A methodology to characterize critical section
bottlenecks in DSM multiprocessors *

Benjamin Sahelices', Pablo Ibafiez?, Victor Vinals?, and J.M. Llaberia?

! Depto. de Informética. Univ. de Valladolid. benja@infor.uva.es
2 Depto. de Informdtica e Ing. de Sistemas, I3A and HiPEAC. Univ. de Zaragoza.
{imarin, victor}@unizar.es
3 Depto. de Arquitectura de Computadores. Univ. Polit. de Catalufia.
llaberia@infor.uva.es

Abstract. Understanding and optimizing the synchronization opera-
tions of parallel programs in distributed shared memory multiprocessors
(DsM), is one of the most important factors leading to significant reduc-
tions in execution time.

This paper introduces a new methodology for tuning performance of par-
allel programs. We focus on the critical sections used to assure exclusive
access to critical resources and data structures, proposing a specific dy-
namic characterization of every critical section in order to a) measure
the lock contention, b) measure the degree of data sharing in consec-
utive executions, and c¢) break down the execution time, reflecting the
different overheads that can appear. All the required measurements are
taken using a multiprocessor simulator with a detailed timing model of
the processor and memory system.

‘We propose also a static classification of critical sections that takes into
account how locks are associated with their protected data. The dynamic
characterization and the static classification are correlated to identify key
critical sections and infer code optimization opportunities (e.g. data lay-
out), which when applied can lead to significant reductions in execution
time (up to 33 % in the SPLASH-2 scientific benchmark suite). By using
the simulator we can also evaluate whether the performance of the ap-
plied code optimizations is sensitive to common hardware optimizations
or not.

1 Introduction

Shared memory multiprocessors use the memory as a means to synchronize and
communicate processors. But, if several processors try to execute the same crit-
ical section concurrently by enforcing the required serialization, the scalability
of parallel programs is often limited. When this happens, optimizing the lock
ownership transfer among processors is essential for achieving high performance.

* This work was supported in part by Diputacién General de Aragén grant “gaZ:
Grupo Consolidado de Investigacién”, Spanish Ministry of Education and Science
grants TIN2007-66423, TIN2007-60625, Consolider CSD2007-00050, and the euro-
pean HIPEAC-2 NoE.

To understand the opportunities for tuning critical sections, fine grain metrics
such as lock time and time distribution inside the critical sections are required.
Also, in order to identify and quantify bottlenecks in parallel applications, a
precise control over the environment where the measures are taken is required.
For these reasons, we use a multiprocessor simulator (RSIM) that models out-of-
order processors, memory hierarchy and interconnection network in detail [1,2].
Within our simulation environment it is possible to take fine grain statistics,
break down the execution time of critical sections accurately, or turn on/off ar-
chitectural enhancements, which is difficult to accomplish in real systems. Unlike
other simulation environments which generate a trace using a trace driven sim-
ulator and later need to define an interleave of memory reference streams, our
simulator already interleaves the memory reference streams [3].

In this work we suggest a two-step approach. In the first step we compute the
execution time of all the critical sections, separating lock management and shared
data access. We also characterize critical sections dynamically by quantifying two
other important features: a) lock contention and, b) degree of data sharing. As
a measure of lock contention we use the number of processors trying to access a
lock variable when the lock is released, and to identify the degree of data sharing
we measure the number of different shared data lines accessed in consecutive
executions of the critical section. Finally, we further classify critical sections
statically in two types, depending on how the data structure is protected by the
lock variables. As we will see, we will combine the dynamic characterization and
the static classification in order to identify the key critical sections and infer code
optimization opportunities, such as data layout optimizations [4,5,6]. In this step
the dynamic statistics are gathered in a Baseline system. The Baseline system
has no architectural enhancements that might introduce noise in the measures,
such as prefetching [7] or directory caching [8,9].

In the second step, we turn on the architectural enhancements and evaluate
again the performance of the applied optimizations. From this second run we
realize that the applied optimizations increase performance on the enhanced
system as well.

The structure of the paper is as follows: Section 2 details the proposed char-
acterization and classification procedure. Section 3 presents the simulation envi-
ronment and the used benchmarks. In Section 4 we show the static classification
of all SPLASH-2 critical sections. Then, in Section 5 we gather all the dynamic
statistics, select and optimize the key critical sections, and compare the perfor-
mance gains in both the Baseline and the enhanced systems. Lastly, the related
work and conclusions Sections follow.

2 Static classification and dynamic characterization of
Critical Sections

This Section introduces first the static classification and then the execution time
breakdown. Next we describe the twofold characterization of critical sections
according to: a) lock contention and b) degree of data sharing. Finally, it is

explained how the methodology helps to detect and optimize code and data
layout inefficiencies.

Static classification. By looking at the source code we classify critical
sections into two types: in type A a single lock is used to protect access to a
shared data structure, and in type B a lock array is used to protect fine-grained
access to structured shared data. Each type is further split into two ad-hoc
subtypes, 0 and 1. Inside the critical sections of type A.0 only a single shared
variable is usually updated. Critical sections of type A.l protect the access to
several variables, for instance, when managing linked lists of shared-memory
chunks. Type B.0 critical sections are used to protect access to task queues; here
each processor has assigned a single task queue and only when this is empty
the processor searches the task queues of other processors. Type B.1 identifies
critical sections used to gain access to big data structures, where one entry of
the lock array is used to protect the access to a data structure subset.

Time breakdown of critical section execution. Locks are used to assure
exclusive access to shared data when executing a code section [10,11,12]. A pro-
cessor requests the lock through a lock acquire operation (A) and frees it with a
release operation (R), see Figure 1. In this paper we use a Test-and-Test&Set al-
gorithm to acquire a lock. We call lock time the sum of acquire and release times,
and critical section Latency the time between the end of the acquire operation
and the beginning of the release operation. We can further split the acquire time
into the waiting time (processor is spinning) and the hand-off time (it is being
decided which processor enters next). Throughout the simulation we measure
Lock time and Latency for each execution instance of every critical section.

latcncy (time inside
critical section)
-—»R

A R
thread 1 _ T | I
acqlril_';lime hand—off
A R A waiting time time R
thread 2 r 1 I
- -
release time acquire time
A R A R
thread 3 | I T
non—contended execution contended execution

Fig. 1. Time breakdown of contended and non-contended execution of a critical section

When there is contention the Lock time is proportional to the Latency times
the number of contending processors. So, small Latency reductions can have a
large impact on the Lock time.

Lock contention. As a measure of lock contention we use the number of
processors trying to access a lock variable when the critical section is released.
The lock time of a critical section is directly related to its lock contention.

Data sharing patterns. To measure the degree of data sharing we compare
the data cache lines accessed in consecutive executions of a critical section. We

distinguish three sharing patterns, namely full-sharing, no-sharing, and some-
sharing. Full-sharing arises when a critical section protects the same line(s) in
two consecutive executions. No-sharing arises when none of the lines accessed in
a critical section has been used in the two previous executions. Finally, some-
sharing collects the remaining execution instances that show an intermediate
sharing pattern.

2.1 Detecting inefficiencies and inferring optimizations

In order to choose the critical sections key to the overall performance we add, for
all instances of each critical section, the Lock time and the Latency, and select
those that represent a relative high fraction of the parallel execution time.

We use the Latency in each execution of a key critical section in order to infer
the possibility of a data layout problem and then inspect the code. For instance,
if the Latency is not biased towards a few values there could be false sharing.
This is particularly true in the type A.0. Also, by analyzing the critical section
Latency, bad programming habits can be detected. We will see some examples
later.

When a contended lock shows low degrees of data sharing, the contention
is not caused by the simultaneous access to the shared data, but by the simul-
taneous access to the lock variable. In other words, the same contended lock
is used to protect the access to different shared data in consecutive executions.
For instance, a programming technique to protect the access to complex data
structures is using a lock array and a hash function to distribute the concur-
rently accessed elements of the data structure uniformly among the elements of
the lock array. If some elements of the lock array have high contention and low
data sharing, performance may be improved by using a better hash function, by
increasing the lock array size or both.

Section 5 details all the detected inefficiencies and the feasible solutions.
Anyway, the most often employed optimizations to tackle the Latency problem
consist in reorganizing the data layout to either remove false sharing [4] or/and
enforce collocation of the lock and the shared variables [5]. For type B.1 the
action taken has been to increase the number of entries in the lock array (finer
granularity protection).

3 Baseline system and benchmarks

The runtime statistics are obtained with RSIM [1,2]. RSIM is an execution-driven
simulator performing a detailed cycle-by-cycle simulation of an out-of-order pro-
cessor, a memory hierarchy and an interconnection network. The simulator mod-
els all data movements including the cache port contention at all levels. The
processor implements a sequential consistency model using speculative load ex-
ecution [7]. The Baseline system is a distributed shared-memory multiprocessor
with a MEST cache coherence protocol [13]. The interconnection is a wormhole-
routed, two-dimensional mesh network. The contention of ports, switches and
links is also modeled accurately. Table 1 lists the processor, cache and memory
system parameters as well as the tested SPLASH-2 benchmarks [14].

Processor 32 processors, 1 Ghz L2/Memory Bus Split.32 B,3 cycle+1 arbit.
ROB 64 entry, 32 entry LS queue

Issue out—of—order issue/commit 4 ops/cyc. Memory 4 way interl., 100 cycle DRAM

Branch 512 entry branch predictor buffer Directory SGI Origin—2000 based MESI
Cache Cycle 16 cycle (without memory)
L1inst. Perfect Interleaving 4 controllers per node

L1 data 32 Kbyte, 4 way assoc., write—back
2 ports, 1 cycle, 16 outstanding misses
1.2 1 Mbyte, 4 way associative, write—back
10 cycle access, 16 outstanding misses
L1/L2 bus Runs at processor clock
Line size 64 bytes

Network Pipelined point—to—point
Network width 8 bytes/flit
Switch buffer size 64 flits
Switch latency 4 cycles/flit + 4 arbit.

Code Ocean Barnes Volrend Water-Nsq Water—-Spt Radiosity FMM Raytrace
Input 258x258 16Kpartic. head 512 molec. 512 molec. test 16K partic. Car 256

Table 1. Baseline system parameters and benchmarks.

3.1 Execution time breakdown

We use the mean of the parallel phase execution time across all processors as
the main metric to analyze performance improvements. The execution time of
each application is split into four categories according to the system components
causing each cycle loss. Instructions are assigned to the Lock (acquiring and
releasing critical sections) and Barrier categories by using software marks. In
the remaining code (not enclosed between the software marks), attributing stall
cycles to specific components is complex in multiprocessor systems with out-of-
order processors, because many events happen simultaneously. The algorithm
used to categorize the remaining execution time is taken from the work of Pai
et al. in [2]. The employed categories are Compute and Memory. Of course,
the Memory category includes shared variable accesses both inside and outside
critical sections.

3.2 Benchmarks

Table 1 shows the SPLASH-2 benchmarks [14] we tested. The applications have
been compiled with a Test-and-Test&Set based synchronization library imple-
mented with a Read-Modify-Write (Idstub in sparc) type operation. Every lock
variable does not share its cache line with another lock, even in array locks. This
has been achieved employing padding. Barriers are implemented with a binary
tree. Radiosity and Volrend can be considered non-deterministic because differ-
ent execution paths of the tasks can produce different number of iterations on an
active waiting loop and, as a consequence, the execution time experiences minor
variations.

We simulate completely the parallel phase of each benchmark. In Figure 2
we show the execution time breakdown of the base experiment that will be used

later to compare with the optimized options. As can be seen the Lock time is
noticeably high, ranging from 1 % in FMM to 50 % in Radiosity.

ime
o © © o o o
0 o N » © -

alized execution ti

Norm:
o o o
EE N

)

M Lock
EBarriers
O Memory
O Compute

S o
& &
le)

& &
o

Fig. 2. Parallel execution time of the SPLASH-2 benchmarks

4 Critical section classification in SPLASH-2

In this section we analyze the code of each critical section of the SPLASH-2
benchmarks and we classify them in the types stated in Section 2.

Benchmark||type A.0 Locks type A.1 Locks type B.0 Locks|type B.1 Locks
SHVar += value Several variables Task queues Complex data
(e.g. linked lists) structures
Ocean 1d,Psiai,Psibi,Error
Barnes Count Count Cell[0:2047]
Volrend Index,Count,QLock[32] QLock[0:31]
Water-ns Index, IntrafVir, PotengSum Mol[0:511]
InterfVir, KinetiSum
Water-sp Index, IntrafVir, PotengSum
InterfVir, KinetiSum
SHLocks(0:700), free_patch,
Radiosity ||Index, Pbar, free_interaction, free_edge, tq[0:31].flock
TaskCounter free_element, free_elemvertex,|tq[0:31].qlock
avg_radiosity
FMM Count Mal LockArray[0:1235]
Raytrace Pid Mem WP[0:31]

Table 2. Critical section classification of the SPLASH-2 benchmarks. Count in Volrend
protects two different codes in different execution phases, one is A.0 and the other A.1.

As can be seen in Table 2, type A accumulates the highest number of critical
sections (21) while Type B has only 7 members. The simplest A.0 class is the
most populated and covers all the applications, followed in importance by A.1.
Regarding type B, it is worth noting that subtypes B.0 and B.1 only appear each
in three out of the eight applications.

5 Experimental results

In this section we first characterize each application according to lock contention
and degree of data sharing. Second, we identify the key critical sections accord-
ing to their influence in the overall execution time. Third, for every key critical
section we analyze contention, sharing patterns and Latency. Fourth, we focus on
false sharing removing and opportunities for collocation and other code optimiza-
tions. Finally, we show a sensitivity analysis of the optimized code performance
with respect to hardware enhancements.

Critical section characterization. Figure 3 (a) plots data sharing (y-axis)
and contention (x-axis) for each application, placing each critical section in only
one of the four regions. A critical section is placed in the No Data Sharing half if
its dominant sharing pattern is no-sharing. On the other hand, the critical section
is placed on the Contention half if more than 5 % of its instances execute with 2
or more processors trying to enter the critical section. Then for each application
we group all the critical sections of a given region in a ball, weighting its area
according to the aggregated number of execution instances*. The Lock time of
all the critical sections included in a ball, with respect to the parallel execution
time, is plotted close to each ball.

4,1% 22,7% 1,1%
O v
48,9% 0,3%
23,4% RD 0ds
Data WS 41,9% 0.2%] 04
Sharing D s 0%
0,8% g 08
0,2% B © § ozs
16,4% 0,1% g 02
wN wN 2 ors
£
0,6% S
F 0,05
0,6% 0% =1
No Data B : £
e — F WN i
Ocean [Bames| Volrend | Water-ns | Water-sp Radiosity | FMM | Rayt
Contention (a) No Contention (b)

Fig. 3. (a) SPLASH-2 characterization based on contention and data sharing of
their critical sections. (O:Ocean, WS:Water-sp, WN:Water-ns, B:Barnes, V:Volrend,
RD:Radiosity, R:Raytrace, F:FMM). (b) Lock time of key critical sections

Lock time. To identify the key critical sections we analyze the contribution
of each critical section to the parallel execution time, selecting the most relevant.
Figure 3 (b) plots the Lock time of relevant critical sections normalized to the
parallel execution time. In several applications one single critical section has a

4 The ball area is proportional to the sum of the number of executions of all the critical
sections grouped in the ball, relative to the number of executions of all the critical
sections of the application.

significant impact on the execution time due to its high contention (eg. tq[0].qlock
in Radiosity and Mem in Raytrace).

Contention. Figure 4 (a) shows the average number of waiting processors
for the key critical sections. We see, on average, between 7 and 10 processors
waiting on each execution. A critical section can show a highly contended be-
havior whereas its contribution to the parallel execution time may be low. For
example, three critical sections in Ocean have high contention (14 processors
on average) but their impact on the parallel execution time is low because they
execute only a few times, see Figure 3 (b).

N
&

o
©

08

I
2

(CNo-sharing
0 Some-sharing
m Full-sharing

o o
>

o
=

o
©

o
N

Normalized number of executions
o
ey

o

Cell[0] (6.7) | ta[0].qlock (1.3)
FMM | Rayt. Barnes Radiosity
(a) (b)

mal (1)
FMM

mem (45)

Average # waiting processors
o o > B 38
———
_—
||
|
—
————
————
[
index |G
KinetiSum |

Ocean [Bamnes| Volrend | Water-ns | Water-sp

Radiosity

Raytrace

Fig. 4. (a) Average number of processors waiting on each key critical section execution.
(b) Degree of data sharing of key critical sections not belonging to A.0 type; the average
number of referenced cache lines appears in brackets.

Sharing patterns. In Figure 4 (b) we show the normalized number of oc-
currences of each sharing pattern for the key critical sections that are not A.0
type. The average number of referenced cache lines on each critical section ex-
ecution appears in brackets. Of course, critical sections of A.0 type show only
full-sharing. The locks tq[0].qlock (Radiosity) and Mem (Raytrace) show high
degree of data sharing. The lock Cell in Barnes has a very low degree of data
sharing and, finally, Mal in FMM shows equal amounts of full-sharing and no-
sharing.

Latency. Finally, in Figure 5 (a) we show the average Latency, in execution
cycles, of the key critical sections. In each bar we show compute and memory
time. We see that in all the critical sections except two, the Latency almost
equals the memory component. Note that the numbers are quite high, for in-
stance, roughly half the critical sections spend 1000 cycles or more accessing
memory. Therefore, reducing the memory component clearly appears as the main
target of any optimization we are able to apply. Remember that the Lock time
is proportional to the Latency times the number of contending processors, and
so small Latency reductions can have a large impact on the Lock time.

5.1 Data layout and code optimizations

First we deal with removing inefficiencies, detecting false sharing and applying
other code optimizations. Next, we apply collocation, verifying that it achieves
a positive effect.

OMemory

O Compute

4 4

Ocean Bameg Volrend | Water- | Water-sp
ns

(a)

Radiosity |FMM|Ray-
trace

o

Water-sp: KinetiSumLock

6000 T ‘-Basa

OW/OFS

$ 5000 g 707 D Collocation
& 4000 £ o
3000 £ 50
s AR

5
UHHHHHDH DA enlelll £s30-
o|s|z| 5|23 5| Bl 3| E|s| 5| Els|s| 5| 5125|825 |2 E| 2 20
2215|3|%|2|3|22|8|3| 2|3 5 5|22 (2 5 5|3 5| *[2
87|82 |82 LIS 101
2 g 82

510 10-15 1520 20-25 2530 30-35 3540 40-45 45+
Interval (cycles x 100)

Fig.5. (a) Average Latency of key critical sections. (b) Number of executions of the
critical section KinetiSum (Water-sp) in each Latency interval for the Base experi-
ment (Base), after removing false sharing (W/O FS) and after applying Collocation
(Collocation).

When applying these code optimizations some changes in the Barrier time
measured in Figure 2 can be observed. Due to optimization, the Barrier time
can increase if some of the processors, but not the last one, arrive earlier to the
barrier, but it can decrease if all the processors arrive earlier to the barrier. In
Radiosity and Volrend there is an active waiting loop just before the barrier,
therefore when the code is optimized the number of iterations will change and
so will all the Barrier, Compute and Memory times.

False sharing. Comparing Figure 5 (a) with the classification in Table 2 we
find some critical sections with an unusual behavior. For example in Water-sp
the critical section KinetiSum has an average Latency of 1781 cycles but it is of
A.0 type and does not have any conditional statement. Note that it is a too high
Latency for a critical section that only reads and writes a single variable once
(typical in type A.0 critical sections). Actually, if we add the raw latencies of
whatever two memory accesses (276 and 377 cycles in average) and the negligible
compute time, the resulting time is clearly lower than the measured Latency.
In Figure 5 (b) we perform a more detailed analysis of this critical section by
plotting the number of critical section executions (bar height) whose Latency is
in a given interval (x-axis category). In the base experiment of this figure we see
that there are significant variation in the measured Latency.

Analyzing the code of KinetiSum we observe the existence of false sharing
[4,6]. Figure 5 (b) also shows the KinetiSum Latency once the false sharing has
been removed through data padding (experiment W/O FS). We can see now
that the Latency of almost all the executions is below 1000 cycles. Using this
kind of Latency analysis the false sharing behavior is also detected in Ocean,
Raytrace and Water-ns. The execution time without false sharing is shown in
Figure 6 (a) (experiment W/O FS).

Optimizations in the code. In Barnes there is one specific lock belonging
to the lock array Cell (type B.1) with high Lock time (see Figure 3 (b)), high
Latency (=~ 1000 cycles, see Figure 5 (a)) and very low data sharing (see Figure

Normalized execution time

ooooo00000
CLNWARMON®O

O Compute I Memory

B Barrier

rs

mLock

Base
WIO FS

T
T
W/O FS+Col [T

Ocean

Base [T mommm—
64KlLock T mam
64KLock+Col [T——num
T
TreeBarr [T o
TreeBarr+Col [T o
T
W/OFS T/
W/O FS+Col
Base [[o
W/OFS T o
W/OFS+Col —————T—m
T

Base
Base

Base
Base+Col

Base [T T

Base+Col

Barnes | Volrend | Water-ns | Water-sp | Radio | FMM

(a)

sity

Base
W/O FS
W/O FS+Col

Raytrace

Normalized execution time

0,45

o o o
S L 9n9O w2
Sah o wa s

0,05

o

Ocean

€
5
3
8
Lme

x

o8

Volrend

count
ma

pid

mem

freelnte

< <

Radiosity

Wate-ns| Water-sp FMM

(b)

Rayt.

Fig. 6. (a) Normalized execution time for the base experiment (Base) after removing
false sharing (W/O F'S), increasing the size of the lock array in Barnes (64KLock),
replacing a lock-based barrier with a tree barrier in Volrend (TreeBarr), and applying
Collocation (Col). (b) Lock time of key critical sections after applying all optimizations

4 (b)). A B.1 type contended lock showing a low degree of data sharing indicates
a too much coarse-grained protection of the shared data. Therefore, we have
increased the lock array Cell from 2048 to 65536 locks, reducing 77 % Barnes
lock time (Figure 6 (a), experiment 64KLock).

In the Volrend benchmark the lock Count has high Lock time and Latency
(see Figures 3 (b) and 5 (a)), but it does not suffer from false sharing. Analyzing
the code we see that Count is of type A.0 but it implements a barrier by means
of a shared counter. We replaced it with a simple binary tree barrier and results
are shown in Figure 6 (a), experiment TreeBarr. All components in the execution
time are reduced except the barrier component because the time of the new tree
barrier is accumulated to the barrier category. The other categories decrease
because one lock, the corresponding critical section and its control loop are
eliminated.

Collocation. When several variables stored in the same line are used by
different processors performance degrades (false sharing) but, on the other hand,
if these variables are used by the same processor performance can improve. The
software technique named Collocation aims at decreasing the latencies associated
with data accesses by placing the lock and the variables together in the same line
[5]. Bar Collocation in Figure 5 (b) shows the KinetiSum Latency distribution
when Collocation is applied. We can see that all the KinetiSum executions have a
Latency below 500 cycles (with an average Latency of 25 cycles). This is because
the read and write accesses to the protected variable now almost always hit in
the cache.

The bars +Col in Figure 6 (a) show the execution time breakdown when
Collocation is applied on top of the previous optimizations. As can be seen,
collocation decreases execution time further on all applications, between 5.2 %
in Ocean and 23.0 % in Water-sp, except in FMM. In order to complete the
picture, Figure 6 (b) shows the Lock time of the key critical sections. As we

can see by comparing it with Figure 3 (b) the Lock time has been eliminated or
significantly reduced in most key critical sections.

Summarizing, after applying all the optimizations suggested in our method-
ology, the Baseline system execution time is reduced between 5.5 % in Ocean
and 33.4 % in Water-sp. However, there is no reduction in FMM, which has no
Lock time and therefore is insensitive to these kinds of optimizations. A signif-
icant lock time remains in Radiosity and Raytrace mostly, which would require
to restructure two key critical sections, namely tg/0].qlock in Radiosity and Mem
in Raytrace.

Sensitivity of code optimizations. In this section we evaluate the sen-
sitivity of code optimizations to architectural enhancements. First we simulate
processors that prefetch on the memory operations blocked by the memory con-
sistency constraints, and that perform store buffering [7]. Later we simulate a
directory cache in the coherence controller (four-entry fully associative) whose
entries hold both the data line and its directory information, and are looked up
before in the directory [15,8,9]. A line is placed in the directory cache only when
it is requested by a processor and it is in Exclusive state in another processor
node.

Figure 7 shows execution time of the enhanced processors normalized to the
base experiment, running both the original and the optimized codes, including
the base experiment for comparison. As can be seen, the enhanced processors
run faster, except with the directory cache in Raytrace. In Raytrace, within the
critical section Mem, the number of accessed and updated lines is high which
causes a lot of capacity misses in the directory cache. Anyway, and more impor-
tantly, the optimized code on the enhanced processors always executes in less
time, excluding FMM which is insensitive to optimization.

Normalized execution time

0,8 4 M Lock
W Barriers
0,6 - O Memory
] Il H O Compute
0,2 4

bl ki

Ocean Barnes | Volrend |Water-ns|Water-sp|Radiosity] FMM |Raytrace

7y
Opt

o |
|
||

Base

v
Base
4+0pt
C4+0pt
HaP+Opt

Fig. 7. Execution time normalized to the base experiment of several architectural en-
hancements with and without optimizations: four-entry cache in the coherence con-
troller (C4, and C4+Opt), prefetch and store buffering (HaP and HaP+ Opt).

6 Related work

Contemporary processors provide hardware counters that return a count of either
cycles or performance-related events. Performance analysis tools insert library
calls in the program to query the hardware counters during program execution.
These tools provide graphical interface and correlate performance metrics with
the program source code [16,17]. Instead, we use a simulator allowing to mea-
sure the overheads at the instruction level and to eliminate the nondeterminism
introduced by real hardware. Therefore, we can take fine grain statistics, ana-
lyze data address streams or break down the execution time of critical sections
accurately, which is difficult to accomplish in real systems. Also, we are able to
connect and disconnect architectural optimizations that might introduce noise
in the measures used in a first-step analysis.

Other performance analysis tools instrument the source program in order
to obtain statistics or address traces but, as a consequence, the data address
space can be disturbed [3,18]. The disruption may affect the absolute position
of the data elements, which in turn may affect the cache behavior. Moreover,
tools that use trace driven simulation require to implement a given interleave of
the memory reference streams [3]. Although we also use hooks to instrument the
code, the simulator allows us to eliminate all bookkeeping operations introduced
by instrumentation. Besides, the execution-driven simulation already interleaves
the memory reference streams in a straightforward way.

7 Concluding remarks

Critical sections are used in parallel applications to ensure serialized access to
shared data structures, leading to a potential performance bottleneck. In this
paper we propose a methodology to characterize and classify critical sections in
order to guide optimizations in DSM multiprocessors. To characterize a critical
section we use three parameters measured with an execution driven simulator
that allows to take fine grain statistics: a) lock contention, b) degree of data
sharing in consecutive executions of the same critical section, and ¢) Latency.
The fine grain statistics taken in the simulation framework are correlated with
a static classification. The static classification takes into account how locks are
associated with their protected data.

Correlating the static classification of each critical section with its dynamic
characterization, inefficiencies may be detected, isolated and understood. Char-
acterization is used to guide optimization opportunities and classification allows
us to identify the best suited optimization for each application. Data layout opti-
mizations in critical sections have been introduced to reduce the execution time.
We show that, for a highly contended short critical section with high degree of
data sharing, data layout optimizations not only reduce the critical section La-
tency but also, and to a large extent, the Lock time, significantly reducing the
execution time. Moreover, we show that the proposed optimizations hold their
effectiveness even when considering architectural enhancements in the processor
and the coherence controller.

In this work we have optimized the original version of SPLASH-2 for a DSM
environment by carefully tuning the lock-based synchronization performance. In
a future work we plan to test the effectiveness of the proposed optimizations in
a design with very different architectural tradeoffs, such as for example, a chip
multiprocessor.

References

1. Fernandez, R., Garcia, J.: RSIM X86:a cost-effective performance simulator. In:
Proc. 19th European Conference on Modelling and Simulation ECMS. (2005)

2. Pai, V., Ranganathan, P., Adve, S.: RSIM reference manual version 1.0. Technical
report 9705, Dept. Electrical and Computer Eng., Rice University (1997)

3. Marathe, J., Mueller, F.: Source-code-correlated cache coherence characterization
of openMP benchmarks. Parallel and Distributed Systems, IEEE Transactions on
18(6) (2007) 818-834

4. Eggers, S., Jeremiassen, T.: Eliminating false sharing. In: Proc. Int. Conf. Parallel
Processing. Vol 1. (1991) 377-381

5. Kagi, A., Burger, D., Goodman, J.: Efficient synchronization: let them eat QOLB.
In: Proc. 24th ISCA. (1997) 170-180

6. Torrellas, J., Lam, M., Hennessy, J.: False sharing and spatial locality in multipro-
cessor caches. IEEE Trans. Computers 43(6) (1994) 651-663

7. Gharachorloo, K., Gupta, A., Hennessy, J.: Two techniques to enhance the perfor-
mance of memory consistency models. In: Proc. ICPP. (1991) 355-364

8. Michael, M., Nanda, A.: Design and performance of directory caches for scalable
shared memory multiprocessors. In: Proc. 5th HPCA. (1999)

9. Woodacre, M., Robb, D., Roe, D., Feind, K.: The scr1 Altix 3000 global shared-
memory architecture. White paper silicon graphics inc., SGI (2003)

10. Anderson, T.: The performance of spin lock alternatives for shared-memory mul-
tiprocessors. IEEE Trans. Parallel and Distrib. Systems 1(1) (1990) 6-16

11. Graunke, G., Thakkar, S.: Synchronization algorithms for shared memory multi-
processors. IEEE Computer 23(6) (1990) 60-69

12. Mellor-Crummey, J., Scott, M.: Algorithms for scalable synchronization on shared
memory multiprocessors. ACM Trans. Computer Systems 9(1) (1991) 21-65

13. Laudon, J., Lenoski, D.: The sGI origin: A cC-NUMA highly scalable server. In:
Proc. 24th ISCA. (1997)

14. Woo, S., et al.: The SPLASH-2 programs: Characterization and methodological
considerations. In: Proc. 22th ISCA. (1995) 24-36

15. Acacio, M., Gonzdlez, J., Garcia, J., Duato, J.: Owner prediction for accelerating
cache-to-cache transfer misses in a CC-NUMA architecture. In: Proc. 16th Int. Conf.
on Supercomputing. (2002)

16. Browne, S., Dongarra, J., Garner, N., London, K., Mucci, P.: A scalable cross-
platform infrastructure for application performance tuning using hardware coun-
ters. ACM/IEEE Supercomputing Conference (2000) 42-42

17. De Rose, L., Reed, D.: Svpablo: A multi-language architecture-independent per-
formance analysis system. In: Int.Conf. Parallel Processing. (1999) 311-318

18. Mellor-Crummey, J., Fowler, R., Whalley, D.: Tools for application-oriented per-
formance tuning. In: Proc. 15th Int. Conf. Supercomput. (2001) 154-165

