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Lecture IX

RANDOM SEARCH TREES

Recall the concept of binary search trees from Lecture III. This lecture focuses on a class of random
binary search trees called random treaps. Basically, treaps are search trees whose shape is determined by
the assignment of priorities to each key. If the priorities are chosen randomly, the result is a random treap
with expected height of Θ(logn). Why is expected Θ(logn) height interesting when worst case Θ(logn) is
achievable? One reason is that randomized algorithms are usually simpler to implement. Roughly speaking,
they do not have to “work too hard” to achieve balance, but can rely on randomness as an ally.

The analysis of random binary search trees has a long history. The analysis of binary search trees under
random insertions only was known for a long time. It had been an open problem to analyze the expected
behavior of binary search trees under insertions and deletions. A moment reflection will indicate the difficulty
of formulating such a model. As an indication of the state of affairs, a paper A trivial algorithm whose analysis
isn’t by Jonassen and Knuth [2] analyzed the random insertion and deletion of a binary tree containing no
more than 3 items at any time. The currently accepted probabilistic model for random search trees is due
to Aragon and Seidel [1] who introduced the treap data-structure.1 Prior to the treap solution, Pugh [3]
introduced a simple but important data structure called skip list whose analysis is similar to treaps. The
real breakthrough of the treap solution lies in its introduction of a new model for randomized search trees,
thus changing2 the ground rules for analyzing random trees.

Notations. We write [i..j] for the set {i, i+1, . . . , j− 1, j} where i ≤ j are integers. Often, the set of keys
is [1..n]. If u is an item, we write u.Key and u.Priority for the key and priorities associated with u. Since
we usually confuse an item with the node it is stored in, we may also write u.Parent or u.leftChild. By
convention, that u.Parent = u if u is the root and u.leftChild = u if u has no left child.

§1. Skip Lists

It is instructive to first look at the skip list data structure. Pugh [3] gave experimental evidence that its
performance is comparable to non-recursive AVL trees algorithms, and superior to splay trees (the experi-
ments use 216 integer keys).

Suppose we want to maintain an ordered list L0 of keys x1 < x2 < · · · < xn. We shall construct a
hierarchy of sublists

L0 ⊇ L1 ⊇ · · · ⊇ Lm−1 ⊇ Lm

where Lm is only empty list in this hierarchy. Each Li+1 is a random sample of Li in the following sense:
each key of Li is put into Li+1 with probability 1/2. The hierarchy stops the first time the list becomes
empty. In storing these lists, we shall add an artificial key −∞ at the head of each list. Let L′

i be the list Li

augmented with −∞. It is sufficient to store the lists L′
i as a linked list with −∞ as the head (a singly-linked

list is sufficient). In addition, corresponding keys in two consecutive levels shares a two-way link (called the
up- and down-links, respectively. This is illustrated in figure 1.

Clearly, the expected length of Li is E[|Li|] = n2−i. Let us compute the expected height E[m]. The
probability of any key of L0 appearing in level i ≥ 0 is 1/2i. Now m ≥ i+ 1 iff some key xj appears level i.

1The name “treap” comes from the fact that these are binary search trees with the heap property. It was originally coined
by McCreight for a different data structure.

2Another historical example in the same category is Alexander the Great’s solution to the Gordan Knot problem.
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Figure 1: A skip list on 8 keys.

Since there are n choices for j, we have

Pr{m ≥ i+ 1} ≤ n

2i
.

Hence
E[m] =

∑
i≥1 iPr{m = i}

=
∑

i≥1 Pr{m ≥ i} (standard trick)
=

∑
i≤�lg n� Pr{m ≥ i}+∑

j>�lg n� Pr{m ≥ j} (another one!)
≤ 
lg n�+∑

j>�lg n�
n

2j−1

≤ 
lg n�+∑
j>�lg n�

1
2j−1−lg n

≤ 
lg n�+ 2.
Have we really achieved anything special? You rightly think: why not just deterministically omit every
other item in Li to form Li+1? then m ≤ 
lg n� with less fuss! The reason why the probabilistic solution is
superior is because the analysis will hold up even in the presence of insertion or deletion of arbitrary items.
The deterministic solution may look very bad for particular sequence of deletions, for instance (how?). The
critical idea is that the probabilistic behavior of each item x is independent of the other items in the list: it
is determined by its own sequence of coin tosses to decide whether to promote x to the next level.

Analysis of Lookup. Our algorithm to lookup a key k in a skip list returns the largest key k0 in L0 such
that k0 ≤ k. If k is less than the smallest key x1 in L0, we return the special value k0 = −∞.

You may also be interested in finding the smallest key k1 in L0 such that k1 ≥ k. But k1 is either k0 or
the successor of k0 in L0. If k0 has no successor, then we imagine “+∞” as its successor.

In general, define ki (i = 0, . . . ,m) to be the largest key in level L′
i that is less than or equal to k. So

km = −∞. In general, given ki+1 in level i+ 1, we can find ki by following a down-link and then “scanning
forward” in search of ki. The search ends after the scan in list L0: we end up with the element k0. Let us
call the sequence of nodes visited from km to k0 the scan-path. Let s be the random variable denoting the
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length of the scan-path. If si is the number of nodes of the scan-path that that lies in L′
i, then we have

s =
m∑

i=0

si.

The expected cost of looking up key k is Θ(E[s]).

Lemma 1 E[s] < 2 
lg n�+ 4.

Before presenting the proof, it is instructive to give a wrong argument: since E[m] ≤ lnn+3, and E[si] < 2
(why?), we have E[s] ≤ 2(lnn + 2). This would be correct if each si is i.i.d. and also independent of m
(see §VII.5). Unfortunately, si is not independent of m (e.g., si = 0 iff m < i).

Proof of lemma 1. Following Pugh, we introduce the random variable

s(�) =
�−1∑

i=0

si

where � ≥ 0 is any constant (the threshhold level). By definition, s(0) = 0. We note that
s ≤ s(�) + |L�|+ (m− �+ 1).

To see this, note that the edges in the scan-path at levels � and above involve at most |L�| horizontal edges,
and at most m− � vertical (down-link) edges.

Choose � = 
lg n�. Then E[|L�|] = n/2� ≤ 1. Also E[m − � + 1] ≤ 3 since E[m] ≤ 
lgn� + 2. The next
lemma will imply E[s(�)] ≤ 2 
lg n�. Combining these bounds yields lemma 1.

A Random Walk. To bound s(�), we introduce a random walk on the lattice N× N.

(0, 0)
987654321

1

2

3

4

5

Figure 2: Random walk with X9,5 = 12.

Let ut denote the position at time t ∈ N. We begin with u0 = (0, 0), and we terminate at time t if
ut = (x, y) with either x = n or y = �. At each discrete time step, we can move from the current position
(x, y) to (x, y+1) with probability p (0 < p < 1) or to (x+1, y) with probability q = 1−p. So p denotes the
probability of “promotion” to the next level. Let Xn,� denoting the number of steps in this random walk at
termination. For p = 1/2, we obtain the following connection with s(�):

E[Xn,�] ≥ E[s(�)]. (1)
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To see this, imagine walking along the scan-path of a lookup, but in the reverse direction. We start from
key k0. At each step, we get to move up to the next level with probability p or to scan backwards one step
with probability q = 1 − p. There is a difference, however, between a horizontal step in our random walk
and a backwards scan of the scan-path. In the random walk, each step is unit length, but the backwards
scan may take a step of larger lengths with some non-zero probability. But this only means that Xn,� � s(�)
(denoting stochastic domination, §VII.3). Hence (1) is an inequality instead of an equality. For example,
in the skip list of figure 1, if k0 = x8 then s(�) = s(4) = 7 while Xn,� = X8,4 = 10.

Lemma 2 For all � ≥ 0, E[Xn,�] ≤ �/p.

Proof. Note that this bound removes the dependence on n. Clearly E[Xn,0] = 0, so assume � ≥ 1. Consider
what happens after the first step: with probability p, the random walk moves to the next level, and the
number of steps in rest of the random walk is distributed as Xn,�−1; similarly, with probability 1 − p, the
random walk remain in the same level and the number of steps in rest of the random walk is distributed as
Xn−1,�. This gives the recurrence

E[Xn,�] = 1 + p · E[Xn,�−1] + q · E[Xn−1,�].

Since E[Xn−1,�] ≤ E[Xn,�], we have

E[Xn,�] ≤ 1 + p · E[Xn,�−1] + q · E[Xn,�].

This simplifies to

E[Xn,�] ≤ 1
p
+ E[Xn,�−1].

This implies E[Xn,�] ≤ �
p since E[Xn,0] = 0. Q.E.D.

If � = 
lgn� and p = 1/2 then
E[s(�)] ≤ E[Xn,�] ≤ 2 
lgn� ,

as noted in the proof of lemma 1.

We leave as an exercise to the reader to specify, and to analyze, algorithms for insertion and deletion in
skip lists.

Exercises

Exercise 1.1:
(i) The expected space for a skip list on n keys is O(n).
(ii) Describe an algorithm for insertion and analyze its expected cost.
(iii) Describe an algorithm for deletion and analyze its expected cost. ✷

Exercise 1.2: The above (abstract) description of skip lists allows the possibility that Li+1 = Li. So, the
height m can be arbitrarily large.
(i) Pugh suggests some á priori maximum bound on the height (say, m ≤ k lgn) for some small constant
k. Discuss the modifications needed to the algorithms and analysis in this case.
(ii) Consider another simple method to bound m: if Li+1 = Li should happen, we simply omit the last
key in Li from Li+1. This implies m ≤ n. Re-work the above algorithms and complexity analysis for
this approach. ✷
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Exercise 1.3: Determine the exact formula for E[Xn,�]. ✷

Exercise 1.4: We have described skip lists in which each key is promoted to the next level with probability
p = 1/2. Give reasons for choosing some other p �= 1/2. ✷

§2. Treaps

In our treatment of treaps, we assume that each item is associated with a priority as well as the usual
key. A treap T on a set of items is a binary search tree with respect to the keys of items, and a max-heap
with respect to the priorities of items. Recall that a tree is a max-heap with respect to the priorities if the
priority at any node is greater than the priorities in its descendents.

Suppose the set of keys and set of priorities are both [1..n]. Let the priority of key k be denoted σ(k).
We assume σ is a permutation of [1..n]. We explicitly describe σ by listing the keys, in order of decreasing
priority:

σ = (σ−1(n), σ−1(n− 1), . . . , σ−1(1)). (2)

We sometimes call σ a list in reference to this representation. In general, if the range of σ is not in [1..n],
we may define analogues of (2): a list of all the keys is called a σ-list if the priorities of the keys in the list
are non-increasing. So σ-lists are unique if σ assigns unique keys.

Example. Let σ = (5, 2, 1, 7, 3, 6, 4). So the key 5 has highest priority of 7 and key 4 has priority 1. The
corresponding treap is given by figure 3 where the key values are written in the nodes.

5

2

1 3

4

7

6

Figure 3: Treap T7(σ) where σ = (5, 2, 1, 7, 3, 6, 4).

There is no particular relation between the key and the priority of an item. Informally, a random treap
is a treap whose items are assigned priorities in some random manner.

Fact 1 For any set S of items, there is a treap whose node set is S. If the keys and priorities are unique
for each item, the treap is unique.

Proof. The proof is constructive: given S, pick the item u0 with highest priority to be the root of a
treap. The remaining items are put into two subsets that make up the left and right subtrees, respectively.
The construction proceeds inductively. If keys and priorities are unique then u0 and the partition into two
subsets are unique. Q.E.D.
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Left paths and left spines. The left path at a node u0 is the path (u0, . . . , um) where each ui+1 is the
left child of ui and the last node um has no left child. The node um is called the tip of the left path. The
left spine at a node u0 is the path (u0, u1, . . . , um) where (u1, . . . , um) is the right path of the left child of
u0. If u0 has no left child, the left spine is the trivial path (u0) of length 0. The right path and right spine is
similarly defined. The spine height of u is the sum of the lengths of the left and right spines of u. As usual,
by identifying the root of a tree with the tree, we may speak of the left path, right spine, etc, of a tree. Note
that the smallest item in a binary search tree is at the tip of the left path.

EXAMPLE: In figure 3, the left and right paths at node 2 are (2, 1) and (2, 3, 4), respectively. The left
spine of the tree (5, 2, 3, 4). The spine height of the tree is 3 + 2 = 5.

§3. Almost-treap and Treapification

We define a binary search tree T to be an almost-treap at u (u ∈ T ) if T is not a treap, but we can adjust
the priority of u so that T becomes a treap. Roughly speaking, this means the heap property is satisfied
everywhere except at u. Thus if we start with a treap T , we can change the priority of any node u to get an
almost-treap at u. We call an almost-treap an under-treap if the priority of u must be adjusted upwards to
get a treap, and an over-treap otherwise.

Defects. Suppose T is an over-treap at u. Then there is a unique maximal prefix π of the path from u to
the root such that the priority of each node in π is less than the priority of u. The number of nodes in π is
called the defect in T . Note that u is not counted in this prefix.

Next suppose T is an under-treap at u. Then there are unique maximal prefixes of the left and right
spines at u such that the priority of each node in these prefixes is greater than the priority of u. The total
number of nodes in these two prefixes is called the defect in T .

A pair (u, v) of nodes is a violation if either u is an ancestor of v but u has lower priority than v, or u
is a descendent of v but with higher priority. It is not hard to check that that number of violations in an
over-treap is equal to the defect. But this is not true in the case of an under-treap at u: this is because we
only count violations along the two spines of u. We make some simple observations.

Fact 2 Let T be an almost-treap at u with k ≥ 1 defects. Let v be a child of u with priority at least that of
its sibling (if any).

(a) If T is an over-treap then rotating at u produces3 an over-treap with k − 1 defects.
(b) If T is an over-treap, v is defined and and v.Priority < u.Priority then rotate(v) produces an

over-treap with k + 1 defects.
(c) If T be an under-treap and v is defined then a rotation at v results in an under-treap at u with k − 1

defects.

We now give a simple algorithm to convert an almost-treap into a treap. The argument to the algorithm
is the node u if the tree is an almost-treap at u. It is easy to determine from u whether the tree is a treap
or an under-treap or an over-treap.

3If k = 1, the result is actually a treap. But we shall accept the terminology “almost-treap with 0 defects” as a designation
for a treap.
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Algorithm Treapify(u, T ):
Input: T is an almost-treap at u.
Output: a treap T .

if u.Priority > u.Parent.Priority
then Violation=OverTreap elseViolation=UnderTreap.

switch(Violation)
case OverTreap:

do rotate(u) until
u.Priority ≤ u.Parent.Priority.

case UnderTreap:
let v be the child of u with the largest priority.
while u.Priority < v.Priority do

rotate(v).
v ← the child of u with largest priority.

We let the reader verify the following observation:

Fact 3 Let T be an almost-treap at u.
a) (Correctness) Treapify(u) converts T into a treap.
b) If T is an under-treap, then number of rotations is at most the spine height of u.
c) If T is an over-treap, the number of rotations is at most the depth of u.

Exercises

Exercise 3.1: Let n = 5 and σ = (3, 1, 5, 2, 4) i.e., σ(3) = 5 and σ(4) = 1. Draw the treap. Next, change
the priority of key 4 to 10 (from 1) and treapify. Next, change the priority of key 3 to 0 (from 5) and
treapify. ✷

Exercise 3.2: Start with a treap T . Compare treapifying at u after we increase the priority of u by two
different amounts. Is it true that the treapifying work is of the smaller increase is no more than the
work for the larger increase? What if we decrease the priority of u instead? ✷

§4. Operations on Treaps

We show the remarkable fact that all the usual operations on binary search trees can be unified within
a simple framework based on treapification.

In particular, we show how implement the following binary search tree operations:

(a) Lookup(Key,Tree)→Item,
(b) Insert(Item,Tree),
(c) Delete(Node,Tree),
(d) Successor(Item,Tree)→Item,
(e) Min(Tree)→Item,
(f) DeleteMin(Tree)→Item,
(g) Split(Tree1,Key)→Tree2,
(h) Join(Tree1,Tree2).
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The meaning of these operations are defined as in the case of binary search trees. So the only twist
is to simultaneously maintain the properties of a max-heap with respect to the priorities. First note that
the usual binary tree operations of Lookup(Key,Tree), Successor(Item,Tree), Min(Tree) and Max(Tree) can
be extended to treaps without change since these do not depend modify the tree structure. Next consider
insertion and deletion.

(i) Insert(u, T ): we first insert in T the item u ignoring its priority. The result is an almost-treap at u.
We now treapify T at u.

(ii) Delete(v, T ): assuming no item in T has priority −∞, we first change the priority of the item at node
v into −∞. Then we treapify the resulting under-treap at v. As a result, v is now a leaf which we can delete
directly.

We can implement DeleteMin(Tree) using Min(Tree) and Delete(item,Tree). It is interesting to observe
that this deletion algorithm for treaps translates into a new deletion algorithm for ordinary binary search
trees: to delete node u, just treapify at u by pretending that the tree is an under-treap at u until u has at
most one child. Since there are no priorities in ordinary binary search trees, we can rotate at any child v of
u while treapifying.

Split and join of treaps. Let T be a treap on a set S of items. We can implement these two operations
easily using insert and deletes.

(i) To split T at k: We insert a new item u = (k,∞) (i.e., item u has key k and infinite priority). This
yields a new treap with root u, and we can return the left subtree and right subtree to be the desired TL, TR.

(ii) To join TL, TR: first perform a Min(TR) to obtain the minimum key k∗ in TR. Form the almost-treap
whose root is the artificial node (k∗,−∞) and whose left and right subtrees are TL and TR. Finally, treapify
at (k∗,−∞) and delete it.

The beauty of treap algorithms is that they are reduced to two simple subroutines: binary insertion and
treapification.

Exercises

Exercise 4.1: For any binary search tree T and node u ∈ T , we can assign priorities to items such that T
is a treap and a deletion at u takes a number of rotation equal to the the spine height of u. ✷

Exercise 4.2: Modify the definition of the split operation so that all the keys in SR is strictly greater than
the key k. Show how to implement this version. ✷

Exercise 4.3: Define “almost-treap at U” where U is a set of nodes. Try to generalize all the preceding
results. ✷

Exercise 4.4: Alternative deletion algorithm: above, we delete a node u by making it a leaf. Describe an
alternative algorithm where we step the rotations as soon as u has only one child. We then delete u
by replacing u by its in-order successor or predecessor in the tree. Discuss the pros and cons of this
approach. ✷
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§5. Searching in a Random Treap

We analyze the expected cost of searching for a key in a random treap. Let us set up the random model.
Assume the set of keys in the treap is [1..n] and Sn the set of permutations on [1..n]. The event space is
(Sn, 2Sn) with a uniform probability function Prn. Each permutation σ ∈ Sn represents a choice of priority
for the keys [1..n] where σ(k) is the priority for key k. Recall our “list” convention (2) (§1) for writing σ.

The random treap on the keys [1..n] is Tn defined as follows: for σ ∈ Sn, Tn(σ) is the treap on keys [1..n]
where the priorities of the keys are specified by σ as described above. There are three ways in which such a
sample space arise.
• We randomly generate σ directly in a uniform manner. In section §6 we describe how to do this.
•We have a fixed but otherwise arbitrary continuous distribution function F : R→ [0, 1] and the priority of
key i is a r.v. Xi ∈ [0, 1] with distribution F . The set of r.v.’s X1, . . . , Xn are i.i.d.. In the continuous case,
the probability that Xi = Xj is negligible. In practice, we can approximate the range of F by a suitably
large finite set of values to achieve the same effect.
• The r.v.’s X1, . . . , Xn could be given a uniform probability distribution if successive bits of each Xi is
obtained by tossing a fair coin. Moreover, we will generate as many bits of Xi as are needed by our
algorithm when comparing priorities. It can be shown that the expected number of bits needed is a small
constant.

We frequently relate a r.v. of Prn to another r.v. of Prk for k �= n. The following simple lemma illustrates
a typical setting.

Lemma 3 Let X,Y be r.v.’s of Prn,Prk (respectively) where 1 ≤ k < n. Suppose there is a map µ : Sn → Sk

such that
(i) for each σ′ ∈ Sk, the set µ−1(σ′) of inverse images has size n!/k!, and
(ii) for each σ ∈ Sn, X(σ) = Y (µ(σ)).
Then E[X ] = E[Y ].

Proof.

E[X ] =

∑
σ∈Sn

X(σ)
n!

=

∑
σ′∈Sk

(n!/k!)Y (σ′)
n!

=

∑
σ′∈Sk

Y (σ′)
k!

= E[Y ].

Q.E.D.

The map µ that “erases” from the string σ all keys greater than k has the properties stated in the lemma.
E.g., if n = 5, k = 3 then σ(3, 1, 4, 2, 5) = (3, 1, 2) and σ−1(3, 1, 2) = 4 · 5 = 20.

Recalling our example in figure 3: notice that if we insert the keys [1..7] into an initially empty binary
search tree in order of decreasing priority, (i.e., first insert key 5, then key 2, then key 1, etc), the result is
the desired treap. This illustrates the following lemma:

Lemma 4 Suppose we repeatedly insert into a binary search tree the following sequence of keys
σ−1(n), σ−1(n − 1), . . . , σ−1(1), in this order. If the initial binary tree is empty, the final binary tree is
in fact the treap Tn(σ).

Proof. The proposed sequence of insertions results in a binary search tree, by definition. We only have to
check that the heap property. This is seen by induction: the first insertion clearly results in a heap. If the
ith insertion resulted in a heap, then the (i+1)st insertion is an almost heap. Since this newly inserted node
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is a leaf, and its rank is less than all the other nodes already in the tree, it cannot cause any violation of the
heap property. So the almost heap is really a heap. Since treaps are unique for unique keys and ranks, this
tree must be equal to Tσ. Q.E.D.

The above lemma suggests that a random treap can be regarded as a binary search tree that arises from
random insertions.

Random ancestor sets Ak. We are going to fix k ∈ [1..n] as the key we are searching for in the random
treap Tn. To analyze the expected cost of this search, we define the random set Ak : Sn → 2[1..n] where

Ak(σ) :={j : j is an ancestor of k in Tn(σ)}.
By definition, k ∈ Ak(σ). Clearly, the cost of LookUp(Tn, k) is equal to Θ(|Ak|). Hence our goal is to
determine E[|Ak|]. To do this, we split the random variable |Ak| into two parts:

|Ak| = |Ak ∩ [1..k]|+ |Ak ∩ [k..n]| − 1.
By the linearity of expectation, we can determine the expectations of the two parts separately.

Running k-maximas of σ. We give a descriptive name to elements of the set

Ak(σ) ∩ [1..k].
A key j is called a running k-maxima of σ if j ∈ [1..k] and for all i ∈ [1..k],

σ(i) > σ(j)⇒ i < j.

Of course, σ(i) > σ(j) just means that i appears before j in the list

(σ−1(n), . . . , σ−1(1)).

In other words, as we run down this list, by the time we come to j, it must be bigger than any other elements
from the set [1..k] that we have seen so far. Hence we call j a “running maxima”.

EXAMPLE. Taking σ = (4, 3, 1, 6, 2, 7, 5) as in figure 3, the running 7-maximas of σ are 4, 6 and 7. Note
that no running k-maximas appears after k in the list σ.

Lemma 5 j ∈ Ak(σ) ∩ [1..k] iff j is a running k-maxima of σ.

Proof. (⇒) Suppose j ∈ Ak(σ) ∩ [1..k]. We want to show that j is a running k-maxima. That is, for all
i ∈ [1..k] and σ(i) > σ(j), we must show that i < j. Look at the path πj from the root to j that is traced
while inserting j. It will initially retrace the corresponding path πi for i (which was inserted earlier). Let
i′ be the last node that is common to πi and πj (so i′ is the least common ancestor of i and j). We allow
the possibility i = i′ (but surely j �= i′ since j = i′ would make j an ancestor of i, violating the max-heap
property). There are two cases: j is either (a) in the right subtree of i′ or (b) in the left subtree of i′. We
claim that it cannot be (b). To see this, consider the path πk traced by inserting k. Since j is an ancestor
of k, πj must be a prefix of πk. If j is a left descendent of i′, then so is k. Since i is either i′ or lies in the
left subtree of i′, this means i > k, contradiction. Hence (a) holds and we have j > i′ ≥ i.

(⇐) Conversely, suppose j is a running k-maxima in σ. It suffices to show that j ∈ Ak(σ). This is
equivalent to showing

Aj(σ) ⊆ Ak(σ).
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View Tn(σ) as the result of inserting a sequence of keys by decreasing priority. At the moment of inserting k,
key j has already been inserted. We just have to make sure that the search algorithm for k follows the path
πj from the root to j. This is seen inductively: clearly k visits the root. Inductively, suppose k is visiting
a key i on the path πj . If i > k then surely both j and k next visit the left child of i. If i < k then j > i
(since j is a running maxima) and hence again both j and k next visit the right child of i. This proves that
k eventually visits j. Q.E.D.

Running k-minimas of σ. Define a key j to be a running k-minima of σ if j ∈ [k..n] and for all i ∈ [k..n],

σ(i) > σ(j)⇒ j < i.

With σ = (4, 3, 1, 6, 2, 7, 5) as before, the running 2-minimas of σ are 4, 3 and 2. As for running k-maximas,
no running k-minimas appear after k in the list σ. We similarly have:

Lemma 6 Ak(σ) ∩ [k..n] is the set of running k-minimas of σ.

Define the random variable Un where Un(σ) is the number of running n-maximas in σ ∈ Sn.

We will show that Uk has the same expected value as |Ak ∩ [1..k]|. Note that Uk is a r.v. of Prk while
|Ak ∩ [1..k]| is a r.v. of Prn. Similarly, define the r.v. Vn where Vn(σ) is the number of running 1-minimas in
σ ∈ Sn.

Lemma 7
(a) E[|Ak ∩ [1..k]|] = E[Uk].
(b) E[|Ak ∩ [k..n]|] = E[Vn−k+1].

Proof. Note that the r.v. |Ak ∩ [1..k]| is related to the r.v. Uk exactly as described in lemma 3. This is
because in each σ ∈ Sn, the keys in [k + 1..n] are clearly irrelevant to the number we are counting. Hence
(a) is a direct application of lemma 3. A similar remark applies to (b) because the keys in [1..k − 1] are
irrelevant in the running k-minimas. Q.E.D.

We give a recurrence for the expected number of running k-maximas.

Lemma 8
(a) E[U1] = 1 and E[Uk] = E[Uk−1] + 1

k for k ≥ 2. Hence E[Uk] = Hk

(b) E[V1] = 1 and E[Vk] = E[Vk−1] + 1
k for k ≥ 2. Hence E[Vk] = Hk

Proof. We consider (a) only, since (b) is similar. Consider the map taking σ ∈ Sk to σ′ ∈ Sk−1 where
we delete 1 from the sequence (σ−1(k), . . . , σ−1(1)) and replace each remaining key i by i − 1, and take
this sequence as the permutation σ′. For instance, σ = (4, 3, 1, 5, 2) becomes σ′ = (3, 2, 4, 1). Note that
U5(σ) = 2 = U4(σ′). On the other hand, if σ = (1, 4, 3, 5, 2) then σ′ = (3, 2, 4, 1). and U5(σ) = 3 and
U4(σ′) = 2. In general, we have

Uk(σ) = Uk−1(σ′) + δ(σ)
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where δ(σ) = 1 or 0 depending on whether or not σ(1) = k. For each σ′ ∈ Sk−1, that there are exactly k
permutations σ ∈ Sk that maps to σ′; moreover, of these k permutations, exactly one has δ(σ) = 1. Thus

E[Uk] =

∑
σ∈Sk

Uk(σ)
k!

=

∑
σ∈Sk

(Uk−1(σ′) + δ(σ))
k!

=

∑
σ′∈Sk−1

(1 + kUk−1(σ′))

k!

=
1
k
+

∑
σ′∈Sk−1

Uk−1(σ′)

(k − 1)!
=

1
k
+ E[Uk−1].

Clearly, the solution to E[Uk] is the kth harmonic number Hk =
∑k

i=1 1/i. Q.E.D.

The depth of k in the treap Tn(σ) is

|Ak(σ)| − 1 = |Ak(σ) ∩ [1..k]|+ |Ak(σ) ∩ [k..n]| − 2.

Since the cost of LookUp(k) is proportional to 1 plus the depth of k, we obtain:

Corollary 9 The expected cost of LookUp(k) in a random treap of n elements is proportional to

E[Uk] + E[Vn−k+1]− 1 = Hk +Hn−k+1 − 1 ≤ 1 + 2 lnn.

Exercises

Exercise 5.1: (i) Prove lemma 6. (ii) Minimize Hk +Hn−k+1 for k ranging over [1..n]. ✷

Exercise 5.2:
(i) Show that the variance of Un is O(log n). In fact, Var(Un) < Hn.
(ii) Use Chebyshev’s inequality to show that the probability that Un is more than twice its expected
value is O( 1

log n ). ✷

§6. Insertion and Deletion

A treap insertion has two phases:
Insertion Phase. This puts the item in a leaf position, resulting in an almost-treap.
Rotation Phase. This performs a sequence of rotations to bring the item to its final position.

The insertion phase has the same cost as searching for the successor or predecessor of the item to be inserted.
By the previous section, this work is expected to be Θ(logn). What about the rotation phase?

Lemma 10 For any set S of items and u ∈ S, there is an almost-treap T at u in which u is a leaf and the
set of nodes is S. Moreover, if the keys and priorities in S are unique, then T is unique.
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Proof. To see the existence of T , we first construct the treap T ′ on S − {u}. Then we insert u into T ′ to
get an almost-treap at u. For uniqueness, we note that when the keys and priorities are unique and u is a
leaf of an almost-treap T , then the deletion of u from T gives a unique treap T ′. On the other hand, T is
uniquely determined from u and T ′. Q.E.D.

This lemma shows that insertion and deletion are inverses in a very strong sense. Recall that for deletion,
we assume that we are given a node u in the treap to be deleted. Then there are two parts again:

Rotation Phase. This performs a sequence of rotations to bring the node to a leaf position.
Deletion Step. This simply deletes the leaf.

We now clarify the precise sense in which rotation and deletion are inverses of each other.

Corollary 11 Let T be a treap containing a node u and T ′ be the treap after deleting u from T . Let T+

be the almost-treap just before the rotation phase while inserting u into T ′. Let T− be the almost-treap just
after the rotation phase while deleting u from T .

(i) T+ and T− are identical.
(ii) The intermediate almost-treaps obtained in the deletion rotations are the same as the intermediate

almost-treaps obtained in the insertion rotations (but in the opposite order).

In particular, the costs of the rotation phase in deletion and in insertion are equal. Hence it suffices to
analyze the cost of rotations in when deleting a key k. This cost is O(Lk + Rk) where Lk and Rk are the
lengths of the left and right spines of k. These lengths are at most the depth of the tree, and we already
proved that the expected depth is O(log n). Hence we conclude: the expected time to insert into or delete
from a random treap is O(logn).

In this section, we give a sharper bound: the expected number of rotations during an insertion or deletion
is at most 2.

Random left-spine sets Bk. Let us fix the key k ∈ [1..n] to be deleted. We want to determine the
expected spine height of k. We compute the left and right spine heights separately. For any σ ∈ Sn and any
key k ∈ [1..n], define the set

Bk(σ) :={j : j is in the left spine of k}.

Triggered running k-maxima. Again, we can give a descriptive name for elements in the random set Bk.
Define j to be a triggered running k-maxima of σ if j ∈ [1..k − 1] and σ(k) > σ(j) and for all i ∈ [1..k − 1],

σ(i) > σ(j)⇒ i < j.

In other words, as we run down the list

(σ−1(n), . . . , k, . . . , j, . . . , σ−1(1)),

by the time we come to j, we must have seen k (this is the trigger) and j must be bigger than any other
elements in [1..k − 1] that we have seen so far. Note that the other elements in [1..k − 1] may occur before
k in the list (i.e., they need not be triggered).

With σ = (4, 3, 1, 6, 2, 7, 5) as in figure 3, the triggered running 3-maximas of σ are 1 and 2. The triggered
running 6-maximas of σ is comprised of just 7; note that 2 is not a 6-maxima because 2 is less than some
keys in [1..5] which occurred earlier than 2.
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Lemma 12 (Characterization of left-spine) Then j ∈ Bk(σ) iff j is a triggered running k-maxima of σ.

Proof. (⇒) Suppose j ∈ Bk(σ). We want to show that
(i) j < k,
(ii) σ(k) > σ(j), and
(iii) for all i ∈ [1..k − 1], σ(i) > σ(j) implies i < j.

But (i) holds because of the binary search tree property, and (ii) holds by the heap property. What about
(iii)? Let i ∈ [1..k − 1] and σ(i) > σ(j). We want to prove that i < j. First assume i lies in the path from
root to j. There are two cases.
CASE (1): k is a descendent of i. Then we see that k > i and j is a descendent of k implies j > i.
CASE (2): i is a descendent of k. But in a left-spine, the items have increasing keys as they lie further

from the root. In particular, i < j, as desired.
Now consider the case where i does not lie in the path from the root to j. Let i′ be the least common ancestor
of i and j. Clearly either

i < i′ < j or j < i′ < i

must hold. So it suffices to prove that i′ < j (and so the first case hold). Note that i′ �= k. If i′ is a
descendent of k then essentially CASE (2) above applies, and we are done. So assume k is a descendent of
i′. Since j is also a descendent of k, it follows that i and k lie in different (left or right) subtrees of i′. By
definition i < k. Hence i lies in the left subtree of i′ and k lies in the right subtree of i′. Hence j lies in the
right subtree of i′, i.e., j > i′, as desired. This proves (iii).
(⇐) Suppose j is a triggered running k-maxima. We want to show that j ∈ Bk(σ). We view Tn(σ) as the
result of inserting items according to priority (§3): assume that we are about to insert key j. Note that k is
already in the tree. We must show that j ends up in the “tip” of the left-spine of k. For each key i along
the path from the root to the tip of the left-spine of k, we consider two cases.
CASE (3): i > k. Then i is an ancestor of k and (by (i)) we have i > k > j. This means j will move into

the subtree of i which contains k.
CASE (4): i < k. Then by (iii), i < j. Again, this means that if i is an ancestor of k, j will move into the

subtree of i that contains k, and otherwise i is in the left-spine of k and j will move into the right subtree
of i (and thus remain in the left-spine of k). Q.E.D.

It is evident that the keys in [k+1..n] is irrelevant to the number of triggered running k-maximas. Hence
we may as well assume that σ ∈ Sk (instead of Sn). To capture this, let us define the r.v. Tk that counts the
number of triggered running k-maximas in case n = k.

Lemma 13 Consider the r.v. |Bk| of Prn. It is related to the r.v. Tk of Prk via E[|Bk|] = E[Tk].

Proof. For each σ ∈ Sn, let us define its image σ′ in Sk obtained by taking the sequence (σ−1(n), . . . , σ−1(1)),
deleting all keys of [k + 1..n] from this sequence, and considering the result as a permutation σ′ ∈ Sk. Note
that Tk(σ′) = |Bk(σ)|. It is not hard to see that there are exactly n!/k! choices of σ ∈ Sk whose images
equal a given σ′ ∈ Sk. Hence lemma 3 implies E[|Bk|] = E[Tk]. Q.E.D.

Lemma 14 We have E[T1] = 0. For k ≥ 2,

E[Tk] = E[Tk−1] +
1

k(k − 1)
and hence E[Tk] = k−1

k .

Proof. It is immediate that E[T1] = 0. So assume k ≥ 2. Again consider the map from σ ∈ Sk to a
corresponding σ′ ∈ Sk−1 where σ′ is the sequence obtained from (σ−1(k), . . . , σ−1(1)) by deleting the key 1
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and subtracting 1 from each of the remaining keys. Note that
• each σ′ ∈ Sk−1 is the image of exactly k distinct σ ∈ Sk, and
• for each j ∈ [2..k − 1], j is a triggered running k-maxima in σ iff j − 1 is a triggered running (k − 1)-

maxima in σ′.
• key 1 is a triggered running k-maxima in σ iff σ(k) = k and σ(1) = k − 1.

This proves
Tk(σ) = Tk−1(σ′) + δ(σ)

where δ(σ) = 1 or 0 depending on whether or not σ = (k, 1, σ−1(k− 2), . . . , σ−1(1)). Now, there are exactly
(k − 2)! choices of σ ∈ Sk such that δ(σ) = 1. Hence

E[Tk] =

∑
σ∈Sk

Tk(σ)
k!

=

∑
σ∈Sk

(Tk−1(σ′) + δ(σ))
k!

=

∑
σ∈Sk

Tk−1(σ′)
k!

+
(k − 2)!

k!

=

∑
σ′∈Sk−1

kTk−1(σ′)

k!
+

1
k(k − 2)

= E[Tk−1] +
1

k(k − 2) .

It is immediate that

E[Tk] =
k∑

i=2

1
i(i− 1) ,

using the fact that E[T1] = 0. This is a telescoping sum in disguise because

1
i(i− 1) =

1
i− 1 −

1
i
.

The solution follows at once. Q.E.D.

Right spine. Using symmetry, the expected length for the right spine of k is easily obtained. We define j
to be a triggered running k-minimas in σ if (i) j > k, (ii) σ(j) < σ(k), (iii) for all i ∈ [k + 1..n], σ(i) > σ(j)
implies j < i. We leave as an exercise to show:

Lemma 15 j is in the right spine of k iff j is a triggered running k-minima of σ.

The keys in [1..k − 1] are irrelevant for this counting. Hence we may define the random variable

Rk(σ)

which counts the number of triggered running 1-minimas in σ ∈ Sk. We have:

Lemma 16
(a) The expected length of the right spine is given by E[Rn−k+1].
(b) For k ≥ 2, E[Rk] = E[Rk−1] + 1

k(k−1) . The solution is E[Rk] = (k − 1)/k.
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Corollary 17 The expected length of the right spine of k is

E[Rn−k+1] =
n− k

n− k + 1
.

Hence the expected lengths of the left and right spines of a key k is less than 1 each. This leads to the
surprising result:

Corollary 18 The expected number of rotations in deleting or inserting a key from the random treap Tn is
less than 2.

This is true because each key is likely to be a leaf or near one. So this result is perhaps not surprising
since more than half of the keys are leaves.

Exercises

Exercise 6.1: Show lemma 15. ✷

§7. Cost of a Sequence of Requests

We have shown that for single requests, it takes expected O(log n) time to search or insert, and O(1)
time to delete. Does this bound apply to a sequence of such operations? The answer is not obvious because
it is unclear whether the operations may upset our randomness model. How do we ensure that inserts or
deletes to a random treap yields another random treap?

We formalize the problem as follows: fix any sequence

p1, . . . , pm

of treap requests on the set [1..n] of keys. In other words, each pi (k ∈ [1..n] has one of the forms

LookUp(k), Insert(k), Delete(k).

We emphasize that that the above sequence of requests is arbitrary, not “random” in any probabilistic sense.
Also note that we assume that deletion operation is based on a key value, not on a “node” as we normally
postulate (§4). This variation should not be a problem in most applications.

Our probability space is again
(Sn, 2Sn ,Prn).

For each i = 1, . . . ,m and σ ∈ Sn, let Ti(σ) be the treap obtained after the sequence of operations p1, . . . , pi,
where σ specifies the priorities assigned to keys and T0(σ) is the initial empty treap. Define Xi to be the
r.v. such that Xi(σ) is the cost of performing the request pi on the treap Ti−1(σ), resulting in Ti(σ). The
expected cost of operation pi is simply E[Xi].

Lemma 19
E[Xi] = O(log i).
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Proof. Fix i = 1, . . . ,m. Let Ki ⊆ [1..n] denote the set of keys that are in Ti(σ). A key observation is
the dependence of Ti−1(σ) on p1, . . . , pi−1 amounts only to the fact that these i − 1 operations determine
Ki. Let |Ki| = ni. Then there is a natural map taking σ ∈ Sn to σ′ ∈ Sni (i.e., the map deletes from the
sequence (σ−1(n), . . . , σ−1(1)) all elements not in Ki, and finally replacing each remaining key k ∈ Ki by a
corresponding key πi(k) ∈ [1..ni] which preserves key-order). Each σ′ is the image of n!/(ni)! distinct σ ∈ Sn.
Moreover, for any key k ∈ Ki, its relevant statistics (the depth of k and length of left/right spines of k) in
Ti(σ) is the same as that of its replacement key πi(k) in the treap on [1..k]. As shown above, the expected
values of these statistics is the same as the expected values of these statistics on the uniform probability
space on Sni . But we have proven that the expected depth of any k ∈ [1..ni] is O(log ni), and the expected
length of the spines of k is at most 1. This proves that when the update operation is based on a key k ∈ Ki,
E[Xi] = O(log ni) = O(log i), since ni ≤ i.

What if the operation pi is an unsuccessful search, i.e., we do a LookUp(k) where k �∈ Ki? In this
case, the length of the path that the algorithm traverses is bounded by the depth of either the successor or
predecessor of k in Ki. Again, the expected lengths in O(log i). This concludes our proof. Q.E.D.

Application to Sorting. We give a randomized sorting algorithm as follows: on input a set of n keys,
we assign them a random priority (by putting them in an array in decreasing order of priority). Then we
do a sequence of n inserts in order of this priority. Finally we do a sequence of n DeleteMins. This gives an
expected O(n logn) algorithm for sorting.

NOTES: Galli and Simon (1996) suggested an alternative approach to treaps which avoid the use of
random priorities. Instead, they choose the root of the binary search tree randomly. Mulmuley introduced
several abstract probabilistic “game models” that corresponds to our analysis of running (triggered) maximas
or minimas.

Exercises

Exercise 7.1: What is the worst case and best case key for searching and insertion in our model? ✷
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