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Motivations

• St-DSSP are compositional by definition

• Approximate solution already exploits com-

position

• Exact numerical solution?

+ To work in a class in which properties can

be proved without RG construction
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Contributions

• Extend the asynchronous approach to a dif-

ferent class of net

• Put the construction in a general framework

to allow an easy extension to other classes
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DSSP definition

S = {P1∪. . .∪PK∪B, T1∪. . .∪TK,Pre,Post,m0},
is a DSSP (Deterministically Synchronized Se-

quential Processes) iff:

1. Pi ∩ Pj = ∅, Ti ∩ Tj = ∅, Pi ∩B = ∅,
2. 〈SMi,m0i〉 is a state machine, strongly

connected and 1–bounded

3. ∀ buffer b ∈ B:

(a) Nor sink neither source

|•b| ≥ 1 and |b•| ≥ 1,

(b) Output private

∃i ∈ {1, . . . , K} such that b• ⊂ Ti,

(c) Deterministically synchronized

∀p ∈ P1 ∪ . . . ∪ PK: t, t′ ∈ p• =⇒
Pre[b, t] = Pre[b, t′].

TI = •B∪B• interface transitions.

(T1 ∪ . . . ∪ TK) \ TI internal transitions
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DSSP example
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B = {b1, b2}
P1 = {a1, a2, a3, a4}
P2 = {c1, . . . , c7}
TI = {I1, . . . , I6}
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St-DSSP definition

Stochastic DSSP (St-DSSP) {S, w}
{P, T,Pre,Post,m0, w}

• S is a DSSP and

• w : T → IR+ is the rate of

exponentially distributed firing time

Immediate transitions?

+ Internal

Can be reduced in the class

− Interface

Cannot be reduced in the class
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DSSP properties

1. Live and bounded =⇒ home states.

2. For bounded and strongly connected DSSP:

Live ⇐⇒ deadlock-free

3. Let C be the n×m incidence matrix.

Structurally bounded ⇐⇒
∃y ∈ INn : y > 0 ∧ y ·C ≤ 0.

4. Deadlock-free ⇐⇒ “a” linear programming

problem has no integer solution.

5. For live DSSP:

bounded ⇐⇒ it is structurally bounded

6. Structurally live and structurally bounded

⇐⇒ consistent (i.e., ∃x > 0,C · x = 0)

and conservative (i.e., ∃y > 0,y ·C = 0)

and rank(C) = |E| − 1
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Proving ergodicity

Step 1: check structural boundedness using state-

ment 3 ;

Step 2: check the characterization for struc-

tural liveness and structural boundedness

using statement 6 ;

Step 3: check deadlock-freeness using statement 4

(thus, by statement 2, liveness).

Answer = YES if and only if St-DSSP is live

and bounded (statement 5 ) thus it has home

state (statement 1 ), therefore

the CTMC is finite and ergodic

and all the transitions have non-null through-

put.
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Structured solution methods

• Goal: avoid the explicit construction of RG

and Q and its storing

• How: find (or use) a decomposition into K

components

• Express Q as tensor expression of Qi

• Compute π·Q using the expression, with-

out storing Q
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Synchronous approach

(without an abstract view)
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Synchronous approach

(without an abstract view)

• RS ⊆ PS = RS1 × . . .× RSK

• Q = R− rowsum(R)

• R ⊆ K⊕

i=1
R′

i +
∑

t∈TS
w(t)

K⊗

i=1
Ki(t)

This is the approach of

• SAN (Plateau),

• SGSPN (Donatelli)

• Synchronized SWN (Haddad - Moreaux)
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Asynchronous approach

(with an abstract view)

13



Asynchronous approach

(with an abstract view)

RS(S) =
⊎

z∈RS(BS)
RSz(S) ⊆

⊎

z∈RS(BS)
{z} × RSz(LS1)× · · · × RSz(LSK)

R can be split in sub-blocks R(z, z′)

R(z, z) =
K⊕

i=1
Ri(z, z)

R(z, z′) =
K⊗

i=1
Ri(z, z

′)

This is the approach proposed for

• MG (Buchholz - Kemper),

• HCGSPN (Buchholz) and

• Asynchronous SWN (Haddad - Moreaux)
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Structured solution of St-DSSP

Determine an high level view that

• can coexist with the original net

• it is easy to compute.

Show that it is possible to work with superset

of state space and supermatrix of infinitesimal

generator

Example

Definition
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Auxiliary systems
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Low level
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Basic skeleton
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Definitions

Equivalence relation R

R is defined on P \ B by: 〈pi
1, p

i
2〉 ∈ R for

pi
1, p

i
2 ∈ Pi iff there exists a non-directed path

np in SMi from pi
1 to pi

2 such that np∩TI = ∅
(i.e., containing only internal transitions). Let

[pi
1] be the corresponding equivalence classes.

[pi
1] ⇐⇒ hi

j
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Definitions

Extended System ES

i) PES = P ∪H1 ∪ . . . ∪HK,

with Hi = {hi
1, . . . , h

i
r(i)}

ii) TES = T ;

iii) PreES|P×T = Pre; PostES|P×T = Post;

iv) for t ∈ TI ∩ Ti:

Pre[hi
j, t] =

∑

p∈[pi
j]
Pre[p, t];

Post[hi
j, t] =

∑

p∈[pi
j]
Post[p, t],

v) m0
ES [p] = m0[p], for all p ∈ P ;

vi) m0
ES [hi

j] = ∑
p∈[pi

j]
m0[p].
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Definitions

Low Level Systems LS i

LS i (i = 1, . . . , K) of S is obtained from ES
deleting all the nodes in

⋃

j �=i
(Pj ∪ (Tj \ TI)) and

their adjacent arcs.

Basic Skeleton BS

BS is obtained from ES deleting all the nodes

in
⋃

j
(Pj ∪ (Tj \ TI)) and their adjacent arcs.
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Properties

S is a DSSP

LS i its low level systems (i = 1, . . . , K),

BS its basic skeleton,

L(S) the language of S

1. RG(ES) ∼= RG(S)

2. L(S)|Ti∪TI ⊆ L(LS i), for i = 1, . . . , K.

3. L(S)|TI ⊆ L(BS).
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Reachability set construction

RSz(ES) = {m ∈ RS(ES) : m|H1∪...∪HK∪B = z}

RSz(S) = {m ∈ RS(S) such that

∃m′ ∈ RSz(ES) : m′|P1∪...∪PK∪B = m}

RSz(LS i) = {mi ∈ RS(LS i) : mi|H1∪...∪HK∪B = z}

PSz(S) = {z|B}×RSz(LS1)|P1×· · ·×RSz(LSK)|PK

PS(S) =
⊎

z∈RS(BS)
PSz(S)

RS(S) ⊆ PS(S) =
⊎

z∈RS(BS)
PSz(S)

RSz(S) ⊆ PSz(S)
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Example of RS construction

RS of S
v1 a1, b1, c1

v2 a1, b1, c6

v3 a1, b1, c5

v4 a4, b1, c1

v5 a1, c7

v6 a4, b1, c6

v7 a4, b1, c5

v8 a1, c2

v9 a1, c4

v10 a4, c7

v11 a4, c2

v12 a1, c3

v13 a4, c4

RS of S
v14 a1, c1, b2

v15 a4, c3

v16 a4, c1, b2

v17 a1, b2, c6

v18 a1, b2, c5

v19 a4, b2, c6

v20 a4, b2, c5

v21 a3, c1

v22 a3, c6

v23 a3, c5

v24 a2, c1

v25 a2, c6

v26 a2, c5
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RS of BS
z1 A14, C56, b1

z2 A14, C34

z3 A14, C56, b2

z4 A23, C56

RS of LS1

x1 a1, b1, C56, A14 z1

x2 a4, b1, C56, A14 z1

x3 a1, C34, A14 z2

x4 a4, C34, A14 z2

x5 a1, b2, C56, A14 z3

x6 a4, b2, C56, A14 z3

x7 a3, C56, A23 z4

x8 a2, C56, A23 z4

RS of LS2

y1 A14, b1, c1, C56 z1

y2 A14, b1, c6, C56 z1

y3 A14, b1, c5, C56 z1

y4 A14, c7, C34 z2

y5 A14, c2, C34 z2

y6 A14, c4, C34 z2

y7 A14, c3, C34 z2

y8 A14, b2, c1, C56 z3

y9 A14, b2, c6, C56 z3

y10 A14, b2, c5, C56 z3

y11 A23, c1, C56 z4

y12 A23, c6, C56 z4

y13 A23, c5, C56 z4
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Counter-example for state

space

p4

p3

p6

p10

p8

p7

b1

b2

b3 b4

b6b5

p11

p12

T4

T2 T1T6

T5T10

T9

T7

T11

T12

_2

z= [b1, b2, P34, P78] is in RS(BS)

[p8, b1, b2, P34] and [p7, b1, b2, P34] are in

RSz(LS1)

[p3, b1, b2, P78] and [p4, b1, b2, P78] is in

RSz(LS2)

The cross product gives a PSz equal to

[ p3, p8, b1, b2 ] [ p3, p7, b1, b2 ]

[ p4, p8, b1, b2 ] [ p4, p7, b1, b2 ]

but state [ p4, p8, b1, b2 ] does not belong to

the RS of the DSSP
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CTMC generation

Basic idea: split the behaviour in two

1. transitions that change the high level view

2. transitions that do not change the high level

view
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CTMC generation

Q = R− rowsum(R)

For the LS i components:

Qi = Ri − rowsum(Ri)

Technique:

(1) Consider Q and R in blocks (z, z′), of size

|RSz(S)| · |RSz′(S)|

(2) Consider Qi and Ri in blocks (z, z′) of size

|RSz(LS i)| · |RSz′(LS i)|

(3) Describe each block of Q and R as tensor

expression of the blocks of Qi and Ri .
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CTMC generation

Blocks R(z, z) have non null entries that are

due only to non interface transitions

G(z, z) =
K⊕

i=1
Ri(z, z)

Blocks R(z, z′) with z �= z′ have non null en-

tries that are due only to the firing of transitions

in TI.

Ki(t)(z, z
′)[m,m′] =




1 if m t−→m′

0 otherwise

G(z, z′) =
∑

t∈TIz,z′
w(t)

K⊗

i=1
Ki(t)(z, z

′)
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CTMC definition

1. Transition rates among reachable states are

correctly computed

∀z and z′ ∈ RS(BS):

R(z, z′) is a submatrix of G(z, z′)

2. Unreachable states are never assigned a non-

null probability

∀m ∈ RS(S) and ∀m′ ∈ PS(S) \ RS(S) :

G[m,m′] = 0
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CTMC example

R =




R(z1, z1) R(z1, z2) R(z1, z3) R(z1, z4)

R(z2, z1) R(z2, z2) R(z2, z3) R(z2, z4)

R(z3, z1) R(z3, z2) R(z3, z3) R(z3, z4)

R(z4, z1) R(z4, z2) R(z4, z3) R(z4, z4)




G(z1, z1) = R1(z1, z1)⊕R2(z1, z1)

G(z1, z2) = w(I3)(K1(I3)(z1, z2)⊗K2(I3)(z1, z2)) +

w(I6)(K1(I6)(z1, z2)⊗K2(I6)(z1, z2))
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CTMC example

R1(z1, z1) R2(z1, z1)




x1| x2

x1 w(Ta2)

x2







y1| y2| y3

y1 w(T13) w(T12)

y2

y3




R(z1, z1) =



x1, | x1, | x1, | x2, | x2, | x2,

y1| y2| y3| y1| y2| y3

x1,y1 w(T13) w(T12) w(Ta2)

x1,y2 w(Ta2)

x1,y3 w(Ta2)

x2,y1 w(T13) w(T12)

x2,y2

x2,y3




32



CTMC example

R(z1, z2) =




x3, | x3, | x3, | x3, | x4, | x4, | x4, | x4,

y3| y4| y5| y6| y3| y4| y5| y6

x1,y1

x1,y2 w(I6)

x1,y3 w(I3)

x2,y1

x2,y2 w(I6)

x2,y3 w(I3)




K1(I3)(z1, z2) =




x3| x4

x1 1

x2 1




K2(I3)(z1, z2) =




y4| y5| y6| y7

y1

y2

y3 1




K1(I6)(z1, z2) =




x3| x4

x1 1

x2 1




K2(I6)(z1, z2) =




y4| y5| y6| y7

y1

y2 1

y2
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Computational costs

To solve an SPN

• build the RG,

• compute the associated CTMC

• solve the characteristic equation π ·Q = 0.

To solve a DSSP:

• build the K + 1 auxiliary models,

• compute the RGi of each auxiliary model,

• compute the Ri(z, z
′) and Ki(t)(z, z

′) ma-

trices

• solve the characteristic equation π ·G = 0

The advantages/disadvant‘ges depend on the

relative size of the re‘chability graphs of S, BS,

and LS i.
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Storage costs

The storage cost of the classical solution method

is proportional to |RS(S)| and to the number of

arcs in the RG(S).

The storage cost for DSSP is proportional to

|PS(S)|, and to the sum of the number of arcs

in the K reachability graphs RGi(LS i).

The difference between the number of arcs in

RG(S) and the sum of the number of arcs in

the K RGi(LS i) is what makes the method ap-

plicable in cases in which a direct solution is not

possible, due to the lack of memory to store Q.
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