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Motivation: Gene regulatory network

Simple system of two mutually repressing genes
System described by states of genes (on/off) and protein molecule
numbers1

Gillespie SSA applied to a gene regulatory network
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• simple system of two mutually repressing genes

• system described by states of genes (on/off) and protein molecule numbers

• question: what is the time evolution of the system?

T. Kepler and T. Elston, Biophysical Journal, 2001; T. Gardner et al, Nature, 2000

What is the time evolution of the system?

1
T. Kepler and T. Elston, Biophysical Journal, 2001; T. Gardner et al., Nature, 2000.
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numbers2.
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Motivation: Gene regulatory network

Evolution of the number of protein molecules
Evolution of the number of protein molecules

γ = 0.8 γ = 1.06 γ = 1.14
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observation: switching between two favourable states of the system for γ > 1.06Observation: Switching between two favourable states of the
system for γ > 1.06
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Law of Mass Action

• The modelling of chemical reactions using deterministic
rate laws has proven extremely successful in both
chemistry and biochemistry for many years.

• This deterministic approach has at its core the law of
mass action: an empirical law giving a simple relation
between reaction rates and molecular component
concentrations.

• Given knowledge of initial molecular concentrations, the
law of mass action provides a complete picture of the
component concentrations at all future time points.
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Kinetics of biochemical reactions

Biochemical kinetics:
• It studies the rate at which a

biochemical process occurs.
• It also sheds light on the reaction

mechanism (exactly how the reaction
occurs).
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Factors that affect reaction rates

Biochemical kinetics:
• Temperature. At higher temperatures,

reactant molecules have more kinetic
energy, move faster, and collide more
often and with greater energy.

• Catalysts. Speed reaction by changing
mechanism. Enzymes (or biocatalysts)
are proteins that catalyze (i.e., increase
the rates of) chemical reactions

• Concentration of reactants. As the
concentration of reactants increases, so
does the likelihood that reactant
molecules collide.
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Temperature and Rate

• Generally, as the
temperature increases, so
does the reaction rate.

• That is, the rate is
temperature dependent.
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The Collision Model

• In a chemical reaction, bonds are broken and new bonds
are formed.

• Molecules can only react if they collide with each other.
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The Collision Model

Furthermore, molecules must collide with the correct
orientation and with enough energy to cause bond breakage

and formation.
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Activation Energy

• In other words, there is a minimum amount of energy
required for reaction: the activation energy.

• Just as a ball cannot get over a hill if it does not roll up the
hill with enough energy, a reaction cannot occur unless the
molecules possess sufficient energy to get over the
activation energy barrier.
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Activation Energy

• Temperature is defined as a measure of the average
kinetic energy of the molecules in a sample.

• Thus at higher temperatures, a larger population of
molecules has higher energy.

• As a result, the reaction rate increases.

14 / 75



Biochemical Kinetics Reaction Rate Equation Chemical Master Equation Stochastic Simulation Algorithms Comparing Models Improved SSA Stochastic Differential Equations

Catalysts

• Catalysts increase the rate of a reaction by decreasing the
activation energy of the reaction.

• Catalysts change the mechanism by which the process
occurs.
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Catalysts

One way a catalyst can speed up a reaction is by holding the
reactants together and helping bonds to break.
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Enzymes

• Enzymes are catalysts in biological systems.
• The substrate fits into the active site of the enzyme much

like a key fits into a lock.
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Reaction rates

Rates can be determined by monitoring the change in
concentration of either reactants or products as a function of
time.
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Reaction rates

C4H9Cl + H2O −→ C4H9OH + HCl

The concentration of butyl
chloride C4H9Cl is measured at
various times t .
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Reaction rates

C4H9Cl + H2O −→ C4H9OH + HCl

The average rate of the
reaction over each
interval is the change of
concentration divided by
the change in time.

average rate =
∆[C4H9]

∆t
=

0.1000− 0.0905 M
50.00− 0.0 s

= 1.9·10−4M/s
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Reaction rates

C4H9Cl + H2O −→ C4H9OH + HCl

• The average rate
decreases as the reaction
proceeds.

• This is because as the
reaction goes forward,
there are fewer collisions
among reactant molecules.
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Reaction rates

C4H9Cl + H2O −→ C4H9OH + HCl

• A plot of concentration vs.
time yields a curve like this.

• The slope of a line tangent
to the curve at any point is
the instantaneous rate at
that time.

∆[A]

∆t
=⇒ d [A]

dt
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Reaction rates

C4H9Cl + H2O −→ C4H9OH + HCl

• The reaction slows down
because the concentration
of the reactants decreases.

∆[A]

∆t
=⇒ d [A]

dt
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Reaction rates and Stoichiometry

C4H9Cl + H2O −→ C4H9OH + HCl

• In this reaction, the ratio of
C4H9Cl to C4H9OH is 1 : 1

• Thus, the rate of
disappearance of C4H9Cl
is the same as the rate of
appearance of C4H9OH.

Rate =
−∆[C4H9Cl]

∆t
=

∆[C4H9OH]

∆t
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Reaction rates and Stoichiometry

• What if the ratio is not 1 : 1?

H2 + I2 → 2 HI

• Two HI are made for each H2 used.

rate = −∆[H2]

∆t
=

1
2

∆[HI]
∆t
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Reaction rates and Stoichiometry

Generalization for the reaction

aA + bB → cC + dD

rate = −1
a

∆[A]

∆t
= −1

b
∆[B]

∆t
=

1
c

∆[C]

∆t
=

1
d

∆[D]

∆t
Reactants (decrease) Products (increase)
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Concentration and Rate

• Each reaction has its own equation that gives its rate as a
function of reactant concentrations.

This is called its Rate Law

• To determine the rate law, we measure the rate at different
starting concentrations.
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Concentration and Rate

NH+
4 + NO−2 → N2 + 2H2O

Compare experiments 1 and 2

When [NH+
4 ] doubles, the initial rate doubles.
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Concentration and Rate

NH+
4 + NO−2 → N2 + 2H2O

Compare experiments 5 and 6

When [NO−2 ] doubles, the initial rate doubles.
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Concentration and Rate

NH+
4 + NO−2 → N2 + 2H2O

• rate ∝ [NH+
4 ]

• rate ∝ [NO−2 ]

• rate ∝ [NH+
4 ][NO−2 ]

rate = k [NH+
4 ][NO−2 ]

This equation is called the rate law and k is the rate constant.
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Rate Laws

• The rate law shows the relationship between the reaction
rate and the concentrations of reactants.

• k is a constant that has a specific value for each reaction.
• The value of k is determined experimentally.

rate = k [NH+
4 ][NO−2 ]

”Constant” is relative here:
• k is unique for each reaction.
• k changes with respect to the temperature.
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Rate Laws

rate = k [NH+
4 ][NO−2 ]

• Exponents tell the order of the reaction with respect to
each reactant.

• This reaction is:
• First-order in [NH+

4 ]
• First-order in [NO−

2 ]

• The overall reaction order is found by adding the
exponents on the reactants in the rate law.

• This reaction is second-order overall.
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Integrated Rate Laws

Consider a simple 1st order reaction: A→ B
The rate of the reaction is: rate = k [A]

Differential form: −d [A]

dt
= k [A]

How much A is left at time t?

By integrating, the equation for the time evolution of [A] is
obtained:

[A]t = [A]0e−kt

where [A]0 is the initial concentration of A(t = 0), and [A]t is
the concentration of A at some time t during the course of the
reaction.

34 / 75



Biochemical Kinetics Reaction Rate Equation Chemical Master Equation Stochastic Simulation Algorithms Comparing Models Improved SSA Stochastic Differential Equations

Integrated Rate Laws

Consider a simple 1st order reaction: A→ B
The rate of the reaction is: rate = k [A]

Differential form: −d [A]

dt
= k [A]

How much A is left at time t?

By integrating, the equation for the time evolution of [A] is
obtained:

[A]t = [A]0e−kt

where [A]0 is the initial concentration of A(t = 0), and [A]t is
the concentration of A at some time t during the course of the
reaction.

34 / 75



Biochemical Kinetics Reaction Rate Equation Chemical Master Equation Stochastic Simulation Algorithms Comparing Models Improved SSA Stochastic Differential Equations

Concentration of [A] as a function of time

A→ B. Solution: [A]t = [A]0e−kt with [A]0 = 20 :

Concentration of A as a function of time

solution of
da

dt
= −ka with initial condition a(0) = 20:
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Integrated Rate Laws

The integrated form of first order rate law: [A]t = [A]0e−kt can
be rearranged to give:

ln
[A]t
[A]0

= −kt

what can be manipulated this way:

ln
[A]t
[A]0

= −kt

ln[A]t − ln[A]0 = −kt

ln[A]t = −kt + ln[A]0

which is in the form: y = mx + b
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First-Order Processes

ln[A]t = −kt + ln[A]0

• If a reaction is first-order, a plot of ln[A]t vs. t will yield a
straight line with a slope of −k .

• Thus, plots can be used to determine the reaction order.
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First-Order Processes

Consider the process in which methyl
isonitrile is converted to acetonitrile.

CH3NC → CH3CN

How do we know this is a first order
reaction?
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First-Order Processes

CH3NC → CH3CN

• This data was collected
for this reaction at
198.9◦C.

• Does rate = k [CH3NC]
for all time intervals?
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First-Order Processes

CH3NC → CH3CN

[A]t = [A]0e−kt ln[A]t = −kt + ln[A]0

• When ln[A]t is plotted as a function of time, a straight line
results.

• The process is first-order.
• k is the negative slope: 5.1× 10−5s−1.
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Second-Order Processes

Similarly, we can integrate the rate law for a process that is
second-order in reactant A:

rate = −d [A]

dt
= k [A]2

By integrating, we obtain: [A]t =
1

kt +
1

[A]0

After rearranging:
1

[A]t
= kt +

1
[A]0

what is also in the form:

y = mx + b
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Second-Order Processes

1
[A]t

= kt +
1

[A]0

If a process is second-order in A, then a plot of
1

[A]
vs. t will

yield a straight line with a slope of k .
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Kinetics outline

A→
First order Second order

Rate Laws rate = −k [A] rate = −k [A]2

Integrated Rate Laws ln
[A]t
[A]0

= −kt
1

[A]t
= kt +

1
[A]0

A + B →
Second order

Rate Laws rate = −k [A][B]

Integrated Rate Laws complicated
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Reaction Mechanisms

The molecularity of a process tells how many molecules are
involved in the process.
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Deterministic: The law of mass action

• The fundamental empirical law governing reaction rates in
biochemistry is the law of mass action.

• This states that for a reaction in a homogeneous, free
medium, the reaction rate will be proportional to the
concentrations of the individual reactants involved.
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Criticism: Law of Mass Action

• The law of mass action considers chemical reactions to be
macroscopic under convective or diffusive stirring,
continuous and deterministic.

• These are evidently simplifications, as it is well understood
that chemical reactions involve discrete, random collisions
between individual molecules.

• As we consider smaller and smaller systems, the validity of
a continuous approach becomes ever more tenuous.

• As such, the adequacy of the law of mass action has been
questioned for describing biological systems formed by
single living cells where the small population numbers of
some reactant species can result in dynamical behaviour
that is noticeably discrete rather than continuous and
noticeable stochastic rather than deterministic.
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Stochastic Models

Arguments for the use of stochastic models for biochemical
reactions (1/2):
• The quantity of the components is discrete:

• Molecules come in whole numbers.
• Molecular populations change only by integer amounts.

• The character of the phenomena is inherently random:
• Only if we were to define the system’s states as the

positions and the velocities of all the molecules (and
assume Newtonian mechanics) could we regard the system
as being deterministic.

• But even then, the extreme sensitivity to initial conditions
will render the system effectively stochastic - like a tossed
coin.

• Chemical reactions occur as discrete events, as a result of
molecular collisions that cannot be precisely predicted.

• At best, we can predict only the probability that a reaction
event will occur.
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Stochastic Models

Arguments for the use of stochastic models for biochemical
reactions (2/2):
• Stochastic models are in accordance with the theory of

thermodynamics.
• Stochastic models are appropriate to describe small

systems and instability phenomena.
• Whereas the deterministic approach outlined above is

essentially an empirical law, derived from in vitro
experiments, the stochastic approach is far more physically
rigorous.

• Fundamental to the principle of stochastic modelling is the
idea that molecular reactions are essentially random
processes; it is impossible to say with complete certainty
the time at which the next reaction within a volume will
occur.
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Stochastic: Predictability of macroscopic states

• In macroscopic systems, with a large number of interacting
molecules, the randomness of this behaviour averages out
so that the overall macroscopic state of the system
becomes highly predictable.

• It is this property of large scale random systems that
enables a deterministic approach to be adopted; however,
the validity of this assumption becomes strained in in vivo
conditions as we examine small-scale cellular reaction
environments with limited reactant populations.
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Stochastic: Propensity function

As explicitly derived by Gillespie, the stochastic model uses
basic Newtonian physics and thermodynamics to arrive at a
form termed the propensity function.

The propensity function gives the probability aj of reaction j
occurring in time interval (t , t + dt).

ajdt = hjcjdt

where the M reaction mechanisms are given arbitrary index
j (1 ≤ j ≤ M) and hj denotes the number of possible
combinations of reactant molecules involved in reaction j .

For example, if reaction l involves two species S1 and S2, with
Xi molecules of species Si , we have hl = X1X2.
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Stochastic: Propensity function

Propensity function

ajdt = hjcjdt

• The rate constant cj is dependent on the radii of the
molecules involved in the reaction and their average
velocities.

• These quantities are basic chemical properties which for
most systems are either well known or easily measurable.

• The above equation for aj constitutes the fundamental
hypothesis of the stochastic formulation of chemical
kinetics.
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Stochastic: Grand probability function

The stochastic formulation proceeds by considering the grand
probability function:

P(X; t) ≡ probability that there will be present in volume V at
time t , Xi of species Si , where X ≡ (X1,X2, . . . ,XN) is a vector
of molecular species populations.

Evidently, knowledge of this function provides a complete
understanding of the probability distribution of all possible
states at all times.
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Stochastic: Infinitesimal time interval

By considering a discrete infinitesimal time interval (t , t + dt) in
which either 0 or 1 reactions occur, we see that there exist only
M + 1 distinct configurations at time t that can lead to the state
X at time t + dt :

P(X; t + dt) =P(X; t)P(no state change over dt)
+ P(state change to X over dt)

where νj is a stoichiometric vector defining the result of reaction
j on state vector X, i.e., X→ X + νj after an occurrence of
rection j .
The probability of more than one reaction occurring in time interval
(t , t + dt) is o(dt), and hence vanishes in the limit dt → 0
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Stochastic: State change probabilities

It is straightforward to show that:

P(no state change over dt) = 1−
M∑

j=1

aj(X)dt

P(state change to X over dt) =
M∑

j=1

P(X− νj ; t)aj(X− νj)dt

Then:

P(X; t + dt) =P(X; t)(1−
M∑

j=1

aj(X)dt)

+
M∑

j=1

P(X− νj ; t)aj(X− νj)dt
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Stochastic: Chemical Master Equation

If we note that:

limdt→0
P(X; t + dt)− P(X; t)

dt
=
∂P(X; t)

∂t
we arrive at the

Chemical Master Equation (CME)
that describes the stochastic dynamics of the system:

∂P(X; t)
∂t

=
M∑

j=1

(
P(X− νj ; t)aj(X− νj)− P(X; t)aj(X)

)
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Stochastic: Chemical Master Equation

• The CME is really a set of nearly as many coupled
ordinary differential equations as there are combinations of
molecules that can exist in the system!

• The CME can be solved analytically for only a very few
simple systems, and numerical solutions are usually
prohibitively difficult.
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Stochastic Simulation Algorithms (SSA)

Gillespie algorithm
• Gillespies Stochastic Simulation Algorithm (SSA) is

essentially an exact procedure for numerically simulating
the time evolution of a well-stirred chemically reacting
system by taking proper account of the randomness
inherent in such a system.

• It is rigorously based on the same microphysical premise
that underlies the chemical master equation and gives a
more realistic representation of a system’s evolution than
the deterministic reaction rate equation (RRE) represented
mathematically by ODEs.

• As with the chemical master equation, the SSA converges,
in the limit of large numbers of reactants, to the same
solution as the law of mass action.
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Stochastic Simulation Algorithms (SSA)

Gillespie’s exact SSA
Key points:

• The algorithm takes time steps of variable length, based on
the rate constants and population size of each chemical
species.

• The probability of one reaction occurring relative to another
is dictated by their relative propensity functions.

• According to the correct probability distribution derived
from the statistical thermodynamics theory, a random
variable is then used to choose which reaction will occur,
and another random variable determines how long the step
will last.

• The chemical populations are altered according to the
stoichiometry of the reaction and the process is repeated.
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Gillespie’s exact SSA

More formally:

Problem statement:
• We have N chemical species S1, . . . ,SN and M reaction

channels R1, . . . ,RM .

E.g., the N = M = 2 system: S1 + S2
c1−⇀↽−
c2

2S1

• Assume the system has constant volume Ω, and constant
temperature T .

• Assume the system is well-stirred, i.e., spatially
homogeneous

• Let Xi(t) = number of Si molecules in the system at time t .
• (X1(t), . . . ,XN(t)) = X(t), the state of the system at time t .

The Problem: Given X0 = x0, find X(t) for t > t0.
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Gillespie’s exact SSA

Recall that traditional approach...

• Asserts that X(t) evolves in time according to a set of
coupled, first-order, ordinary differential equations of the
form:

dXi

dt
= fi(X1, . . . ,XN) i = 1 . . .N

where the fi are determined by the forms of the M reaction
channels.

• Called the reaction rate equations (RRE).
• Usually written in terms of the concentrations, Zi = Xi/Ω

• According to RRE, X(t) is a continuous, deterministic
process.
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Gillespie’s exact SSA

But in fact.... X(t) is not continuous; it is discrete:

• Molecules come in whole numbers.

• Molecular populations change only by integer amounts.

X(t) is not deterministic; it is stochastic:

• Only if we were to define the system’s state as the position and
the velocities of all the molecules (and assume Newtonian
mechanics) could we regard the system as being ”deterministic”.

• But even then, the extreme sensitivity to initial conditions will
render the system effectively stochastic - like a tossed coin.

• Chemical reactions occur as discrete events, as a result of
molecular collisions that cannot be precisely predicted.

• At best, we can predict only the probability that a reaction event
will occur.
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Gillespie’s exact SSA

Each elemental reaction channel Rj is defined by two quantities:

• a propensity function aj(x), where aj(x)dt = probability,
given X(t) = x, that one Rj reaction event will occur in
[t , t + dt)

• a state change vector ν j = (ν1j , . . . , νNj), where νij =
change in the Si population caused by one Rj reaction
event.

E.g.,

S1 + S2
c1−⇀↽−
c2

2S1 ⇒

a1(x) = c1x1x2, ν1 = (+1,−1,0, . . . ,0)

a2(x) = c2
x1(x1 − 1)

2
, ν2 = (−1,+1,0, . . . ,0)

Implication: X(t) is a jump Markov process, i.e., a
continuous-time, discrete-state, past-forgetting, stochastic
process.
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Gillespie’s exact SSA

Two Approaches to Stochastic Chemical Kinetics
• An analytical approach, and a simulation approach.
• They are logically equivalent - both follow rigorously from

the same stochastic premise.
• They are exact for well-stirred systems.
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Gillespie’s exact SSA. The analytical approach.

It focuses on the probability density function of the random
variable X(t), namely:

P(x, t |x0, t0) = Prob{X(t) = x, given that X(t0) = x0}

We have proved that P obeys the time-evolution equation

∂P(x, t |x0, t0)

∂t
=

M∑
j=1

(
P(x−ν j ; t |x0, t0)aj(x−ν j)−P(x, t |x0, t0)aj(x)

)
• It is called the chemical master equation (CME).
• In principle, it completely determines P(x, t |x0, t0), and

hence X(t).
• In practice, it is impossible to solve for all but the simplest

of systems.
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Gillespie’s exact SSA. The simulation approach.

It focuses on the function p(τ, j |x, t), defined by

p(τ, j |x, t)dτ =probability, given X(t) = x, that the next reaction
in the system will occur in the infinitesimal time
interval [t + τ, t + τ + dτ), and will be
an Rj reaction.

It can be proved that p is given by:

p(τ, j |x, t) = aj(x)e−a0(x)τ , where a0(x) =
M∑

j ′=1

aj ′(x)
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Gillespie’s exact SSA. The simulation approach.

It can be proved that p is given by:

p(τ, j |x, t) = aj(x)e−a0(x)τ , where a0(x) =
M∑

j ′=1

aj ′(x)

This implies:
• The time τ to the next reaction event is an exponentially

distributed random variable with mean 1/a0(x)

• The channel index j of that reaction is an integer random
variable with probability aj(x)/a0(x)

It’s easy to generate on a computer (pseudo)random samples
of τ and j according to this prescription.
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Gillespie’s exact SSA

Derivation of the Next-Reaction Probability Density Function
Let P0(τ |x, t) = the probability, given X(t) = x, that no reactions
will occur in the time interval [t , t + τ). Then,

p(τ, j |x, t)dτ = P0(τ |x, t)
(
aj(x)dτ

)
so

p(τ, j |x, t) = aj(x)P0(τ |x, t)
To calculate P0(τ |x, t), observe that it must satisfy:

P0(τ + dτ |x, t) =P0(τ |x, t)
(

1−
M∑

j ′=1

(
aj ′(x)dτ

))
=P0(τ |x, t)(1− a0(x)dτ)
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Gillespie’s exact SSA

whence

dP0(τ |x, t)
dτ

= −a0(x)P0(τ |x, t)

The solution to this ODE for the initial condition
P0(τ = 0|x, t) = 1 is:

P0(τ |x, t) = e−a0(x)τ

Then:

p(τ, j |x, t) = aj(x)e−a0(x)τ , where a0(x) =
M∑

j ′=1

aj ′(x)
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Gillespie’s exact SSA. The Stochastic Simulation Algorithm

An explicit, exact procedure for constructing a numerical
realization of the stochastic process X(t).
The direct version of the SSA is:

1 With the system in state x at time t , compute
a0(x) =

∑M
j ′=1 aj ′(x)

2 Draw two unit-interval uniform random numbers r1 and r2,
and compute τ and j according to:

• τ =
1

a0(x)
ln
(

1
r1

)
,

• j = the smallest integer satisfying
j∑

j′=1
aj′(x) > r2a0(x).

3 Effect the next reaction: t := t + τ and x := x + νj .
4 Record (x, t). Then return to Step 1, or else end the

simulation.
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