STRUCTURED SOLUTION OF STOCHASTIC DSSP SYSTEMS

J. Campos, S. Donatelli, and M. Silva

Departamento de Informática e Ingeniería de Sistemas
Centro Politécnico Superior, Universidad de Zaragoza jcampos,silva@posta.unizar.es

Dipartimento di Informatica, Università di Torino
susi@di.unito.it

PNPM97, 5th June 1997

Outline

1. Motivations and contributions
2. St-DSSP definition and properties
3. Structured solution methods

- Without an abstract view
- With abstract view

4. RS expression for St-DSSP
5. CTMC expression for St-DSSP
6. Advantages/disadvantages

Motivations

- St-DSSP are compositional by definition
- Approximate solution already exploits composition
- Exact numerical solution?
+ To work in a class in which properties can be proved without RG construction

Contributions

- Extend the asynchronous approach to a different class of net
- Put the construction in a general framework to allow an easy extension to other classes

DSSP definition

$\mathcal{S}=\left\{P_{1} \cup \ldots \cup P_{K} \cup B, T_{1} \cup \ldots \cup T_{K}\right.$, Pre, Post, $\left.\mathbf{m}_{0}\right\}$, is a DSSP (Deterministically Synchronized Sequential Processes) iff:

1. $P_{i} \cap P_{j}=\emptyset, \quad T_{i} \cap T_{j}=\emptyset, \quad P_{i} \cap B=\emptyset$,
2. $\left\langle\mathcal{S} \mathcal{M}_{i}, \mathbf{m}_{\mathbf{0}}{ }_{i}\right\rangle$ is a state machine, strongly connected and 1-bounded
3. \forall buffer $b \in B$:
(a) Nor sink neither source

$$
|\bullet b| \geq 1 \text { and }\left|b^{\bullet}\right| \geq 1
$$

(b) Output private
$\exists i \in\{1, \ldots, K\}$ such that $b^{\bullet} \subset T_{i}$,
(c) Deterministically synchronized
$\forall p \in P_{1} \cup \ldots \cup P_{K}: t, t^{\prime} \in p^{\bullet} \Longrightarrow$
$\operatorname{Pre}[b, t]=\operatorname{Pre}\left[b, t^{\prime}\right]$.

$$
\begin{array}{ll}
\mathrm{TI}=\bullet B \cup B^{\bullet} & \text { interface transitions } \\
\left(T_{1} \cup \ldots \cup T_{K}\right) \backslash \mathrm{TI} & \text { internal transitions }
\end{array}
$$

DSSP example

$$
\begin{aligned}
& B=\{b 1, b 2\} \\
& P_{1}=\{a 1, a 2, a 3, a 4\} \\
& P_{2}=\{c 1, \ldots, c 7\} \\
& T I=\{I 1, \ldots, I 6\}
\end{aligned}
$$

St-DSSP definition

Stochastic DSSP (St-DSSP) $\{\mathcal{S}, w\}$

$$
\left\{P, T, \text { Pre }, \text { Post }, \mathbf{m}_{0}, w\right\}
$$

- \mathcal{S} is a DSSP and
- $w: T \rightarrow \mathbb{R}^{+}$is the rate of exponentially distributed firing time

Immediate transitions?

+ Internal
Can be reduced in the class
- Interface

Cannot be reduced in the class

DSSP properties

1. Live and bounded \Longrightarrow home states.
2. For bounded and strongly connected DSSP: Live \Longleftrightarrow deadlock-free
3. Let \mathbf{C} be the $n \times m$ incidence matrix.

Structurally bounded
$\exists \mathbf{y} \in \mathbb{N}^{n}: \mathbf{y}>\mathbf{0} \wedge \mathbf{y} \cdot \mathbf{C} \leq \mathbf{0}$.
4. Deadlock-free \Longleftrightarrow "a" linear programming problem has no integer solution.
5. For live DSSP:
bounded \Longleftrightarrow it is structurally bounded
6. Structurally live and structurally bounded \Longleftrightarrow consistent (i.e., $\exists \mathbf{x}>\mathbf{0}, \mathbf{C} \cdot \mathbf{x}=\mathbf{0}$) and conservative (i.e., $\exists \mathbf{y}>\mathbf{0}, \mathbf{y} \cdot \mathbf{C}=\mathbf{0}$) and $\operatorname{rank}(\mathbf{C})=|\mathcal{E}|-1$

Proving ergodicity

Step 1: check structural boundedness using statement 3;

Step 2: check the characterization for structural liveness and structural boundedness using statement 6 ;

Step 3: check deadlock-freeness using statement 4 (thus, by statement 2 , liveness).

Answer $=$ YES if and only if St-DSSP is live and bounded (statement 5) thus it has home state (statement 1), therefore the CTMC is finite and ergodic and all the transitions have non-null throughput.

Structured solution methods

- Goal: avoid the explicit construction of RG and \mathbf{Q} and its storing
- How: find (or use) a decomposition into K components
- Express \mathbf{Q} as tensor expression of \mathbf{Q}_{i}
- Compute $\boldsymbol{\pi} \cdot \mathbf{Q}$ using the expression, without storing \mathbf{Q}

Synchronous approach (without an abstract view)

Synchronous approach (without an abstract view)

- $\mathrm{RS} \subseteq \mathrm{PS}=\mathrm{RS}_{1} \times \ldots \times \mathrm{RS}_{K}$
- $\mathbf{Q}=\mathbf{R}-\operatorname{rowsum}(\mathbf{R})$
- $\mathbf{R} \subseteq \underset{i=1}{K} \mathbf{R}_{i}^{\prime}+\sum_{t \in T S} w(t) \underset{i=1}{K} \mathbf{K}_{i}(t)$

This is the approach of

- SAN (Plateau),
- SGSPN (Donatelli)
- Synchronized SWN (Haddad - Moreaux)

Asynchronous approach (with an abstract view)

Asynchronous approach (with an abstract view)

$$
\begin{aligned}
\operatorname{RS}(\mathcal{S})= & \underset{\mathbf{z} \in \operatorname{RS}(\mathcal{B S})}{\uplus} \mathrm{RS}_{\mathbf{z}}(\mathcal{S}) \subseteq \\
& \stackrel{\uplus}{\mathbf{z} \in \mathrm{RS}(\mathcal{B S})}\{\mathbf{z}\} \times \mathrm{RS}_{\mathbf{z}}\left(\mathcal{L S}_{1}\right) \times \cdots \times \mathrm{RS}_{\mathbf{z}}\left(\mathcal{L S}_{K}\right)
\end{aligned}
$$

\mathbf{R} can be split in sub-blocks $\mathbf{R}\left(\mathbf{z}, \mathbf{z}^{\prime}\right)$

$$
\begin{aligned}
& \mathbf{R}(\mathbf{z}, \mathbf{z})=\underset{i=1}{\underset{\oplus}{*}} \mathbf{R}_{i}(\mathbf{z}, \mathbf{z})
\end{aligned}
$$

This is the approach proposed for

- MG (Buchholz - Kemper),
- HCGSPN (Buchholz) and
- Asynchronous SWN (Haddad - Moreaux)

Structured solution of St-DSSP

Determine an high level view that

- can coexist with the original net
- it is easy to compute.

Show that it is possible to work with superset of state space and supermatrix of infinitesimal generator

Example

Definition

Auxiliary systems

Low level

Basic skeleton

Definitions

Equivalence relation R

R is defined on $P \backslash B$ by: $\left\langle p_{1}^{i}, p_{2}^{i}\right\rangle \in \mathrm{R}$ for $p_{1}^{i}, p_{2}^{i} \in P_{i}$ iff there exists a non-directed path np in $\mathcal{S} \mathcal{M}_{i}$ from p_{1}^{i} to p_{2}^{i} such that $\mathrm{np} \cap \mathrm{TI}=\emptyset$ (i.e., containing only internal transitions). Let [p_{1}^{i}] be the corresponding equivalence classes.
$\left[p_{1}^{i}\right] \Longleftrightarrow h_{j}^{i}$

Definitions

Extended System $\mathcal{E S}$

i) $P_{\mathcal{E S}}=P \cup H_{1} \cup \ldots \cup H_{K}$, with $H_{i}=\left\{h_{1}^{i}, \ldots, h_{r(i)}^{i}\right\}$
ii) $T_{\mathcal{E S}}=T$;
iii) $\left.\operatorname{Pre}_{\mathcal{E} \mathcal{S}}\right|_{P \times T}=$ Pre; Post $\left._{\mathcal{E} \mathcal{S}}\right|_{P \times T}=$ Post;
iv) for $t \in \mathrm{TI} \cap T_{i}$:

$$
\begin{aligned}
& \operatorname{Pre}\left[h_{j}^{i}, t\right]=\sum_{p \in\left[p_{j}^{i}\right]} \operatorname{Pre}[p, t] ; \\
& \operatorname{Post}\left[h_{j}^{i}, t\right]=\sum_{p \in\left[p_{j}^{i}\right]} \operatorname{Post}[p, t],
\end{aligned}
$$

v) $\mathbf{m}_{0}{ }^{\mathcal{E S}}[p]=\mathbf{m}_{\mathbf{0}}[p], \quad$ for all $p \in P$;
vi) $\mathbf{m}_{0}{ }^{\mathcal{E} S}\left[h_{j}^{i}\right]=\Sigma_{p \in\left[p_{j}^{i}\right]} \mathbf{m}_{0}[p]$.

Definitions

Low Level Systems $\mathcal{L} \mathcal{S}_{i}$

$\mathcal{L S} \mathcal{S}_{i}(i=1, \ldots, K)$ of \mathcal{S} is obtained from $\mathcal{E S}$ deleting all the nodes in $\underset{j \neq i}{\cup}\left(P_{j} \cup\left(T_{j} \backslash \mathrm{TI}\right)\right)$ and their adjacent arcs.

Basic Skeleton $\mathcal{B S}$

$\mathcal{B S}$ is obtained from $\mathcal{E S}$ deleting all the nodes \left. in ${\underset{j}{u}}^{(} P_{j} \cup\left(T_{j} \backslash \mathrm{TI}\right)\right)$ and their adjacent arcs.

Properties

\mathcal{S} is a DSSP
$\mathcal{L S _ { i }}$ its low level systems $(i=1, \ldots, K)$,
$\mathcal{B S}$ its basic skeleton,
$\mathrm{L}(\mathcal{S})$ the language of \mathcal{S}

1. $\mathrm{RG}(\mathcal{E S}) \cong \mathrm{RG}(\mathcal{S})$
2. $\left.\mathrm{L}(\mathcal{S})\right|_{T_{i} \cup \mathrm{TI}} \subseteq \mathrm{L}\left(\mathcal{L}_{i}\right)$, for $i=1, \ldots, K$.
3. $\left.\mathrm{L}(\mathcal{S})\right|_{\mathrm{TI}} \subseteq \mathrm{L}(\mathcal{B S})$.

Reachability set construction

$$
\begin{aligned}
& \mathrm{RS}_{\mathbf{z}}(\mathcal{E S})=\left\{\mathbf{m} \in \mathrm{RS}(\mathcal{E S}):\left.\mathbf{m}\right|_{H_{1} \cup \ldots \cup H_{K} \cup B}=\mathbf{z}\right\} \\
& \mathrm{RS}_{\mathbf{z}}(\mathcal{S})=\{\mathbf{m} \in \mathrm{RS}(\mathcal{S}) \text { such that } \\
&\left.\exists \mathbf{m}^{\prime} \in \mathrm{RS}_{\mathbf{z}}(\mathcal{E S}):\left.\mathbf{m}^{\prime}\right|_{P_{1} \cup \ldots \cup P_{K} \cup B}=\mathbf{m}\right\} \\
& \mathrm{RS}_{\mathbf{z}}\left(\mathcal{L} \mathcal{S}_{i}\right)=\left\{\mathbf{m}_{i} \in \operatorname{RS}\left(\mathcal{L} \mathcal{S}_{i}\right):\left.\mathbf{m}_{i}\right|_{H_{1} \cup \ldots \cup H_{K} \cup B}=\mathbf{z}\right\}
\end{aligned}
$$

$$
\mathrm{PS}_{\mathbf{z}}(\mathcal{S})=\left\{\left.\mathbf{z}\right|_{B}\right\} \times\left.\mathrm{RS}_{\mathbf{z}}\left(\mathcal{L} \mathcal{S}_{1}\right)\right|_{P_{1}} \times \cdots \times\left.\mathrm{RS}_{\mathbf{z}}\left(\mathcal{L S}_{K}\right)\right|_{P_{K}}
$$

$$
\operatorname{PS}(\mathcal{S})=\underset{\mathbf{z} \in \operatorname{RS}(\mathcal{B S})}{\uplus} \mathrm{PS}_{\mathbf{z}}(\mathcal{S})
$$

$$
\operatorname{RS}(\mathcal{S}) \subseteq \operatorname{PS}(\mathcal{S})=\underset{\mathbf{z} \in \operatorname{RS}(\mathcal{B} \mathcal{S})}{\uplus} \operatorname{PS}_{\mathbf{z}}(\mathcal{S})
$$

$$
\mathrm{RS}_{\mathbf{z}}(\mathcal{S}) \subseteq \mathrm{PS}_{\mathbf{z}}(\mathcal{S})
$$

Example of RS construction

RS of \mathcal{S}			RS of \mathcal{S}
\mathbf{V}_{1}	a1, b1, c1	\mathbf{V}_{14}	a1, c1, b2
\mathbf{V}_{2}	a1, b1, c6	\mathbf{V}_{15}	a4, c3
\mathbf{V}_{3}	a1, b1, c5	\mathbf{V}_{16}	a4, c1, b2
\mathbf{V}_{4}	a4, b1, c1	\mathbf{V}_{17}	a1, b2, c6
\mathbf{V}_{5}	a1, c7	\mathbf{V}_{18}	a1, b2, c5
\mathbf{V}_{6}	a4, b1, c6	\mathbf{V}_{19}	a4, b2, c6
\mathbf{V}_{7}	a4, b1, c5	\mathbf{V}_{20}	a4, b2, c5
\mathbf{V}_{8}	a1, c2	\mathbf{V}_{21}	a3, c1
\mathbf{v}_{9}	a1, c4	\mathbf{V}_{22}	a3, c6
\mathbf{V}_{10}	a4, c7	\mathbf{V}_{23}	a3, c5
\mathbf{V}_{11}	a4, c2	\mathbf{V}_{24}	a2, c1
\mathbf{V}_{12}	a1, c3	\mathbf{V}_{25}	a2, c6
\mathbf{V}_{13}	a4, c4	\mathbf{V}_{26}	a2, c5

RS of $\mathcal{B S}$	
\mathbf{z}_{1}	$\mathrm{~A} 14, \mathrm{C} 56, \mathrm{~b} 1$
z_{2}	$\mathrm{~A} 14, \mathrm{C} 34$
\mathbf{z}_{3}	$\mathrm{~A} 14, \mathrm{C} 56, \mathrm{~b} 2$
\mathbf{z}_{4}	$\mathrm{~A} 23, \mathrm{C} 56$

RS of $\mathcal{L} \mathcal{S}_{1}$		
x_{1}	a1, b1, C56, A14	z_{1}
x_{2}	a4, b1, C56, A14	z_{1}
x_{3}	a1, C34, A14	z_{2}
x_{4}	a4, C34, A14	z_{2}
x_{5}	a1, b2, C56, A14	z_{3}
x_{6}	a4, b2, C56, A14	z_{3}
x_{7}	a3, C56, A23	z_{4}
X_{8}	a2, C56, A23	z_{4}
RS of $\mathcal{L S} \mathcal{S}_{2}$		
y_{1}	A14, b1, c1, C56	\mathbf{z}_{1}
\mathbf{y}_{2}	A14, b1, c6, C56	\mathbf{z}_{1}
y_{3}	A14, b1, c5, C56	\mathbf{Z}_{1}
y_{4}	A14, c7, C34	z_{2}
y_{5}	A14, c2, C34	z_{2}
\mathbf{y}_{6}	A14, c4, C34	z_{2}
y_{7}	A14, c3, C34	\mathbf{Z}_{2}
y_{8}	A14, b2, c1, C56	z_{3}
\mathbf{y}_{9}	A14, b2, c6, C56	z_{3}
y_{10}	A14, b2, c5, C56	Z_{3}
\mathbf{y}_{11}	A23, c1, C56	Z_{4}
$\begin{aligned} & 25 \\ & \mathbf{y}_{12} \end{aligned}$	A23, c6, C56	z_{4}
y_{13}	A23, c5, C56	Z_{4}

Counter-example for state space

$\mathrm{z}=[\mathrm{b} 1, \mathrm{~b} 2, \mathrm{P} 34, \mathrm{P} 78]$ is in $\operatorname{RS}(\mathcal{B S})$
[p8, b1, b2, P34] and [p7, b1, b2, P34] are in $\mathrm{RS}_{\mathbf{z}}\left(\mathcal{L S}_{1}\right)$
[p3, b1, b2, P78] and [p4, b1, b2, P78] is in $\mathrm{RS}_{\mathbf{z}}\left(\mathcal{L S}_{2}\right)$

The cross product gives a $\mathrm{PS}_{\mathbf{z}}$ equal to
[p3, p8, b1, b2] [p3, p7, b1, b2]
[p4, p8, b1, b2] [p4, p7, b1, b2]
but state [p4, p8, b1, b2] does not belong to the RS of the DSSP

CTMC generation

Basic idea: split the behaviour in two

1. transitions that change the high level view
2. transitions that do not change the high level view

CTMC generation

$$
\mathbf{Q}=\mathbf{R}-\operatorname{rowsum}(\mathbf{R})
$$

For the $\mathcal{L} \mathcal{S}_{i}$ components:

$$
\mathbf{Q}_{i}=\mathbf{R}_{i}-\operatorname{rowsum}\left(\mathbf{R}_{i}\right)
$$

Technique:
(1) Consider \mathbf{Q} and \mathbf{R} in blocks ($\mathbf{z}, \mathbf{z}^{\prime}$), of size $\left|\mathrm{RS}_{\mathbf{z}}(\mathcal{S})\right| \cdot\left|\mathrm{RS}_{\mathbf{z}^{\prime}}(\mathcal{S})\right|$
(2) Consider \mathbf{Q}_{i} and \mathbf{R}_{i} in blocks ($\mathbf{z}, \mathbf{z}^{\prime}$) of size $\left|\mathrm{RS}_{\mathbf{z}}\left(\mathcal{L S}_{i}\right)\right| \cdot\left|\mathrm{RS}_{\mathbf{z}^{\prime}}\left(\mathcal{L S}_{i}\right)\right|$
(3) Describe each block of \mathbf{Q} and \mathbf{R} as tensor expression of the blocks of \mathbf{Q}_{i} and \mathbf{R}_{i}.

CTMC generation

Blocks $\mathbf{R}(\mathbf{z}, \mathbf{z})$ have non null entries that are due only to non interface transitions

$$
\mathbf{G}(\mathbf{z}, \mathbf{z})=\underset{i=1}{K} \mathbf{R}_{i}(\mathbf{z}, \mathbf{z})
$$

Blocks $\mathbf{R}\left(\mathbf{z}, \mathbf{z}^{\prime}\right)$ with $\mathbf{z} \neq \mathbf{z}^{\prime}$ have non null entries that are due only to the firing of transitions in TI.

$$
\begin{aligned}
& \mathbf{K}_{i}(t)\left(\mathbf{z}, \mathbf{z}^{\prime}\right)\left[\mathbf{m}, \mathbf{m}^{\prime}\right]= \begin{cases}1 & \text { if } \mathbf{m} \xrightarrow{t} \mathbf{m}^{\prime} \\
0 & \text { otherwise }\end{cases} \\
& \mathbf{G}\left(\mathbf{z}, \mathbf{z}^{\prime}\right)=\sum_{t \in \mathrm{~T}_{\mathbf{z}, \mathbf{z}^{\prime}}} w(t) \underset{i=1}{\bigotimes} \mathbf{K}_{i}(t)\left(\mathbf{z}, \mathbf{z}^{\prime}\right)
\end{aligned}
$$

CTMC definition

1. Transition rates among reachable states are correctly computed
$\forall \mathbf{z}$ and $\mathbf{z}^{\prime} \in \operatorname{RS}(\mathcal{B S})$:
$\mathbf{R}\left(\mathbf{z}, \mathbf{z}^{\prime}\right)$ is a submatrix of $\mathbf{G}\left(\mathbf{z}, \mathbf{z}^{\prime}\right)$
2. Unreachable states are never assigned a nonnull probability
$\forall \mathbf{m} \in \operatorname{RS}(\mathcal{S})$ and $\forall \mathbf{m}^{\prime} \in \operatorname{PS}(\mathcal{S}) \backslash \operatorname{RS}(\mathcal{S}):$

$$
\mathbf{G}\left[\mathbf{m}, \mathbf{m}^{\prime}\right]=0
$$

CTMC example

$$
\mathbf{R}=\left(\begin{array}{c|c|c|c}
\mathbf{R}\left(\mathbf{z}_{1}, \mathbf{z}_{1}\right) & \mathbf{R}\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right) & \mathbf{R}\left(\mathbf{z}_{1}, \mathbf{z}_{3}\right) & \mathbf{R}\left(\mathbf{z}_{1}, \mathbf{z}_{4}\right) \\
\hline \mathbf{R}\left(\mathbf{z}_{2}, \mathbf{z}_{1}\right) & \mathbf{R}\left(\mathbf{z}_{2}, \mathbf{z}_{2}\right) & \mathbf{R}\left(\mathbf{z}_{2}, \mathbf{z}_{3}\right) & \mathbf{R}\left(\mathbf{z}_{2}, \mathbf{z}_{4}\right) \\
\hline \mathbf{R}\left(\mathbf{z}_{3}, \mathbf{z}_{1}\right) & \mathbf{R}\left(\mathbf{z}_{3}, \mathbf{z}_{2}\right) & \mathbf{R}\left(\mathbf{z}_{3}, \mathbf{z}_{3}\right) & \mathbf{R}\left(\mathbf{z}_{3}, \mathbf{z}_{4}\right) \\
\hline \mathbf{R}\left(\mathbf{z}_{4}, \mathbf{z}_{1}\right) & \mathbf{R}\left(\mathbf{z}_{4}, \mathbf{z}_{2}\right) & \mathbf{R}\left(\mathbf{z}_{4}, \mathbf{z}_{3}\right) & \mathbf{R}\left(\mathbf{z}_{4}, \mathbf{z}_{4}\right)
\end{array}\right)
$$

$$
\begin{aligned}
\mathbf{G}\left(\mathbf{z}_{1}, \mathbf{z}_{1}\right)= & \mathbf{R}_{1}\left(\mathbf{z}_{1}, \mathbf{z}_{1}\right) \oplus \mathbf{R}_{2}\left(\mathbf{z}_{1}, \mathbf{z}_{1}\right) \\
\mathbf{G}\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right)= & w\left(I_{3}\right)\left(\mathbf{K}_{1}\left(I_{3}\right)\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right) \otimes \mathbf{K}_{2}\left(I_{3}\right)\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right)\right)+ \\
& w\left(I_{6}\right)\left(\mathbf{K}_{1}\left(I_{6}\right)\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right) \otimes \mathbf{K}_{2}\left(I_{6}\right)\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right)\right)
\end{aligned}
$$

CTMC example

$$
\begin{aligned}
& \mathbf{R}_{1}\left(\mathbf{z}_{1}, \mathbf{z}_{1}\right) \quad \mathbf{R}_{2}\left(\mathbf{z}_{1}, \mathbf{z}_{1}\right) \\
& \mathbf{R}\left(\mathbf{z}_{1}, \mathbf{z}_{1}\right)=
\end{aligned}
$$

CTMC example

Computational costs

To solve an SPN

- build the RG,
- compute the associated CTMC
- solve the characteristic equation $\boldsymbol{\pi} \cdot \mathbf{Q}=\mathbf{0}$.

To solve a DSSP:

- build the $K+1$ auxiliary models,
- compute the RG_{i} of each auxiliary model,
- compute the $\mathbf{R}_{i}\left(\mathbf{z}, \mathbf{z}^{\prime}\right)$ and $\mathbf{K}_{i}(t)\left(\mathbf{z}, \mathbf{z}^{\prime}\right)$ matrices
- solve the characteristic equation $\boldsymbol{\pi} \cdot \mathbf{G}=\mathbf{0}$

The advantages/disadvant'ges depend on the relative size of the re'chability graphs of $\mathcal{S}, \mathcal{B S}$, and $\mathcal{L} \mathcal{S}_{i}$.

Storage costs

The storage cost of the classical solution method is proportional to $|\operatorname{RS}(\mathcal{S})|$ and to the number of arcs in the $\operatorname{RG}(\mathcal{S})$.

The storage cost for DSSP is proportional to $|\mathrm{PS}(\mathcal{S})|$, and to the sum of the number of arcs in the K reachability graphs $\mathrm{RG}_{i}\left(\mathcal{L S}_{i}\right)$.

The difference between the number of arcs in $R G(\mathcal{S})$ and the sum of the number of arcs in the $K \mathrm{RG}_{i}\left(\mathcal{L S}_{i}\right)$ is what makes the method applicable in cases in which a direct solution is not possible, due to the lack of memory to store \mathbf{Q}.

