
Dynamic Construction of Circuits for
Reactive Traffic in Homogeneous CMPs

Marta Ortı́n1, Darı́o Suárez1, Marı́a Villarroya1, Cruz Izu2, Vı́ctor Viñals1
1Departamento de Informática e Ingenierı́a de Sistemas, i3A, University of Zaragoza, Spain.

Email: {ortin, dario, mvg, victor}@unizar.es
2School of Computer Science, University of Adelaide, Australia. Email: cruz@cs.adelaide.edu.au

Abstract—Networks on Chip (NoCs) have a large impact
on system performance, area and energy. Considering the cha-
racteristics of the memory subsystem while designing the NoC
helps identify improvement opportunities and build more ef-
ficient designs. Leveraging the frequent request-reply pattern,
our proposal dynamically builds the reply path in advance, is
able to share circuits between messages, and even removes some
implicit replies, significantly reducing NoC latency. A careful
implementation of this circuit reservation mechanism achieves an
average 17% reduction in router energy consumption, 8% smaller
router area and a 2% system performance increase, compared
with its baseline counterpart.

I. INTRODUCTION
The design of multicore Networks on Chip (NoCs) can take

advantage of the reactive nature of the traffic among nodes.
This paper presents and evaluates a novel approach of dynamic
virtual circuits for homogeneous chip multiprocessors (CMPs)
with 16 and 64 cores connected by a mesh.

Analysing the coherency protocol in a standard wormhole
4-stage pipeline router, we detected that the request-reply pat-
tern dominates over the rest. In average, 53% of the messages
are a reply to another message and, therefore, we know their
source and destination before the message is injected into
the network. With this information, routers can reserve in
advance crossbar path and output virtual channels, removing
those stages from the critical path. We also observed that the
network is lightly loaded (nodes inject, in average, less than 4
flits every 100 cycles) suggesting it will be feasible to reserve
resources for longer periods of time.

This simple yet efficient dynamic circuit approach reduces
network latency and achieves better performance than the
baseline router. At the same time, it significantly reduces router
area and energy consumption by removing buffer space. These
results emphasize the importance of considering the system as
a whole and studying how all the elements interact [1].

II. STATE OF THE ART
Several works have proposed hybrid packet-circuit switch-

ing techniques to speed up certain messages. Most mechanisms
establish circuits between nodes using dedicated networks.
Some proposals have separate networks for packet and circuit
switched messages [2], [3], while others implement a single
network that supports both types of traffic [4], [5]. A different
technique preallocates resources in advance to allow faster data
transmission [6], [7].

Another common approach to reduce network latency
involves routers that speculate by using paths without prior
reservation, which only work if there is no contention [8],

TABLE I: Main characteristics of the chip multiprocessor.
Processors 16 y 64, Ultrasparc III Plus, in order, IPC 1, single-threaded,

2GHz frequency
Coherence Directory based, MESI, directory distributed in the L2 banks
L1 cache 32KB data and instruction caches, 4-way assoc, 2-cycle hit,

64B lines, private, pseudo-LRU replacement
L2 cache Distributed, 1 bank/node, 1MB/bank, 16-way assoc, 7-cycle hit,

64B lines, shared, inclusive, pseudo-LRU replacement
Memory 4 memory controllers distributed in the edges of the chip

(for both 16 and 64-node chips), 160-cycle latency

TABLE II: Messages generated by the coherence protocol.
Event Sequence of messages

L1 miss
1o Request from L1 to L2
2o L2 Replies: Reply data from L2 to L1
3o L1 DATA ACK: Data reception ACK from L1 to L2

L1 miss, another
L1 owns the data
exclusively

1o Request from L1 to L2
2o L2 forwards the request to L1 owner
3o L1 To L1: L1 owner sends data to L1 requestor
4o L1 DATA ACK: Data ACK from L1 requestor to L2

Invalidation
(write or L2 repl)

1o Invalidation from L2 to L1 sharers
2o L1 INV ACK: ACK from L1s to L2

L1 replacement 1o Replacement information from L1 to L2
2o L2 WB ACK: ACK from L2 to L1

L2 miss 1o Request from L2 to main memory
2o MEMORY: Data from main memory to L2

L2 replacement 1o Replacement information from L2 to main memory
2o MEMORY: ACK from main memory to L2

[9]. These routers are more complex and may require reduced
network frequency or result in energy and performance pena-
lizations when the implemented shortcuts cannot be used.

Contrary to previous approaches, our work does not require
extra networks, additional messages, gathering statistics, or
modifying the coherence protocol. Our proposal leverages the
memory hierarchy behaviour to efficiently reserve network
resources in advance with minimal changes in the routers.

III. DYNAMIC CIRCUIT CONSTRUCTION
This section presents the characteristics of the CMP and

the baseline interconnection network. After that, it explains
the mechanism to dynamically build and use circuits to reduce
communication latency.

A. System architecture
This work focuses on a homogeneous CMP where each

tile is composed of a single-threaded core with private first
level cache and a bank of the shared second-level cache, both
connected directly to the router. Table I summarizes the key
parameters of the architecture and Table II details the messages
exchanged by our MESI coherence protocol.

The baseline NoC is built as a mesh with simple 4-stage
routers, dimension order routing and wormhole flow control.
Table III includes the detailed configuration of the baseline
NoC.978-3-9815370-2-4/DATE14/ c©2014 EDAA

TABLE III: Main characteristics of the baseline network on chip.
General 2 virtual networks (VN): requests and replies

2 virtual channels (VC) per VN
Routers 4 stages: routing and input buffering, VC allocation, switch allocation

and switch traversal
1-phase VC/switch allocators, Round-robin
5-flit buffers per VC, enough to store a whole message

Links 16B flits, 1-cycle latency

B. Building circuits ahead of time
When a request reaches its destination, we already know

that a reply is going to be sent back to the requestor. If we send
the head of the message in advance, it can reserve the resources
along the way in parallel with the L2 access. The drawback of
this method is that the L2 access is too fast compared to the
time it would take to set up the circuit (7 cycle L2 hit access
versus an average of 10 and 24 cycles to traverse the network
in 16 and 64-core chips, respectively).

To overcome this problem, the request, which is composed
of one single flit, reserves the reply circuit as it is travelling
towards the destination. Using dimension order routing (DOR),
request and reply follow XY paths, which are disjoint (unless
travelling in one dimension only). To apply our method,
requests use XY routing and replies use YX routing.

Requests go through the 4 original stages of the router (see
Table III). In parallel with VC allocation, the circuit is built
for the reply. During that process, the necessary information to
identify the circuit is stored in the router (requestor identifier
and line address). Since we have two VCs for replies, we
dedicate one to circuits and leave the other for replies that
do not have a circuit.

Out of the message types in Table II, the method cre-
ates circuits for data sent from the L2 to the L1 after
a request (L2 Replies) and replacement acknowledgements
(L1 WB ACK), which are 52% of all reply messages. In-
validation acknowledgements (L1 INV ACK), main memory
replies (MEMORY), and direct data transfers between L1
caches (L1 TO L1) are only 5.7% of the reply messages.
L1 DATA ACK messages are replies sent from an L1 to an L2
after a request-reply communication to confirm the reception of
the DATA, but they do not follow the same path as the request
and reply between L1 and L2. Therefore, it is not possible to
use a previous message to build a circuit for them.

C. Fragmented versus complete circuits
When trying to build a circuit at a router, the necessary

resources might not be available. In this situation, there are
two alternatives:
• Allow fragmented circuits keeping the partial path

reserved, and attempt to reserve the rest of the path
after the next hop.

• Allow only complete circuits, so that any lack of
resources will undo the previous reservations.

With fragmented circuits, we need to assure messages can
always be stored in the router, in case their circuit has not
been completely built. As we already mentioned, we start by
dedicating one VC for replies without a circuit, and the other
for replies with circuit. In the baseline NoC, VCs are not
heavily used and are rarely blocked. However, keeping VCs
reserved for a longer period of time has a negative effect:
resources are not enough to exploit the full potential of the
proposal. Therefore, in this alternative we include an additional

VC to increase the number of simultaneous circuits, ending up
with a total of 3 VCs in the reply virtual network.

Building only complete circuits allows to implement many
simplifications in the router. We guarantee that a message with
a circuit built has all the resources it needs from source to
destination. Hence, it will never get blocked in the network.
This has two beneficial consequences: first, it allows us to
remove the buffer storage of the VC dedicated for circuits
reducing the router area; second, we can build as many circuits
as we want for that VC because flits will just go through the
router without stopping. We experimentally explored the best
number of simultaneous circuits built per input port and set
it to 5. Figure 1 presents the modified router that implements
the reservation of complete circuits.

G. R. O. C.

G. R. O. C.

G. R. O. C.

R. O.

Input Unit

Routing Unit VC
Allocator

SW
Allocator

VC0: G. I. C.
VC1: G. I. C.
VC2: G. I. C.
VC3: -----

Output
Unit

VC0: G. I. C.
VC1: G. I. C.
VC2: G. I. C.
VC3: ----

Output
Unit

credits
& undo
circuit

Build
Circuit

Circuit Check

Crossbar

u
n
d

o
 c

ir
cu

it

credits & undo circuit

C dest block outport
C dest block outport

G. R. O. C.

G. R. O. C.

G. R. O. C.

R. O.

Input Unit

Circuit Check

C dest block outport
C dest block outport

credits
& undo
circuit

Fig. 1: Architecture of the router that can reserve complete circuits. It
includes ”Circuit Check” logic at the input units and a ”Build Circuit” module
in the VC allocator. In this drawing, two simultaneous circuits can be built
per port. VCs at the input units store global stage (G), route (R), output
VC (O) and credit count (C). Circuit information includes circuit-built bit
(C), destination identificator (dest), cache line address (block) and output port
(outport). Credits may carry undo-circuit information. At the output units, they
store global state (G), input VC (I) and credit count (C).

D. Using the circuits
When a reply arrives at a router, it checks if there is a

circuit built for it. In that case, it can go straight through the
crossbar leaving the router in just one cycle. When the tail flit
of the message leaves the router, it frees the circuit resources.
With fragmented circuits, a message that had a circuit might
arrive at a router where there is no built circuit. When that
happens, it will just be stored in the VC and go through the
usual 4 stages of the router.

Even if there is a circuit built at a router, the ports and links
involved can still be used by other messages. The crossbar
prioritises messages with a circuit, but it grants access to the
other virtual channels when the circuit is not used.

E. Undoing circuits before they are used
We must undo a circuit before it gets used under several

situations. The coherence protocol lets an L2 cache forward a
request to an L1 that owns a cache line exclusively, who will

supply the data directly. Therefore, the circuit built between the
requestor L1 and the L2 will never be used. When a complete
circuit cannot be fully booked, reservations in previous routers
must also be undone.

In those situations, we undo the circuit with a simple and
efficient technique: we send the data of the circuit to be undone
towards the circuit destination using credits. If a credit had to
be sent at the same time to free a buffer, we piggyback the
information; otherwise, we send a specific credit.

F. Reusing circuits
In the previous sections, circuits were specifically built for

a message and used only by that message. We go a step further
to improve our method and try to find other messages that can
reuse the circuits. When a reply that does not have a circuit
built is about to leave the network interface, it checks if there
is any circuit it could use to get closer to its destination. In
that case, the message becomes a scrounger message that uses
the circuit until an intermediate destination. At that point, the
network interface will re-inject the message so that it can arrive
at its final destination.

Note that we can only apply this method with complete cir-
cuits because there are no buffer guarantees for two messages
using the same fragmented circuit.

G. Eliminating coherence messages
Studying the coherence protocol while designing the NoC

has allowed us to notice a rewarding effect of our mechanism.
We already mentioned that we cannot build a circuit for the
L1 DATA ACK reply messages that are sent from the L1 to
the L2 after the L2 Reply (see Section III-B). However, if
this L2 Reply uses a circuit to get to the L1 requestor, we
can predict exactly how long it will take the data to reach its
destination and inform the L2 without the need to wait for the
L1 DATA ACK message. With this simple observation, we
can omit those messages to reduce contention in the network
and energy consumption.

IV. EVALUATION
This section presents the simulation methodology and the

main results of our proposal.

A. Simulation framework and workloads
We use Simics, GEMS and an extended version of Garnet

to carefully model all the components of the chip and perform
full system simulation. To get the timing, area and energy
expended by the network we use DSENT, a state-of-the-art
circuit modelling tool. We use 32 nm technology and run at 2
GHz frequency.

CMPs can execute parallel applications to reduce execution
time, or multiprogrammed workloads (execution of indepen-
dent applications on each core) to increase throughput. We
use parallel applications from PARSEC and SPLASH2 with
scaled inputs from PARSEC 3.0. We run the applications with
16 and 64 threads in the 16 and 64-core chips, respectively,
and simulate the whole parallel region.

For the multiprogrammed workloads, we choose 16 appli-
cations with a large working set from the SPEC CPU 2006
suite and bind each application to a different core. To build
the workloads for the 16-core chip, we randomly distribute the
applications to build 20 different mixes. For the 64-core chip,
we use each application 4 times, and again build 20 different
mixes. To perform the evaluation, we warm up the caches for
200 million cycles and simulate for 500 million cycles.

B. Results
A smart architecture design must optimize performance

while considering power and area. Therefore, we present a
comprehensive evaluation of our proposal that includes all
three aspects.

Figure 2 shows the energy expended at the router when
using our mechanism with respect to the baseline router
with XY routing for requests and YX routing for replies
(for the multiprogrammed workloads, we measure energy per
instruction). We include results for 16 and 64-core configura-
tions, with fragmented circuits, complete circuits (5 per input
port), circuit reuse and eliminating coherence messages in the
last two cases. As we anticipated, increasing reply virtual
channels from 2 to 3 in the fragmented case results in higher
energy consumption. However, the reduction of buffer storage
in the complete case achieves significant energy reductions,
especially with 64 nodes (an average of 18% with parallel
applications).

Reusing circuits does not always provide better results
because scrounger messages can sometimes delay the message
the circuit was originally built for. As a consequence, some
circuits are reserved for longer periods of time, keeping
resources busy. Removing coherence messages always permits
further energy savings due to the reduced amount of network
traffic.

Regarding the area needed to implement the proposal,
the size of the router increases by 23% with fragmented
circuits. On the other hand, removing buffer space at the virtual
channels when using complete circuits allows us to reduce
the router area by 8%. Complexity at the network interfaces
increases slightly due to logic to build and use the circuits and
store their identification data.

Figure 3 shows the performance speedup achieved with
our mechanism measured in execution time for parallel appli-
cations and number or instructions for the multiprogrammed
workloads. We get higher speedups with fragmented circuits
because more messages reduce their latency, although this
improvement is costly in terms of energy. On the other hand,
complete circuits exhibit minimal speedup but achieve signi-
ficant energy savings. Coupling the reservation of complete
circuits with the elimination of some coherence messages
results in the largest improvements.

Our proposal has slimmer benefits for multiprogrammed
workloads, especially in the 64-core configuration. That is
because these workloads access main memory more often,
so the tiles with memory controllers need to handle more
traffic. Since we do not build circuits for the MEMORY replies,
all that traffic lies on a single virtual channel, creating some
congestion.

Performance improvements are a direct consequence of the
network latency reduction achieved by our mechanism. This
latency is a combination of the average time messages take to
reach their destination and the queuing latency, that is, time
spent in the network interface waiting to access the network.
Our mechanism always improves the former value, achiev-
ing a peak latency reduction of 26% with multiprogrammed
workloads executed on 16 cores and an overall average of
16%. This improvement comes from the replies that quickly
travel through a complete circuit: 68% with 16 cores and
36% with 64 cores. The percentage is considerably lower in
the second case because it is more complicated to find idle
resources along longer paths. The queuing latency suffers with

 0.5

 0.6

 0.7

 0.8

 0.9

 1.0

 1.1

 1.2

N
o

rm
a

liz
e

d
 E

n
e

rg
y

 parallel multiprogrammed

Fragmented Complete Complete noACK

(a) 16 cores

 0.5

 0.6

 0.7

 0.8

 0.9

 1.0

 1.1

 1.2

N
o

rm
a

liz
e

d
 E

n
e

rg
y

 parallel multiprogrammed

Reuse Reuse noACK

(b) 64 cores
Fig. 2: Average network energy expended with circuit reservations measured as total energy for parallel applications and energy per instruction for
multiprogrammed workloads, with respect to the baseline results (baseline router with XY routing for requests and YX routing for replies). The lower the
bars, the better.

0.80

0.85

0.90

0.95

1.00

1.05

S
p

e
e

d
u

p

 parallel multiprogrammed

Fragmented Complete Complete noACK

(a) 16 cores

0.80

0.85

0.90

0.95

1.00

1.05

S
p

e
e

d
u

p

 parallel multiprogrammed

Reuse Reuse noACK

(b) 64 cores
Fig. 3: Average speedup achieved with circuit reservations measured as number of execution cycles for parallel applications and number of completed instructions
for multiprogrammed workloads, normalized to the baseline results (baseline router with XY routing for requests and YX routing for replies).

the implementation of our mechanism because all replies that
do not have a circuit must contend for a single virtual channel,
causing our overall average latency reduction to drop to 7%.
Techniques that reduce traffic in that virtual channel, such as
eliminating redundant coherence messages, help reduce this
undesirable effect and improve performance.

Comparing the results for the 16-node and the 64-node
NoCs, we see that both speedup and energy savings are higher
in the latter case, even though less percentage of replies
manage to get a complete circuit. That is because the impact of
the NoC is bigger on a larger chip: more messages are sent per
cycle and their latency is larger. This shows that the method
scales well and shows a lot of promise for future larger chips.

We also checked that the effectiveness of our mechanism is
independent from the L2 latency, even though circuits remain
built during the L2 cache access. The difference in speedups
for latencies of 1, 4, 7 (reported by DSENT), 12, and 20 cycles
in 16 and 64-core chips with the best configuration (building
complete circuits and removing coherence messages) is always
smaller than 0.01.

V. CONCLUSIONS
This paper was inspired by the observation that most of the

traffic follows a request-reply pattern, which helps anticipate
the path for most replies. We have used this information to
reserve network resources and dynamically build the circuit
for the reply while the request travels through the network.
Consequently, reply messages with a set-up circuit can go
through the router in a single cycle, compared with the 4 cycles
needed in the baseline router. Guaranteeing complete circuits
for data messages has also enabled us to predict when they
will reach their destination, and elegantly eliminate the need
for their acknowledgement. To evaluate the proposal, we have
performed full-system simulation with realistic parallel and
multiprogrammed workloads. For a 64-core chip, our proposal
achieves an average energy reduction of 17% at the router,
8% smaller area, and speedups of 2%. Results are better for

the 64-core configuration than for the 16-core one and are
not dependent on L2 access latency, which shows that the
mechanism scales well and will benefit future designs.

ACKNOWLEDGMENTS

This work was supported in part by grants TIN2010-21291-C02-01
(Spanish Government, European ERDF), gaZ: T48 research group (Aragón
Government and European ESF), Consolider CSD 2007-00050 (Spanish
Government), and HiPEAC-3 NoE (European FP7/ICT 217068).

REFERENCES

[1] R. Kumar, V. Zyuban, and D. M. Tullsen, “Interconnections in Multi-
Core architectures: Understanding mechanisms, overheads and scaling,”
in Int. Symp. on Computer Architecture, 2005, pp. 408–419.

[2] F. Palumbo, D. Pani, A. Congiu, and L. Raffo, “Concurrent hybrid
switching for massively parallel systems-on-chip: the cyber architecture,”
in Procs of the 9th conf. on Computing Frontiers, 2012, pp. 173–182.

[3] J. Duato, P. Lopez, F. Silla, and S. Yalamanchili, “A high performance
router architecture for interconnection networks,” in Procs of the Int.
Conf. on Parallel Processing, 1996, pp. 61–68 vol.1.

[4] N. D. E. Jerger, L.-S. Peh, and M. H. Lipasti, “Circuit-switched co-
herence,” in Procs of the Int. Symp. on Networks-on-Chip, 2008, pp.
193–202.

[5] A. Abousamra, A. Jones, and R. Melhem, “Codesign of NoC and cache
organization for reducing access latency in chip multiprocessors,” IEEE
Trans. on Parallel and Distributed Systems, pp. 1038–1046, 2012.

[6] L.-S. Peh and W. Dally, “Flit-reservation flow control,” in Int. Symp. on
High-Performance Computer Architecture, 2000, pp. 73–84.

[7] C. Lee and N. Jha, “Variable-pipeline-stage router,” in IEEE Trans. on
Very Large Scale Integration Systems, 2012, pp. 1–1.

[8] R. Mullins, A. West, and S. Moore, “The design and implementation of
a low-latency on-chip network,” in Procs. of the Asia and South Pacific
Design Automation Conference, 2006, pp. 164–169.

[9] L.-S. Peh and W. J. Dally, “A delay model and speculative architecture
for pipelined routers,” in Procs of the Int. Symp. on High-Performance
Computer Architecture, 2001, pp. 255–.

