Warm Time-Sampling: Fast and Accurate Cycle-Level
Simulation of Cache Memory

Luis M. Jimeno Ochoa, Pablo E. Ibanez, Victor Vinals
Dpto. de Informética e Ingenieria de Sistemas. University of Zaragoza
email: ljimeno@mcps.unizar.es {imarin, victor }@posta.unizar.es

Abstract

This paper proposes a new technique for reducing cache memory simulation time when
measuring CPI. We perform time-sampling simulation, but still use the parts of the trace
that do not belong to the sample to update the state of the memory system in order to
avoid cold-start problems at the beginning of the next simulated interval. In our simulation
environment and using this "warm-up” technique we achieve a reduction by a factor of 3
in the elapsed simulation time with an error less than 0.256% in the CPI estimation.

1: Introduction

As parallel activity into both the processor and the memory system increases, any formula
based on stack algorithms gives progressive inaccuracy in the CPI computation. Finer
statistics can then be gathered to partially correct the results but finally, if a realistic CPI
should be computed, it is necessary to perform a detailed cycle-by-cycle simulation. Its
drawbacks are the (very) high computer time required for each experiment and the need
to repeat it for each variant or sizing to test. It is mostly due to the need to test a realistic
(high) number of references from a representative benchmark set [9, 1].

Two trace-sampling techniques have been proposed to reduce simulation time: time
sampling [7], and set sampling [8]. They succeed in obtaining miss ratios with errors
typically less than 10% at a simulation time cost less than 10% of that of a complete
simulation [5]. In our knowledge, no method described so far addresses the specific target
of reducing simulation time to compute CPI in processors with significant ILP coupled to
arbitrarily complex cache systems.

Our technique to reduce the CPI simulation cost is an extension of the miss-ratio time-
sampling simulation technique. We obtain several measurements of the CPI on some in-
tervals of consecutive instructions. These observations constitute our sample. With it we
estimate the true CPI of the whole trace. Our main contribution is to maintain all caches
updated between intervals in order to minimize the cold-start problems. Thus, we will term
this technique warm time-sampling (WTS). It considerably reduces the time required for
a detailed CPI simulation (typically, by a factor 3 for the simple processor/memory model
used in this work), yet offering great accuracy (errors are typically less than 0.25%).

Next section presents our simulation environment. Section 3 describes the steps to imple-
ment WTS. In section 4 we present the factors which introduce errors in our CPI estimation
and how to detect and reduce them. Section 5 shows some quantitative results, and finally
we give some concluding remarks in section 6.

2: Simulation Environment

Our trace-driven memory system simulator is designed to measure the CPI of a program
executing in a pipelined processor. Its main characteristics are:

i) It can be used as a reference simulator. It simulates in detail the actions that would
take place in the real system, including the pipeline of the processor.

ii) It has been programmed using object-oriented techniques. These are particularly
suitable for hardware simulation [6].

iii) It performs an event-driven simulation. Events are handled by an event manager
which drives the simulation.

We use a program trace generated on the fly (Shadow, [2]). Our simulator allows
reconfiguration to model different processors and memory hierarchies. At present we con-
sider a SPARC first generation 5-stage pipelined processor, a first-level on-chip split cache
(2KB+2KB, direct mapping), a second-level on-chip unified cache (8KB, 4-way) and a
third level off-chip unified cache (128KB, 16-way). We assume: fetch-on-write, copy-back,
exclusion contents management between the first two levels [4, 3], inclusion with the third
one, write buffers and LRU replacement policy.

3: Implementing Warm Time-Sampling

The simulator we have just described performs a complete cycle-level simulation. We
call this operation mode time mode, since it is the one which measures CPI. To achieve a
good CPI estimate while keeping down the simulation time, a fast simulation mode which
only updates cache directories is needed; it is also required to combine this mode with the
time mode to estimate CPI from the resultant hybrid simulation scheme.

3.1: Update-only simulation mode

Our first task is to provide a simplified simulation mode to maintain the state of the
caches updated by the reference stream. In this update-only mode no time measurement
is required. We only need to pass the same reference stream produced by the cycle-level
simulator to the objects which represent the caches. Each one will use its input sequence
to update its contents and generate the corresponding sequence for the next level.

The order in which the references are received must be very close to that of the cycle-level
simulation. However, since our main goal is to reduce the simulation time, two simplifica-
tions -which can slightly alter this referencing order- have been performed:

i) Suppression of the event mechanism
The events are used to measure the number of cycles spent by the simulated system
to execute a program. As we do not need to count cycles there is no point in keeping
the event mechanism with all its overhead. Instead, we use a command mechanism
implemented by a function call from component which originates the command. Thus,
all system activity is serialized.

ii) Simplification of the CPU activity
The model of the pipelined processor is replaced by a trivial pipeline in which no
hazards are detected. No time is spent in simulating stalls.

3.2: Warming gaps

How can we estimate the CPI with a simulation time close to that of the update-only
mode? Our proposal is to implement WTS by switching between time and update-only
modes. In WTS each set of simulated (consecutive) instructions in time mode is termed
interval. Each set of (consecutive) instructions between intervals is a warming gap (Fig.
1). A sample of the trace is formed by collecting the CPI of each interval, and computing
with them an estimation of the true CPI of the whole trace.

In a conventional time-sampling approach, the gaps are simply ignored. As a result,
important cold-start problems appear as each interval begins, since the contents of the
caches are out of date. Although several strategies have been proposed to reduce errors,
none of them achieves good accuracy [5]. In contrast, we suggest to carry out an update-only
simulation during the gap, making it an interval warming gap.

Program Trace

[-
-t -

|
Sample: set of intervals - . e . .
/N_ intervals: "time" mode simulation
D gaps: "update-only" mode simulation
| || || Woce WM |

Figure 1. Warm Time-Sampling simulation of the program trace

Clearly, simulation time raises with respect to a conventional time-sampling simulation,
since gaps must be still processed. But the accuracy is much better, and the simulation
time is significantly reduced compared to a full CPI simulation.

3.3: Mode switching

When a warming gap is over and an interval must begin, the simulator enters a transient
simulation mode called start mode. First, the CPU pipeline, which contains instructions to
be processed using commands, is emptied by giving up inserting new instructions. Then,
the following instructions will be inserted and they will be allowed to generate events.
However, neither these instructions nor the cycles they consume will be counted. Only
when the amount of work that has been placed into the system could be typical of the
steady state, the count of instructions and cycles is initiated for the new interval. At that
moment, the start mode is over and the simulation continues in fime mode.

start time stop update-only
mode mode mode mode

Y

Y

Figure 2. Mode switching in WTS simulation. CPI is measured only in time-mode.

When all the instructions of the interval have been entered, its CPI is computed. Due
to the events in the event manager waiting to be issued, the switching to update-only mode
cannot be done immediately. Instead, another transient simulation mode named stop mode
is initiated. In it, no instructions are placed into the pipeline, and the simulation will
process the pending events until the activity of the system eventually concludes. Finally,
the update-only mode process the warming gap until the start mode begins again.

4: Possible error sources

Our CPI estimation for the whole trace is not exactly the true CPI (full time-mode
simulation). These three sources of deviation can be considered:

Statistical errors To estimate the CPI of the trace we have collected the CPIs measured
in each interval. We can use the sample mean as an unbiased estimate of the popula-
tion mean, that is, the true CPI of the sample. However, if the number of observations
is too small the sample mean can be quite far from the population mean. For this
reason we take into account the confidence intervals for the population mean using
the sample mean and variance. These intervals have been calculated under two as-
sumptions: gaussian distribution and random sampling. Though our sampling is not
random but systematic, this assumption results in a conservative estimate and allows
much easier calculations [5].

Address-ordering errors In theory, WTS simulation avoids cold-start errors by keeping
up to date cache directories at any time. In practice, we have introduced the two sim-
plifications mentioned in subsection 3.1. Therefore, at the beginning of each interval
the contents of the caches are not exactly the same as if the complete simulation
would have never stopped.

Inaccuracies when measuring the CPI of each interval Prior to begin to count an
interval after switching it is necessary to wait until the system has received enough
work to do from the instructions inserted during the start mode. If the preloaded
amount of work is less than that discarded at the end of the interval, an underesti-
mating error will occur each time we compute the CPI of an interval. The minimum
number of instructions of the start mode depends on the complexity of the memory
hierarchy, the complexity of the processor and the program being traced.

5: Results

In this section we present the results obtained using the techniques described in this
paper. We show the simulation time saved using WTS and the errors caused when mea-
suring CPI. A typical symbolic-code benchmark (Gcc) and a floating-point intensive one
(Spice) are used. Similar experiments have been carried out using other SPEC92 bench-
marks leading to similar results. In all cases at least 200 million instructions have been
simulated.

100%

80% T "]

Simulation Time 60%
40%

20%

0%

[ecc
- | [spice

trace only ideal memory update only time

Figure 3. Comparison of the simulation time for the basic simulation modes.

Figure 3 shows the simulation time of the basic simulation modes. The important piece
of data is the time spent in an update-only simulation. The value obtained for both used

benchmarks (close to 30%) can be considered as the lower limit of WTS simulation time.
Further speedups would require to accelerate the update-only mode.

Figure 4 shows for each benchmark four series: they correspond to fixed interval lengths
(il) of 100, 1000, 10000 and 100000 instructions respectively. The graphics have been
completed with the simulation time of the update-only mode (0% in time mode) and the
CPI and simulation time of the time-mode (100%). First we see that the simulation time
varies linearly with the fraction of the trace simulated in time mode (tm). The difference
between il series is quite small.

100%

100%

/{"’:”

80% 2 80% =T
o — = . -
£ e Gece / Spice — il=100
= 60% —— 60% - — —— il=1000
c / < =
2 0% = 40% A s il=10000
(3] 0 -~
E / P — - —~- il=100000
& 20% 20%

0% : : 1 : 0% 1 1 1

0 20 40 60 80 100 0 20 40 60 80 100

Percentage of the trace in time mode Percentage of the trace in time mode

Figure 4. WTS simulation time

Figure 5 shows the relative CPI error. It can be seen that the shorter intervals series
(i1=100, 1000 instructions) present much smaller errors, since for a given ¢m the shorter the
intervals the more observations we get. Thus, the sample can capture more CPI variation
throughout the whole trace and is more representative of it. If we choose short enough
intervals (less than 1000 instructions) we get the CPI of Gee and Spice with an error which
is about 0.21% and 0.05% respectively if we simulate at least 5% of the trace in time mode.

3%

8%

! Gee \ Spice
)
Ve 6% A
2% ‘Y >, AN \\ il=100
S / N ——
£ % N, PPt i1=1000
- % N SN 1=10000
1% v > LSRN .
TN S~ 20N, === it=100000
\ el TT— RN
A o NP
0% f - f i 0% - —maEm s — o
0 20 40 60 80 100 0 20 40 60 80 100

Percentage of the trace in time mode Percentage of the trace in time mode

Figure 5. CPI error in WTS simulation

Finally figure 6 shows the upper and lower limits of the 90% and 99% confidence intervals
for the estimated CPIL. Inside the intervals the CPI actually measured is plotted. It can
be seen that the confidence intervals offer a conservative estimate of the error. It might be
due to our assumptions of systematic sampling and gaussian distribution.

6: Conclusions

In this paper we have described a new sampling technique, Warm Time-Sampling, to im-
prove the results of other ways of sampling for detailed cycle-level cache memory simulation.
It consists of keeping updated cache contents between intervals whose CPI is measured to

201 1,79 1

) * Gee v Spice
N BN e 57
I N Nts oo L o
= o TS iosrsrencesesaco-o-, 1,77 T e e e e e e e e e | — — 0%
85198 BN ’ LT T T e T
o O S L e =" measured
197 1f=== 176 +-4- ———50%
/ %
%6t e 99%
1,96 N 175 i o
'
1,95 t t t t { T t t t t |
0 20 40 60 80 100 0 20 40 60 80 100
Percentage of the trace in time mode Percentage of the trace in time mode

Figure 6. Confidence intervals (i1=100)

estimate the true CPI of the whole sample. In order to update caches between intervals,
an update-only mode has been implemented by removing all simulation overhead caused
by event handling and time measurement. We think that other discrete-event simulation
schemes, such as time-driven techniques, will also benefit from our approach.

When implementing a WTS based simulator, some precautions must be taken. First,
the update-only mode to be used must drive the system to a final state quite close to
that resulting from the detailed simulation. Special attention must be given to parallel
activities which must be serialized, such as the behaviour of the write buffers. Second,
switching between simulation modes must be carefully programmed to ensure that each
interval CPI measured actually corresponds to an observation of the true CPI. Third, an
adequate number of well-distributed over the trace intervals must be taken. And finally,
statistical techniques shown in this paper can be used in the final stage of development of
WTS to verify the absence of systematic or statistical (sampling) errors just by comparing
a complete simulation with a few W'TS results.

If we take about 5% of the whole program trace to form our sample we achieve a reduction
by a factor 3 in the elapsed simulation time with an error which is typically less than 0.25%
in the CPI estimation. As a final remark, we think that the gain can be even greater if
processor/memory configurations with aggressive techniques to increase ILP are considered,
due to the saved simulation overhead of a lot of parallel activities.

References

[1] A. Borg, R.E. Kessler, and D.W. Wall. Generation and analysis of very long address traces. In Proc.
17th Ann. Int. Symp. on Computer Architecture, pages 270-279, Jun 1990.

[2] P.Yan-Tek Hsu. Introduction to SHADOW. Technical report, Sun Microsystems Inc, July 1989. Revision
A.

[3] P.E.Ibafiez and V. Viials. Performance assessment of contents management in multilevel on-chip caches.
In Proc. 22nd. Euromicro Conference, Sept. 1996.

[4] Norman P. Jouppi and Steven J. E. Wilton. Tradeoffs in two-level on-chip caching. In Proc. 21st Ann.
Int. Symp. on Computer Architecture, pages 34—45, April 18-21, 1994.

[5] R.E. Kessler, M.D. Hill, and D.A. Wood. A comparison of trace-sampling techniques for multi-megabyte
caches. IEEE Tansactions on Computers, 43(6):664-675, Jun. 1994.

[6] S. Kumar, J.H. Aylor, B.W. Johnson, and Wm.A. Wulf. Object-oriented techniques in hardware design.
Computer, 27(6):64-73, Jun. 1994.

[7] S. Laha, J.H. Patel, and R.K. Iyer. Accurate low-cost methods for performance evaluation of cache
memory systems. IEEE Transactions on Computers, 37(11):1325-1336, Nov. 1988.

[8] T.R. Puzak. Analysis of Cache Replacement Algorithms. PhD thesis, Univ. Massachusetts, Amherst,
Feb. 1985.

[9] A.J. Smith. Cache evaluation and the impact of workload choice. In Proc. 12th Ann. Int. Symp. on
Computer Architecture, pages 64-75, Jun 1985.

