
Performance Assessment of Contents Management in Multilevel
On-Chip Caches; *

Pablo Ibaiiez and Victor Vinals
Univ. of Zaragoza

Dpto. de Informatica e Ingenieria de Sistemas
C/ Maria de Luna 3, Zaragoza 50015. Spain

{imarin, victor}@posta:unizar.es

Abstract

This paper deals with two level on-chip cache m e m -
ories. W e show the impact of th,ree different relation-
ships between the contents of th,ese levels o n the sys-
t e m performance. In addition t o the classical Inclu-
s ion contents management, we propose two alterna-
tives, namely Exclusion and Demand, developing for
t h e m the necessary coherence support and quantifying
their relative per formmce in a design space (sizes, la-
tencies, . . .) in agreement with the constrain.ts imposed
by integration. T w o performance metrics are eonsid-
ered: the secondlevel cache mi s s ratio and the sy s t em
CPI. The experiments have been carried out running n
set of integer and floating p0in.t SPEC'92 benchmarks.
W e conclude showing the superiority of our improved
version of Exclusion throughout all the sizing and work-
load spectrum studied.

1. Introduction

Main memory and processor cycle times keep on di-
verging increasingly, mostly due to the growing integra-
tion scale and to the use of new organization techniques
such as superpipelining. Experts foresee a further in-
crease in this speed gap and the use of multiple levels
of on-chip cache [Si. Current integration technology
makes it possible to devote large chip areas to cache
memory, allowing then a two-level organization: the
first level is split into data and instructions and works
at processor rate; the second level is a slower unified
one. This organizat,ion has the following advantages
versus the classical single-level split cache:

"This work was supported by the CONAI (Diputacion Gen-
eral de Rragon) under grant PIT 09/93

1089-6503/96 $5.00 0 1996 IEEE
Proceedings of EUROMICRO-22

i) Given a fixed total size, it usually has a better
overall hit ratio, due to dynamic space realloca-
tion between data and instructions in the second
level [14].

ii) Each level can be devoted to different goals, and
be specifically designed to attain high performance
for each target goal. For instance, the size and
associativity of the first level can be limited, re-
sulting in shorter access times and allowing to ac-
cess it using virtual addresses. This contributes to
decrease CPU cycle time and/or memory access
instructions latency. On the other hand, in order
to reach high hit ratios, the second level may have
higher associativity, and even make use of prefetch
hardware.

iii) The second level can watch the system bus or reply
to the coherence commands sent from an external
level-three cache. This may allow a further reduc-
tion in the complexity and cycle time of the first
level. In addition, and depending on the imple-
mentation, a snooping level-one cache could have a
higher latency in responding coherence commands
due to its high utilization by the processor.

In this paper we shall assume that the integration
scale and/or the cycle time suggest the use of two lev-
els of on-chip cache [ll]. It will also be assumed a
RISC processor able to work stand-alone or in a shared
memory multiprocessor system. A recently marketed
DEC chip, the Alpha 21164, has these characteristics,
with a 96KB second-level and 8KB + 8KB first-level
caches [5]. Due to the area constraints imposed by the
joint integration of both levels, their contents relation
can lime a considerable influence on the system per-
formance. Our goal is to determine that influence in a
widc and representative enough design space.

43 I

So far, three relations between the contents of two
consecutive cache memory levels have been defined: 1)
Level i (L i) is a superset of level i-1 (Lipl). 2) The
contents of Li and Li_l are disjoint most of the times.
and 3) The only criterion that determines the contents
of Li is the sequence of the Li-l demands; therefore,
a block that is heavily reused by LiPl can be excluded
from Li.

The two former relations have been called Multi-
level Inclusion Property (MLI) and Two-Level Exclu-
sive Caching (TLEC), respectively. The later rela-
tion has no established name; we will call it Demand
hereafter. The MLI Property has been suggested by
Baer and Wang to ease the coherence maintenance
in uni and multiprocessors in an efficient way [a, 31.
Their performance evaluation was made using stochas-
tic or analytic models, assuming that Inclusion man-
agement introduces a penalty on the global miss ra-
tio. Two-level Exclusive caching has been suggested
by Jouppi and Wilton to achieve a better use of the
on-chip area [11]. This work makes a miss ratio based
comparison with Demand management, but does not
take into account different write costs between levels
or coherence support cost. A similar concept, Exclu-
s ion management, has been independently proposed
but not evaluated in [20]. Demand management has
been used in some quantitative studies with the goal of
optimizing the parameters of two-level cache memory
systems [15, 21, 13, 4, 6, 161. All of them consider an
external second level, therefore with temporal or sizing
parameters that are far from our scope. On the other
hand, coherence maintenance cost and support were no
studied.

The goal of this study is to compare Inclusion, De-
mand and Exclusion management in an general pur-
pose -symbolic and numerical processing- unipro-
cessor environment. System must maintain Foherence
with a third-level external cache in order to ensure
DMA correctness and to allow building a multiproces-
sor. For that purpose we will extend Demand and Ex-
clusion definition with the mechanisms needed to main-
tain coherence. We will define a design space (sizes,
latencies, . . .) in agreement with the constraints im-
posed by integration, simulating these three strategies

The following section introduces the Reference Mod-
ule selected for the simulation, recalling Inclusion man-
agement and giving special attention to our Demand
and Inclusion basic definitions. Section 3 presents the
coherence problem and the added support to Demand
and Exclusion for solving it as efficiently as in Inclu-
sion. The workload is presented and the results on miss
ratios are analysed in section 4. In section 5 we present

in it.

the detailed timing model for the cycle-by-cycle simu-
lator, analysing the CPI results and pointing out their
differences to those of the miss ratio analysis. Finally,
our conclusions are summarized in section 6.

2. On-chip Inclusion, Exclusion and De-
mand management basics

In this section we present the basic protocols for
managing the contents of on-chip caches by Inclusion,
Exclusion or Demand. To compare the different man-
agements we take a Reference Module into which the
three strategies can be embedded (Figure 1). Because
components and interconnects are essentially the same
for all strategies, the hardware costs and speeds remain
unchanged, thus allowing the isolation of the contents
management on performance. Throughout the work
we assume a copy-back policy and a single block size
inside the chip.

~~ N2, S2,B

W21= B Intemal Bus
xhlock xblock

L E1 El

CHIP
CPU ---- fetch.

Figure 1. Reference Module used for compar-
ing alternative Level-2 contents management.

The first level is made up of equally sized on-chip
instruction and data caches: LliC and LldC, of N1

sets, 5’1 blocks per set (associativity) and B bytes per
block. There is also an on-chip second level unified
cache: L2uC, with sizing parameters N2, S2 and B. A
third level unified cache, L3uC, includes all the blocks
present on chip.

Buffers are provided to speed-up interlevel transfers:
zbuf2 and xbuf3 assemble incoming words to levels 2
and 3. allowing t o write blocks at once; ubuf, tbuf and
sbuf entries hold what is needed to interact with the
upper level. The first letter of each buffer indicates
the type of block it contains: 2 blocks keep the word
that is accessed by the processor; U, t and s blocks are

432

the replaced from levels 1, 2 and 3 respectively. The
ubui tbuf and sbuf sizes are El , E2 and E3 entries
respectively.

Static priorities arbitrate simultaneous access to
shared buses. Note that the transfer width between
L2 and L1, W21, is always set up to the chip block size,
niaking use of having both caches always on-chip (as
an example of a large internal bus consider the Power
P C 604, which has a bus size equal to 128 bits [17]).

L1 caches are virtually addressed but they keep
physical tags. This offers all the advantages of a phys-
ical addressing without the cost of translation in the
path between L l and the processor, but puts a n upper
l imit to L 1 cache sizes equal to page-size times asso-
ciativity [21]. L2 and L3 are physically addressed and
keep physical tags. On the other hand, we will assunie
a one-to-one mapping between virtual and physical ad-
dresses because our trace system provides just the vir-
tual ones.

2.1. Inclusion management

As mentioned in section 1, tjhe Inclusion manage-
ment of L2 is the space inclusion suggested by Baer
and Wang for copy-back caches [a]. L2 must always
hold a --not necessarily updated- superset of L1. The
protocol to achieve it is as follows: 1) If a rniss occurs
both in L1 and L2, the missed block x is copied into
both cache levels. 2) If L1 misses but L2 hits, the
block is copied from L2 to L1. 3) The replacement of
an LldC dirty block requires a copy-back operation on
L2 that always hits. And 4) Any replacement policy
can be used for L1, but only the blocks not present in
L1 can be replaced from L2. This last rule requires a
present-in-Ll bit to be added to every L2 block; this
bit is set when delivering the block to the lower level,
and reset when replaced by that level. Therefore, L1
has to report on dirty and clean block replacements to
L2.

To fulfill space inclusion L l and L2 must observe the
following sizing constraint:

S2 2 2 * SI * maz(l,Nl/N2). If there are write
buffers between L1 and L2, Inclusion must be also ob-
served on the blocks they keep, what forces to add their
sizes to 5’2. Under these circunstances minimum L2
associativity must be 4, (e.g. El = 1, SI = 1 and
NI = N2).

2.2. Exclusion management

Exclusion keeps L1 and L2 contents always disjoint,
so that the useful information equals the sum of their
sizes. To achieve this, a miss in L1 that hits in L2 is

solved by swapping blocks between these two levels: the
missed block z is moved from L2 into L1, while the re-
placed block U is rnoved (being it either clean or dirty)
to the position where x was in L2. Its dirty bit must
be sent with block U, so that dirty blocks can be copied
back to L3 when replaced from L2. A miss in both lev-
els loads the missed block z directly into L l , displacing
the block 11 from L1 to L2 (instruction or data, dirty or
not). Therefore, the L2 contents are made up from L1
u-victim blocks. The L2 incoming block can cause a
second replacement from L2. R,eplacement algorithms
for L l and L2 have no constraints.

Acclording to Jouppi and Wilton (TLEC), strict ex-
clusion is only achieved if N I > N2, otherwise the sets
where x and U are mapped onto L2 may be different,
thus disabling swapping. In tha,t case they explicitly
assume that a block can be present in both levels at
the same time. In our Exclusion protocol, an L1 miss
followed by an L2 hit always forces the invalidation of
the block in L2 thus keeping strict exclusion under any
configuration. As we will see later on, the invalidation
of the read block allows simpler coherence support and
a reduction of the time to receive the u-block.

Moreover, a better hit ratio can be achieved since
the hole created when invalidating can prevent another
useful block from being replaced. As an example let us
assume NI = N2, S1 = 1 and Sn = 2. Figure 2 shows
the blocks present in a given set for all caches. If no
invalidation is used, a miss for block x in LliC that
hits in L2uC can leave the cache contents as shown in
fig. 2a. A later access to data block c causes block
a to be replaced from LldC, which in turn can cause
the replacement of block b, as shown in fig. 2b. Thus,
the effective capacity of the set for the two levels is
reduced to 3 blocks: x, a and e. However, with strict
Exclusion, block a is placed into the hole left by x in
L211C, resulting in an effective capacity of 4 blocks.

L Z u C l q (Za) (2b) L2uc

L l i C r.1 L l d C T I L l i C F] L l d C

Figure 2. Non-strict exclusion. Blocks x, a, b
and c are mapped onto the same L2 set.

2.3. Demand management

Our Demand contents management is based upon
one of the organizations proposed by Baer and Wang
for uniprocessors: Write-back and no MLI [2] . The
protocol suggested is identical to the Inclusion one (sec-
tion 2.1) except for the last point: 4) Upon Demand,

43 3

every L2 block, either belonging to L1 or not, is subject
to be replaced. Therefore neither warning from L l to
L2 is needed if a clean block is replaced from L1, nor
presence bits are required in L2.

This causes another change in point 3; when a dirty
block is replaced from L1, a copy-back is made into
the upper level, the same as in Inclusion. However,
the write can now miss in L2, requiring an additional
replacement in L2. In this case we propose to send
the block directly to L3 instead of writing it in L2;
we call this L2 write policy block write-around (such
expanding to block level the word write-around with
copy-back policy described in [lo] and previously used
in [13] in level 1 caches).

By studying Demand we consider the simplest way
to manage L2 contents. It is an interesting compro-
mise, since a priori it can perform better or worse than
Inclusion or Exclusion: it can achieve smaller miss ra-
tios than Inclusion and less interlevel traffic than Ex-
clusion.

3. Coherence support

We assume that the System Bus has a snoopy proto-
col [19] that ensures 1/0 DMA correctness with no O.S.
intervention. Also, if the Reference Module is used to
build a shared memory multiprocessor, this protocol,
1) guarantees correct and efficient handling of shared
variables and, 2) allows process migration without O S .
started flushes [MI. In this context, the Inclusion man-
agement of all the three levels (LlcL2cL3) guaran-
tees correctness and is efficient: coherence commands
spread into the bus are caught and resolved in the fur-
thest possible level from the processor. Therefore, word
broadcasts (updating protocol) or block invalidations
(invalidating protocol) do not disturb the closest lev-
els t o processor that have replaced the item. Besides, if
the protocol requires block transfers among processors,
Inclusion allows delivery with the least possible latency
from the closest to System Bus level.

In this section we show how to adapt L2 Exclusion
and Demand management t o achieve the same efficient
behaviour in broadcasts or block transfers. For the
upper level (L3) the only possible policy is some kind
of inclusion of all chip contents (L1 and L2). In our
case (Space M U) , a present-on-chzp bit is added to
every L3uC block; it is managed as stated in section
2.1. Therefore, L3 must receive a replacement warning
each time a block is replaced from the chip.

3.1. On-chip Exclusion and coherence

Due to the strict exclusion imposed by our protocol,
an L2 block replacement is equivalent t o a replacement
from the chip. Therefore, L3 must be only warned
about each L2 replacement. On the other hand, a co-
herence command sent from L3 can be either a hit or a
miss in L2. If it hits, the command must be captured
not disturbing L1. On the contrary, if it misses the
command must be sent to L l where it will certainly
hit.

If exclusion were not strict, as proposed by Jouppi
and Wilton in their protocol for NI < N2, the previous
scheme would be wrong; it would be necessary to add
a copy of Ll’s directory to L2uC in order to correctly
send (from chip) replacement warnings and to achieve
the as-soon-as-possible command capture goal.

3.2. On-chip Demand and coherence

Using Demand and assuming a block write-around
write policy, a block is replaced from the chip and con-
sequently L3 must be warned in the following cases:

i) A block that only exists in L1 is replaced. But
if L l ignores the contents of L2 it cannot decide
whether L3 must be warned or not.

ii) A block that only exists in L2 is replaced. But
if L2 ignores the contents of L l it cannot decide
whether L3 must be warned or not.

On the other hand, if L2 ignores the contents of L1
it cannot properly capture the commands of L3.

The most immediate solution is to add to L2 a repli-
cated directory of the L1 caches. A much simpler solu-
tion consists of adding a present- in-Ll bit to every L2
block. Since there are blocks that are present in L l but
not in L2 this is a partial information, but it suffices:

i) A block replacement from L1 can hit or miss in
L2. If it hits the presence bit is modified and if
the block was dirty it is brought into L2. If it
misses a warning is sent to L3 (if the block was
dirty the warning is piggybacked on the block).

ii) When a block is replaced from L2, L3 is warned
only if the present-in-Ll bit is not set. The re-
placed block may be dirty in L2 and present in
L1; in this case a new command is required to
send to L3 a block with the warning that it is still
present in the chip. If that copy of the block in L1
is not modified again, there will be a replacement
warning only when it is replaced. On the contrary,
if it has been written, the previous copy on L3 was
useless.

434

iii) A coherence command sent from L3 to L2 can be
either a hit or a miss. If it is a hit, it will be
forwarded to L1 only if the presence bit, is set. If
it is a miss, the command must be forwarded to
L1, where it will hit.

used workload. (i) means integer intensive workload;
(f) means floating-point intensive workload.

Program 1 1 # Instr. I # Reads I # Writes I # Refs.
commess (il 11 90.559 1 13.533 1 6.763 1 110.855

3.3. Block transfer service between caches

If a given protocol encourages cache-to-cache trans-
fers, a mechanism to minimize latency transfer can be
added. This can be achieved by including a modified
bit in each L3uC block. This bit indicates whether its
content is updated (bit not set) or the updated copy is
in the chip (bit set). This bit is set when a f irs t write
command is received from the chip, and is reset when
a dirty block is received. Obviously L1 does not need
such a bit, since the dirty bit means the same'.

L2 contents management determines the details on
the existence or handling of the dirty and modified bits:

0

0

4.

In Inclusion and Demand, the same as in L3uC, a
modified bit that is set and reset according to the
previous rules must be added to L2uC.

In Exclusion only a single copy of each block exists,
and therefore a modified bit is not required. It is
enough with the dirty bit management shown in
section 2.2.

Experimental results about L2 miss
rat io

The workload we have used throughout the simula-
tions consists of a subset of C and Fortran programs
belonging to the SPEC'92 suite, compiled for SPARC
V8 under SunOS 4.1 and linked with the static option
to avoid writes in the instructions space. Selection has
been made using the data published in [7] by search-
ing for some of the most cache-pressuring programs.
Trace generation is performed using Shadow [9], a tool
that allows step by step execution of the user code of
a process. For each program a maximum of 200 mil-
lion instructions is executed; it is enough to completely
fill the largest of the second level caches simulated.
Programs cc l and compress have been execut,ed un-
til completion. The experiments carried out do not
show the effects of either multiprogramming or system
code. Table 1. summarizes some characteristic of the

Modified is a status which is different from dirty for L2 and
LB. A block can be dirty and modified (tho updated copy is
present in one of the lower levels) or dirty and not modified (the
block is incoherent with respect to upper levels but coherent with
respect to the lower ones)

Table I . Workload used for computing miss
ratio and CPI. Numbers in thousands.

All simulations keep constant: 1) A single on-chip
block :size (B = I31 = &), 2) direct mapping in L1
and, 3) write policy (copy-back, fetch-on-miss). L2uC
and L3uC use Random replacement policy; at the end
of this section we will show some LRU replacement
results supporting this choice.

In this section we compare the L2 global miss ra-
tio (g m 2) for the three strategies. gm2 is computed
by dividing the number of misses in L2uC by the total
number of instruction and data references2. All mea-
sures are obtained in a cold-start fashion, that is, not
exclud.ing from the count the initial cache load tran-
sient.

L l cache size varies from 2 K B + 2KB to 1 6 K B +
16KB, with a 16B block size. For each L1 size, five L2
four-way set-associative caches are simulated by vary-
ing the number of sets from N1/2 to SlV1 (& = 4 is the
minimiim to fulfill Inclusion with buffering). Therefore,
L2uC size varies from 4KB to 512KB. Only four sizes
are simulated for L2 Inclusion, since the configuration
L2sixe = L l s i z e violates the size constraints needed
for Inclusion (see section 2.1).

Figure 3 shows separately for integer and floating-
point the average gm2 for each contents management.
This average assumes every program equally weighted,
no matter its actual number of executed instructions.
Each plot consists of four data groups, correspond-
ing to the L1 four possible sizes (2KB + 2 K B -
16KB + 16KB). In each group N2 ranges from N1/2
to 8Nl (L2sixe varies from L l s i x e to 16l l s ixe) . In

'In order to obtain the number of misses for Exclusion and
Demand with LRU replacement, extensions of the algorithm pro-
posed by Mattson et al. [12] have been used. They make it pos-
sible to simulate caches with several L2 sizes and associativities
for a given Ll size in a single pass throughout the trace. In-
clusion needs a different simulation for each sizing because the
mechanism used by L2 to keep the blocks that are present in L1
breaks the stack behaviour of this replacement algorithm

"2s i ze = B * N2 * Sz; L ls i ze = 2 * (B * N I *Si)

435

general we see that Exclusion achieves substantially
smaller miss ratios than Demand and Inclusion for
nearly every size and program. Demand generally
achieves better results than Inclusion but with much
less differences. It can be seen the large locality offered
by the SPEC programs compared to nowadays cache
sizes; this agrees with Gee, Hill and Smith in [7]. For
instance, afirst level with Lls ize = 8 K B f 8 K B serves
93.2% of the floating-point accesses and 97.2% of the
integer ones.

%gm2
6 Llsr~e=Zk+Zk LIstze4kdk LIszre=Sk+lk Llmze=16k+16k

NI =lo24

4 1 integer I
2

0
NIR NI ?N2 4NI W1 N2

"/.&

NI =lo24
8

6 I floating-point I
4

2

0
N l R NI %?Jl 4Nl WI N2

Demand Inclusion - Exclusion

Figure 3. L2 global miss ratios far all three
contents management policies expressed as
a percentage (%gm2)

The closer L l and L2 sizes, the bigger the differ-
ences, since the effective on-chip cache size is rela-
tively more dependent, on the contents management
policy. For instlance, if we compare Exclusion and
Inclusion for the integer workload with Lls ize =
4KB + 4KB and L2size = 16KB, gmZ(Tnc1usion)
is 36% greater than gm2 (Exclusion) (effective on-chip
size is 16KB for Inclusion and 24KB for Exclusion).
Whereas with L2size = 128KB, gmZ(Inc1usion) is
only 2% greater than gm2(Exclusion) (the effective
sizes are now 128KB and 136KB). In the same way,
gmZ(Demand) is 25.9% greater than gmZ(Exc1usion)
for L2size = 16KB and 2.46% for L2size = 128KB.
Floating-point code exhibits similar behaviour for the
two considered L2 sizes: 50.9%-1.82% for Inclusion and
30.6%-1.33% for Demand.

Additional simulations have been carried out keep-
ing L1 and L2 sizes unchanged but varying 1) block
sizes B1 = B2 from 16B to 32B, 2) L2uC replacement
policy from Random to LRU and 3) L2 associativity

Sa from 2 to 32, keeping Nl = N2 . Tables 2 and 3
show a subset of the miss ratio results for this broad
design space. The subset has been selected to high-
light the configurations where Exclusion performs best.
For every Llsize the tables show (from left to right)
Exclusion miss ratio(Ex), the difference between De-
mand and Exclusion miss ratios as a percentage of the
later(A(Dm)), and the same figure between Inclusion
and Exclusion(A(1n)). The row (base) are the baseline
results showed in figure 3, rows (B = 32), (LRU) and
(Sa = 8) are the results for the additional simulations
presented in this paragraph.

Variants (B = 32) and (Sz = 8) achieve smaller
miss ratios than the base simulation for nearly all pro-
grams (except for compress, where an increase of the
block size leads to higher miss ratios). On the other
hand, the performance comparison trend among con-
tents managements remains as previously described.
Regarding the replacement algorithm, LRU is slightly
better for integer programs. However, Random is bet-
ter for floating-point with sometimes quite remarkable
differences. Comparisons between Exclusion, Inclusion
and Demand remain the same when the replacement
algorithm is changed; there is just one substantial dif-
ference: while LRU Exclusion miss ratio keeps always
strictly smaller than LRU Inclusion and Demand, this
is not always true for Random.

To sum up; Exclusion achieves smaller miss ratios
due to a better use of space over the tested design
space. The less the chip area globally devoted to cache
and the closer L1 and L2 sizes, the more the differ-
ence; in other words, the size constraints imposed by
the integration of L l and L2 favour Exclusion. De-
mand behaves between Exclusion and Inclusion closer
to the later.

5 . Experimental results about CPI

In this section we compare the performance of Tn-
clusion, Exclusion and Demand measured as cycles per
instruction (CPT). It is not possible to analytically com-
pute CPI from miss ratios, since the timing of an event
depends on the previous state of whole the hierarchy
(items inside buffers, concurrent activity of each level,
etc.) Therefore, we have built a discrete event time-
driven simulator which, coupled to Shadow, obtains the
CPI for our workload when executing in the Reference
Module.

The simulator includes a model of a SPARC V7 pro-
cessor which issues one instruction per cycle, has a 5
stages integer pipeline and two floating-point units:
a fully-pipelined adder/multiplier (4 stages) and a
pipelined divider/square-root unit (4 stages, with a sec-

436

int(base)
int(B = 32)
int(LRU)
fp(base)
fp(B = 32)
fp(LRU)

Table 2. g m 2 additional simulations with L 2 s i z e = 2Llsize (8KB - 6 4 K B) .

Llsize=2KB+2KB Llsize=4KB+4KB Llsize=8KB+RKB Llsize=16KB+l6KB
2,35 31,9% 42,97% 1,52 25,9% 35,99% 1,02 23,76% 33,62% 0,73 17,78% 19,44%
1,96 30,13% 36,18% 1,28 25,26% 32,67% 0,90 20,52% 27,03% 0,65 17,16% 19,77%
2,27 32,33% 49,15% 1,45 23,96% 41,84% 0,97 23,6% 37.67% 0,7 13,99% 20,87%
6,13 23,5% 39,25% 3,45 30,65% 50,94% 2,14 25,72010 51,88% 0,80 50,51% 114,66%
4,15 31,16% 48,61% 2,14 40,47% 62,76% 1,34 30,56% 45,80% 0,57 44,12% 93,68%
6,81 18,44% 28,74% 3,68 25,597~ 43,02% 2,74 23,6% 26,26% 0,89 63,52% 121,85%
Ex A(Dm) A(1n) Ez A (D m) A(1n) EX A (D m) A(1n) Ex A(Dm) A(1n)

Table 3. g m 2 additional simulations with L 2 s i z e = 4 L l s i z e (1 6 K B - 1 2 8 K B) .

ond stage latency of 4 / 7 cycles for divisions and 6 / 1 0
for square roots, simple/double precision respectively)

5.1. Components service times

For each cache level i , we define a base or charac-
teristic time, T L ~ processor cycles. It corresponds to
the parallel access of the Si tag and data arrays to
deliver the requested item. Thus, T L ~ is the Read-hit
time for a leT/el i cache. We estimate the Write-hit
time to be 2 T ~ i : the first T L ~ to find the desired item
and the second T L ~ to write into the selected data ar-
ray. L3uC and blain Memory cannot read or write a
block in a single access, therefore their characteristic
times must be multiplied by the required number of
sub-operations. Besides, accesses to these levels will
be delayed the penalty time of the corresponding bus.

On a miss in level i , TI,^ is also the time spent on
writing the block on level i once served by level i + 1, in
parallel to its transfer to i - 1. Finally, we define T f i ~ ~ i
as the time to modify any of the state bits attached to
each level i block (in general, T M L ~ 5 TL;).

Appendix A offers a more detailed insight of the
times of each of the components of the model.

5.2. Baseline simulation model

To limit simulation time the baseline model sets all
the parameters of the Reference Module, except for
those belonging to L2uC, to values which arc a good
compromise among 1) nowadays machines sizes and
timings, 2) limited size and on-chip integration; and

3) the high locality of the traces we have observed in
the previous section, which imposes Mc sizes so that
its variation has some influence on our system perfor-
mance.

Baseline parameters are the following: L l s i z e has
becn set to 2 K B + 2 K B , direct mapping and B = 1 6 B .
L 3 s i z e is 5 1 2 K B with S, = 16 and B 3 = 3 2 B . The
bus between L1 and L2 is equal to the block size
(W ~ I == 16B). Between L2 and L3, and between L3 and
Main Memory, busses are 8B wide (W M ~ = W32 = 8 B)
with a penalty of one and four cycles respectively
(Tbus32 = 1 , TbusbfS = 4) . Basic times for each
level (IZ'L~ and Tlat) are 1 , 2, 3 and 20 for levels 1 ,
2 , 3 and main memory4, while state modification times
have b'een set to 1 for all levels (T M L ~ = T M L ~ = 1).
The sizes of the output Buffers are 1, 2 and 1 respec-
tively for levels I, 2 and 3. According with the section
4 results, Random replacement policy has been chosen
for all contents management.

L2size is varied from 8 K B to 6 4 K B , keeping S2 = 4
y BZ =: 16. Each plot presents both the CPI for each
simulated configuration and two lines representing 1)
the ideal CPI (assuming a memory system which al-
ways responds in a single cycle) and 2) the CPI with-
out L2uC (assuming that each L l miss is served di-
rectly from the external cache). As in previous sec-
tion, measurements for each workload are combined in
a non-weighted up way.

The first obvious conclusions about the baseline
modcl are: 1) System performance is limited by the

"Times Tiat, Tis, Tbus32 and Tbus,vs agree with those of
the server DEC 7000/10000 [1]

43 7

memory hierarchy (CPlideal < 1.25), and 2) adding
up L2 does not degrade this performance5.

As shown in figure 4, Exclusion achieves better re-
sults than Inclusion and Demand for those L2 sizes
closest to L1 (8 K B and 16KB); individually, maxi-
mum difference is achieved 1) for integers in ccl, with
L2size = 8KB, where Inclusion needs 0.25 CPI and
Demand 0.19 CPI more than Exclusion (10.5% and
7.9% worse, respectively) and 2) for floating-point in
doduc with L2size = 8 K B where Inclusion needs
0.41 CPI and Demand 0.35 CPI more than Exclusion
(14.2% and 12%). Unlike to what the miss ratio anal-
ysis showed and in contrast to that exposed in [Ill,
the CPI achieved by Exclusion is greater than in Inclu-
sion and Demand for relatively large L2uC sizes. This
is because, in spite of achieving smaller miss ratios,
L2uC Exclusion wastes more time by receiving all the
blocks replaced from L l ; however, Inclusion and De-
mand only need to bring into L2 the blocks which are
dirty, while the rest of them needs just a replacement
warning. In section 5.3.1 we evaluate an improvement
in the L2 Exclusion block reception mechanism, which
effectively decreases the swapping overhead.

3,4
1.8 3

1.6 2.6

2.2 1.4
1,8

14
1.2

1 1

8K 16K 32K MK 8K 16K 32K MK
3 2 s i m

Exclunoa - Exclusiooi - - CPInoL2 -- cPlidEai I

Figure 4. Baseline model CPI. SI = 1, S, = 4,
B = 16B, Lls ize = 2 K B + 2KB

We recall that the miss ratio analysis indicated
always a little advantage of Demand over Inclusion.
However, in section 2.3. we saw that Demand can
cause some traffic increase between L2 and L3 when
compared to Inclusion. Simulation results prove this
compromise. Only when L2size is similar to Llsize,
Demand achieves a smaller CPI than Inclusion due to
its smaller miss ratio. For large L2size -with compa-
rable miss ratios in Inclusion and Demand- Inclusion

performs sligthly better than Demand for most of the
programs; in any case, differences are quite small.

5.3. Improvements in L2uC Exclusion

Next, we introduce two improvements to increase
the Exclusion performance at a very low cost that, if
combined, become a solid alternative to on-chip con-
tents management.

5.3.1 Block reception mechanism

To maintain strict exclusion, our protocol invalidates
each block that is read and brought into L1. Therefore,
invalid blocks may appear as a result of the exchanges
between L1 and L2 that do not map into the same L2
set. Then a block replacement from L1 does not require
a new replacement from L2 to L3 if there are such
invalid blocks. It suffices t o implement the replacement
algorithm so it considers the valid bits in addition to
its basic replacement policy. Thus, the whole operation
can be performed in just T L ~ cycles, the writing time,
instead of the full T L ~ +TL~ cycles needed to search and
write a set without invalid blocks. A similar mechanism
in Inclusion or Demand would cause wrong behaviours
since in these policies a replaced block from L1 can hit
on L2, so the search can not be avoided.

5.3.2 Non-blocking scheme

In Exclusion, an L l miss followed by an L2 miss re-
sults in a block read from L3 that is directly loaded
into L1. So, L2uC remains free when the miss is de-
tected and the request is sent to the upper level. We
propose to modify the L2uC control to accept other L1
requests since then. A similar mechanism in Inclusion
or Demand requires a more complex control and pos-
sibly the ability to read and write in parallel the data
arrays, since the service t o L l can overlap the pending
block reception.

In figure 4 the CPI computed for this improved
version named Exclusion+ is shown. The decrease
achieved by Exclusion+ in comparison to the basic
model is clear for all the points of the simulation, with
an average improvement of 6.2% in floating point and
2.9% in integers. The CPI for Inclusion and Demand
is greater than that of Exclusion+ for all the simula-
tions and all the programs. The maximum difference

5Except for compress, where Some configurations show a
worse CpI than that without second level. Compress has a
high instruction locality which is absorbed by L1, but in prac-
tice no data locality. Local miss ratios for L2uC Exclusion are
78%, 72%, 65% and 54% for 8KB, 16KB, 32KB and 64KB
respectively, hence many more of the L2uC accesses are delayed
rather than helped

is achieved I) for integers in ccl with L2size = 8 K B ,
where Inclusion needs 0.41 CPI and Demand 0.35 CPI
more than Exclusion+ (18.5% and 15.6% worse respec-
tively) and 2) for floating-point in f p p with L2sixe =
8KB where Inclusion needs o.76 cpl and Demand 0.9
CPI more than Exclusion+ (19.1% and 21.9%).

43 8

5.4. Baseline variations

Some parameters of the baseline model have been
individually changed: We have doubled 1) L3uC ser-
vice time, 2) L2uC associativity, 3) block and bus sizes
and 4) all cache sizes by increasing their number of
sets. Table 4 shows some figures for these simulations.
As in the baseline model, L2size is set to 2, 4, 8 and
16 times L l s i z e . For every selected point the tables
show (from left to right) Exclusion+ CPI (Ex+), the
difference bet,ween Demand and Exclusion+ CPI as a
percentage of the later(A(Dm)), and the same figure
between Inclusion and Exclusion+ (A (I n)) . The row
(base) means the same as in figure 4; rows (TL3 = 6),
(S2 = 8), (B = 32) and (S i z e s * 2) are the results
of the baseline variations presented in this paragraph.
We can add the following conclusions to those of the
previous subsections:

i)

ii)

When increasing the L3uC service time, the differ-
ences between Exclusion and the rest of manage-
ments are also increased, because those which miss
more often suffer from a greater penalty. So, due
to the current trend of the increasing divergence
between on-chip and off-chip times, Exclusion will
become even more useful in the future.

The benefits obtained using Exclusion+ are
greater when moving towards smaller capacities.
Presumably, a workload with less locality (increas-
ing problem and code size) would have the same
effect. Of course, if the performance of the system
is far above the requirements of the workload, the
contents management would not be an issue.

6. Conclusions

In this work we compare alternatives to two level
on-chip cache contents management,. Three alterna-
tive schemes namely Inclusion, Exclusion and Demand
have been specified in the context of a Reference Mod-
ule to compare their miss ratios and temporal per-
formance. All previous quantitative studies about
multilevel-cache memory assume an external second
level, and/or ignore coherence support and/or do not
compare different contents managements. IJp to this
work, the only coherent multilevel on-chip solution has
been Inclusion.

Keeping Inclusion in an external third level, new
protocols to manage lower levels in a coherent way
have been developed. The protocol for Exclusion and
its hardware requirements have turned up to be even
simpler than those for Inclusion. We have carried out a

quantitative analysis to each alternative in a uniproces-
sor environment. From the simulations it is clear that ,
in spite of achieving always a lower miss ratio, Exclu-
sion can lead to worse CPI results than Inclusion and
Demand due to the high cost of the L1 replacements.
We propose a solution that decreases this overhead by
improving the block reception mechanism and adopt-
ing a non-blocking scheme for L2 Exclusion. Apart
from that, in the light of the obtained data, Demand
seems to be discarded by its similar to Inclusion be-
haviour and its greater implementation difficulty when
cohere:nce support must be added. Our improved Ex-
clusion scheme achieves 7.9% better CPI than Inclusion
for floaking-point and 4.12% for integers in the baseline
simulation.

The foreseeable increase of the timing differences
between on-chip and off-chip caches makes Exclusion
even more attractive to manage on-chip contents. A
criticism about our work is the high locality of the
traces we have used, which has forced us to experi-
ment, with small first level caches; although we believe
that our conclusions can be extended to larger sizes
(lower localities), we are starting up experimentation
using SPEC’95 t o verify this presumption.

References

B. R. Allison and C. van Ingen. Technical description
of the DEC 7000 and DEC 10000 AXP family. Digital
Technical Journal, 4(4):1-11, 1992.
J. L. Baer and W. H. Wang. Architectural choices for
multilevel cache hierarchies. In Proc. Int. Conf. on
Parallel Processing, page 258, Aug. 1987.
J.-L. Baer and W.-H. Wang. On the inclusion prop-
erties for multi-level cache hierarchies. In Proc. 15th
Arm. Int. Symp. on Computer Architecture, pages 73-
80, May 30-June 2, 1988.
H. 0. Bugge, E. H. Kristiansen, and B. 0. Bakka.
Trace-driven simulations for a two-level cache design
in open bus systems. In Proc. 17th Ann. Int. Symp.
on Computer Architecture, pages 250-259, May 28-31,
1990.
J. Edmondson, P. Rubinfeld, and R. Preston. Super-
scalar instruction execution in the 21164 Alpha micro-
processor. IEEE Micro, pages 33-43, April 1995.
B. Ewy and J. Evans. Secondary cache performance
in risc architectures. Computer Architecture News,
21(3):33-39, June 1993.
J. D. Gee, M. D. Hill, D. N. Pnevmatikatos, and A. J.
Smith. Cache performance of the SPEC92 benchmark
suite. IEEE Micro, 13(4):17-27, Aug. 1993.
P. Gelsinger, P. Gargini, G. Parker, and A. Yu. Mi-
croprocessors Circa 2000. IEEE Spectrum, 26:43-47,
October 1989.
P. Y.-T. Hsu. Introduction to SHADOW. Technical
report, Sun Microsystems Inc, July 1989. Revision A.

439

L2size=2Llsize
int(base) 1,73 8,40% 9,74%
i n t (T ~ 3 = 6) 1,93 11,86% 13,06%
int(S2 = 8) 1,72 7,57% 9,50%
int iB = 32’1 1.62 6.63% 6,98%

N. P. Jouppi. Cache write policies and performance. In
Proc. 20th Ann. Int. Symp. on Computer Architecture,
pages 191-201, May 17-19, 1993.
N. P. Jouppi and S. J. E. Wilton. Tradeoffs in two-
level on-chip caching. In Proc. 21st Ann. Int. Symp.
on Computer Architecture, pages 34-45, Apr. 18-21,
1994.
R. L. Mattson, J. Gecsei, D. R. Slutz, andI. L. Traiger.
Evaluation techniques for storage hierarchies. IBM
Systems Journal, 9(2):78-117, 1970.
S. Przybylski. Cache and Memory Hierarchy Design:
A Performance-Directed Approach. Morgan Kaufman,
San Mateo, California, 1990.
C. Rodriguez, V. Viiials, J. Labarta, and R. Beivide.
Cache memory reasignation models and their impact
on multiprocessor performance. Inlnt. Journal of Mini
and Microcomputers, 11(1):9-12, 1989.
R. T. Short and H. M. Levy. A simulation study of
two-level caches. In Proc. 15th Ann. Int. Symp. on
Computer Architecture, pages 81-88, May 30-June 2,
1988.
R. Smith, J. Archibald, and B. Nelson. Evaluating per-
formance of prefetching second level caches. ACM Per-
formance Evaluation Review, 20(4):31-42, May 1993.
S. Song, M. Denman, and J. Chang. The PowerPC
604 RISC microprocessor. IEEE Micro, pages 8-17,
October 1994.
P. Stenstrom. A survey of cache coherence protocols
for multiprocessors. IEEE Computer, 23(6):12, June
1990.
P. Sweazey and A. J. Smith. A class of compati-
ble cache consistency protocols and their support by
the IEEE Futurebus. In Proc. 13th Ann. Int. Symp.
on Computer Architecture, pages 414-423, June 2-5,
1986.
V. Vifials. Diseiio de memoria cache multinivel con
restriccion de capacidad. Proyecto DGA, convocatoria
1993 de proyectos de investigacion, 1993.
W.-H. Wang, J.-L. Baer, and H. M. Levy. Organiza-
tion and performance of a two-level virtual-real cache
hierarchy. In Proc. 16th Ann. Int. Symp. on Computer
Architecture, pages 140-148, May 28-June 1, 1989.

L2size=4Llsize L2size=8Llsize L2size=lGLlsize
1,65 3,51% 3,36% 1,59 2,09% l,89% 1,54 1,61% 1,50%
1,81 4,54% 4,11% 1,70 2,45% 2,08% 1,61 1,75% 1,56%
1,63 4,08% 3,68% 1,58 2,08% 1,85% 1,54 l,60% 1,49%
1.56 2.58% 2.33% 1.51 1.33% 1.14% 1,47 0.92% 0.85%

A. Component timing

Next, to help reproduce the simulation results, we give a de-
tailed description of the service times of all the system compo-
nents.

LliC, LldC Read-hit time = T L ~ . Write-hit time = 2 T ~ l .
Block-loading time = T L ~ , is the time needed for loading a
block into L1 after delivered by the upper level.

L2uC Inclusion The same as LldC using T L ~ instead of T L ~ .
L2uC Demand: the same as Inclusion except for the pos-
sibility of a copy-back miss from LldC; in that case the
block is copied into tbuf at a cost T L ~ . L2uC Exclu-
sion: Read-hit time = T L ~ , Block-loading from L1 time
= 2 T ~ 2 , the first T L ~ to read and replace, if necessary, a
block t and the other T L ~ to load block U. State-change
time (when a replacement warning is received): in Inclu-
sion, T L ~ + T J J L ~ , T L ~ cycles to find the block and T M L ~
to modify state. T L ~ 2 T M L ~ ; in Demand, the same if it
hits but if it misses, the warning is forwarded to tbuf at a
cost T L ~ .

L3uC Read-hit time = &(Tbus32 + T L ~ + Tbus32), the num-
ber of cycles since an address is sent until xbuf2 has been
loaded. An external L3 cache which can offer w32 bytes
per access is assumed, being p32 = B2/W32. That is, a bus
cycle (Tbus32) to send the address, a cache access time
(T L ~) and another bus cycle to send back the data are
spent for each piece of a block being read. Write-hit time
= Tbus32 + T L ~ + P ~ ~ (T ~ u s ~ ~ + T L ~) , where the first access
(Tbus32 + T L ~) is needed to check tags, and the following
p32 accesses are for writing. Both timings follow the inter-
face model between an Alpha 21064 and its external cache
in the system DEC 7000/10000 [l]. State-modification time
(replacement warning) = Tbus32 + T L ~ + T M L ~ (T L ~ 2
T M L ~) . Block-loading time = T L ~ .

Main memory Read time = T b u s ~ 3 + Tlat + 0 ~ 3 * T b u s ~ 3 :
number of cycles since the address is sent until zbuj?? is
loaded; where we assume a bus cycle to send the address,
followed by a memory access time (Tiat) and p ~ 3 sub-
sequent transfers at a bus rate. Writing time = p ~ 3 *
T b u s ~ 3 + T l ~ ~ . It corresponds to an interleaved Main Mem-
ory or a Dynamic RAM operating in some optimized mode.

Output buffers (tbu f , ubuf and sbuf) Writing time = 0 cy-
cles if the buffer is not full, because writing into the buffer
overlaps the miss resolution. If the buffer is full, Writing
time = 1 since the moment when an entry is freed. A hit
on an output buffer stalls a level until the entry which was
a hit is downloaded into the upper level. The block will be
recovered later on from the upper level in a conventional
way.y.

440

