Autómatas de Pila y Lenguajes Incontextuales

Elvira Mayordomo

Universidad de Zaragoza

5 de noviembre de 2012

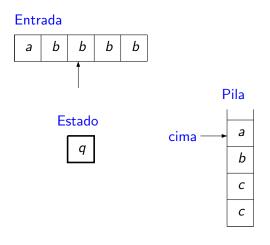
Contenido de este tema

- 1. Introducción a los autómatas de pila
- 2. Definiciones
- 3. Equivalencia con gramáticas
- 4. Propiedades de clausura de los incontextuales
- 5. Lema de bombeo: lenguajes no incontextuales

¿Que es un autómata de pila?

- Un autómata de pila (AdP) es un autómata finito no determinista (AFnD) al que se le ha añadido una memoria de pila
- En cada paso sólo se puede acceder al último símbolo de la pila (la cima)
- En cada paso se puede desapilar el símbolo que hay y/o apilar otros

Aspecto de un autómata de pila



Cómo funciona un autómata de pila

- Configuración inicial: el autómata está en el estado inicial q₀ leyendo al principio de la entrada y la pila sólo contiene el símbolo \$
- ▶ La entrada se lee de izquierda a derecha una vez
- Cada movimiento depende de en qué estado estoy, qué símbolo leo en la entrada y qué símbolo leo en la pila
- ► En cada movimiento cambio de estado y apilo o desapilo
- Es una máquina no determinista, puede haber varias opciones y puedo mover sin leer símbolo de la entrada

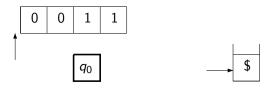
- \triangleright Estados q_0, q_1, q_2
- ► Estado inicial *q*₀
- ► Estado final q₂
- ▶ Alfabeto de entrada $\Sigma = \{0, 1\}$
- ▶ Alfabeto de pila $\Gamma = \{a, \$\}$
- ► Transiciones:

entrada	()	1		ϵ	
cima	а	\$	а	\$ а	\$	
q_0	(q_0,aa)	$(q_0, a\$)$	(q_1,ϵ)		$(q_2,\$)$	
q_1			(q_1,ϵ)		$(q_2,\$)$	

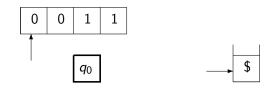
entrada	()	1			ϵ	
cima	a	\$	а	\$	а	\$	
q_0	(q_0,aa)	$(q_0, a\$)$	(q_1,ϵ)			$(q_2,\$)$	
q_1			(q_1,ϵ)			$(q_2, \$)$	

- Si estoy en el estado q_0 con 0 en la entrada y \$ en la cima: $(q_0, a\$)$ quiere decir apila a y continúa en estado q_0
- Si estoy en el estado q_0 con 1 en la entrada y a en la cima: (q_1, ϵ) quiere decir desapila a y cambia al estado q_1

► Con entrada 0011: configuración inicial

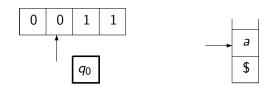


► Con entrada 0011: lectura del primer símbolo



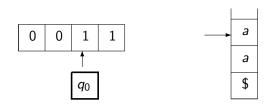
entrada	()	1		ϵ
cima	а	\$	а	\$ а	\$
<i>q</i> ₀	(q_0, aa)	$(q_0, a\$)$	(q_1,ϵ)		$(q_2,\$)$
q_1			(q_1,ϵ)		$(q_2,\$)$

► Con entrada 0011: lectura del segundo símbolo



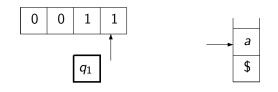
entrada	()	1		ϵ
cima	а	\$	а	\$ а	\$
<i>q</i> ₀	(q_0, aa)	$(q_0, a\$)$	(q_1,ϵ)		$(q_2,\$)$
q_1			(q_1,ϵ)		$(q_2,\$)$

► Con entrada 0011: lectura del tercer símbolo



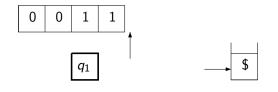
entrada	()	1		ϵ
cima	а	\$	а	\$ а	\$
<i>q</i> ₀	(q_0, aa)	$(q_0, a\$)$	(q_1,ϵ)		$(q_2,\$)$
q_1			(q_1,ϵ)		$(q_2,\$)$

► Con entrada 0011: lectura del cuarto símbolo



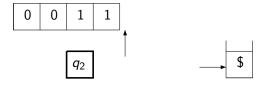
entrada	()	1		ϵ
cima	а	\$	а	\$ а	\$
<i>q</i> ₀	(q_0, aa)	$(q_0, a\$)$	(q_1,ϵ)		$(q_2,\$)$
q_1			(q_1,ϵ)		$(q_2,\$)$

ightharpoonup Con entrada 0011: ϵ -transición



entrada	()	1		ϵ
cima	а	\$	а	\$ а	\$
<i>q</i> ₀	(q_0, aa)	$(q_0, a\$)$	(q_1,ϵ)		$(q_2,\$)$
q_1			(q_1,ϵ)		$(q_2,\$)$

► Con entrada 0011: ha terminado



► Como q₂ es un estado final, acepta la entrada

Otra entrada

► Con entrada 010: lectura del primer símbolo

entrada	()	1		ϵ
cima	а	\$	а	\$ а	\$
<i>q</i> ₀	(q_0, aa)	$(q_0, a\$)$	(q_1,ϵ)		$(q_2,\$)$
q_1			(q_1,ϵ)		$(q_2, \$)$

Otra entrada

► Con entrada 010: lectura del segundo símbolo

entrada	()	1			ϵ	
cima	а	\$	а	\$	а	\$	
<i>q</i> ₀	(q_0, aa)	$(q_0, a\$)$	(q_1,ϵ)			$(q_2,\$)$	
q_1			(q_1,ϵ)			$(q_2, \$)$	

Otra entrada

► Con entrada 010: lectura del tercer símbolo

Rechaza la entrada porque no hay transición definida, ni en esta ni en otras computaciones

entrada	()	1		ϵ	
cima	а	\$	а	\$ а	\$	
q 0	(q_0, aa)	$(q_0, a\$)$	(q_1,ϵ)		$(q_2,\$)$	
q_1			(q_1,ϵ)		$(q_2, \$)$	

¿Qué hace este AdP?

entrada	()	1		ϵ	
cima	а	\$	а	\$ а	\$	
q_0	(q_0,aa)	$(q_0, a\$)$	(q_1,ϵ)		$(q_2,\$)$	
q_1			(q_1,ϵ)		$(q_2,\$)$	

- ► En el estado q₀ apila una a por cada 0
- ightharpoonup En el estado q_1 desapila una a por cada 1

Acepta el lenguaje $\{0^n1^n \mid n \in \mathbb{N}\}$

Contenido de este tema

- 1. Introducción a los autómatas de pila
- 2. Definiciones
- 3. Equivalencia con gramáticas
- 4. Propiedades de clausura de los incontextuales
- 5. Lema de bombeo: lenguajes no incontextuales

Definición formal de autómata de pila

Definición

Un autómata de pila (AdP) es $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ tal que

- \triangleright Q es el conjunto finito de estados
- \triangleright Σ es el alfabeto de entrada
- Γ es el alfabeto de pila que incluye el símbolo \$
- ▶ $q_0 \in Q$ es el estado inicial
- ▶ $F \subseteq Q$ es el conjunto de los estados finales o de aceptación.
- ▶ $\delta: Q \times (\Sigma \cup \epsilon) \times \Gamma \to \mathcal{P}(Q \times \Gamma^*)$ es la función de transición $\delta(q, a, b) = R$ quiere decir que si estoy en el estado q, leo el símbolo a en la entrada y b en la cima puedo ir a cualquiera de los estados q' con $(q', c) \in R$ cambiando la cima a c

Notación: $\mathcal{P}(Q \times \Gamma^*)$ es el conjunto de subconjuntos de $Q \times \Gamma^*$

Lenguaje aceptado por un AdP

▶ Dado un AdP M, una computación de M con entrada w es

$$(q_0,\$)(q_1,y_1)\dots(q_m,y_m)$$

de forma que q_i es el estado e y_i es el contenido completo de la pila en en instante i, es decir

- $w = w_1 \dots w_m \text{ con } w_i \in \Sigma \cup \epsilon$
- ▶ Una computación aceptadora de M con entrada w es una computación $(q_0,\$)(q_1,y_1)\dots(q_m,y_m)$ de M con entrada w que cumple $q_m \in F$
- ▶ El lenguaje aceptado por M es L(M) definido como

$$L(M) = \{ w \mid \text{ existe una computación}$$
 aceptadora de M con entrada $w \}$

¿Cómo definimos un AdP que acepte ...

... el lenguaje
$$\{w \in \{a, b\}^* \mid |w|_a = |w|_b\}$$

- ▶ La pila lleva la cuenta de número de *a*'s menos número de *b*s
- ▶ Si en la cima hay una b y leo una a desapilo
- ▶ Si en la cima hay una a y leo una b desapilo
- ▶ Si en la cima hay una a y leo una a apilo
- ▶ Si en la cima hay una b y leo una b apilo
- Si termino la entrada con la pila vacía acepto

Solución

- ► Estados q_0, q_1
- ► Estado inicial q₀
- ▶ Estado final *q*₁
- ▶ Alfabeto de entrada $\Sigma = \{a, b\}$
- ► Alfabeto de pila {a, b, \$}
- ► Transiciones:

e.		а			b			
C.	а	b	\$	а	b	\$	\$	
q_0	(q_0,aa)	(q_0,ϵ)	$(q_0, a\$)$	(q_0,ϵ)	(q_0, bb)	$(q_0, b\$)$	$(q_1,\$)$	

¿Cómo definimos un AdP que acepte ...

... el lenguaje
$$\{ww^R \mid w \in \{a, b\}^*\}$$

- La pila apila la primera parte de la palabra
- Usamos no determinismo para empezar la segunda parte
- ► En la segunda parte si en la cima hay una a y leo una a desapilo
- ► En la segunda parte si en la cima hay una b y leo una b desapilo
- Si termino la entrada con la pila vacía acepto

Solución

- ightharpoonup Estados q_0, q_1, q_2
- ► Estado inicial q₀
- ► Estado final q₂
- ▶ Alfabeto de entrada $\Sigma = \{a, b\}$
- ► Alfabeto de pila {a, b, \$}
- ► Transiciones:

				_				
entrada		a			b			
cima	а	Ь	\$	а	b	\$		
q_0	(q_0, aa)	(q_0, ab)	$(q_0, a\$)$	(q_0, ba)	(q_0,bb)	$(q_0, b\$)$		
q_1	(q_1,ϵ)				(q_1,ϵ)			
entrada		ϵ						
cima	а	b	\$					
q_0	(q_1,a)	(q_1,b)	$(q_1,\$)$					

Autómatas de pila deterministas

- Los autómatas de pila DETERMINISTAS no son equivalentes a los AdP
- ▶ Por ejemplo el lenguaje $A = \{a^i b^j c^k \mid i \neq j \text{ ó } j \neq k\}$ es reconocido por un AdP pero no por un autómata de pila determinista
- Es muy diferente de los autómatas finitos ...

Contenido de este tema

- 1. Introducción a los autómatas de pila
- 2. Definiciones
- 3. Equivalencia con gramáticas
- 4. Propiedades de clausura de los incontextuales
- 5. Lema de bombeo: lenguajes no incontextuales

Equivalencia de AdP y gramáticas

- ▶ Para cada gramática incontextual G existe un AdP M con L(G) = L(M) Para cada gramática existe un AdP que reconoce el lenguaje generado por la gramática
- Para cada AdP M existe una gramática incontextual G con L(M) = L(G) Para cada AdP existe una gramática que genera el lenguaje aceptado por el AdP

Equivalencia de AdP y gramáticas: idea de la demostración

Convertir una gramática en AdP

- ▶ Definimos un AdP que tenga como alfabeto de pila la unión de terminales y no terminales, en la pila al principio colocamos S
- ▶ Si tenemos una regla en la gramática que diga $A \rightarrow \alpha$ en el autómata cuando la cima sea A se desapila A y se apila α
- Si la cima de la pila coincide con el símbolo de la entrada se desapila
- Acepta si la pila queda vacía

Convertir una gramática en AdP: ejemplo

$$S
ightarrow aSb \mid ab$$

entrada	а	b	ϵ	
cima	а	b	S	\$
q_0				$(q_1, S\$)$
CI1	(q_1,ϵ)	(q_1,ϵ)	$(q_1, aSb)(q_1, ab)$	$(q_2,\$)$

Estado final q_2

Equivalencia de AdP y gramáticas: idea de la demostración

Convertir un AdP en gramática

- ▶ Definimos una gramática que tenga un noterminal $A_{p,q}$ para cada par de estados del autómata $p,q \in Q$
- ▶ $A_{p,q}$ genera todas las entradas que llevan del estado p con pila p al estado p con pila p
- ► Se añaden las reglas:
 - ▶ Si los finales son $F = \{q_1, \dots, q_r\}$,

$$S \rightarrow A_{q_0,q_1} \mid \dots A_{q_0,q_r}$$

► Se añade la regla

$$A_{p,q} \rightarrow aA_{r,s}b$$

cuando la entrada a lleva de p a r apilando u y la entrada b lleva de s a q desapilando u

▶ Para todos los estados p, q, r, se añade la regla

$$A_{p,q} o A_{p,r} A_{r,q}$$

para cualquier estado p se añade la regla

$$A_{p,p} \to \epsilon$$

Convertir un AdP en gramática: Ejemplo

► Estado final q₁

e.	а			b			ϵ
C.	а	b	\$	а	b	\$	\$
q_0	(q_0, aa)	(q_0,ϵ)	$(q_0, a\$)$	(q_0,ϵ)	(q_0,bb)	$(q_0, b\$)$	$(q_1,\$)$

Equivalencia de AdP y gramáticas: uso práctico

- ▶ Hay lenguajes para los que es más sencillo diseñar un AdP: $\{w \in \{a,b\}^* \mid |w|_a = |w|_b\}$
- ► Hay lenguajes para los que es más sencillo diseñar una gramática: $\{ww^R \mid w \in \{a,b\}^*\}$
- ► La semana que viene veremos para qué sirve conocer la gramática que genera un lenguaje y cómo genera cada palabra
- Por ejemplo esto último es muy útil para compiladores de lenguajes de programación

Contenido de este tema

- 1. Introducción a los autómatas de pila
- 2. Definiciones
- 3. Equivalencia con gramáticas
- 4. Propiedades de clausura de los incontextuales
- 5. Lema de bombeo: lenguajes no incontextuales

Propiedades de clausura de los incontextuales

- Los incontextuales son cerrados por unión, concatenación y estrella de Kleene
- Los incontextuales NO son cerrados por intersección y complemento
- La intersección de regular e incontextual es incontextual

Los incontextuales son cerrados por unión

- ▶ Si tenemos una gramática G_1 con símbolo inicial S_1
- ▶ Si tenemos una gramática G_2 con símbolo inicial S_2
- La gramática G con un nuevo símbolo inicial S, las reglas:

$$S \rightarrow S_1 \mid S_2$$

y todas las reglas de G_1 y G_2 cumple

$$L(G) = L(G_1) \cup L(G_2)$$

Los incontextuales son cerrados por unión: ejemplo

- $\{0^n 1^m \mid m = n \text{ ó } m = 2n\} =$ $\{0^n 1^m \mid m = n\} \cup \{0^n 1^m \mid m = 2n\}$
- G_1 genera $\{0^n 1^m | m = n\}$:

$$S_1
ightarrow 0S_11 \mid \epsilon$$

• G_2 genera $\{0^n 1^m \mid m = 2n\}$:

$$S_2 \rightarrow 0S_211 \mid \epsilon$$

▶ La gramática G con un nuevo símbolo inicial S, las reglas:

$$S \rightarrow S_1 \mid S_2$$

y todas las reglas de G_1 y G_2 cumple

$$L(G) = L(G_1) \cup L(G_2)$$

Los incontextuales son cerrados por concatenación

- ▶ Si tenemos una gramática G_1 con símbolo inicial S_1
- ▶ Si tenemos una gramática G_2 con símbolo inicial S_2
- La gramática G con un nuevo símbolo inicial S, las reglas:

$$S \rightarrow S_1 S_2$$

y todas las reglas de G_1 y G_2 cumple

$$L(G) = L(G_1) \cdot L(G_2)$$

Los incontextuales son cerrados por concatenación: ejemplo

- $\{0^n 1^n 2^m 1^m \mid n, m \in \mathbb{N}\} = \{0^n 1^n \mid n \in \mathbb{N}\} \cdot \{2^m 1^m \mid m \in \mathbb{N}\}$
- ▶ G_1 genera $\{0^n1^n \mid n \in \mathbb{N}\}$:

$$S_1 \rightarrow 0S_11 \mid \epsilon$$

▶ G_2 genera $\{2^m1^m \mid m \in \mathbb{N}\}$:

$$S_2 \rightarrow 2S_21 \mid \epsilon$$

▶ La gramática G con un nuevo símbolo inicial S, las reglas:

$$S \rightarrow S_1 S_2$$

y todas las reglas de G_1 y G_2 cumple

$$L(G) = L(G_1) \cdot L(G_2)$$

Los incontextuales son cerrados por estrella de Kleene

- ightharpoonup Si tenemos una gramática G_1 con símbolo inicial S_1
- La gramática G con un nuevo símbolo inicial S, las reglas:

$$S \rightarrow SS_1 \mid \epsilon$$

y todas las reglas de G_1 cumple

$$L(G) = L(G_1)^*$$

Los incontextuales son cerrados por estrella de Kleene: ejemplo

- $(0^n 1^n | n)^*$
- ▶ G_1 genera $\{0^n1^n \mid n \in \mathbb{N}\}$:

$$S_1 \rightarrow 0S_11 \mid \epsilon$$

La gramática G con un nuevo símbolo inicial S, las reglas:

$$S \rightarrow SS_1 \mid \epsilon$$

y todas las reglas de G_1 cumple

$$L(G) = L(G_1)^*$$

Además ...

- Los incontextuales NO son cerrados por intersección y complemento (lo veremos)
- La intersección de regular e incontextual es incontextual (no veremos la demostración, es parecida a la intersección de regulares)
- ► La segunda afirmación es útil para ver que un lenguaje no es incontextual

Contenido de este tema

- 1. Introducción a los autómatas de pila
- 2. Definiciones
- 3. Equivalencia con gramáticas
- 4. Propiedades de clausura de los incontextuales
- 5. Lema de bombeo: lenguajes no incontextuales

Lema de bombeo para incontextuales

- ▶ Se trata de un lema que nos permite demostrar que algunos lenguajes no son incontextuales $(\{a^nb^nc^n \mid n \in \mathbb{N}\})$
- Está basado en los bucles de las gramáticas, por ejemplo $S \rightarrow aSb$ o bien $S \rightarrow Sb$
- Si tienes una derivación de la palabra

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaaabbbb$$

puedes repetir el bucle $S \to aSb$ y generar palabras más largas usando $S \Rightarrow^* a^nSb^n$

▶ Lo mismo si tienes reglas $A \rightarrow aBa$ y $B \rightarrow bA$

$$S \Rightarrow AB \Rightarrow aBaB \Rightarrow abAaB$$

puedes repetir el bucle $A \Rightarrow^* abAa$ y generar palabras más largas usando $A \Rightarrow^* (ab)^n Aa^n$

Lema de bombeo para incontextuales

Lema de bombeo

- Dado un lenguaje infinito A
- ▶ si $\forall N \exists w \text{ con } w \in A$, $|w| \geq N$
 - ▶ tal que $\forall u, v, x, y, z$ con w = uvxyz, $|vy| \ge 1$ y $|vxy| \le N$
 - ▶ $\exists i \text{ con } uv^i x y^i z \notin A$
- entonces A no es incontextual

Intuitivamente

- Dado un lenguaje infinito A
- ▶ si existe una palabra $w \in A$ todo lo larga que quiera
- tal que para cualquier partición w no se puede bombear
- entonces A no es incontextual

Ejemplo, $A = \{a^n b^n c^n \mid n \in \mathbb{N}\}$

- ▶ Para todo *N* existe una palabra en *A*,
 - $w = a^{N}b^{N}c^{N} |w| = 3N \ge N$
- ▶ tal que para cualquier partición de w u, v, x, y, z con w = uvxyz, $|vy| \ge 1$ y $|vxy| \le N$,
 - ▶ la partición puede ser

$$vxy = a^{r}b^{s}$$
 $v = a^{t}, y = a^{l}b^{s}, t + l + s \ge 1$
 $vxy = a^{r}b^{s}$ $v = a^{t}b^{l}, y = b^{j}, t + l + j \ge 1$
 $vxy = b^{r}c^{s}$ $v = b^{t}, y = b^{l}c^{s}, t + l + s \ge 1$
 $vxy = b^{r}c^{s}$ $v = b^{t}c^{l}, y = c^{j}, t + l + j \ge 1$

- ▶ $\exists i \text{ con } uv^i xy^i z \notin A$
 - ► caso $vxy = a^r b^s$, $v = a^t$, $y = a^l b^s$, $t + l + s \ge 1$, para i = 2, $uv^2 xv^2 z = a^{N-r} a^{2t} a^{r-t-l} a^l b^s a^l b^s b^{N-s} c^N$
 - si $s \ge 1$ y si s = 0 se puede ver que $uv^2xy^2z \notin A$
 - Hay que mirar los otros tres casos
- luego A no es incontextual

Lema de bombeo para incontextuales

- ► Se parece al lema de bombeo para regulares
- ▶ La principal diferencia es que se bombean dos trozos a la vez
- ▶ Hay que considerar las particiones en 5 trozos con $|vy| \ge 1$ y $|vxy| \le N$
- ► En general al ser 5 trozos suelen salir más casos a tener en cuenta

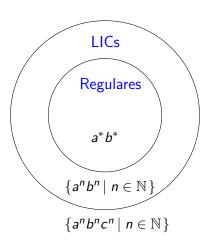
Otras formas de ver que un lenguaje no es incontextual

Usando las propiedades de clausura:

- Si A y B son incontextuales entonces A ∪ B es incontextual.
 Si A ∪ B no es incontextual y B es incontextual entonces
 A no es incontextual.
- ▶ Si A es incontextual y B es regular entonces $A \cap B$ es incontextual.
 - Si $A \cap B$ no es incontextual y B es regular entonces A no es incontextual.

Lenguaje incontextual = Leng. independiente del contexto =LIC

Regulares e incontextuales



Bibliografía

- ► Sipser (2a edición), secciones 2.2. y 2.3.
- ▶ Kelley, secciones 3.6 a 3.8.