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Abstract. Synchronization in parallel programs is a major performance
bottleneck. Shared data is protected by locks and a lot of time is spent
in the competition arising at the lock hand-off. In this period of time, a
large amount of traffic is targeted to the line holding the lock variable.
In order to be serialized, the requests to the same cache line can either
be bounced (NACKed) or buffered in the coherence controller. In this
paper we focus on systems whose coherence controllers buffer requests.

During lock hand-off only the requests from the winning processor con-
tribute to the computation progress, because the winning processor is
the only one that will advance the work. This key observation leads us to
propose a hardware mechanism named Request Bypass, which allows re-
quests from the winning processor to bypass the requests buffered in the
home coherence controller keeping the lock line. The mechanism does not
require compiler or programmer support nor ISA or coherence protocol
changes.

By simulating a 32 processor system we show that Request Bypass re-
duces execution time and lock stall time up to 35% and 75%, respectively.
The programs limited by synchronization benefit the most from Request
Bypass.

1 Introduction

The scalability of shared-memory programs is often limited by highly-contended
critical sections guarded by mutual exclusion locks [1,2], where a large amount
of traffic is generated during the lock hand-off. This traffic increases the time
that the parallel program spends in serial mode, which reduces the benefits of
parallel execution. Thus, optimizing lock transfer among processors is essential
to achieve high performance in applications having highly-contended critical sec-
tions [3,4,5,6,7].
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The processor architecture provides specific instructions to perform an atomic
read-modify-write operation on a memory location. A lock is acquired by using
these instructions and it is released by performing a regular write. A Highly
contended lock hand-off generates a burst of traffic aimed at the same memory
location. This situation may be alleviated by queue-based software [4,8,9,1] or
hardware locks [5,7,10,11]. Software mechanisms have a large overhead per syn-
chronization access, even in the absence of contention. The proposed hardware
mechanisms require modifications in software and/or in the coherence protocol,
they need to handle queue breakdowns, and some of them require a hardware
predictor to identify synchronization operations [11]. Request Bypass, the mech-
anism proposed in our work, does not add a significative overhead, does not use
a predictor, and it does not require changes to cache or directory protocol.

In Distributed Shared-Memory (DSM) multiprocessors a coherence request
is handled by the coherence controller of the node owning the corresponding line
(home node). Moreover, the coherence controller is in charge of serializing all
requests targeted to the same memory address. So, requests coming to a busy
directory entry cannot be attended until the directory entry becomes free. A
directory entry is busy whenever the coherence controller has started a coher-
ence operation on such entry involving a third node whose reply has not been
received yet. Requests to busy entries are handled in three ways in commercial
DSM multiprocessors or in the literature: either bounced [12,13], forwarded to
third nodes [14,15,16] or queued within the coherence controller [17]. Our base
system uses request queuing because it has the potential to reduce network traf-
fic, contention and coherence controller occupancy as it is shown by Chaudhuri
and Heinrich in [17].

In this paper we are concerned with the lock hand-off in a DSM multiproces-
sor that queue requests to busy lines within the coherence controller. In order to
speed up lock hand-off we propose to change the order in which the coherence
controller selects the request to be processed once a line leaves the busy state.
Instead of always selecting an already queued request we suggest processing first
the request in the input port, if it exists, a technique we call Request Bypass.
At the acquire phase of the lock hand-off, Request Bypass allows the request of
the winning processor (that which is going to acquire the lock) to bypass the
requests to the same line pending in the queue. A similar bypassing situation can
arise when accessing shared variables inside critical sections and when releasing
a critical section. The implementation we propose of Request Bypass does not
require compiler or programmer support nor ISA or coherence protocol changes.

In Section 2 we use an example to describe a lock hand-off for a highly
contended critical section in a baseline system, and in Section 3 we analyze the
same example under Request Bypass. In Section 4 we present simulation results
using Splash-2 benchmarks for 32 processors. We include a comparison of our
proposal with Read Combining [17]. In Section 5 we discuss related work and
we conclude in Section 6.



2 Lock-transfer contention

We first describe the baseline coherence controller. Next, we elaborate on an
example case of a lock transfer among several processors. This example allows
us to identify inefficiency sources and motivates the main idea of the paper

2.1 Coherence controller model

The baseline model is based on a CC-NUMA multiprocessor with a MESI cache
coherence protocol similar to the SGI Origin 2000 system [13]. Every memory
line is allocated to one directory entry within a coherence controller which stores
the line state and processes its requests.

Figure 1.a shows a logical view of part of the coherence controller structure.
The coherence controller receives cache requests from the nodes. Requests can
be of three different types: read sh, read own and upgrade. read sh and
read own are used to request a line in Shared or Exclusive state, respectively,
and upgrade is used to change the line state from Shared to Exclusive. Once
the coherence requests are processed, the controller sends three types of replies:
reply sh and reply excl supply a line in Shared or Exclusive state, respec-
tively, and reply upgrade acknowledges the change from Shared to Exclusive.
When needed, the coherence controller sends line invalidation (inv) or cache-
cache transfer (copyback) requests.

Request processing is based on two structures handled by the coherence con-
troller: a Busy State Queue (BSQ) and a Pending Request Queue (PRQ); each
PRQ entry is in turn another queue. The incoming coherence requests are taken
from the input port and processed. If a request requires some third-node reply,
the involved line is flagged as busy and stored in BSQ. Any request targeted to
such a busy line appearing in the meantime is serialized by enqueuing its identity
(originating processor, request type, etc.) into the PRQ entry associated to the
corresponding BSQ entry. Otherwise, a request targeted to a non-busy lines is
processed.

After receiving the last reply a busy line is waiting for, the busy state in
BSQ is cleared and the coherence controller begins processing the list of pending
requests to such a line in PRQ. As before, if during such processing a request
requires a third-node reply, the line is tagged as busy and the coherence controller
stops processing the list. When there are no pending requests in PRQ that can
be processed the controller listens to the input port. Whenever the protocol runs
out of BSQ or PRQ entries the coherence controller resorts to sending NACKs.

2.2 Lock hand-off example

Figure 1.b shows a typical critical section and the code used to acquire and
release a lock variable. If the lock variable is already closed the code spins on a
regular load instruction. Once the lock variable is released, the atomic test&set
instruction tries to acquire it. Releasing is done by a regular store instruction.



Directory

controller
Coherence

PR Queue
BS Queue

Insert

Select

Output portRequest Input port

(a)

Release (lock_var)

write

Acquire (lock_var)

readCritical
Section

store B
RelTTS:AcqTTS:

be End
Spin:

load B
test

ba AcqTTS
End:

bne Spin

test&set B

Acquire (B) Release (B)

(b)

Fig. 1. (a) Logical view of part of the Coherence Controller. (b) Lock-based critical
section skeleton (up), and code to acquire and release a lock variable (down).

Next we make a detailed study of the lock hand-off in a highly contended (n
competing processors) critical section controlled by the lock variable B. Assume
the lock is initially owned by a processor we call Owner, while the other n − 1
processors are spinning on a local copy of B in Shared state. Consider that Owner
is going to execute Release(B) and leave the critical section. After the lock hand-
off is accomplished, one among the n− 1 contending processors, we call Winner,
will enter the critical section. The example in Figure 2.a shows such a scenario
of contention, where the Owner, the Winner, the Home node and the remaining
n− 2 contending processors are plotted from left to right, respectively.

When Owner executes Release(B) it sends out an upgrade request to the
Home node, which in turn sends invalidation requests to the n− 1 processors
having the line in Shared state. The n−1 processors invalidate the line and send
invalidation replies to Home, which collects all replies and sends the upgrade
reply to Owner. This upgrade reply is the first activity ploted in Figure 2.a.
The example continues as follows:

– The n− 1 processors miss loading variable B and send read sh to Home.
– When Home receives the first read sh request, it sends a cache-cache trans-

fer request to Owner (see (1) in Figure 2.a), puts the line in busy state, and
buffers the remaining n− 2 read sh into PRQ.

– The Owner replies (ack) to Home and (reply sh) to Winner.
– The Winner executes test&set instruction and sends an upgrade request

to Home (see (2) in Figure 2.a). The upgrade request of the Winner may
be delayed in the input port while PRQ is emptied of read sh requests.

– The Home process the n − 2 read sh sending reply sh (now the lock is
open) to every processor.

– The n − 2 contenders receive the lock open and execute test&set. All they
send upgrade requests to Home (not shown in figure).
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Fig. 2. Example of how a processor (Owner) frees a critical section and n−1 processors
are contending for it. (a) Without bypassing. (b) With bypassing.

– The Home process the upgrade request of Winner and sends invalidation
requests to the Owner and the n− 2 contenders (see (3) in Figure 2.a).

– The Home waits for all invalidation ACKs and then sends an upgrade
reply to Winner.

– The lock hand-off has been accomplished and the Winner can execute the
critical section.

When processing the upgrade request of the remaining processors, the Home
invalidates the previous copies of the line and sends it to the requesting processor,
which sees the lock closed and resumes spinning. This line will be invalidated
when processing the next upgrade request, so the processor will generate a
new read sh that will be kept in PRQ to be serialized. While the contenders
are generating the described traffic, the Winner processor is inside the critical
section accessing the shared variables. Therefore, if the shared data and the lock
variable are allocated to the same coherence controller, the accesses to shared
variables may be delayed. This happens as long as the coherence controller is
processing PRQ requests to the lock variable that do not put the lock line in
Busy state.

This is because the coherence controller can be processing PRQ requests to
the lock variable that does not put the lock line in Busy state. Later on, the
winner releases the lock (store B) and generates a read own request. Again, it
is delayed by all requests in PRQ that still contend for the line holding B.



Putting it all together, it can be expected that all of this message overhead
will significantly increase the execution time of small, highly-contended, critical
sections.

3 Bypassing PRQ requests

From the above example we can stablish the following: whenever several pro-
cessors compete to enter into a critical section, the request traffic originated by
the loosing contenders can delay all the Winner execution phases (lock acquir-
ing, shared data accesses and lock release). In this situation, processing PRQ
requests before listen to the input port does not contribute to the progress of
the Winner, the only one that will advance the work. In order to favor the Win-
ner progress, we propose that the coherence controller listens to the input port
before attending the pending requests of PRQ directed to non-busy lines. So, a
request in the input port to a non-busy line is going to bypass PRQ requests
directed to non-busy lines.

Notice that by issuing replies in a different order as requests arrive, correct-
ness is not affected because the serialization order among requests to the same
line is only determined when the coherence controller updates the directory and
sends the reply.

3.1 Request Bypass implementation in the coherence controller

As usual, an input port request targeted to a busy line is stored in PRQ, other-
wise it is processed immediately. However, under a Request Bypass policy after
receiving the last reply a busy line is waiting for, instead of processing PRQ
requests associated to that line, the input port will be attended. Moreover, if a
request appears in the input port while processing a PRQ entry, such a request
will bypass all the outstanding work in PRQ. The Request Bypass policy can be
easily implemented by adding a new state to each BSQ entry: the Ready state,
which indicates the existence of outstanding work in PRQ.

Anyway, a Ready BSQ entry can become Busy if a request (coming either
from the input port or from PRQ) require a third-node communication.

3.2 Lock hand-off example with Request Bypass

Figure 2.b shows the previous example under PRQ bypassing. We suppose that,
at the time the Winner’s upgrade reaches Home, the coherence controller is
processing the first read sh request of the remaining contenders (the losers).
When such a request is completed, the coherence controller visits the input port
and processes the upgrade request, bypassing the n-3 read sh requests kept
in PRQ. In our example, processing the upgrade request requires only two
invalidations to be sent out (see (1) in Figure 2.b), one to the owner processor
and another one to the single contending processor having a copy of the lock line
(n− 1 invalidations required without bypassing).



Once the Winner’s upgrade completes (see (2) in Figure 2.b), all the n− 3
remaining read sh requests that were bypassed will be processed. However, in
contrast with the previous situation, the losers receive the read sh reply with
the lock closed and therefore remain spinning locally, not executing the test&set
instruction nor generating any request (upgrade or read own).

While the coherence controller is servicing read sh requests from PRQ, the
Winner is inside the critical section, sending requests (may be some of them to
the same controller) to access the shared variables, and sending a final request
to release the lock. However, such requests are not delayed because they bypass
PRQ.

3.3 Forward progress warranty

Bypassing PRQ requests can delay execution endlessly. As an example let us
suppose that the code to acquire a critical section spins on a test&set instruc-
tion. In a highly contended critical section the coherence controller is receiving
read own requests continuously. If the owner of the critical section is trying to
release it by sending a read own request, and this request is queued in PRQ,
then the owner stays indefinitely in the critical section. Bypassing read sh has
a similar problem.

In order to warrant forward progress, we suggest limiting the maximum
number of consecutive bypasses. We can implement this idea by incrementing
a counter each time an input port request bypasses PRQ and decreasing the
counter each time a request is processed in PRQ. If the counter has a value
between 0 and Max − 1 then the controller works in Request Bypass mode.
Otherwise, when the counter gets its maximum value the controller switches to
default mode and remains in it until the counter decreases. Our experiments
show good results with a 5-bit counter.

4 Experimental results

Our simulations have been conducted with RSIM [18,19]. It is an execution-
driven simulator performing a detailed cycle-by-cycle simulation of an out-of-
order processor, a memory hierarchy, and an interconnection network. The pro-
cessor implements a sequential consistency model using speculative load execu-
tion [20]. Coherence is based on a MESI protocol similar to the SGI Origin 2000
system [13]. The network is a wormhole-routed two-dimensional mesh network.
Port contention, switches and links are accurately modeled. Table 1.a lists the
processor, cache and memory system parameters.

As a workload we have chosen a SPLASH-II subset [21] having a significant
amount of synchronization, see Table 1.b. In Ocean we use the optimization
suggested in [22]. The applications have been compiled with a test and test&set-
based synchronization library (Figure 1.b) implemented with the RMW instruc-
tion. Barriers are implemented with a simple binary tree.



Network
Network width
Switch buffer size
Switch latency

Pipelined point−to−point
8−bytes/flit
64 flits
4−cycles/flit + 4 arbit.

Directory
Cycle
Interleaving
BSQ/PRQ size

SGI Origin−2000 based MESI

64/16−entries
4 controllers per node
16−cycle (without memory)

Processor
ROB
Issue
Branch

Cache

L1 data

L2

L1/L2 bus
Line size

out−of−order issue/commit 4−ops/cyc.
512−entry branch predictor buffer

64−entry, 32−entry LS queue
1 Ghz

L1 inst.
128−Kbyte, direct mapped, write−back
Perfect

1−Mbyte, 4−way associative, write−back
10−cycle access, 16 outstanding misses

64 bytes
Runs at processor clock

2 ports, 1−cycle, 16 outstanding misses

Memory 4−way interleaved, 50−cycle DRAM

L2/Memory Bus Split. 32−bits 3−cycle+1 arbit.

Code 
Input

Ocean
130x130

(b) Applications

2K partic.
FMMWater−Spt

512 molec.
Water−Nsq
512 moleculeshead−scaleddown2

Volrend
4K particles
Barnes

(a) Simulated system parameters

Table 1. Simulated system parameters and applications.

Our results show execution time broken down into four categories: lock,
barrier, memory and compute. The algorithm used to add a cycle into a given
category works as follows: if the maximum allowed number of instructions can be
committed from the ROB, the cycle is added to compute. Otherwise, the cycle
is added to the stall category to which belongs the oldest instruction that can
not be committed, as suggested in [19].

4.1 Results

In this section we present results for a baseline system without bypassing, and
for a system enhanced with Request Bypass. We also consider a third system,
by enhancing the baseline with Read Combining [17]. Chaudhuri and Heinrich
propose Read Combining in the context of queuing coherence controllers, in
order to speed up multiple read requests to the same line. In order to achieve
this, Read Combining dictates that once the controller gets the line, it is stored
in a fast data buffer which is repeatedly used to send out all the read requests
replies. They show that Read Combining also benefits lock transfer by enabling a
faster distribution of the cache line storing the lock variable. Finally, we evaluate
the performance of merging Request Bypass with Read Combining.

Figure 3 shows the parallel execution time break into the former categories
and normalized to the baseline system. From left to right we show, for each ap-
plication, the baseline system (Baseline), the baseline system enhanced with the
Read Combining (RC) [17], the baseline system enhanced with Request Bypass
(Byp) and two ways of merging Request Bypass with Read Combining (RC+Byp
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Fig. 3. Normalized execution time with 32 processors for the Baseline, Read Combining
(RC), and Request Bypass (Byp) systems. RC+Byp (Blind merging) and RC+BypS
(Selective merging) are the merged systems.

and RC+BypS, see details below). We only show data for 32 processors because
Splash-2 applications have small Acquire-related times with 16 processors [23].

By applying Request Bypass to the Baseline system, the Lock time becomes
greatly reduced, from 12% to 75%. Reductions in the Barrier time can also be
observed, to a greater or lesser extent, for all applications, from 1% to 48%. This
reduction in the Barrier stall time can be explained as follows: when a critical
section executes before a nearby barrier, reducing Lock-related stalls also reduces
Barrier-related stalls, because the Barrier stall time of a given processor starts
from when it reaches the barrier until the slowest processor exits the critical
section and crosses the barrier the last. Summarizing, the overall time reduction
obtained with Request Bypass varies from 1% to 35%.

The Lock time reduction achieved by Request Bypass is greater than Read
Combining for most applications. Read Combining itself does not alleviate the
delay experienced by the Winner processor because it does not acquire the critical
section until the contending processor requests kept in the buffer have been
replied. Moreover, Read Combining exposes subsequent delays when accessing
protected data and releasing the lock. Until the contending processors start busy-
waiting on a local copy of the line, their requests will delay the progress of the
Winner processor, firstly by delaying the requests made to the same coherence
controller within the critical section, and secondly by delaying the request to
release the lock.

Next we analyze the interaction between Request Bypass and Read Com-
bining when applied simultaneously. Figure 3 presents data for two experiments



merging Request Bypass and Read Combining namely Blind (RC+Byp) and Se-
lective (RC+BypS). Blind merging implements both techniques simultaneously
as they have been defined, resulting in a Lock time increase for all applica-
tions. This is because Read Combining speeds-up the read sh replies to con-
tenders when a lock is released, and as a consequence, the update request in a
Blind merging system bypasses less read sh requests than with Request Bypass
working alone. So, more processors receive the lock variable opened, execute the
test&set instruction, and have to be invalidated. Moreover, when the Winner
wants to release the lock, its upgrade (or read own) request cannot bypass
PRQ because the lock line is busy most of the time (the coherence controller is
servicing the read own requests of the test&set instructions).

A Selective merging of Request Bypass and Read Combining tries to over-
come the above problem by applying Read Combining only to lines which do
not contain a lock variable. The execution time of Selective merging is similar
to that of Request Bypass alone in our benchmarks. However, we can expect a
better behavior in programs with a communication pattern where one processor
produces for many consumers.

Finally, we have analyzed the sensitivity of results to the latency of some
key components such as the router, the coherence controller and the memory,
verifying that conclusions hold across the considered design space [23].

5 Related work

Goodman et al. propose a very aggressive hardware support for locks (QLB -
originally called QOSB) [5]. In their proposal a distributed linked list of pro-
cessors waiting on a lock is maintained entirely in hardware, and the release
transfers the lock to the first waiting processor without affecting the other con-
tending processors. QOLB has proven to offer substantial speed up, but at the
cost of software support, ISA changes and protocol complexity [7].

The DASH project provided a concept of queue locks in hardware for directory-
based multiprocessors [24]. On a release, the lock is sent to the directory which
randomly selects a waiting processor to acquire the lock.

Rajwar et al. propose to predict synchronization operations in each proces-
sor by building a speculative hardware-based queuing mechanism (IQOLB) for
snoop-based and directory systems [10,11]. They use the notion of buffering ex-
ternal requests, applying it to cache lines supposed to contain a synchronization
variable. The mechanism does not require any change to existing software or ISA,
but requires changes in the cache or in the directory protocol in order to make
the intelligent choices needed to implement the mechanism and some additional
bits in directory entries.

The above described hardware queue-based mechanisms need to handle queue
breakdowns (due to line eviction or multiprogramming). The mechanism pro-
posed in our work does not use a predictor and does not require changes to
cache or directory protocol.



The combining pending read request technique as proposed by Chaudhuri et
al. [17], was initially intended to eliminate NACKs, but significantly accelerates
lock acquiring in lock-intensive applications. It is based on buffering pending
requests, so our work requires the same hardware support but uses a different
selection heuristic.

6 Concluding remarks

In this paper we introduce Request Bypass, a technique to speed-up the lock
hand-off in DSM multiprocessors which use queuing at the coherence controller
in order to serialize requests to busy lines. Under Request Bypass, the requests in
the input port of the coherence controller are attended before the requests queued
in the coherence controller which are directed to non-busy lines. The mechanism
does not require compiler or programmer support nor ISA or coherence protocol
changes.

When accessing a highly contended critical section, Request Bypass allows
the Winner processor requests to bypass the queued requests of the contend-
ing processors, speeding-up the Winner execution of all critical section phases,
namely lock acquiring, shared data accessing, and lock releasing.

Simulations performed in 32-processor systems show that Request Bypass
reduces the overall execution time to some extent in all our tested benchmarks.
The reduction is noticeable in programs with a large synchronization overhead,
reaching 35% of execution time reduction and 75% of Lock time reduction. Read
Combining also reduces both execution time and synchronization overhead, but
to a lesser extent.

We have also merged naively Request Bypass and Read Combining. In this
merged mode, when Read Combining operates on lock lines, it eliminates some
of the benefits obtained with Request Bypass. This negative effect disappears
when both techniques are applied selectively.
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