of them likely to be non-empty, while due
to the small number of faults per cache entry (Figure 2), the
number of non-empty groups Ej will be around 5 (E0...4),
which increases the pressure on the Ej groups with the
higher number of faulty entries (E3 and E4).

If we focus on the Fit LRU replacement strategy, Fig-
ure 7 reinforces the intuition that the smaller the suben-
try/subblock size, the smaller the increase in MPKI. The
best configuration is 1-byte subblock size, irrespective of the
cell size, because we recover more capacity and fit a larger
number of compressed blocks in faulty entries (compression
coverage increases). In comparison with the unrealistically
robust cell, there is no MPKI increase when using C4 or C3
cells, and the number of MPKI increases only by 3% when
C2 cells are used. However, for the smaller subblock sizes,
the overhead is intolerable in terms of area: the bit map for
implementing 1-byte subblock size requires 128 bits (64 bits
for the CM and 64 bits for the FM), which corresponds to 25%
of the 64-byte cache entry. In the next subsection, we will
explore alternatives to significantly reduce storage overhead
with a small impact on performance. From now on, we will
use the Fit LRU policy.

7.2 Reducing Concertina Storage Requirements: Imple-
mentation with Pointers
The fault and compression metadata (FM and CM) can be
encoded in several ways. As stated in Section 4.1, even for the

smallest subentry size and the smallest cell, only 7.6% of the
cache entries have more than four faulty subentries, which
leads us to propose a new implementation based on pointers.
For the sake of brevity, we only detail the implementation
for the FM, but the same applies to the CM.

Instead of using a bit map, we could use four pointers
to identify faulty subentries. Entries with more faults than
pointers are disabled, because there is not enough space
available to store the required fault information, reducing
fault coverage. However, as the storage requirements are still
high, we also consider implementations with three and two
pointers.

Let us consider an example with 8-byte subentry size
and three pointers, each of three bits. Specifically, the three
pointers 000-011-101 are equivalent to the bit map 11010110.
Although the maximum number of pointers is fixed per cache
entry, not all of them are always valid (an entry may have
fewer faulty subentries than the three available pointers). To
overcome this issue, we can store redundant pointers: the
pointers 000-011-011 are equivalent to the bit map 11110110,
which represents a cache entry with only two faulty (0)
subentries. One extra bit is needed to distinguish between
an entry with one fault—000-000-000-(1)—and a non-faulty
entry—000-000-000-(0). Finally, another bit indicates whether
the entry has more faults than the number of available
pointers. Thus, the storage required by this pointer-
based implementation (fault and compression metadata) is
2× (number of pointers)× log2(number of subblocks) + 2
bits per cache entry.

Table 4 compares the storage and fault coverage values
of both approaches (bit maps and pointers). We can conclude
that using three to four pointers per cache entry offers a
good trade-off between storage overhead and fault coverage.
For C4 and C3, three pointers would suffice to cover more
than 96% of the cache entries. Conversely, due to the higher
probability of SRAM cell failure, C2 would require four
pointers per cache entry for a fault coverage of at least 92%.
If we seek a lower overhead implementation, two pointers
would cover around 90% of cache entries for C4 and C3, but
the coverage would drop to 60% for C2.

In terms of the design of the compression/decompression
and rearrangement mechanism, the pointer proposal only
affects the processing of the FM and CM. After recovering
the pointer information from the corresponding metadata
structure, a small set of decoders can transform these point-
ers to bit maps, leaving the compression/decompression,
rearrangement, and replacement logic unaffected.

The drawback of the pointer-based approach is that all
entries with more faults than the number of available pointers

10

(a) C4 (b) C3 (c) C2

Fig. 7. LLC misses per kilo instruction (MPKI) relative to an unrealistically robust cell, for the different replacement alternatives and subblock sizes.

TABLE 4
Concertina storage requirements (bit map vs. pointer implementation) and potential fault coverage for cells C2, C3, and C4. The fault coverage for the

bit map approach is always 100%.

Subblock Storage Requirements Fault Coverage (% entries)
size (bits) C4 C3 C2

(bytes) Map 4 Ptrs 3 Ptrs 2 Ptrs 4 Ptrs 3 Ptrs 2 Ptrs 4 Ptrs 3 Ptrs 2 Ptrs 4 Ptrs 3 Ptrs 2 Ptrs
8 16 26a 20a 14 99 94 98 90 97 88 68
4 32 34a 26 18 ≈ 100 98 93 ≈ 100 97 88 94 84 63
2 64 42 32 22 98 92 96 87 93 82 61
1 128 50 38 26 98 92 96 87 92 81 60

a The storage overhead is greater using pointers than a bit map.

have to be disabled. Nevertheless, these entries can store
whole null blocks with neither extra complexity nor storage
overhead, enabling 100% of the LLC capacity. The bit used
to mark that the entry has more faults than the available
number of pointers now indicates that the cache entry, if
valid, contains a null block (all zeros).

7.2.1 Pointer-based Implementation Evaluation

Figure 8 shows the LLC MPKI increase for cells C4, C3,
and C2 . Results are showed for different granularities (8,
4, 2, and 1 byte) and for both implementations: map and
pointers (considering 2, 3, and 4 pointers per entry). For
simplicity, we will follow a subentry-size implementation name
convention, e.g., 1-byte 3-pointer refers to subentry size of 1
byte, implemented using 3 pointers. We will only consider
design choices that reduce the storage requirements, because
in terms of performance the implementation based on maps
will always be preferable.

We find that pointers are consistently a good alternative
to bit maps. We obtain results within 1-2% of those obtained
with bit maps for cells C4 and C3 and greatly reduce the
storage requirements (e.g., from 64 to 32 bits for the 2-byte 3-
pointer configuration). In the case of C2, the high percentage
of defective cells compels Concertina to use 1-byte subblocks.
In this context, the pointer-based approach significantly
reduces the implementation overhead, from 128 bits to 50,
38, and 26 bits, at the cost of MPKI increases of 5%, 11%, and
26% for 4, 3, and 2 pointers, respectively.

7.3 Concertina Overhead

Concertina’s main overhead is the storage of the FM and CM
metadata. We saw that the use of pointers greatly reduces
the storage requirements with respect to bit maps. Here we
evaluate the impact in terms of latency, area, and energy of
the added storage for the pointer-based implementation. We
consider the configurations with the best performance results:
1-byte 4-, 3-, and 2-pointer configurations. To quantify these
costs we use CACTI [28].

Assuming the cache organization of Table 3 and 40 bits of
physical address in a 64-bit architecture, a data array entry
has 512 bits, while a tag array entry has 39 bits: 21-bit tag
identifier, 14 bits for coherence information (5-bit coherence
state, 8-bit presence vector, and 1 dirty bit), and 4 bits for
the replacement related information (LRU implementation
of log2(associativity) bits per cache entry). Concertina adds
50, 38, and 26 bits per cache entry for 4, 3, and 2 pointers,
respectively. Although the increase in storage requirements
with respect to the tag array is significant, the impact is small
with respect to the whole LLC structure. Table 5 summarizes
the overheads for 4, 3, and 2 pointers in terms of area,
latency, and leakage with respect to the whole baseline cache
structure. We also show the dynamic energy consumption
for a cache read access to a non-faulty entry, and a cache read
access to a faulty entry. However, static energy dominates the
overall consumption of the LLC, even more when operating
at voltages near Vth [20]. Hence, the observed variations in
the dynamic energy have no significant impact on the total
consumption of the system.

11

(a) C4 (b) C3 (c) C2

Fig. 8. LLC misses per kilo instruction (MPKI) for C4, C3, and C2 cells, and the different compression alternatives and subblock sizes.

The FM and CM can be organized in different ways, and
these offer different trade-offs. As a first approach, both FM
and CM are integrated into the tag array. For 3 pointers,
area and leakage increase 5.4% and 5.9%, respectively,
with respect to the baseline cache structure. After a tag
hit, the logic for decompression can be pre-charged with
the metadata. On every tag access, we are reading extra
information that is only useful in case of a cache hit, which
translates to an increase in the tag array latency of 14%, 10%,
and 7% for 4, 3, and 2 pointers, respectively. If there is not
enough slack available, this design would increase the tag
array latency, penalizing every cache access. Nevertheless, a
one cycle latency increase in the tag array access would have
a minor impact in the overall performance (less than 0.2%
performance drop).

An alternative design stores the FM and CM in separate
SRAM structures. In this case, a bit in the tag array indicates
if the entry is faulty and, therefore, the FM and CM must
be accessed. The metadata is now only accessed in case of
a tag hit to a faulty entry. The decompression logic can still
be pre-charged before the data block is available, because
the access to the metadata arrays is faster than the access to
the data array. For 3 pointers, area and leakage increase 0.8%
and 0.3%, respectively, with respect to the first approach.
At the cost of slight area and static power penalties, the
separate design avoids the extra latency to access the tag
array. Besides, storing the metadata in separate arrays makes
it easier to power gate the structures in high-voltage/high-
frequency modes, minimizing the impact on power and
energy consumption.

In both designs, the power overhead is negligible com-
pared to the reduction in both static and dynamic power
obtained by working at ultra-low or near-threshold voltages
(dynamic and static power scale quadratically and linearly
with supply voltage, respectively), while the area overhead
is negligible compared to the area savings obtained by using
smaller SRAM cell transistors.

Regarding the compression/decompression logic, and
with the 1-byte 3-pointer configuration, we could take advan-
tage of the restriction in the number of subblock shifts: 3
pointers mean that a given subblock can move a maximum
of three positions to the right or three positions to the left.

TABLE 5
FM and CM overheads with respect to the cache structure.

Config. Area Latency Leakage Read Energy a

(access/access-faulty)
Baseline 1.000 1.000 1.000 1.000/NA

FM and CM integrated in tag array
1B 4Ptr 1.071 1.041 1.078 1.035/1.035
1B 3Ptr 1.054 1.030 1.059 1.027/1.027
1B 2Ptr 1.038 1.020 1.041 1.019/1.019

FM and CM separate structures
1B 4Ptr 1.082 1.000 1.081 1.000/1.066
1B 3Ptr 1.063 1.000 1.062 1.000/1.051
1B 2Ptr 1.044 1.000 1.044 1.000/1.036

a With respect to a read access in the baseline configuration.

Thus, the original matrix of comparators becomes a band
matrix with 7 elements per row, and a 7:1 multiplexer can
substitute each column of tri-state buffers. The corresponding
logic could be implemented with 436 6-bit comparators and
512 7:1 multiplexers, which roughly translates to 8 K logic
gates. This overhead is insignificant, in comparison with
the total LLC size: it represents approximately 0.01% of the
data array of the on-chip LLC (i.e., without accounting for
the tag array and the decoder logic). Since cache memories
normally have zero slack, we assume an extra cycle in the
read operation to decompress the cache blocks. Compression
latency is hidden, as it occurs during the cache block
allocation.

7.4 Comparison with Prior Work

Regarding the compression mechanism, at ultra-low voltage
operation, our objective is to maximize compression coverage
rather than compression ratio. State-of-the-art techniques
aiming to increase the LLC capacity seek to maximize
compression ratio, e.g., B∆I has an average compression
ratio of 1.5 for the SPEC CPU 2006 benchmarks, but its
coverage is around 40% [34]. Any compression technique
aiming to maximize coverage could be used, but we opted
to use null subblock compression in Concertina given its
simplicity and effectiveness.

Regarding the replacement algorithm, recent studies on
cache block compression have underlined the importance

12

(a) C4 (b) C3 (c) C2

Fig. 9. Performance relative to a robust cell for cells C4, C3, and C2, and the different compression alternatives and subentry/subblock sizes.

Fig. 10. Per-application performance analysis for the 1-byte 3 pointers implementation (cell type C3).

of taking into account compression information for the
replacement decision [6], [33]. These studies are based on
the fact that several blocks are allocated to the same cache
entry, while in the case of Concertina only one block is
stored per cache entry. Thus, evicting a block with a given
compression ratio does not directly translate into an increase
in the number of blocks stored at the LLC.

ECCs are orthogonal to the Concertina design, and they
should be implemented as well to protect against soft errors.
Although ECCs have also been proposed to correct and
detect hard errors, they require either large storage overhead
or complex detection and correction logic. For example, by
using orthogonal Latin square codes as in [14], the decoding
latency would be comparable to Concertina, but at the cost
of storing 138 check bits to correct 3 errors, while the 1-byte
3-pointer implementation has a storage overhead of just 38
bits.

Combining techniques such as [5], [30] and [23] require
complex algorithms to find collision-free cache entries across
all the cache structure, and the storage of all the remapping
strategy. Moreover, schemes that distribute blocks into
several entries need to access two or more entries to recover
a single block, with the corresponding latency and energy
penalty.

We focus our detailed comparison on block and word dis-
abling. Block disabling is implemented in modern processors
operating at nominal voltages, and some authors advocate
its use at lower voltages [26]; word disabling is similar to
ours in complexity. Figure 8 shows the increase in MPKI for

these techniques with respect to the unrealistically robust cell.
We see that, irrespective cell size, Concertina always results
in lower LLC MPKI values than both the other techniques.
In fact, for C4 and C3, the implementation with least area
overhead (8-byte map) produces fewer MPKI than word
disabling. In the case of C2, the 8-byte map implementation
fails to reach the performance of word disabling, but the
1-byte implementations greatly improve on word disabling
results.

8 SYSTEM IMPACT

This section analyzes the impact of Concertina on the system
in terms of performance (instructions per cycle or IPC), area,
and power consumption. We compare Concertina with the
unrealistically robust cell and the fault-tolerant mechanisms
block and word disabling.

8.1 Performance
Figure 9 shows the performance relative to the robust cell for
the two Concertina implementation alternatives (bit maps
and pointers), and cells C4, C3, and C2. This confirms the 1-
byte map as the best design approach in terms of performance,
achieving the same performance as an unrealistically robust
cell for C4 and C3, and a minimal 0.5% degradation for C2.
For C4 and C3, the pointer approaches have a performance
within 1% of that of the bit maps, while it degrades up to
1%, 2%, and 3% for C2 when using 4, 3, and 2 pointers,
respectively.

13

Performance follows the same trends as LLC MPKI
regarding block and word disabling. Word disabling has
a uniform performance across the cell sizes because there
are usually fewer than four faults per cache entry, and
hence it succeeds in combining consecutive entries to store a
complete cache block. On average, it degrades performance
approximately 5% with respect to the robust non-faulty cell.
Block disabling impairs performance by 25% for C2 when
the available cache capacity is scarce, and most of the LLC
accesses become misses.

Concertina performance results are also consistent across
all the programs considered. Figure 10 shows the distribution
of IPC per application for the 1-byte 3-pointer implementation
(cell C3), with respect to the robust cell. For each application
we show a boxplot with the minimum, first quartile, median,
third quartile, and maximum of the distribution. Most
applications show minimal performance degradation with
respect to the robust cell: in the worst cases, the median
represents a 1% performance degradation. In some cases,
performance improves slightly, since applications with more
compression potential (more blocks that can be compressed),
such as omnetpp or mcf, have higher chances of finding an
available entry where a block fits.

8.2 Area and Power

Larger SRAM cells have lower probability of failure, but at
the cost of an increase in area and power consumption. Even
with small cells (C2), Concertina provides performance com-
parable with an ideal cell. Even the largest cell considered by
Zhou’s study (C6), which increases the area by 41.1% relative
to C2, does not accomplish fully functional performance:
40.1% of the cache entries are faulty at 0.5 V (Table 1).
In comparison to this increase, the extra area required by
Concertina (6.3% for the 1-byte 3-pointer implementation)
is a reasonable overhead, largely compensated for by its
performance results.

Regarding power, our design focuses on the LLC, a struc-
ture where static energy dominates the overall consumption.
Therefore, we estimate that the use of larger cells mainly
affects the static energy of the LLC. Isub increases with
transistor width, and hence, based on the transistor widths
of the cells considered [42], we estimate the increase in Isub
relative to C2. We assume that the unrealistically robust cell
has the same dimensions as C2, but with a null probability
of failure. We also add the dynamic and static overhead of
the metadata computed in Section 7.3, assuming the separate
design. Finally, we account for both the on-chip power and
the power of the off-chip DRAM module.

Figure 11 shows the power consumption for Concertina’s
1-byte 3-pointer implementation, word disabling, and block
disabling, with each of the cell sizes considered (C4, C3,
and C2). Concertina is always the best option, very close
to the ideal configuration in the case of C2. Concertina and
word disabling follow a similar trend, the power consump-
tion decreasing when downsizing the cell size. For block
disabling, when the LLC is implemented using C2 cells,
the large increase in off-chip DRAM traffic translates to a
significant power consumption increase in the overall system.

The above results confirm Concertina to be an attractive
LLC cache design to operate at ultra-low voltages, as it

Fig. 11. System power consumption relative to the robust cell.

exhibits performance and power requirements comparable
to a robust cell with a null probability of failure, even with a
limited fault-free fraction of the LLC (9.9% when using C2
cells).

9 CONCLUSIONS

Scaling supply voltage presents a significant challenge to
improving processor performance, especially for SRAM cell
transistors used in cache memories. Lower voltages reduce
cell reliability, which effectively reduces cache capacity, and,
hence, performance.

Existing microarchitectural approaches to increasing
cache reliability focus on enabling and combining the valid
cells, thereby reducing the available cache capacity. For
programs with large footprints and/or working sets, the
extent of performance degradation is substantial. We depart
from these approaches and propose Concertina, an LLC
that compresses cache blocks to reduce their size in order
that they can fit into entries with non-functional cells.
Concertina ensures the use of 100% of the LLC capacity
through a low overhead insertion/replacement policy that
combines block compressibility and fault awareness to enable
smart allocation of blocks to cache entries.

We explore three implementations with cells that trade
off area and power for reliability, namely C4, C3, and C2.
Concertina’s 1-byte map design exhibits a negligible MPKI
increase relative to a defect-free LLC for C4 and C3 cells, and
just a 3% MPKI degradation for the C2 implementation, but at
the cost of large storage overhead. A lower-overhead design
based on pointers (the 1-byte 3-pointer configuration) greatly
reduces Concertina storage requirements, with a minimal
performance degradation of less than 1% for cells C4 and
C3, and 2% for C2, with respect to the unrealistic defect-free
LLC.

ACKNOWLEDGMENTS

The authors would like to thank Javier Olivito for his support
with logic prototyping, Vı́ctor Viñals for his insightful
contributions to this paper, and the anonymous referees
for their helpful comments and suggestions. This work was
supported in part by grants gaZ: T48 research group (Aragón

14

Gov. and European ESF), TIN2013-46957-C2-1-P, TIN2012-
34557, and Consolider NoE TIN2014-52608-REDC (Spanish
Gov.).

REFERENCES

[1] J. Abella, J. Carretero, P. Chaparro, X. Vera, and A. González, “Low
Vccmin fault-tolerant cache with highly predictable performance,”
in 42nd IEEE/ACM Int. Symp. on Microarchitecture, 2009, pp. 111–121.

[2] A. R. Alameldeen and D. A. Wood, “Adaptive cache compression
for high-performance processors,” in 31st Int. Symp. on Computer
Architecture, 2004, pp. 212–223.

[3] A. Alameldeen, Z. Chishti, C. Wilkerson, W. Wu, and S.-L. Lu,
“Adaptive cache design to enable reliable low-voltage operation,”
IEEE Trans. on Computers, vol. 60, no. 1, pp. 50–63, Jan. 2011.

[4] A. Alameldeen, I. Wagner, Z. Chishti, W. Wu, C. Wilkerson, and
S.-L. Lu, “Energy-efficient cache design using variable-strength
error-correcting codes,” in 38th Int. Symp. on Computer Architecture,
2011, pp. 461–471.

[5] A. Ansari, S. Feng, S. Gupta, and S. Mahlke, “Archipelago: A
polymorphic cache design for enabling robust near-threshold
operation,” in IEEE 17th Int. Symp. on High Performance Computer
Architecture, 2011, pp. 539–550.

[6] S. Baek, H. Lee, C. Nicopoulos, J. Lee, and J. Kim, “Size-aware cache
management for compressed cache architectures,” IEEE Trans. on
Computers, vol. 64, no. 8, pp. 2337–2352, Aug. 2015.

[7] B. Calhoun and A. Chandrakasan, “A 256-kb 65-nm sub-threshold
SRAM design for ultra-low-voltage operation,” IEEE Journal of
Solid-State Circuits, vol. 42, no. 3, pp. 680–688, Mar. 2007.

[8] A. Chandrakasan, D. Daly, D. Finchelstein, J. Kwong, Y. Ramadass,
M. Sinangil, V. Sze, and N. Verma, “Technologies for ultradynamic
voltage scaling,” Proc. IEEE, vol. 98, no. 2, pp. 191–214, Feb. 2010.

[9] J. Chang, M. Huang, J. Shoemaker, J. Benoit, S.-L. Chen, W. Chen,
S. Chiu, R. Ganesan, G. Leong, V. Lukka, S. Rusu, and D. Srivastava,
“The 65-nm 16-MB Shared On-Die L3 Cache for the Dual-Core Intel
Xeon Processor 7100 Series,” IEEE Journal of Solid-State Circuits,
vol. 42, no. 4, pp. 846–852, Apr. 2007.

[10] L. Chang, R. Montoye, Y. Nakamura, K. Batson, R. Eickemeyer,
R. Dennard, W. Haensch, and D. Jamsek, “An 8T-SRAM for vari-
ability tolerance and low-voltage operation in high-performance
caches,” IEEE Journal of Solid-State Circuits, vol. 43, no. 4, pp. 956–
963, Apr. 2008.

[11] G. Chen, D. Sylvester, D. Blaauw, and T. Mudge, “Yield-driven near-
threshold sram design,” IEEE Trans. on Very Large Scale Integration
(VLSI) Systems, vol. 18, no. 11, pp. 1590–1598, Nov. 2010.

[12] L. Chen, Y. Cao, and Z. Zhang, “Free ECC: An efficient error
protection for compressed last-level caches,” in IEEE 31st Int. Conf.
on Computer Design, 2013, pp. 278–285.

[13] X. Chen, L. Yang, R. P. Dick, L. Shang, and H. Lekatsas, “C-Pack: A
high-performance microprocessor cache compression algorithm,”
IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 18,
no. 8, pp. 1196–1208, Aug. 2010.

[14] Z. Chishti, A. R. Alameldeen, C. Wilkerson, W. Wu, and S.-L. Lu,
“Improving cache lifetime reliability at ultra-low voltages,” in 42nd
IEEE/ACM Int. Symp. on Microarchitecture, 2009, pp. 89–99.

[15] S. Damaraju, V. George, S. Jahagirdar, T. Khondker, R. Milstrey,
S. Sarkar, S. Siers, I. Stolero, and A. Subbiah, “A 22nm IA multi-
CPU and GPU System-on-Chip,” in IEEE Int. Solid-State Circuits
Conf., 2012, pp. 56–57.

[16] J. Dusser, T. Piquet, and A. Seznec, “Zero-content augmented
caches,” in 23rd Int. Conf. on Supercomputing, 2009, pp. 46–55.

[17] H. Ghasemi, S. Draper, and N. S. Kim, “Low-voltage on-chip cache
architecture using heterogeneous cell sizes for high-performance
processors,” in IEEE 17th Int. Symp. on High Performance Computer
Architecture, 2011, pp. 38–49.

[18] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” SIGARCH
Comput. Archit. News, vol. 34, no. 4, pp. 1–17, Sep. 2006.

[19] C. Johns, J. Kahle, and P. Liue, “Implementation of an LRU and
MRU Algorithm in a Partitioned Cache,” U.S. Patent US 6,931,493
B2, Aug. 16, 2005.

[20] U. R. Karpuzcu, A. Sinkar, N. S. Kim, and J. Torrellas, “EnergySmart:
Toward energy-efficient manycores for near-threshold computing,”
in IEEE 19th Int. Symp. on High Performance Computer Architecture,
2013, pp. 542–553.

[21] S. M. Khan, A. R. Alameldeen, C. Wilkerson, J. Kulkarni, and
D. A. Jimenez, “Improving multi-core performance using mixed-
cell cache architecture,” in IEEE 19th Int. Symp. on High Performance
Computer Architecture, 2013, pp. 119–130.

[22] S. Kim, J. Lee, J. Kim, and S. Hong, “Residue cache: A low-energy
low-area L2 cache architecture via compression and partial hits,” in
44th IEEE/ACM Int. Symp. on Microarchitecture, 2011, pp. 420–429.

[23] C.-K. Koh, W.-F. Wong, Y. Chen, and H. Li, “Tolerating process
variations in large, set-associative caches: The buddy cache,” ACM
Trans. on Architecture and Code Optimization, vol. 6, no. 2, pp. 8:1–8:34,
Jul. 2009.

[24] J. Kulkarni, K. Kim, and K. Roy, “A 160mV robust schmitt trigger
based subthreshold SRAM,” IEEE Journal of Solid-State Circuits,
vol. 42, no. 10, pp. 2303–2313, Oct. 2007.

[25] R. Kumar and G. Hinton, “A family of 45nm IA processors,” in
IEEE Int. Solid-State Circuits Conf., 2009, pp. 58–59.

[26] N. Ladas, Y. Sazeides, and V. Desmet, “Performance-effective
operation below Vcc-min,” in IEEE Int. Symp. on Performance
Analysis of Systems Software, 2010, pp. 223–234.

[27] H. Lee, S. Cho, and B. Childers, “Performance of graceful degrada-
tion for cache faults,” in IEEE Computer Society Symp. on VLSI, 2007,
pp. 409–415.

[28] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.
Jouppi, “McPAT: an integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in 42nd
IEEE/ACM Int. Symp. on Microarchitecture, 2009, pp. 469–480.

[29] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hall-
berg, J. Hogberg, F. Larsson, A. Moestedt, and B. Werner, “Simics:
A full system simulation platform,” Computer, vol. 35, no. 2, pp.
50–58, Feb. 2002.

[30] T. Mahmood, S. Kim, and S. Hong, “Macho: A failure model-
oriented adaptive cache architecture to enable near-threshold
voltage scaling,” in IEEE 19th Int. Symp. on High Performance
Computer Architecture, 2013, pp. 532–541.

[31] W.-K. Mak and J.-W. Chen, “Voltage island generation under
performance requirement for SoC designs,” in Asia and South Pacific
Design Automation Conf., 2007, pp. 798–803.

[32] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,
A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood,
“Multifacet’s General Execution-driven Multiprocessor Simulator
(GEMS) toolset,” SIGARCH Comput. Archit. News, vol. 33, no. 4, pp.
92–99, Nov. 2005.

[33] G. Pekhimenko, T. Huberty, R. Cai, O. Mutlu, P. B. Gibbons, M. A.
Kozuch, and T. C. Mowry, “Exploiting compressed block size as
an indicator of future reuse,” in IEEE 21st Int. Symp. on High
Performance Computer Architecture, 2015, pp. 51–63.

[34] G. Pekhimenko, V. Seshadri, O. Mutlu, P. B. Gibbons, M. A. Kozuch,
and T. C. Mowry, “Base-delta-immediate compression: Practical
data compression for on-chip caches,” in 21st Int. Conf. on Parallel
Architectures and Compilation Techniques, 2012, pp. 377–388.

[35] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A cycle
accurate memory system simulator,” Computer Architecture Letters,
vol. 10, no. 1, pp. 16–19, Jan. 2011.

[36] S. Sardashti, A. Seznec, and D. A. Wood, “Skewed compressed
caches,” in 47th IEEE/ACM Int. Symp. on Microarchitecture, 2014, pp.
331–342.

[37] M. Taylor, “A landscape of the new dark silicon design regime,”
IEEE Micro, vol. 33, no. 5, pp. 8–19, Sep. 2013.

[38] L. Villa, M. Zhang, and K. Asanović, “Dynamic zero compression
for cache energy reduction,” in 33rd ACM/IEEE Int. Symp. on
Microarchitecture, 2000, pp. 214–220.

[39] C. Wilkerson, H. Gao, A. R. Alameldeen, Z. Chishti, M. Khellah,
and S.-L. Lu, “Trading off cache capacity for reliability to enable
low voltage operation,” in 35th Int. Symp. on Computer Architecture,
2008, pp. 203–214.

[40] J. Yang, Y. Zhang, and R. Gupta, “Frequent value compression
in data caches,” in 33rd IEEE/ACM Int. Symp. on Microarchitecture,
2000, pp. 258–265.

[41] R. Zahir, M. Ewert, and H. Seshadri, “The medfield smartphone:
Intel architecture in a handheld form factor,” IEEE Micro, vol. 33,
no. 6, pp. 38–46, Nov. 2013.

[42] S.-T. Zhou, S. Katariya, H. Ghasemi, S. Draper, and N. S. Kim,
“Minimizing total area of low-voltage SRAM arrays through joint
optimization of cell size, redundancy, and ECC,” in IEEE Int. Conf.
on Computer Design, 2010, pp. 112–117.

15

Alexandra Ferrerón (S’13) received the BS and
MS degree in Computer Engineering in 2010
and 2012 from the Universidad de Zaragoza,
Spain, where she is currently working toward the
PhD degree in Systems Engineering and Com-
puting. Her interests include high-performance
low-power on-chip memory hierarchies, ultra-
low and near-threshold voltage computing, and
High Performance Computing. Ms. Ferrerón is
a member of the Instituto de Investigación en
Ingenierı́a de Aragón (I3A) and the European

HiPEAC NoE.

Darı́o Suárez-Gracia (S’08, M’12) received the
PhD degree in Computer Engineering from the
Universidad de Zaragoza, Spain, in 2011. Since
2012, he has been working at Qualcomm Re-
search Silicon Valley on power aware parallel and
heterogeneous computing for mobile devices. His
research interests include parallel programming,
heterogeneous computing, memory hierarchy
design, networks-on-chip, and processor microar-
chitecture. Dr. Suarez Gracia is also a member of
the IEEE Computer Society and the Association

for Computing Machinery.

Jesús Alastruey-Benedé received the Telecom-
munications Engineering degree and the PhD
degree in Computer Science from the Univer-
sidad de Zaragoza, Spain, in 1997 and 2009,
respectively. He is a Lecturer in the Departmento
de Informática e Ingenierı́a de Sistemas (DIIS),
Universidad de Zaragoza, Spain. His research
interests include processor microarchitecture,
memory hierarchy, and High Performance Com-
puting (HPC) applications. He is a member of the
Instituto de Investigación en Ingenierı́a de Aragón

(I3A) and the European HiPEAC NoE.

Teresa Monreal-Arnal received the MS degree
in Mathematics and the PhD degree in Com-
puter Science from the Universidad de Zaragoza,
Spain, in 1991 and 2003, respectively. Until 2007,
she was with the Departamento de Informática e
Ingenierı́a de Sistemas (DIIS) at the Universidad
de Zaragoza. Currently, she is an Associate
Professor with the Departamento de Arquitec-
tura de Computadores (DAC) at the Universitat
Politècnica de Catalunya (UPC), Spain. Her re-
search interests include processor microarchi-

tecture, memory hierarchy, and parallel computer architecture. She
collaborates actively with the Grupo de Arquitectura de Computadores
(gaZ) from the Universidad de Zaragoza.

Pablo Ibáñez received the MS degree in Com-
puter Science from the Universitat Politècnica de
Catalunya in 1989, and the PhD degree in Com-
puter Science from the Universidad de Zaragoza
in 1998. He is an Associate Professor in the
Departamento de Informática e Ingenierı́a de
Sistemas (DIIS) at the Universidad de Zaragoza,
Spain. His research interests include proces-
sor microarchitecture, memory hierarchy, parallel
computer architecture, and High Performance
Computing (HPC) applications. He is a member

of the Instituto de Investigación en Ingenierı́a de Aragón (I3A) and the
European HiPEAC NoE.

