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Motivations

e St-DSSP are compositional by definition

e Approximate solution already exploits com-

position

e [ixact numerical solution?

+ To work in a class in which properties can

be proved without RG construction



Contributions

e [ixtend the asynchronous approach to a dit-

ferent class of net

e Put the construction in a general framework

to allow an easy extension to other classes



DSSP definition

S ={PU.. . UPkUB, T1U...UTk,Pre, Post, mgy},
is a DSSP (Deterministically Synchronized Se-

quential Processes) iff:
L.PNP =0 T,NnT, =0, PNB=1{,

2. (SM;, my;) is a state machine, strongly

connected and 1-bounded
3.V buffer b € B:
(a) Nor sink neither source
°b] > 1 and |b°*] > 1,
(b) Output private
di € {1,..., K} such that 0* C T},
(¢) Deterministically synchronized

Vpe PLU...U Pg: t,t’Ep' —
Prelb, t] = Prelb, t'].

TI=°*BUB*® interface transitions.
(U...UTk)\ TI internal transitions



DSSP example

bl

B = {b1,b2)

P, = {al,a2,a3, a4}
P, = {cl,...,c7}
TI = {11,...,16)



St-DSSP definition

Stochastic DSSP (St-DSSP) {S, w}
{P,T,Pre, Post, mg, w}

e Sisa DSSP and

e w:T — IR" is the rate of

exponentially distributed firing time

Immediate transitions?

+ Internal

Can be reduced in the class

— Interface

Cannot be reduced in the class



DSSP properties

. Live and bounded == home states.

. For bounded and strongly connected DSSP:
Live <= deadlock-free

. Let C be the n x m incidence matrix.
Structurally bounded <=
dJyeN':y>0Ay-C<O.

. Deadlock-free <= “a’ linear programming

problem has no integer solution.

. For live DSSP:
bounded <= it is structurally bounded

. Structurally live and structurally bounded
<= consistent (i.e., 3x > 0,C - x = 0)
and conservative (i.e., 3y > 0,y - C = 0)
and rank(C)=|&] — 1



Proving ergodicity

Step 1: check structural boundedness using state-

ment J;

Step 2: check the characterization for struc-
tural liveness and structural boundedness

using statement 6’

Step 3: check deadlock-freeness using statement 4

(thus, by statement 2, liveness).

Answer = YES if and only if St-DSSP is live
and bounded (statement 5) thus it has home

state (statement 1), therefore
the C'TMC is finite and ergodic

and all the transitions have non-null through-

put.



Structured solution methods

e (Goal: avoid the explicit construction of RG

and Q and its storing

e How: find (or use) a decomposition into K

components

e Fixpress QQ as tensor expression of Q;

e Compute =-Q using the expression, with-

out storing Q
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Synchronous approach
(without an abstract view)
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Synchronous approach
(without an abstract view)

e RSCPS=RS5; x...x RSg

e Q =R — rowsum(R)

K K
eRCOR + > w(t) ® K
1=1 teTsS 1=1

This is the approach of

e SAN (Plateau),
e SGSPN (Donatelli)

e Synchronized SWN (Haddad - Moreaux)
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Asynchronous approach

(with an abstract view)
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Asynchronous approach

(with an abstract view)

RS(S) = W RS,S) C
zeRS(BS)

, RS,(LS)) x -+ x RS, (LS
ZERLSJ(BS){Z} 8 ( 1> 8 8 < K>

R can be split in sub-blocks R(z, z')

K
R(z,z) = '6—91 Ri(z,z)

K
R(z,z) = ® R,;(z,7)

This is the approach proposed for
e MG (Buchholz - Kemper),
e HCGSPN (Buchholz) and

e Asynchronous SWN (Haddad - Moreaux)
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Structured solution of St-DSSP

Determine an high level view that

e can coexist with the original net

e 1t is easy to compute.

Show that it is possible to work with superset
of state space and supermatrix of infinitesimal

generator

Example

Definition

15



~Al4

Ta2h

Auxiliary systems

cl

-

16

ek

)




Low level
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Basic skeleton
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Definitions

Equivalence relation R

R is defined on P \ B by: (p},p,) € R for
pY,ph € P iff there exists a non-directed path
np in SM; from p! to pb such that npNTI = ()
(i.e., containing only internal transitions). Let

[pﬁ] be the corresponding equivalence classes.
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Definitions

Extended System £S

i) Pes=PUHU...UHg,

ii) ng — T;
iii) Pregs|pxr = Pre; Postes|pxr = Post;

iv) for t € TINT;:
Pre[hé-,t] = Y Prelp,t;

| pelpj]
Post|h},t] = ¥~ Post[p,t],
pelpj]
v) mo®S[p] = molp], for all p € P

Vl) mogs[hﬁ — Zpé[pg] mg[p]
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Definitions

Low Level Systems LS;

LS; (i =1,...,K) of § is obtained from £S
deleting all the nodes in U (P; U (75 \ T1)) and

S el
their adjacent arcs.

Basic Skeleton BS

BS is obtained from £€S deleting all the nodes
in U(P; U (75 \ TI)) and their adjacent arcs.
J
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Properties

S is a DSSP

LS; its low level systems (i = 1,. ..

BS its basic skeleton,

L(S) the language of &

1. RG(ES) 2 RG(S)

2. L(S)|pury € LILS)), fori=1,...

3. L(S)| C L(BS).
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Reachability set construction

RSZ<(€S> — {m = RS(SS) : m’HlumuHKuB = Z}

RS,(S) = {m € RS(S) such that
Elm/ < RSZ<58) : m/|P1UmUpKuB = m}

RS,(LS;) = {m; € RS(LS;) : my|p,u. umuB = Z}

PSZ(8> = {Z’B}XRSZ<£81)‘[)1X° . 'XRSZ(£8K>|pK

PS(S)= W PS,(S
( ) ZERLSJ(BS) ( )

RS(S) CPS(S) = 1 PS,(S)

RS,(S) C PS,(S)
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Example of RS construction

RS of & RS of &
vy lal, bl, cl vis|al, cl, b2

vy |al, bl, cb vis | a4, c3

vy al, bl, ¢cb vig | a4, cl, b2
vy | a4, bl, cl vy7|al, b2, c6
vs | al, c7 vig|al, b2, cb
vg | a4, bl, c6 Vig | a4, b2, c6
v7| a4, bl, c5 Voo | a4, b2, cb

vy al, c2 Va1 |a3, cl
vg  al, c4 Voo | a3, cb
vio | a4, cf Vo3| a3, ¢cb
vi | a4, c2 Vo4 | a2, cl
vio | al, c3 Vo5 | a2, ¢cb

vi3| a4, c4 Vog | a2, ¢b
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7z
Z9
Z3

Zy

RS of BS

A14, C56, bl
Al4, C34
A14, C56, b2
A23, C56

RS of ESl

X1 | al, bl, C56, A14 |z
Xy | a4, bl, C56, Al4 |z,
x3 [ al, C34, Al4 79
X, | a4, C34, Al14 79
X5 | al, b2, C56, Al4 |z
Xg | a4, b2, C56, Al4 |z
x- | a3, C56, A23 74
Xg | a2, C56, A23 74
RS of LS,
y1 | Al4, bl, c1, C56 |z,
yo | Al4, bl, c6, C56 |z
y3 | Al4, bl, c5, C56 |z,
yv4 | Al4, c7, C34 79
ys5 | Al4, c2, C34 79
ve | Al4, c4, C34 79
y7 | Al4, c3, C34 79
ys | Al4, b2, c1, C56 | z;3
yvg | Al4, b2, c6, C56 |z
yvio | Al4, b2, c5, C56 | z3
yv11 | A23, c1, C56 74
Vi | A23. 6 C56 |z,
y13 | A23, cb, C56 7.4




Counter-example for state

4 I
HT6 T 2 bl W T2 11
ol o TP ola
b5 4 19 Lo, b6
p7 - b2
Q oL
5 T10 2 =5 T5
\_ Y, J. 06
pio
b3 §b4
T12 f‘,.g p12

z= [bl, b2, P34, P78] is in RS(BS)

[p8, bl, b2, P34] and [p7, bl, b2, P34] are in
RS,(LS)

[p3, bl, b2, P78] and [p4, bl, b2, P78] is in
RS,(LS5)

The cross product gives a PS, equal to

[ p3, p8, bl, b2 ] [ p3, p7, b1, b2 ]
[ p4, p8, bl, b2 ] [ p4, p7, b1, b2 ]

but state [ p4, p8, bl, b2 | does not belong to
the RS of the DSSP
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CTMC generation

Basic idea: split the behaviour in two
1. transitions that change the high level view

2. transitions that do not change the high level

View
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CTMC generation

Q =R — rowsum(R)
For the LS; components:

Q; = R; — rowsum(R;)

Technique:

(1) Consider Q and R in blocks (z,z’), of size

(2) Consider Q; and R; in blocks (z,z’) of size

(3) Describe each block of Q and R as tensor
expression of the blocks of Q; and R,; .
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CTMC generation

Blocks R(z,z) have non null entries that are

due only to non interface transitions

G(z,z) = él Ri(z,z)

Blocks R(z,z') with z # z’ have non null en-

tries that are due only to the firing of transitions
in TT.

1 if ¢ !
K(t)(zz)mm)|={ =

0 otherwise

Gz,z)= ¥ w(t)® Kit)(z,2)

K
tETIz,z/ 1=1
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CTMC definition

. Transition rates among reachable states are
correctly computed
Vz and z' € RS(BS):

R(z,27') is a submatrix of G(z,z')

. Unreachable states are never assigned a non-

null probability

Vm € RS(S) and Vm' € PS(S) \ RS(S) :
Gm,m'| =0
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CTMC example

R(z1,21) | R(z1,22) | R(z1,23) | R(21, 24)

R(Z27 Zl) R(Z27 Z2> R<Z27 Z3> R(Z27 Z4)

R(Z37 Zl) R(Z37 ZQ) R(Z37 Z3) R(Z?n Z4)

R(z4,71) | R(24, 22) | R(24, 23) | R(24, 24)

Ri(z1,2z1) @ Ry(z1, 21)

G(z1,2;)

w(l3)(Ki(1s)(z1, 22) @ Ka(13)(21,22)) +
w(ls) (K1 (1) (21, 22) @ Ka(l6)(21,22))

(;(Z1722)
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CTMC example

Ri(z1,2) Ry(z1,21)
Y1’ Yz\ Y3
Xl‘ X9
Yi w(Ti3) w(T1z2)
X1 w(Tas)
Yo
X2
Y3
R(Zl, Zl) =
Xl)‘ Xla‘ Xl)’ X27‘ X27‘ X9,
Y1| Y2\ Y3| Yl\ Y2| y3
X1, Y1 w(Ti3) w(Thz2) w(Ta)
X1, Y2 w(TCLZ)
X1,Y3 w(TCLz)
X2,¥1 w(T13) w(T12>
X2,Y2
X2,¥3
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CTMC example

X3>| X37| X3,| X3,| X47| X4,| X4,| X4,
ysl  val ysl yel  ysl wal ysl ye
X1, Y1
X1,¥Y2 w(lﬁ)
R(Z17Z2):
X1,Y3 w(fs)
X2,¥Y1
X2,¥2 w(lﬁ)
X2,¥3 w(IB)
Y4\ }’5| Y6\ Y7
x3]|
Y1
Ki(I3)(z1,22) = | x| 1 Ko(I3)(z1,22) =
Y2
X2
Y3 1
yal ys| yel y7
yi
Ki(ls)(z1,22) = | x| 1 Ko (Is)(z1,22) =
ya| 1
X2
Y2

33




Computational costs

To solve an SPN
e build the RG,
e compute the associated CTMC

e solve the characteristic equation = - Q = 0.

To solve a DSSP:
e build the K + 1 auxiliary models,
e compute the RG; of each auxiliary model,

e compute the R;(z,2z’) and K;(t)(z, z') ma-

trices
e solve the characteristic equation = - G = 0

The advantages/disadvant‘ges depend on the
relative size of the re‘chability graphs of S, BS,
and LS;.
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Storage costs

The storage cost of the classical solution method

is proportional to |RS(S)| and to the number of
arcs in the RG(S).

The storage cost for DSSP is proportional to
|IPS(S)|, and to the sum of the number of arcs
in the K reachability graphs RG;(LS;).

The difference between the number of arcs in
RG(S) and the sum of the number of arcs in
the K RG;(LS;) is what makes the method ap-
plicable in cases in which a direct solution is not

possible, due to the lack of memory to store Q.
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