
JADE Tutorial for beginners

organized by the JADE Board
The Hague, 12th Oct. 2004

Giovanni Caire

JADE Board Technical Leader

giovanni.caire@tilab.com

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

Outline

• JADE basics
– Creating Agents
– Agent tasks
– Agent communication
– The Yellow Pages service

• JADE advanced
– Managing content expressions
– Interaction protocols
– Working with the AMS
– Mobility
– Security
– Others

• JADE on mobile phones
– The LEAP add-on
– Creating JADE-based MIDlet

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

The HalloWorld agent

• A type of agent is created by extending the jade.core.Agent
class and redefining the setup() method.

• Each Agent instance is identified by an AID (jade.core.AID).
– An AID is composed of a unique name plus some addresses
– An agent can retrieve its AID through the getAID() method of

the Agent class

import jade.core.Agent;

public class HalloWorldAgent extends Agent {

protected void setup() {
System.out.println(“Hallo World! my name is “+getAID().getName());

}
}

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

Local names, GUID and addresses

• Agent names are of the form <local-name>@<platform-name>
• The complete name of an agent must be globally unique.
• The default platform name is <main-host>:<main-port>/JADE
• The platform name can be set using the –name option
• Within a single JADE platform agents are referred through their

names only.
• Given the name of an agent its AID can be created as

– AID id = new AID(localname, AID.ISLOCALNAME);
– AID id = new AID(name, AID.ISGUID);

• The addresses included in an AID are those of the platform MTPs
and are ONLY used in communication between agents living on
different FIPA platforms

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

Passing arguments to an agent

• It is possible to pass arguments to an agent
– java jade.Boot a:myPackage.MyAgent(arg1 arg2)

– The agent can retrieve its arguments through the
getArguments() method of the Agent class

protected void setup() {
System.out.println(“Hallo World! my name is “+getAID().getName());
Object[] args = getArguments();
if (args != null) {
System.out.println(“My arguments are:”);
for (int i = 0; i < args.length; ++i) {
System.out.println(“- ”+args[i]);

}
}

}

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

Agent termination

• An agent terminates when its doDelete() method is called.
• On termination the agent’s takeDown() method is invoked

(intended to include clean-up operations).

protected void setup() {
System.out.println(“Hallo World! my name is “+getAID().getName());
Object[] args = getArguments();
if (args != null) {
System.out.println(“My arguments are:”);
for (int i = 0; i < args.length; ++i) {
System.out.println(“- ”+args[i]);

}
}
doDelete();

}

protected void takeDown() {
System.out.println(“Bye...”);

}

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

Outline

• JADE basics
– Creating Agents
– Agent tasks
– Agent communication
– The Yellow Pages service

• JADE advanced
– Managing content expressions
– Interaction protocols
– Working with the AMS
– Mobility
– Security
– Others

• JADE on mobile phones
– The LEAP add-on
– Creating JADE-based MIDlet

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

The Behaviour class

• The actual job that an agent does is typically carried out within
“behaviours”

• Behaviours are created by extending the
jade.core.behaviours.Behaviour class

• To make an agent execute a task it is sufficient to create an
instance of the corresponding Behaviour subclass and call the
addBehaviour() method of the Agent class.

• Each Behaviour subclass must implement
– public void action(): what the behaviour actually does
– public boolean done(): Whether the behaviour is finished

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

Behaviour scheduling and execution

• An agent can execute several behaviours in parallel, however,
behaviour scheduling is not preemptive, but cooperative and
everything occurs within a single Java Thread

Behaviour switch occurs only when
the action() method of the currently
scheduled behaviour returns.

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

The agent
execution model

setup()

Agent has been killed
(doDelete() method

called)?

Get the next behaviour from
the pool of active behaviours

b.action()

b.done()?

Remove currentBehaviour from
the pool of active behaviours

takeDown()

- Initializations
- Addition of initial
behaviours

- Agent “life” (execution
of behaviours)

- Clean-up operations

YES

YES

NO

NO

Highlighted in red
the methods that
programmers have
to/can implement

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

Behaviour types

• “One shot” behaviours.
– Complete immediately and their action() method is executed

only once.
– Their done() method simply returns true.
– jade.core.behaviours.OneShotBehaviour class

• “Cyclic” behaviours.
– Never complete and their action() method executes the same

operation each time it is invoked
– Their done() method simply returns false.
– jade.core.behaviours.CyclicBehaviour class

• “Complex” behaviours.
– Embed a state and execute in their action() method different

operation depending on their state.
– Complete when a given condition is met.

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

Scheduling operations at given points in
time

• JADE provides two ready-made classes by means of which it is
possible to easily implement behaviours that execute certain
operations at given points in time

• WakerBehaviour
– The action() and done() method are already implemented so

that the onWake() method (to be implemented by subclasses) is
executed after a given timeout

– After that execution the behaviour completes.
• TickerBehaviour

– The action() and done() method are already implemented so
that the onTick() (to be implemented by subclasses) method is
executed periodically with a given period

– The behaviour runs forever unless its stop() method is
executed.

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

More about behaviours

• The onStart() method of the Behaviour class is invoked only
once before the first execution of the action() method. Suited for
operations that must occur at the beginning of the behaviour

• The onEnd() method of the Behaviour class is invoked only once
after the done() method returns true. Suited for operations that
must occur at the end of the behaviour

• Each behaviour has a pointer to the agent executing it: the
protected member variable myAgent

• The removeBehaviour() method of the Agent class can be used
to remove a behaviour from the agent pool of behaviours. The
onEnd() method is not called.

• When the pool of active behaviours of an agent is empty the agent
enters the IDLE state and its thread goes to sleep

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

• JADE basics
– Creating Agents
– Agent tasks
– Agent communication
– The Yellow Pages service

• JADE advanced
– Managing content expressions
– Interaction protocols
– Working with the AMS
– Mobility
– Security
– Others

• JADE on mobile phones
– The LEAP add-on
– Creating JADE-based MIDlet

Outline

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

The communication model

• Based on asynchronous message passing
• Message format defined by the ACL language (FIPA)

Distributed JADE runtime

A1 A2

Prepare the
message to A2

Get the message
from the message
queue and process it

Send the message Post the message in
A2’s message queue

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

The ACLMessage class

• Messages exchanged by agents are instances of the
jade.lang.acl.ACLMessage class.

• Provide accessor methods to get and set all the fields defined by
the ACL language
– get/setPerformative();
– get/setSender();
– add/getAllReceiver();
– get/setLanguage();
– get/setOntology();
– get/setContent();
–

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

Sending and receiving messages

• Sending a message is as simple as creating an ACLMessage object
and calling the send() method of the Agent class

ACLMessage msg = new ACLMessage(ACLMessage.INFORM);
msg.addReceiver(new AID(“Peter”, AID.ISLOCALNAME));
msg.setLanguage(“English”);
msg.setOntology(“Weather-Forecast-Ontology”);
msg.setContent(“Today it’s raining”);
send(msg);

• Reading messages from the private message queue is
accomplished through the receive() method of the Agent class.

ACLMessage msg = receive();
if (msg != null) {

// Process the message
}

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

Blocking a behaviour waiting for a message

• A behaviour that processes incoming messages does not know exactly
when a message will arrive It should poll the message queue by
continuously calling myAgent.receive().

• This of course would completely waste the CPU time.
• The block() method of the Behaviour class removes a behaviour from

the agent pool and puts it in a blocked state (it’s not a blocking call!!).
• Each time a message is received all blocked behaviours are inserted back

in the agent pool and have a chance to read and process the message.

public void action() {
ACLMessage msg = myAgent.receive();
if (msg != null) {
// Process the message

}
else {

block();
}

}

This is the strongly
recommended
pattern to receive
messages within a
behaviour

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

Selective reading from the message queue

• The receive() method returns the first message in the message queue
and removes it.

• If there are two (or more) behaviours receiving messages, one may “steal”
a message that the other one was interested in.

• To avoid this it is possible to read only messages with certain
characteristics (e.g. whose sender is agent “Peter”) specifying a
jade.lang.acl.MessageTemplate parameter in the receive() method.

MessageTemplate tpl = MessageTemplate.MatchOntology(“Test-Ontology”);

public void action() {
ACLMessage msg = myAgent.receive(tpl);
if (msg != null) {
// Process the message

}
else {
block();

}
}

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

Receiving messages in blocking mode

• The Agent class also provides the blockingReceive() method
that returns only when there is a message in the message queue.

• There are overloaded versions that accept a MessageTemplate
(the method returns only when there is a message matching the
template) and or a timeout (if it expires the method returns null).

• Since it is a blocking call it is “dangerous” to use
blockingReceive() within a behaviour. In fact no other behaviour
can run until blockingReceive() returns.

- Use receive() + Behaviour.block() to
receive messages within behaviours.
- Use blockingReceive() to receive messages
within the agent setup() and takeDown()
methods.

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

• JADE basics
– Creating Agents
– Agent tasks
– Agent communication
– The Yellow Pages service

• JADE advanced
– Managing content expressions
– Interaction protocols
– Working with the AMS
– Mobility
– Security
– Others

• JADE on mobile phones
– The LEAP add-on
– Creating JADE-based MIDlet

Outline

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

The yellow pages service

A1: - serviceX
- serviceY

A2: - serviceZ

A3: - serviceW
- serviceK
- serviceH

Yellow Pages service

Publish
provided
services

A1

A2

A3

A4

A5

A6

Search for
agents

providing the
required
services

Exploit required
service

DF

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

Interacting with the DF Agent

• The DF is an agent and as such it communicates using ACL
• The ontology and language that the DF “understands” are specified

by FIPA It is possible to search/register to a DF agent of a
remote platform.

• The jade.domain.DFService class provides static utility
methods that facilitate the interactions with the DF
– register();
– modify();
– deregister();
– search();

• The JADE DF also supports a subscription mechanism

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

DFDescription format
• When an agent registers with the DF it must provide a description

(implemented by the
jade.domain.FIPAAgentManagement.DFAgentDescription
class) basically composed of
– The agent AID
– A collection of service descriptions (implemented by the class
ServiceDescription). This, on its turn, includes:

• The service type (e.g. “Weather forecast”);
• The service name (e.g. “Meteo-1”);
• The languages, ontologies and interaction protocols that must be

known to exploit the service
• A collection of service-specific properties in the form key-value pair

• When an agent searches/subscribes to the DF it must specify
another DFAgentDescription that is used as a template

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

• JADE basics
– Creating Agents
– Agent tasks
– Agent communication
– The Yellow Pages service

• JADE advanced
– Managing content expressions
– Interaction protocols
– Working with the AMS
– Mobility
– Security
– Others

• JADE on mobile phones
– The LEAP add-on
– Creating JADE-based MIDlet

Outline

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

• JADE basics
– Creating Agents
– Agent tasks
– Agent communication
– The Yellow Pages service

• JADE advanced
– Managing content expressions
– Interaction protocols
– Working with the AMS
– Mobility
– Security
– Others

• JADE on mobile phones
– The LEAP add-on
– Creating JADE-based MIDlet

Outline

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

JADE support for handling content
expressions

Inside an ACLMessage Inside the agent code

Information
represented as a string or a

sequence of bytes
(EASY TO TRANSFER)

Information
represented as Java objects

(EASY TO HANDLE)

JADE
support for

handling
content

expressions

(Person :name john :age 35)

class Person {
private String name;
int age;

public String getName();
public void setName(String n);
public int getAge();
public void setAgen(int a);

}

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

How it works

• Creating the Ontology (domain specific)
– Defining the schemas ontology elements
– Defining the corresponding Java classes

• Handling content expressions as Java objects
• Using the ContentManager to fill and parse message

contents

Person john = new Person(“John”, 35);
Person bill = new Person(“Bill”, 67);
FatherOf f = new FatherOf();
f.setFather(bill);
f.addChildren(john);

FatherOfPerson

1
+father

1

1..*

+children

1..*

Concept Predicate

(father-of (person :name Bill :age 67) (set (person :name John :age 35)))

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

Creating ontologies with Protege`

Predefined
base elements
Predefined

base elements

class Car extends Concept {

private int year;

private String type;

.....

}

class Car extends Concept {

private int year;

private String type;

.....

}

Beangenerator

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

Documentation

• A complete tutorial is available on the JADE site:

• http://jade.tilab.com/doc/CLOntoSupport.pdf
• API documentation (javadoc): jade.content package and

subpackages
• Sample code: examples.content package in the examples

included in the JADE distribution.

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

• JADE basics
– Creating Agents
– Agent tasks
– Agent communication
– The Yellow Pages service

• JADE advanced
– Managing content expressions
– Interaction protocols
– Working with the AMS
– Mobility
– Security
– Others

• JADE on mobile phones
– The LEAP add-on
– Creating JADE-based MIDlet

Outline

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

Interaction protocols
• Having a standard set of types of messages (INFORM, REQUEST,

PROPOSE) allows specifying predefined sequences of
messages exchanged by agents during a conversations.

• These are known as Interaction Protocols

FIPA-Subscribe Protocol

Initiator Responder

SUBSCRIBE

REFUSE

[AGREE]

FAILURE

INFORM

[refused]

[agreed]

0-n
[agreed]

[failed]

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

Support for interaction protocols

• The jade.proto package contains behaviours for both the initiator
and responder role in the most common interaction protocol:
– FIPA-request (AchieveREInitiator/Responder)
– FIPA-Contract-Net (ContractNetInitiator/Responder)
– FIPA-Subscribe (SubscriptionInitiator/Responder)

• All these classes automatically handle
– the flow of messages checking that it is compliant to the

protocol
– The timeouts (if any)

• They provide callback methods that should be redefined to take the
necessary actions when e.g. a message is received or a timeout
expires.

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

Documentation

• Chapter 3.5 in the Programmers guide included in the JADE
distribution provides a detailed explanation of the interaction
protocol support

• API documentation (javadoc): jade.proto package
• Sample code: examples.protocols package in the examples

included in the JADE distribution.

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

• JADE basics
– Creating Agents
– Agent tasks
– Agent communication
– The Yellow Pages service

• JADE advanced
– Managing content expressions
– Interaction protocols
– Working with the AMS
– Mobility
– Security
– Others

• JADE on mobile phones
– The LEAP add-on
– Creating JADE-based MIDlet

Outline

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

Working with the AMS

• The AMS (Agent Management System) represents the authority in a
JADE platform.

• All platform management actions (creating/killing agents, killing
containers...) are under the control of the AMS.

• Other agents can request the AMS to perform these actions by
using
– The fipa-request interaction protocol
– The SL language
– The JADE-Management ontology and related actions

• The AID of the AMS can be retrieved through the getAMS() method
of the Agent class

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

• JADE basics
– Creating Agents
– Agent tasks
– Agent communication
– The Yellow Pages service

• JADE advanced
– Managing content expressions
– Interaction protocols
– Working with the AMS
– Mobility
– Security
– Others

• JADE on mobile phones
– The LEAP add-on
– Creating JADE-based MIDlet

Outline

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

Mobility

• JADE supports “hard mobility” i.e. mobility of status and code.
– Status: an agent can i) stop its execution on the local container

ii) move to a remote container (likely on a different host) and iii)
restart its execution there from the exact point where it was
interrupted.

– Code: If the code of the moving agent is not available on the
destination container it is automatically retrieved on demand.

• In order to be able to move, an agent must be Serializable
• Mobility can be

– self-initiated through the doMove() method of the Agent class
– forced by the AMS (following a request from another agent)

• Besides mobility also agent cloning is available (method
doClone())

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

Documentation

• Chapter 3.7 in the Programmers guide included in the JADE
distribution provides a detailed explanation of the mobility support

• API documentation (javadoc): jade.core.Agent class,
jade.core.Location interface and jade.domain.mobility
package

• Sample code: examples.mobile package in the examples
included in the JADE distribution.

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

• JADE basics
– Creating Agents
– Agent tasks
– Agent communication
– The Yellow Pages service

• JADE advanced
– Managing content expressions
– Interaction protocols
– Working with the AMS
– Mobility
– Security
– Others

• JADE on mobile phones
– The LEAP add-on
– Creating JADE-based MIDlet

Outline

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

Security

• Distributed as an add-on
• Examples of potential threats:

– A malicious agent can request the AMS to kill another agent
– A malicious agent can request the AMS to shutdown the platform
– A malicious entity can sniff or tamper sensible information

included in an ACLMessage
• Prevents the above threats by providing support for:

– Authentication and authorization
– End-to-end message integrity and confidentiality

• Based on JAAS
• Further evolutions are expected Comments and contributions are

Welcome

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

A

User John

Owns

JADE as a multi-user environment

A A

AA

User Alice

User Bob

Main Container

Container 1

Container 2
Owns

Owns

Alice XYZ
Bob KHJ
John QPO

password file

--- ---
----- -
--

Main policy file

--- ---
----- -
--

policy file

--- ---
----- -
--

policy file

A

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

Policy file

• grant principal jade.security.Name "alice" {
permission jade.security.PlatformPermission "", "create";
permission jade.security.ContainerPermission "", "create";
permission jade.security.AMSPermission "agent-class=*",

"register, derister,modify";
permission jade.security.AgentPermission "agent-class=*", "create,

kill";
permission jade.security.MessagePermission "agent-owner:alice",

"send-to";
};

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

Signing and encrypting messages

• All security related API are embedded into the SecurityHelper
• Can be retrieved through the getHelper() method of the Agent

class

// Create the message
ACLMessage msg = new ACLMessage(ACLMessage.INFORM);
......

// Retrieve the SecurityHelper
SecurityHelper myHelper = (SecurityHelper)
getHelper("jade.core.security.Security");

// The message must be signed
mySecurityHelper.setUseSignature(msg);

// Send the message
send(msg);

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

Documentation

• The Security add-on comes with a complete guide and some code
examples.

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

Other advanced features
• In-process interface

– Allow using JADE (i.e. creating a container and starting agents
on it) from an external Java program.

– jade.core.Runtime class and jade.wrapper package
– Documentation: chapter 3.8 of the JADE programmers guide.

• Threaded behaviours
– Allow executing a normal JADE behaviour in a dedicated thread
– jade.core.behaviours.ThreadedBehaviourFactory class
– Documentation: chapter 3.4.13 of the JADE programmers guide

• Persistence
– Allow saving and reloading agent state on relational DB
– Based on Hibernate (http://www.hibernate.org)
– Distributed as an add-on
– Still in experimental version Comments and contributions

welcome

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

• JADE basics
– Creating Agents
– Agent tasks
– Agent communication
– The Yellow Pages service

• JADE advanced
– Managing content expressions
– Interaction protocols
– Working with the AMS
– Mobility
– Security
– Others

• JADE on mobile phones
– The LEAP add-on
– Creating JADE-based MIDlet

Outline

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

The LEAP add-on
• Allows running JADE agents on PDA and mobile phones (MIDP,

PersonalJava)
• Developed in the LEAP IST European project (Motorola, BT,

Broadcom, Siemens, Univ. Parma, ADAC, TILAB)
• Replaces some parts of JADE JADE-LEAP (J2se, PJava, MIDP)
• Different internal implementation
• Same APIs for agents

JADE JADE-LEAP
J2se

JADE-LEAP
PJava

JADE-LEAP
Midp

JADE APIs JADE APIs JADE APIs JADE APIs

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

Building JADE-LEAP

• JADE-LEAP can be downloaded in binary form (for J2se, PJava and
MIDP) directly from the download area of the JADE site.

• Alternatively one can download the JADE sources, then the LEAP
add-on and finally build JADE-LEAP using an ANT build file
included in the LEAP add-on (ANT 1.6 is required).

• The LEAP add-on also includes the LEAP user guide that provides
all the details about using JADE-LEAP.

• Using JADE-LEAP for J2se is identical to using JADE (same tools,
configuration parameters...) except for:
– Agents on the command line must be separated by ‘;’ instead of

blank
– Agent arguments must be separated by ‘,’ instead of a blank

(both on the command line and in the RMA)

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

Creating JADE-based MIDlet

• All MIDP applications are called MIDlets and their main class
extends javax.microedition.midlet.MIDlet.

• JADE-LEAP for MIDP is itself a MIDlet
– The main class is jade.MicroBoot

• A MIDlet must be packaged as a single JAR file
– A JADE-based MIDlet JAR file must include both JADE-LEAP

classes and application specific classes and resources (e.g.
images)

– The typical build process includes the following steps:
• Compile the application sources with JADE-LEAP in the classpath
• Mix application .class files and JADE-LEAP .class files
• Pre-verify the whole
• Jar the whole

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

• JADE accepts a number of configuration parameters either on the
command line or in a property file

• Both ways of specifying parameters are not available in MIDP
• In MIDP configuration parameters are specified in the JAD/manifest

of the MIDlet.
• Example

– java ... jade.Boot –host ibm8695 –port 2222
– Manifest

• Only a subset of the JADE configuration parameters are
available/meaningful in a MIDP manifest/JAD (e.g. –container)

Configuration parameters in MIDP

....

MIDlet-LEAP-host: ibm8695

MIDlet-LEAP-port: 2222

....

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

Minimization
• JADE-LEAP for MIDP is ~450 Kbytes: VERY BIG!
• In general however its really rare that an application exploits all

features provided by JADE. It would be highly desirable to remove
all classes related to unused features from the application JAR file

• This can be achieved by means of the minimize target of the ANT
build file included in the LEAP add-on
– ant minimize –DJAR=<jar-file> -DDLC=<dlc-file>
-DMANIFEST=<manifest>

– Where the dlc-file includes the list of dynamically loaded
classes

• After the minimization process an average JADE-based application
becomes ~150Kbytes

• Using a good obfuscator it is possible to sensibly reduce the code
size further

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

Logging

• When running on a cell phone typically printouts produced by
System.out.println() have no effect at all.

• The jade.util.Logger class provides a uniform way over J2SE,
PJava and MIDP to produce printouts.
– In J2SE it uses JAVA Logging and therefore allow exploiting all

its flexibility
– In PJava it simply uses System.out.println()
– In MIDP it writes the output in a proper RecordStore where it

can be later viewed by means of the
jade.util.leap.OutputViewer MIDlet

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

Thanks for your attention!!!!

•Questions?

